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Metal —insulator transitions
and related phenomena in a strongly
correlated two-dimensional electron system

V M Pudalov

1. Introduction: competition of quantum
interference and dimensionality

Understanding the properties of two-dimensional (2D)
electron systems in the presence of both strong interparticle
interactions and disorder is an outstanding problem in
condensed matter physics that is still far from being solved.
The late 1970s witnessed the completion of the theory of
quantum (i.e., wave) interference corrections for noninteract-
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ing electrons, according to which the quantum interference
correction dagg; to the semiclassical Drude —Boltzmann value
op acts to decrease the conductivity ¢ and can be regarded as
‘backscattering’ [1—3]:
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While small in three dimensions, the quantum interference
correction is of fundamental importance in 2D systems, where
the conductance G is independent of size. As temperature
decreases, the quantum correction increases logarithmically
until it becomes comparable to 6p and leads to localization,
which implies an exponential decrease in the conductivity.

These were the ideas that led to the creation of the scaling
theory of conductivity in 1979 [4]. According to this theory,
localization develops as the quantum length scale increases
and is a result of competition between quantum interference,
disorder, and dimensionality. In particular, a 2D system of
noninteracting electrons cannot have metallic conduction
and must become an insulator at 7= 0. Figure la below
shows an example of such conductivity behavior for a
strongly disordered (low-mobility) sample. It can be seen
that at low electron concentration, the conductivity decreases
exponentially with decreasing temperature, suggesting a
strong localization in the system. As the density increases, a
transition occurs to the regime in which the conductivity
varies approximately logarithmically with the temperature.
Just as the scaling theory of conductivity predicts, at no
concentrations or temperatures does the conductivity show
evidence for metallic behavior (do/dT < 0).

The theory of quantum corrections led to a major revision
of the classical understanding of conductivity and (as
reviewed in Refs [1, 2]) was brilliantly confirmed in numerous
experimental studies on 3D metallic samples and metallic
films that were available in the 1970 —1980s and in which the
electron—electron interaction is weak. Indeed, the nearly
15-year dominance of the scaling theory misled researchers to
believe that it is universal and works equally well when the
interparticle interaction is strong.

Over the years, with advances in semiconductor technol-
ogies and the fabrication of increasingly pure samples with
2D electron layers, 2D electron systems with much lower
concentrations have become available to study. In the low-
concentration limit, electrons in an ideally pure system must
form a Wigner crystal [5—7]. At higher densities, the electron
system remains in the ‘liquid’ state and is characterized by
strong electron—electron correlations. Such a strongly 2D
system can exhibit new quantum states different from those
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Figure 1. The temperature dependence of the conductivity of a 2D electron
system in silicon in the absence of a magnetic field: (a) for a sample with a
low mobility of 0.15 m? (V s)~!, the curves, from bottom up, are for the
following electron densities (in units of 10" cm™2): 3.85, 4.13, 4.83, 5.53,
6.23,7.63,9.03,10.4, 11.8, 13.2, 16.0, 18.8, 21.6, 24.4, 30.0, 37.0; (b) for a
sample with a high mobility of 3.62 m? (V s)~! [16], the curves are for
electron densities that vary (from bottom up) from 0.717 to 1.326 in steps
of 0.0218.

known for noninteracting electrons — which is very attractive
to both theorists and experimenters.

The universal applicability of scaling theory was directly
compromised in the early 1990s when studying the transition
of an electron liquid from the state with quantized Hall
resistance to the insulator state [§—11]. The experiments
revealed, namely, that localized states that lie at the centers
of the disorder-broadened Landau levels in the strong-
magnetic-field quantum-Hall-effect regime merge and
remain in a finite energy interval as the magnetic field H
decreases. This contradicts the scaling theory prediction that
delocalized states rise in energy and move across the Fermi
level as H — 0[12, 13]. Furthermore, in a direct challenge to
the one-particle scaling theory, the subsequent studies of
conductivity in the absence of a magnetic field provided
evidence for metallic transport and the metal-to-insulator
transition in 2D systems of electrons in high-mobility Si
structures.

Figure 1b shows typical temperature behavior of con-
ductivity for pure (high-mobility) samples [16]. It is seen that
at low densities, the curves o(7') differ little from the
corresponding curves in Fig. 1la and demonstrate hopping
conductivity, the usual behavior for a strongly localized state.
But above a certain critical density n. (in our case, n. =
0.96 x 10'"" cm~2), ¢(T') shows a sharply different tempera-

ture dependence: similarly to what happens in an ideal metal,
the conductivity starts to increase rapidly with decreasing
temperature. Two branches of the dependence ¢(7") (the
‘metallic’ for n > n., and the ‘insulating’ for n < n.) are
mirror-symmetric with respect to o(n) [15] — akin to the
symmetry the conductivity of 3D systems shows at the
metal —insulator transition. A standard scaling analysis of
these curves shows [15] that the experimental ¢(7") curves for
n > n. and those for n < n. can indeed be reduced to two
universal dependences o(T'),_; , o exp(£7y/7') in which the
scaling parameter 7T, shows the critical behavior
To o< (n — ne) " near ne.

Experimental finding of new physics in the field where it
was not expected provided a major stimulus for subsequent
studies, both theoretical and experimental, of strongly
correlated 2D systems. Metallic conductivity and the
metal —insulator transition were similarly found in a variety
of 2D systems, including 2D electron layers in GaAs/AlGaAs,
InAs/GaAs, n-AlAs, Si/SiGe and inverted silicon metal —
insulator —semiconductor (Si-MOS) structures, and 2D hole
layers in GaAs/AlGaAs and Si/SiGe (see reviews [17-21]
and the references therein). In all the cases studied, the
metal —insulator transition occurs with decreasing the elec-
tron density, when the system’s conductance reaches a value
of the order of ¢?/h [17—19]. Is the observed effect a true
quantum transition and is the metallic state of a 2D system
its ground state (at 7= 0)? Or does the conventional physics
of disordered and interacting electrons suffice to settle
things? These fundamental questions are stimulating inter-
est in this field.

