
Abstract. A kinetic theory of tenuous plasmas and gases is
elaborated, which is physically equivalent to the conventional
theory and is based on the construction of distribution function
propagators that depend on these distribution functions. A
theory of short high-intensity laser pulse ± plasma interaction
is constructed on the basis of this kinetic theory. A general
characteristic is provided for the absorption of high-intensity
laser radiation by a plasma and its associated parametric in-
stabilities. Considered next are diverse regimes of subpicose-
cond relativistic laser pulse ± plasma interaction. In the
framework of the theory elaborated here, an investigation was
made of hot-electron production in the interaction of relativistic
femtosecond laser pulses with a weakly nonuniform plasma at
densities of the order of and above the critical density, as well as
of fast-proton production in the irradiation of a thin foil with an
admixture of hydrogen. Calculations were carried out with real
ion charges and at realistic ion charges and realistic plasma
densities. The results are consistent both with calculations by
the generally accepted particle-in-cell technique and with ex-
perimental data.

1. Introduction

The generation of short laser pulses enables obtaining high-
intensity laser radiation, a high energy density, and strong
magnetic fields. At present, lasers with a power of
1012ÿ1015 W exist [1, 2], making it possible to produce
radiation intensities 1018ÿ1021 W cmÿ2 and megagauss

magnetic fields. The characteristic duration of laser pulses is
of the order of or shorter than a picosecond. When incident
on a gas or solid target, such an intense laser pulse transforms
it into a plasma state (plasma is also produced by a lower-
intensity prepulse, which is inevitably created in the genera-
tion of the main pulse). Owing to the development of
parametric instabilities, plasma waves are excited in the
resultant laser-produced plasma [3 ± 6]. Furthermore, with
such laser radiation intensities, the ponderomotive force gives
rise to a strong charge separation and, as a consequence, to
quasistationary electric fields. The plasma electrons and ions
are accelerated both by the plasma waves and by the
quasistationary electric fields, the fields of accelerated
particles having an appreciable effect on the plasma
dynamics [7].

Themethodmost extensively used in theoretical investiga-
tion of laser ± plasma kinetics in this strongly nonlinear
regime is the particle-in-cell technique [8], which involves a
numerical solution of the Vlasov system of equations [9].
Numerically solved are the equations of motion for plasma
particles in the field produced by these particles, the charge of
the plasma particles being `spread' over the cells in the
coordinate space. The self-consistent plasma evolution is
thereby calculated.

Proposed in this work is a different method for investigat-
ing the kinetics of tenuous plasmas and gases, which relies on
the construction of a propagator for the distribution function
of plasma or gas particles [10], be it a classical or a quantum
plasma. This theory is outlined in Section 2. Section 3 is
concerned with the theory of interaction between high-
intensity laser pulses and the Coulomb plasma [11], devel-
oped on the basis of the kinetic theory of tenuous classical
plasmas outlined here. Section 4 gives a brief review of the
mechanisms of laser radiation absorption by a plasma and the
parametric instabilities responsible for this absorption. A
review of diverse relativistic subpicosecond laser pulse ±
plasma interaction regimes is presented in Section 5. The
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newmethod in laser-plasma kinetics offers new opportunities
in comparison with the generally accepted particle-in-cell
technique: specifically, it enables investigating the plasma
evolution for realistic high densities and ion charges. Dense
laser plasmas with multiply charged ions may evolve in a
somewhat different regime than a model plasma with a lower
density and ion charge.

2. Effective action for a particle in a plasma

The conventional kinetic theory of a tenuous (nr 3D 4 1, where
n is the particle density and rD is the Debye radius) plasma is
based on the system of integrodifferential equations consist-
ing of the Boltzmann kinetic equations (for particles of each
kind) with a collision integral (for instance, of the Lenard ±
Balescu type) and of the system ofMaxwell equations with the
charge and current densities expressed in terms of single-
particle distribution functions, which are in turn determined
from kinetic equations (see, e.g., Ref. [12]). This work
presents a kinetic theory of tenuous plasmas that is physi-
cally equivalent to the conventional theory and is based on the
construction of distribution function propagators dependent
on these distribution functions. Therefore, investigating the
plasma kinetics requires solving the system of integral
equations whose number corresponds to the number of
plasma particle types. This approach may be simpler than
the conventional approach to the investigation of plasma
kinetics.