2. Quantitative study of the e—e interaction

Because the critical behavior of conductivity as shown in
Fig. 1b contradicts the expectations for noninteracting
electrons, various types of interaction were analyzed theore-
tically for their possible effects. It was found that the spin—
orbit interaction — even though it affects scaling behavior
even on the one-particle level [1 —3] — is not renormalized
with decreasing the electron density and does not have a
strong effect on transport processes. The electron—phonon
interaction is also negligible in the low-temperature range
T < Tk, especially for a monatomic crystal such as Si, in
which the electron —phonon coupling is only via the deforma-
tion potential, with no piezoelectric component. Therefore,
by the method of exclusion, the only interaction left to
consider is the electron —electron (e—e) interaction.

In this case, it becomes clear where the high value of the
carrier mobility u comes into play. According to the Toffe—
Regel criterion, electrons become localized when their Fermi
wavelength becomes equal to the mean free path, Ag ~ ;.
Hence, at the localization threshold, the Fermi energy is
inversely proportional to the carrier mobility
Ep o< 1/14 o< 1/p. We note that for a 2D system, the Fermi
energy is proportional to the electron concentration, Ep  n.
It then follows that the higher the mobility (purity) in the 2D
system, the lower the electron density that can be achieved in
the ‘metallic’ phase and the stronger the electron—electron
interaction, which is usually characterized by the dimension-
less ratio of the Coulomb potential energy E. to the Fermi
kinetic energy EFf,
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In the relevant experiments, the critical values of the density
n corresponded to the value rg & 10, making it obvious that
such a system is by no means an ideal Fermi gas.

Realizing the importance of the electron—electron
interaction led to the intense theoretical and experimental
studies of its role in 2D systems in recent years. Experi-
mental studies were made of the e—e interaction-induced
renormalization of the parameters such as the g-factor
g'/g=1/(1+ F}), the effective mass m*/m =1+ F}/2, the
compressibility x»*/x = (m*/m)/(1 + Fy), and the spin sus-
ceptibility y*/x = (m*/m)/(1 + F¢). Here, g, m, %, and y are
the corresponding bare (band) values, and Ff‘(S is the lowest-
order, antisymmetric (symmetric) Fermi-liquid constant.

Different groups used different experimental techniques
to measure the spin susceptibility and effective mass renor-
malization [22-37] (for brief reviews, see Refs [20, 21]).
Figure 2a shows the results of two independent measure-
ments of y* for 2D electrons in Si-MOS structures [22, 23] and
a GaAs/AlGaAs heterojunction [24]. As one can see, the
results are in quite good agreement despite the difference in
the carrier effective mass between Si and GaAs by a factor of
three, the difference in the ‘thickness’ of the 2D layer by a
factor of six, and the difference in the character and amount
of disorder between samples prepared by different techniques.
The dependence x*(rs) turns out to be universal for samples
of the same type with different disorder: for example, for
Si-MOS structures, there is good agreement in results for
samples with different mobilities [20, 23].

Vv

2.5
m*/m / b

20| ¥

1.5
ozt
. [23]
ok n-Si-MOS
| | | |
2 4 6 8 Is

Figure 2. Renormalized spin susceptibility (a) and renormalized mass (b)
as measured from Shubnikov—de Haas oscillations. White and black
circles: measurements in Si-MOS structures in crossed fields [23], straight
solid line: Si-MOS in a tilted field [22], squares: n-GaAs [24]. Horizontal
bars on vertical dashed straight lines indicate the upper and lower
estimates for y* as obtained from the period and phase of Shubnikov—de
Haas oscillations [20].

Experimental determination of the renormalized effective
mass renormalization is a more difficult task experimentally
because it requires a detailed theory. While the experiments
on Si-MOS structures all suggest a strong mass renormaliza-
tion, there is only qualitative agreement among them [20].
One explanation for the quantitative spread is disagreement
between the models the researchers used to extract the
effective mass from the experimental data. It is also possible
that the effective mass renormalization is different in different
effects — in kinetics and thermodynamics, for example.
Finally, the effective mass may be strongly temperature-
dependent, and hence measurements in different tempera-
ture ranges may lead to different results.

The first major result from the experimental study of the
renormalized parameters of 2D electrons was that, based on
the measured values of renormalized parameters and using
theoretical predictions for quantum interaction corrections
[38, 39], it allowed a satisfactorily qualitative (and, in some
cases, even quantitative) description of a) the ‘metallic’
temperature dependence of conductivity in the absence of a
field and b) magnetoresistivity in a parallel magnetic field
[25—28, 40]. Figure 3 gives an example of how the measured
dependences o(7T) compare with the calculated quantum
interaction corrections [28]. It can be seen that over a wide
range of electron densities (but for n > n.), the agreement
between theory and experiment is good if one uses the
renormalized parameters g*(n) and m*(n) measured in
independent experiments [23].

To summarize, the metallic temperature dependence of
conductivity is now well understood — at least away from the
transition, for ¢ > 62//1, n>ne, and T< Tr — and is
primarily determined by corrections in the triplet channel of
the e—e interaction, which increase with decreasing the
density. For the two-valley system of carriers in a Si-MOS

110 -

%%\A\V
v
100 ~ A =

a, [e*/h]

Temperature, K

Figure 3. Comparison of the measured temperature dependence of
conductivity [28] for the Si-MOS structure Si-22 (symbols) with predicted
first-order corrections (solid curves) [38]. Concentrations (from top down)
are21.3,18.9,16.5,14.1,11.7,10.5,8.1,7.5, 6.9, 6.3 (in units of 10'" cm~2).
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structure, the number of triplet terms increases by a factor of
five [41] — explaining why the metallic behavior of con-
ductivity is that strong in Si structures. But this picture cannot
be extended to the critical regime of small o ~ e*/h (i.e.,
kgl ~ 1) near the transition (n = n.), where the theory of
quantum corrections is invalid.

Another major experimental result is that the renormal-
ized parameters are very much the same, whether measured at
the Fermi level from Shubnikov—de Haas oscillations [22 -
24] or, alternatively, over a wider energy range from spin
polarization [31] or from magnetoresistance scaling in a
strong magnetic field [30]. This implies that the interaction
of 2D electrons in the strongly correlated regime is not
sensitive to the Zeeman energy, i.e., that it occurs via spinless
excitations over a wide energy range rather than in the narrow
kg T-neighborhood of the Fermi energy (which, we note, is
exactly the kind of interaction typical of bosons). Fully
consistently with this experimental fact, Tordanskii and
Kashuba [42] considered a 2D system of fermions in the
limit case of an infinite number of valleys, n, — oo. In this
approximation, the exchange occurs via high-energy plas-
mons, leading to the renormalization of the polaron-type
effective mass and of the spin susceptibility; we note that the
g-factor remains unchanged in the process.

A third key finding is that y* increases dramatically (by a
factor of five or more) with decreasing density (see Fig. 2). In
some papers, this increase was interpreted as a signature of
the developing spontaneous spin polarization. If that were the
case, the metal—insulator transition might result from a
spontaneous ferro- or antiferromagnetic transition.
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Figure 4. Temperature dependence of y* for three values of concentration
(shown in units of 10'" em~2) for samples Si6-14 (a—c) and Si3-10 (d) [43].
Upper abscissa scales show temperature in units of the renormalized
Fermi energy. Dot-dashed lines are the calculated quantum corrections in
the diffusive regime [1], dashed lines are the same for the ballistic regime.

This intriguing possibility — the occurrence of a sponta-
neous magnetic transition—was tested in Ref. [20] by
analyzing the frequency and phase of Shubnikov—de Haas
oscillations at low densities. It was found that the frequency
of the oscillations does not double until the very moment of
the metal —insulator transition, thereby not confirming the
doubling of the Fermi energy, which inevitably results from a
spontaneous transition of electrons to one spin band. The
analysis of the oscillation phase in the same study [20] also
shows that the spin splitting in a weak field is more than half
of the full cyclotron splitting but does not exceed it — an
experimental fact that imposes the upper and lower limits of
the spin susceptibility, as shown in Fig. 2a by the short
horizontal bars.

In principle, the spin susceptibility could diverge in
accordance with a power law with decreasing temperature,
signaling the non-Fermi-liquid behavior of a strongly
correlated 2D system. This possibility was examined by
measuring the temperature variation of spin susceptibility in
Refs [20, 43]. Typical y*(T) curves are shown in Fig. 4, which
demonstrates that the temperature dependence of the
susceptibility is much slower than a power law and is in
qualitative agreement with the calculated quantum interac-
tion corrections [1] o< In 7't for Tt < /i. We note that taken
together, the data above and those from other experiments
have not yet revealed any deviations from the Fermi-liquid
theory.

3. Interplay of disorder and interaction

The theory of quantum corrections is not applicable near 7,
where o ~ ¢?/h. In the presence of impurities, fluctuations in
local charge, spin, and valley densities show a decay on large
length scales, which is equivalent to the propagation of paired
electron—hole and electron —electron modes known as diffu-
sons and cooperons [1, 2, 44]. Diffusing electrons become
‘more correlated’ after spending much time close to each
other, which leads to disorder-dependent corrections to the
interaction amplitudes y, = F{/(1 + F}) and y, that charac-
terize the scattering of the diffuson and cooperon modes [44].
Ina 2D system, all these corrections diverge logarithmically as
temperature decreases [1, 2].

In the 1980s, a technique for resummation of logarith-
mically divergent diagrams (in fact, an extension of the
nonlinear sigma-model) was developed by Finkel’stein [44]
and subsequently by Castellani and Di Castro [45, 46],
which starts from a weakly interacting system and allows
approaching the strong-coupling regime corresponding to
the metal —insulator transition. It turns out that even in the
lowest-order small-resistance (small-disorder) approxima-
tion, the temperature diagram calculated in Ref. [41]
(Fig. 5) in terms of the temperature logarithm versus
disorder (i.e., resistance) is in qualitative agreement with
the observed p(7') behavior [16] in the critical regime. As
the temperature decreases, the resistivity first increases and
then, in accordance with the theory, its behavior starts to be
determined by the developing renormalization of y, — with
the result that the resistivity passes a maximum and starts
decreasing.

In the corresponding two-parameter scaling theory [41,
44—-47], the renormalization of disorder with decreasing
temperature (the increase in the quantum length scale) leads
to an increase in interaction, which in turn affects the
resistivity (disorder). Therefore, the metal—insulator transi-
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Figure 5. (a) Phase diagram for two-parameter scaling in the one-loop
approximation [41]. The abscissa is proportional to the length scale
(temperature logarithm), the ordinate is the resistance (disorder) normal-
ized to the maximum value p. Curve [/ corresponds to the coupling
constant y, in the triplet channel; curve 2, to resistance. (b) Experimental
data from Ref. [16] on p(T") (symbols) for three values of concentration are
compared with the solution of the renormalization-group equation for a
two-valley system [41] (solid curve). The p(7') data are normalized by the
corresponding maximum values [41].

tion occurs not as a result of the competition between
dimensionality and interference (as in the 3D case) but
because of the competition between disorder and interac-
tion. Similarly to the theory of quantum corrections [38], the
large number (15) of the triplet terms in a two-valley system
that facilitate delocalization greatly increases the chances of
the system for delocalization compared with those of a one-
valley system.

Even though there is qualitative similarity between the
theoretical and observed behavior of the resistivity p(7'), so
far experiments have not yet supported the theoretical
prediction of a strong increase in y, — demonstrating only a
slight variation in the susceptibility with temperature instead
(see Fig. 4). A possible reason for this is that the temperature
variation of the susceptibility (see Fig. 3) was probably
measured not in the critical regime n = n. but for n > 1.3n,
and in a finite magnetic field; we note that it is not yet possible
experimentally to measure susceptibility in a weak field
H < T/gug, H<nT/eD (D is the diffusion coefficient) [1],
as needed for a strict comparison with theory [17].

The result in Ref. [41] derived in the lowest order in
resistivity only shows the ‘metallization’ trend in a 2D
system and is not applicable near the transition, where the
change in the resistivity with temperature is not minor. Nor

does this result apply at the temperature at which y,
diverges, and even though this temperature is vanishingly
low, ~ exp(—exp((2n,)?)) Kelvin [47], the failure of the
scaling equations at sufficiently low temperatures is a draw-
back of this approximation [41].