We consider a volume V containing Na particles of type a
and Nb particles of type b. For a classical plasma, in the path
integral for the particle propagator [13], it suffices to take the
contribution of only the classical trajectory into account. In
this case, the interaction-independent preexponential factor is
calculated by solving the expansion problem for the gas of
noninteracting particles. The classical propagator for the
density matrix r�r; r 0; t� is given by

KM
a �2; 1� � m exp

�
i

�h

�
Sa�r2; t2; r1; t1� ÿ Sa�r 02; t2; r 01; t1�

��
;

m �
�

ma

2p�h�t2 ÿ t1�
�3

;

�1�

where Sa is the classical action of a particle of mass ma:

Sa�r2; t2; r1; t1� �
� t2

t1

dt

�
mav

2
a �t�
2

ÿ
XNa

i� 2

Uaa

ÿ
Ri�t� ÿ ra�t�

��

ÿ
� t2

t1

dt

�XNb

j� 1

Uab

ÿ
Rj�t� ÿ ra�t�

�ÿ Fa�t�ra�t�
�
:

�2�

Here, va�t� and ra�t� are the velocity and the radius vector of
the particle, Uaa and Uab are the potential energies of particle
interaction,Ri is the radius vector of the scattering center, and
Fa is the external force acting on the particle. The particle
trajectory is subject to the boundary conditions ra�t1� � r1
and ra�t2� � r2

The scatting centers in expressions (1) and (2) may be
assumed to move along rectilinear trajectories during a
time interval much shorter than the relaxation time. We
first consider the plasma evolution during just these short
time intervals. Propagator (1) is averaged over the
ensemble with a many-particle distribution function that
takes only pair correlations into account (the polarization

approximation [12]):
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where fi�Ri; pi; t� are single-particle distribution functions (pi
is the particle momentum) and g�Ri; pi;Rj; pj; t� is the pair
correlation function. The single-particle distribution func-
tions are related to the density matrix by the equations
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Statistically averaged propagator (1) is given by
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where the averaging is performed with the one- and two-
particle distribution functions. The subsequent transforma-
tions are similar to those used in constructing the adiabatic
broadening theory [14]. We first make the identical transfor-
mationYN
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where n � N=V.
With expressions (6) and (7), transformation (5) leads to

the propagator with an effective action. The averaged
propagator is given by
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where gba�R1; p1;R2; p2; t� is the pair correlation function,
which is expressed in terms of the single-particle distribution
functions fa; b�r; p; t� [12], and V st

ba is the collision volume (see
the adiabatic broadening theory [14]):
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The first term in propagator (8) determines the evolution
of the distribution function in the self-consistent field
approximation and the term with the collision volume (9) (in
the exponent) determines the plasma particle deceleration
(acceleration) by the self-consistent field. The subsequent
terms describe the effect of collisions on the plasma kinetics.

For the Coulomb interaction, estimating the Weisskopf
radius yields a value of the order of the minimal impact
parameter rmin in the Landau collision integral [9]. The
averaged effect of the fields of the scattering centers on the
particle trajectories in expression (8) may be taken into
account using the perturbation theory in the small para-
meters U�rD�=U�rmin� and nr 3min, where rD is the Debye
radius, which determines the characteristic correlation
length for plasma particles. Hence, the terms in the effective
action with a complicated dependence on the trajectory may
be taken into account using the perturbation theory, and the
effective action may therefore be calculated analytically in
many cases. This is done for the laser pulse ± plasma
interaction below.

The propagator in (8) and (9) describes the plasma
dynamics for short time intervals, shorter than the distribu-
tion function relaxation time. If the plasma density matrix is
known at a time instant t1, then at t2 it is given by the relation

ra�r2; r 02; t2� �
�
dr1

�
dr 01 Ka�2; 1� ra�r1; r 01; t1� : �10�

When the external force is so strong that Frmin 5U�rmin�,
the effect of this force on the correlation functions must be
taken into account [12].