Recently, Punnoose and Finkel’stein [47] used the
approximation of an infinite number of valleys n, = co in
Ref. [42] to obtain a two-loop solution of the renormalization
group equations and to show the existence of a quantum
critical repulsive point for a metal —insulator transition in the
phase diagram of an interacting 2D system. Figure 6 shows a
fragment of a phase diagram in Ref. [47], where the repulsive
point is shown as a white circle and the arrows indicate the
direction of flow as the temperature decreases. Seen in the
figure are two classes of trajectories above and below the
critical point, which correspond to the insulator and metal,
respectively. The dashed line that starts almost horizontally
from high temperatures (zero on the abscissa axis) is the
separatrix between the metallic phase (bottom left) and the
insulator (top left). The second separatrix [the one falling to
the point (0, 1)] and the two other phases (top right and
bottom right) that it separates have not yet been seen
experimentally and may be due to the approximation used
(ny = 00). Varying disorder (for example, the collision
frequency 1/7) at a fixed temperature results in motion
along a vertical trajectory that intersects the separatrix
(shown dashed in Fig. 6), thus leading to a metal —insulator
quantum transition. Treating the electron concentration as a
parameter implies a simultaneous variation of the bare
disorder and bare interaction rg, such that the system under-
goes a metal—insulator transition again, but with the
difference this time that it goes along a tilted rather than
vertical trajectory when intersecting the separatrix.

In the limit as 7' — 0, the flow lines in Fig. 6 converge to a
point corresponding to an ideal metal, seemingly violating the
Fermi-liquid picture [4, 48]. But it is reasonable to expect that
when the system is cooled such that 7" becomes less than both
h/ts and %/t (where 75 and 7,, are the spin flip and
intervalley scattering times, respectively), the contribution of
the triplet (delocalizing) terms sharply diminishes, restoring
the singlet-to-triplet ratio common for a single-component
Fermi liquid [1, 2]. The corresponding cut-off temperatures
depend on the parameters of the scatterers present in the

t/(1+1)

0/(1+0)

Figure 6. Phase diagram of two-parametric scaling in the approximation of
an infinite number of valleys [47]. The vertical and horizontal axes
represent the disorder 7 (1 = 1/ (2n)2vD, resistivity per valley) and interac-
tion 0, respectively. Arrows indicate where the data point moves as the
temperature decreases. The circle depicts the quantum critical repulsive
point. Shown dashed is the separatrix between the metallic and insulating
phases. Vertical dash-dot line depicts an order-changing trajectory for the
metal —insulator transition at the temperature chosen.
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sample. By way of estimate, we note that 7i/t, ~ 107¢ K; the
experimental data on /i/t,, in the range from 107! to 107* K
are as yet of low reliability. This question is purely academic,
however, because such low temperatures are many orders of
magnitude below the currently accessible level.

In summary, theory suggests an extraordinary picture,
where the metal—insulator transition occurs at a finite
temperature and is a true quantum transition, but, strictly
speaking, the metallic state that results does not survive the
T =0 limit (provided the 2D system does not make a
spontaneous transition to another universality class — due
to the formation of local magnetic moments [48] or of a two-
phase microemulsion state [49], for example). Other remain-
ing questions are whether the phase diagram of a 2D metal —
insulator transition will be valid, at least in general terms, for
realistic cases such as n, =6, 2 or 1, and down to what
temperatures a 2D metal can exist in real-life systems.
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Two-dimensional multicomponent electron
gas as a model for silicon heterostructures

S V lordanskii, A Kashuba

1. Introduction

Two-dimensional electron gas in a Si-heterostructure can
vary very widely in density [1]. Effects due to the electron—
electron Coulomb interaction are determined by the dimen-
sionless ratio of the average Coulomb energy to the electron
kinetic energy, r, = e2m/\/mnh*, with n being the electron
density. For relatively large rs, 1 <rs < 10, Si-MOSFETs
(metal-oxide-semiconductor field-effect transistors) undergo
a transition from the metallic (growing) to dielectric (falling)
conductivity with decreasing temperature [2] and demon-
strate an increase in the effective mass and magnetic
susceptibility with increasing rs [3, 4]. Because of the lack of
exactly solvable models for large r,, various phenomenologi-
cal models have come to the fore. The electron—hole plasma
observed in a three-dimensional (3D) electron—hole droplet
in Si and Ge is also characterized by comparatively large
values of rs. As shown in the pioneering work of Ref. [5], the
multivalley band structure leads to the existence in these
semiconductors of a ‘metallized’ electron—hole plasma in
the region of relatively large rs (see also Ref. [6]). One would
expect that allowing for many valleys in two-dimensional
(2D) Si-heterostructures would lead to better agreement with
experiment compared with Landau’s Fermi-liquid theory
with its small-rg corrections to the theory of a dense electron
gas. The Fermi-liquid theory predictions for Si-heterostruc-
tures are in quantitative disagreement with experiment even
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at moderate values of r;. For example, the theory of a dense
electron gas predicts an increase in the effective mass at small
rSs [7]’

* - 1
m_zl_’;log<_>7 (1)
m T rs

whereas Shubnikov —de Haas measurements [8, 9] yield

m*

— a1 .08, . 2
po + 0.087 (2)

Another point to note concerns charged excitations on the
lowest filled Landau level. Experimentally, their activation
energy (which is small according to the magnetoconductance
measurements in Ref. [10]) is roughly proportional to the
magnetic field H, whereas theoretically [11], it must be
proportional to its square root, e?y/eH/Jic (the same as the
electron—electron interaction). These phenomena are
observed at 1.5 <r < 3, which is far from the metal -
insulator transition. We show that a systematic model of a
2D multicomponent high-density electron gas gives qualita-
tive agreement with the experimental data for highest-purity
silicon heterostructures.

Electron states in silicon have valley degeneracy [1] that
corresponds to different band energy maxima. For the
(1,0,0)-oriented heterostructure plane in a silicon crystal,
there are N = 4 equivalent, orthogonal spin-valley electron
states that differ by a factor exp(£iQz) in the perpendicular
direction with atomic wave vector Q. For the (1,1,1)
orientation, the spin-valley degeneracy is N =12. A 3D
electron gas in the limit N — oo was first treated in Ref. [12].

2. Multicomponent Fermi liquid

A systematic theory can be developed in the limit
1 > ry > N73/2, where it differs quite substantially from the
rs < N~3/2 limit theory, which yields standard Fermi-liquid
results. The model is described by the Hamiltonian

H= lep;(r) < 7 +§ A(r))zm(r) &r

" 2m

&2 .
i %ﬂ o VOV B0 Exdr )

where valley-to-valley transitions are not allowed, o« and f§ are
conserved (o, f < N) as in the exchange approximation, and
the mass m is isotropic. It is assumed that there is a
compensating positive charge at a large distance from the
heterostructure plane. The summation is over the spin-valley
indices.

The effect of a multivalley structure primarily shows up as
a highly screened Coulomb interaction. The Coulomb
interaction gives rise to polarization effects in each valley,
thus decreasing interaction between electrons residing in the
same valley. Accordingly, even though rgl) calculated only for
the electrons in one valley may be large, rs(N) for all the N
valleys is small, enabling expressions for physical properties
to be systematically expanded in powers of ry(N). For our
purposes, the Matsubara diagram technique as applied in its
low-temperature limit [13] is sufficient. In the 2D limit (i.e., at
distances much longer than the heterostructure thickness),
the Coulomb interaction between electrons in the hetero-

Figure 1. Polarization bubble. Electron propagators and the Coulomb
interaction are represented by arrowed and wavy lines, respectively.

structure has the Fourier component

2me?

Vi) = i (4)

Calculating the effective interaction requires knowing the
electron polarization by the interaction field in all the valleys,
which can be depicted by the diagram in Fig. 1, showing the
creation of electron—hole pairs by the Coulomb interaction.
In this figure, the normal line represents the free electron
Green'’s function

G, (e,p) = ) ()

ie — (e4(p) — 1)
where &(p) = p?/2m is spin- and valley-independent, and the
wavy line is for the Fourier component of Coulomb
interaction (4). The calculation of the effective interaction
involves summation over all valleys and requires that the
polarization effects of all orders be included. This means
using the random-phase approximation (RPA) and summing
all diagrams with the number of polarization bubbles being
maximum for a given number of interaction lines:

2ne? /g
1+ (2re?/q) H(w,q)’

Veir(w, q) = (6)

where II(w,q) corresponds to the diagrams for a single
polarization bubble. Because the one-valley electron density
n; is small compared with the total density n = Nny, the Fermi
momentum pr is also small compared with the momentum
transfer ¢. In the limit ¢ > pg, the quantity [1(w, q) is easily
calculated to be

2ne(g)
II = 7
(.9 = ™
and the effective Coulomb interaction becomes
2ne? w? + &2
D, q) = 9) ®)

g 0+ 2(q) + dnene(q)/q

The poles of D(w,q) correspond to zeros of the dielectric
constant and yield the plasmon excitation energy

2

i
0(q) = 5-\/¢* + 44 9)

where g3 = 8ne*nm/1” is the characteristic momentum of the
effective interaction. Thus, the plasmon energy turns out to be
large compared to the kinetic energy ¢, making the effective
interaction small.
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Diagram calculations can be interpreted in terms of a
picture in which plasmons, described by the propagator
D(w, q), interact with one another via closed loops contain-
ing more than two electron lines. A vertex containing k > 2
plasmon lines with large momenta ~ ¢y and with frequencies
wy ~ q3/2m is of the order of Vj ~n/wf~'. With these
estimates, it is possible to classify all the diagrams by powers

2/3 . . .
of ry’”. The correlation energy per unit volume calculated in
the next-to-leading order is given by

n2

E. = —(2.03191 % — 0.156(1) 1?) —. (10)

But it is more interesting to calculate corrections to the
electron Green’s function

G~'(e,p) =ie — (e(p) — 1) — Z(e,p) - (11)
Because of the small magnitude of the screened interaction,
the mass operator may be calculated in the first order in the
plasmon operator D(w, q),

dwd’q

(211:)3 (12)

Se.p) = — JD(aaq) Gz +.p+q)

Because of the large values of the plasmon momentum and
energy, the integral can be evaluated by taking ¢ < w and
p < ¢, and the Green’s function near the Fermi surface takes
the form

Z(pr)

_ 2 p_F(
ie —er(p) +p’

G(e,p) = SR(P):m* p—rpr), (13)

where, for small rg,

m 1 1 7

e l——— 1l 212 2 -4/3

m* 10y/% (3) (6) 0,
1 7

2t =gz 1 (5) 1(5) 20 0u. 09

where I'(v) is the gamma function.
Similarly, for the spin magnetic susceptibility, we obtain

X* m

where y = m /2157’12 is the susceptibility of a 2D Fermi gas of
Pauli. Figure 2 compares experimental data on m*/m and
1% /x [14] with theoretical predictions. It can be seen that the
effective mass shows good agreement, whereas the suscept-
ibility is somewhat underpredicted — due to exchange effects,
which are absent in the theory at N = oo but should show
up in real silicon at N = 4. (We also note that at ry =9, a
Si-MOSFET undergoes a metal —insulator transition, which
is beyond our theoretical model).

We note that the effective mass and magnetic suscept-
ibility renormalization in Landau’s Fermi liquid theory are
related to the properties of the (scattering-angle-dependent)
effective interaction function of the particles involved [15].
Unlike this, in a multicomponent gas, these Fermi-liquid
parameters are determined by the properties of plasmons,
whose energies and momenta are much larger than those of
the Fermi-surface electrons. Besides, the small Fermi momen-
tum together with strong screening effects prevents Friedel
density oscillations from occurring in a multicomponent gas.

hed
W
T

z
T
-

Figure 2. Experimental data for the magnetic susceptibility y*/y (black
squares) and effective mass m*/m (white circles and squares). Solid curve:
the susceptibility and mass obtained from the multicomponent model.

To show this, we note that the induced charged density in a
multicomponent gas is given by

2ne*11(0, q) . d’q
n(r) = Im expliar)
00 3
9% qdq
= =1 1
J; = o % (16)

The function dn(r) is concentrated at r ~ 1 /gy < 1/pg, where
it has one zero, and decreases exponentially with distance.
The outer charge is fully screened,

Jén(r)dzr: 1. (17)
Friedel oscillations [15] are related to the singularity at
¢ = 2pr [which is neglected in Eqn (7)] and have the period
n/i/pr and the amplitude ~ p% /N, which is vanishingly small
in the limit N — co. We therefore conclude that many Fermi
surface features are absent in a multicomponent gas.