For a relativistic plasma, the relativistic expression for the
kinetic energy of a particle is to be substituted in Eqn (2) and
not only the scalar potential of the scattering centers but also
the vector potential must be taken into account [15].

In a quantum plasma, when calculating the path integral
for the propagator, it is necessary to include the contribution
not only of the classical trajectory but also of all the other
ones. Statistical averaging is performed with the many-
particle density matrix taking only pair correlations into
account:
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In the polarization approximation, the quantum correla-
tion function is expressed in terms of single-particle density
matrices (see part 3 of monograph [12] and the references
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therein). The exchange interaction is included in the quantum
correlation function.

In the case of a quantum plasma, the propagator
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must be averaged with (11) and with the action Sa in
expression (2). Propagator (12) has the meaning of the
conditional transition probability for a test particle. After
transformations similar to (6) and (7), we obtain the
expression for the averaged propagator as
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where the collision volume is given by
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In a tenuous plasma, the perturbation theory can be used
to calculate the path integrals for scattering particles in
expressions (13) and (14) [13]; it then suffices to restrict
ourself to the zeroth order (quantum free motion). In other
words, the operation of integrating over the trajectories of

perturbing particles amounts to� R�t2��R2
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Similarly to the above case of a classical plasma, the
averaged effect of perturbing particles on a test particle can
also be incorporated using the perturbation theory (the
characteristic velocities of the quantum plasma component
are of the order of the Fermi velocity). Therefore, the
propagator in (13) and (14) can be analytically calculated
whenever an analytic expression for the propagator of a single
particle in an external field can be found.

Using the propagators with the effective actions obtained
above, it is also possible to investigate the kinetics of tenuous
gases. In this case, the corresponding short-range potential
interaction energies for gas particlesU�R� and the Boltzmann
correlation function g�R1; p1;R2; p2; t� should be used [12].

In some cases, when higher-order correlation functions
are insignificant, the above kinetic theory is also valid for
dense plasmas and gases: for a sufficiently short time interval,
the perturbation theory is again appropriate for taking the
collision volume into account. In this case, pair correlation
functions for dense plasmas and gases must also be used.

In a tenuous plasma, it is also possible to construct the
propagator for the distribution function for longer times, i.e.,
those exceeding the relaxation time in the plasma. For this,
the time interval is divided into short intervals that are shorter
than the relaxation time but longer than the correlation
decoupling times [12]. Statistical averaging is performed
over the product of many-particle distribution functions (3)
taken at different time instants. In view of the smallness of the
correlation functions in a tenuous plasma, the averaged
propagator is given by

1

m
Ka�2; 1�

� exp

�
i

�h

� t2

t1

dt

�
mav

2
a �t�
2

ÿmav
0 2
a �t�
2

�
� naV

st
aa � nbV

st
ba

�
� exp

�
i

�h

� t2

t1

dt
�
Fa�t�ra�t� ÿ Fa�t�r 0a�t�

��
�

X
i j� aa; ba; bb

ninj
2

�
dR1 dR2 dp1 dp2

� t2

t1

gi j�R1; p1;R2; p2; tf�

� exp

�
i

�h

� tf

tf ÿ dtf

dt
X

k� 1; 2

ÿUi j

ÿ
Rkÿ vk�t2 ÿ t�ÿ ra; i j�t�

��

� exp

�
i

�h

� tf

tf ÿ dtf

dt
X

k� 1; 2

Ui j

ÿ
Rk ÿ vk�t2 ÿ t� ÿ r 0a; i j�t�

��

� exp

�
i

�h

� tf

tf ÿ dtf

dt

�
mav

2
a; i j�t�
2

ÿmav
0 2
a; i j�t�
2

�
� naV

st
aa � nbV

st
ba

�
� exp

�
i

�h

� tf

tf ÿ dtf

dt
�
Fa�t�ra; i j�t� ÿ Fa�t�r 0a; i j�t�

��
; �16�

1242 I N Kosarev Physics ±Uspekhi 49 (12)



where

V st
ba �

�
dp dR

� t2

t1

fb�R; p; tf�

�
�
exp

�
ÿ i

�h

� tf

tf ÿ dtf

dt
h
Uba

ÿ
Rÿ v�t2 ÿ t� ÿ ra�t�

�
ÿUba

ÿ
Rÿ v�t2 ÿ t� ÿ r 0a�t�

�i�ÿ 1

�
�17�

is the collision volume. In formulas (16) and (17), dtf is a
physically infinitely short time interval, which is shorter than
the relaxation time and longer than the correlation time for
particles in the plasma.