3. Adding a magnetic field

The multicomponent model can be extended to include a
large external magnetic field perpendicular to the hetero-
structure plane. Then the ground state of the system is one
with the lowest Landau level filled. We suppose that of N
spin-valleys present, only 1 < v < N have their zeroth level
completely filled. Although the system does not make real
transitions to higher Landau levels, the virtual transitions it
does make screen the Coulomb interaction as before. The
unperturbed electron Green’s function for one valley can be
written as the sum

1
. N =
Go(e, 1,1 )*Z ie—(s+1/2)og+u

5,

Dy, (r) D7 (x'), (18)

sp

where s is the Landau index, @, is the Landau-level wave
function, and wpy is the cyclotron frequency. The polarization
operator is calculated to be

VX g 25wy 7
(0,q) = 5 _on _T 19
(w,q) 22 35l o 4R exp ( 5 ) ., (19)
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(in a system of units where the magnetic length /5 = 1 and
e =c¢, oy = 1/m). Such a special form of the polarization
operator is because the electron —hole polarization loop in the
coordinate representation is a function of (r—r’) if an
external magnetic field is present.

A plasmon propagator, like D(w, ¢), has the form (6). In
the presence of a completely filled Landau level in II(w, q)
valleys, additional energy comes into play due to the electron
being transferred from an occupied valley to the same level in
an empty valley, with a hole left behind. This energy has its
origin in exchange effects and corresponds to a spin wave in
the one-valley case. This is a neutral excitation, and one which
is characterized by a momentum, despite the presence of a
magnetic field. In this situation, an exchange exciton forms.
At a large momentum, the electron and the hole are far apart,
their interaction is negligible, and they can therefore be
considered free — leading to the conclusion that their energy
is the activation energy for charge excitations, the electron
energy difference between the empty and occupied valleys.
This energy can be calculated to give

ronen( 2) 25

.
=221 (Jog(rv?/?) 4 0.277),

(20)

(rs = V2% /oy liy+/v), showing that the activation energy is
approximately proportional to the magnetic field and is small
in the limit of large v. The linear behavior agrees qualitatively
with the magneto-conductance measurements of the activa-
tion energy [10], but Eqn (20) greatly overestimates the
activation energy — possibly because the extrapolation to
relatively large ry is itself a rather crude procedure or because
factors such as a finite thickness of the 2D layer or the image
force from the metal gate were not taken into account.

The energy of an exchange exciton at low momentum Q is
calculated in a similar way, giving

o(Q) = J(0ly)?, J=0.6613 “’V—H . 1)
Thus, we see that the exchange constant J is also screening-
suppressed and varies linearly with the magnetic field.

Some of the results in this paper were previously presented
in Ref. [16].
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Interaction effects in the transport
and magnetotransport of two-dimensional

electrons in AlGaAs/GaAs
and Si/SiGe heterojunctions

E B Olshanetskii, V Renard, Z D Kvon,
1V Gornyi, A I Toropov, J C Portal

1. Introduction

Localization- and interaction-induced quantum corrections
to the conductivity of two-dimensional (2D) electron systems
[1, 2] have been the subject of considerable study since as long
as a quarter century ago. It should be noted that weak
localization effects do not present any problems, and that
their associated anomalous magnetoresistance very soon
became a powerful tool for probing the low-temperature
properties of disordered metallic systems, from thin super-
conducting films to near-surface 2D layers in semiconductors.
Unlike this, the behavior of interaction effects remained the
subject of continuous heated debate — primarily in connec-
tion with how they influence the metal —insulator transition
in a 2D electron system [3]. What made things especially
topical was the discovery [4] that a high-mobility 2D electron
gas in silicon MOS (metal-oxide-semiconductor) transistors
exhibits states whose conductivity increases anomalously
with lowering the temperature, which is entirely inconsistent
with theoretical expectations [1, 2]. This situation has
stimulated new ideas in the theory of interaction-induced
quantum corrections and has recently led to its further
development in Refs [5—7], which identified two regimes —
the diffusion one (for 7t/% < 1) and the ballistic one (for
Tt/h > 1) — in the behavior of quantum corrections. Both
regimes are of the same nature, i.e., are determined by single
and multiple scattering from impurities and from the Friedel
oscillations in their screening charge. Both mechanisms had
already been know before Refs [S—7]. The first mechanism
[1, 2] was thought to be related to the quantum corrections
due to the interference of interacting electrons (see above),
and the second was linked to the temperature dependence of
screening due to the singularity in 2D screening near ¢ ~ 2kg
[8] and was considered to be a temperature-dependent part of
the one-electron transport time, unrelated to quantum
interference.
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There was a series of experiments [9—12] to verify the
predictions in Refs [5—7], and although a number of
confirmations were obtained, none of the experiments
showed the transition from one regime to the other. Nor was
a study done to see experimentally how (or whether) the
ballistic and quantum corrections depend on whether the
primary scattering mechanism is short-range, long-range, or
mixed — even though this had been shown [7] to be a very
important factor in determining the behavior of the parabolic
magnetoresistance due to these corrections. This talk presents
experiments that used 2D electron systems (2D ESs) in an
AlGaAs/GaAs/AlGaAs quantum well and in a SiGe/Si
heterojunction to clarify the situation.

2. Transition from the ballistic to the diffusion
regime in a 2D ES in an AlGaAs/GaAs/AlGaAs
quantum well

The experiment to study the way quantum corrections change
from diffusion to ballistic behavior involved a specially
designed structure consisting of a high-density 2D electron
gas (2D EQG) in an AlGaAs/GaAs/AlGaAs quantum well
doped with Si. With the concentration N varying in the range
(2.5-4.5) x10'2 cm™2 and the mobility u between 280 and
560 cm? V! 57!, the system under study was a low-mobility
2D EG with large values of the Fermi energy FEp
(Er = 100—200 meV) and the short-range potential of
doped Si atoms acting as the dominant scattering mechan-
ism. To catch the transition from 77/fi < 1 to Tt/hi > 1, the
maximum possible temperature range, 7= 1.4—110 K, was

covered, in which the resistance, magnetoresistance, and Hall
effect were measured in detail (Fig. 1). Before proceeding to
the analysis of the experiment, a close look at the theory in
Refs [5, 6] is in order. According to this theory, the total
quantum correction to the conductivity of a 2D ES consists of
a logarithmic part and a linear part, respectively dominant at
low (Tt/h < 1) and high (Tt/h > 1) temperatures. The point
to note here is that in the weak interaction case, r, < 1
(rs = Ee._¢/EFr), both corrections have the same sign — one
for which the conductivity falls with decreasing the tempera-
ture. An interesting prediction concerns the correction 8p,, to
the classical Hall resistance pD: its temperature dependence
changes from logarithmic to hyperbolic as the temperature
increases. As already noted, there exists a correction due to
weak localization, along with that due to interaction. The
former was excluded by conducting experiments in a
magnetic field B, which completely suppresses the weak
localization in our samples at B > 5 T. Another output
from measurements in a magnetic field was the value of the
Drude conductivity, which is needed for correctly comparing
theory and experiment. Measurements of the temperature
dependence of conductivity due to the Ag{ *(T") interaction
are presented in Fig. 2a. It is clearly seen that the dependence
is close to linear at high temperatures, 7 > 20 K, and
becomes logarithmic for 7" < 20 K. A fairly good agreement
is seen with the dependence (solid curve) predicted by the
theory in Ref. [5]. We note that this agreement is obtained
without the use of any fitting parameters because in the weak
interaction case, the Fermi-liquid constant F§, normally used
as a fitting parameter, is determined exactly [5] if the
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Figure 1. Resistance and magnetoresistance (a) and Hall effect (b) of an
AlGaAs/GaAs/AlGaAs quantum well in the temperature range 1.4 K—
110 K.
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Figure 2. (a) Measured (dots) and calculated (solid line) quantum
corrections due to interaction; the dashed line is for the theoretical
correction calculated without account for the constant shift. (b) tempera-
ture dependence of the logarithmic correction to conductivity.
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Figure 3. Temperature dependence of the Hall coefficient. Dots: experi-
ment; dashed line: theory in Ref. [6]; solid line: the same for anisotropic
electron scattering.

concentration of 2D electrons is known, which in our case was
determined which it is from the Hall effect and Shubnikov -
de Haas measurements on the samples studied. A specially
developed technique allowed each of the interaction-induced
corrections to be determined separately. Taking the logarith-
mic correction as an illustration, it is clearly seen from Fig. 2b
that it tends to zero for 7 > 20 K. The measured and
predicted corrections to the Hall resistance are compared in
Fig. 3, from which it is seen that the theory in Ref. [6] explains
the behavior of 6,0{0,/p£ only qualitatively and that the
experimental and theoretical dependences of dp,,/ pR on
temperature disagree considerably. Still, the transition from
the ballistic to diffusion regime in the behavior of the Hall
effect is also clearly seen in the curves in Fig. 3, the lack of
perfect agreement being most likely due to the neglect of the
weak scattering anisotropy.

3. Metal —insulator transition and quantum
corrections to the 2D EG conductivity
in the Si/SiGe heterostructure [14]

It has been about ten years since the silicon structure metal —
insulator —semiconductor (MIS) with a 2D EG was first
found [4] to undergo the metal —insulator transition (MIT)
forbidden in the one-parameter scaling model [15]. However,
it is still unclear whether this is a phase transition. Although
publications abound on the metal—insulator transition in
various types of 2D ESs, there has not yet been any report of
such a transition in a Si/SiGe heterojunction with a 2D EG,
which is all the more unfortunate because this would allow a
comparison with what has been seen on silicon MIS
structures. These two systems, while totally alike in their
electronic spectra, differ in the structure of the scattering
potential (which is primarily short-range in silicon MISs and
has a long-range component in Si/SiGe heterostructures), and
hence the difference in the behavior of these systems can
provide information on the role played by the dominant
scattering mechanism in the electron —electron interaction.
Our experiments involved Si/SiGe heterostructures grown
by molecular beam epitaxy [12], with the electron density
Ny = (3.5-6.23) x 10!! cm™2 and the maximum electron
mobility g =6 x 10° cm® V~! s~!. The transport measure-

ment employed a standard four-probe technique using a low-
frequency (10 Hz) small-amplitude (0. 1 pA) ac to avoid
heating effects.

The metal—insulator transition is usually observed by
measuring the temperature dependence of conductivity at
various concentrations of 2D electrons. The concentration in
this case was varied by varying the shutter voltage. In our
experiments, samples based on a 2D EG containing Si/SiGe
heterojunctions were brought from their initial insulating
state (which was achieved by cryostatically cooling them to
the base temperature) to the metallic state (which proved to be
very stable) by applying a succession of specially dosed short-
duration LED pulses.

Figure 4 shows the temperature dependence of the
resistance for various values of the electron concentration.
The transition between the insulating, dp,./dT <0, and
metallic, dp,,/dT > 0, behavior shown in this figure is the
first observation of this kind in a Si/SiGe heterostructure with
a 2D electron gas. At the electron concentration about
4.05 x 10'! ecm~2, there is a sort of boundary between these
states, corresponding to the sample resistance ~ 0.3%/¢?. The
temperature dependence of resistance corresponding to this
boundary state is not monotonic (Fig. 4c). As its counterparts
in other 2D systems, the observed metal —insulator transition
has so far defied explanation. A theoretical analysis is
possible only for states with small ry and p.,. < //e?, and
this is precisely where considerable progress has been made in
understanding the nature of corrections to the Drude
conductivity due to the electron—electron interaction. We
now turn to a detailed discussion of this class of phenomena
found in samples based on the Si/SiGe heterostructure with a
2D EG.

As noted above, there are two major types of corrections
to the conductivity of a 2D electron system: weak localization
corrections and those due to the electron—electron interac-
tion. The weak localization correction can be written as [1]

W 82 kBT‘L'
Aax;:ocpzln< 7 >7

where the phase coherence time is assumed to vary with
temperature as 77, and the amplitude « is taken to be unity
for ordinary scattering.

Further, according to Ref. [5], the interaction-induced
correction at arbitrary kg Tt /7i is given by

Aoy = doc + 15807,

where

F§ e Tr 3
dor =+ — — (1 —= t(Tr; Fy
UL F) T B ( 5 (T °>)

(- Lwmasry C (L
F§ 0/ ) 22 Tt

are the respective corrections for the interactions in the charge
and triplet channels [see Ref. [5] for the exact expressions for
the functions f(7t) and ¢ (T't; Fy)].

We note that the expression above accounts for the fact
that the electronic spectrum of Si is doubly valley-degenerate
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Figure 4. (a) Resistance as a function of temperature for various values of concentration. (b—d) Some of the curves of (a) shown magnified.

near the (100) surface, increasing the numerical factor in front
of the triplet term from 3 to 15. In the diffusion limit, the
correction due to the interaction reduces to the familiar
logarithmic correction [2], whereas in the ballistic and
intermediate regime, it is linear in temperature, with the sign
and slope dependent on the coupling constant.

Figure 5a shows typical magnetoresistance (MR) curves
measured at different temperatures after the electron concen-
tration has been saturated to its maximum by LED radiation.
In this state, the electron mobility is u = 61800 cm?> V~!s~!
and the electron concentration is Ns = 6.23 x 10'! cm—2

(corresponding to rs =~ 6.7). We note that for ry > 1, the
functional relation between the parameter r; and the constant
F§ is unknown. In Fig. 5b, we show the temperature
dependence of conductivity in a zero magnetic field. It is seen
that the dependence is linear for 7> 1.25 K and saturates at
lower temperatures. The Drude conductivity is determined by
extrapolating the linear part of the dependence to T = 0, and
its corresponding momentum relaxation time is t©=
6.8 x 107!2 5. This means that 7t = 0.897 and hence the
sample under study is either in the intermediate or in the
ballistic regime in the temperature range 0.4—2.7 K.
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Figure 5. (a) Magnetoresistance at different temperatures. (b) Conductivity as a function of temperature for B = 0. Solid curve is the theoretical behavior.
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The solid curve in Fig. 5b is the theoretical dependence
obtained by adding the weak localization correction and that
due to the interaction. It took only one fitting parameter,
F§ = —0.155, to fit the curve to experiment. The weak
localization factor ap = 1.5 was derived from the sample’s
weak-magnetic-field behavior. The value Fj = —0.155
obtained by fitting turns out to be smaller than the
corresponding quantities in silicon MIS structures with
similar values of ry by a surprisingly large factor of about
two [10]. In our view, this results from the range difference
mentioned above between the scattering potentials in these
two silicon systems. According to Ref. [5], the temperature-
linear interaction-induced correction to the conductivity
results from the electron scattering by Friedel density
oscillations due to a short-range scattering potential. This
type of scattering occurs, for example, in silicon MIS
structures. In our samples, the one-particle scattering time
74 determined from the Shubnikov —de Haas amplitude turns
out to be six times smaller than the momentum relaxation
time, implying that both types of disorder are present in the
samples. Although one might expect that the theory in Ref. [3]
is inadequate for describing the experiment in this case, good
agreement between theory and experiment is found for
T > 1.25 K. One explanation may be the predominance of
short-range scattering in a zero magnetic field. As regards the
saturation effect observed at low temperatures, it has already
been reported elsewhere [16], where intervalley scattering and
the lifting of the degeneracy of a zero magnetic field were cited
as possible reasons for such behavior.

We next turn to our transverse magnetoresistance results
(Fig. 5a). In the diffusion regime, it is known that the zero-
magnetic-field interaction-induced correction to conductiv-
ity, Ac$$(T), also retains its form in classically strong
magnetic fields, leading to a negative parabolic magnetore-
sistance of the form p..(B) = pp+ pf)(uB)zAajff,(T) for
w7 > 1. Unlike the diffusion regime, the situation with the
intermediate and ballistic regimes has received little attention
until recently. In particular, it remained unclear whether zero-
field corrections remain the same in strong magnetic fields.

Recently, a new theory was proposed [7], which calculates
magnetoresistance in a strong magnetic field for arbitrary
values of kgTt/h. Analysis is carried out for both mixed
scattering and a smoothly varying scattering potential alone,
and it is shown that in both cases, the interaction leads to a
parabolic MR similar to that given above except that Ag S (7T')
is expressed as

Ao (T)

= f% |Gr(knTe/h) = Gu (kn T /1 )|
where Gg(kgTt/h) and Gy (kgTt/h; F§) are respectively the
exchange and triplet contributions, whose form is dependent,
among other things, on what scattering mechanism is at work
in the system. The exact expressions for these functions can be
found in Ref. [7].

The general features (in particular, the negative parabolic
MR) seen in the experimental dependences confirm the
conclusion about the presence of a magnetic-field-indepen-
dent correction. Indeed, the experimental curves obtained
following the suppression of the weak localization correction
show a relatively flat region, which, according to Ref. [7],
corresponds to the suppression at low magnetic fields of the
backscattering due to the presence of a long-period scattering
potential. At higher magnetic fields, the increased probability
of backscattering restores the interaction, leading to negative
parabolic MR.

For our sample, the condition w.t =1 is satisfied for
B=0.16 T, with a parabolic MR observed in classically
strong fields. Moreover, all the dependences, except for the
curve for 7= 0.4 K, were measured in magnetic fields for
which the influence of the Zeeman effect is negligible. Under
these conditions, the predictions of the theory in Ref. [7] apply
to our experiment. The dots in Fig. 6a show the resistance as a
function of B> and in Fig. 6b show the interaction-induced
corrections to conductivity, A $$(7'), obtained from the slope
of the linear portion of the dependences in Fig. 6a. Also
shown in Fig. 6b are two theoretical curves from Ref. [7], one
of which (/) is obtained on the assumption of a smooth
scattering potential alone, and the other (2) is drawn for the
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case of mixed scattering. In the latter case, a parameter 7y is
introduced to describe the relative contribution of each type
of scattering [7]. It is seen that whereas assuming scattering by
a long-period potential alone leads to disagreement with
experiment, good agreement is obtained in the mixed
scattering case. Thus, our analysis points to the correct
description of scattering as a necessary condition for
adequately describing interaction-induced corrections to
conductivity — whether in a zero magnetic field or in strong
magnetic fields leading to parabiotic magnetoresistance.
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