For a quantum system, the averaged propagator is written
as
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where the collision volume is
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Thus, we have obtained propagators (16) ± (19) for a
tenuous plasma, which may be calculated analytically in the

majority of cases. Their application to the initial distribution
function according to expression (10) leads [in view of
relations (4)] to formulating the kinetic theory in the form of
a system of integral equations. The evolution of a tenuous
plasma may also be investigated by multiple application of
propagators (8), (9) and (10), (14) if the time intervals
considered are shorter than the relaxation time.

3. Kinetic theory of high-intensity short laser
pulse ± plasma interactions

In what follows, we use the propagator derived above for
the plasma distribution function for short times (shorter
than the plasma relaxation time). The idea is to investigate
the plasma kinetics over sufficiently long times by multiple
successive application of the propagator in accordance with
relation (10). For a classical nondegenerate plasma consist-
ing of particles of two sorts a and b, the propagator for the
density matrix ra�r; r 0; t� is given by (in the self-consistent
field approximation)
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where va and ra are the velocity and the radius vector of
particle a, Uaa and Uba are the potential energies of particle
interaction, Ri is the radius vector of the scattering center,
A is the vector potential of the external field acting on the
particle, and na and Za are the average density and charge
of the particles of sort a. Propagator (20) describes the
plasma dynamics for short times, shorter than the distribu-
tion-function relaxation time. If the plasma density matrix
is known at a time t1, then its value at t2 is defined by
relation (10).

In the analysis of plasma kinetics, we can conveniently go
over to the difference variable Dr � Rÿ R 0, r � �R� R 0�=2,
r�r� Dr=2; rÿ Dr=2�. This density matrix is related to the
distribution function by the equation
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;

where V is the plasma volume.
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Because quantum effects are unessential in the problem
under investigation, the particle action

Sa

�
r�t�;Dr�t�� � �h

i
ln

�
ma

2p�h�t2 ÿ t1�
�ÿ3

Ka�2; 1�

[see expression (20)] can be expanded in small Dr�t�. Since the
zeroth-order contribution vanishes, this expansion is equiva-
lent to passing to the nonrelativistic limit. The nonrelativistic
expression can be used for the action; the relation between the
velocity and the momentum remains relativistic as in the
conventional kinetic theory (in the self-consistent field
approximation) [12]. In the self-consistent field approxima-
tion, for the propagator for classical-plasma particles of sort
a, we obtain the expression
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where S0 is the action of a particle in a linearly polarized laser
field (typical for high-intensity lasers), in which the field
nonuniformity is taken into account parametrically:
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where A � A0�r?;j=o� sinj is the vector potential of the
laser field, r? ? k,j1; 2 � ot1; 2 ÿ kr1; 2,Dj1; 2 � ÿkDr=2,o is
the laser field frequency, and k is the wave vector.

In expression (22), DSp is an addition to the action due to
the ponderomotive forces that arise from the irregularity of
the laser field amplitude A0; the ponderomotive forces are
included in accordance with the perturbation theory, which is
applicable for sufficiently short times, during which the
particle displacement is small in comparison with the
characteristic irregularity dimension of the laser field ampli-
tude A0:
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� t2
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Dra dt ; �24�

where Dra is the particle trajectory in a uniform field with the
boundary conditions Dra�t1� � Dr1, Dra�t2� � Dr2.

The contribution DSst to the action arising from particle
interaction is given by (also calculated based on the perturba-
tion theory)
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where Zb, pb, vb, and nb are the charge, momentum,
velocity, and average density of the plasma particles of
sort b. The calculations were carried out in accordance with
expression (9) with the potential interaction energy
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which accounts for both the scalar and vector field potentials
of a plasma particle b (moving with a constant velocity) acting
on a test particle of sort a. In deriving expressions (25) and
(26), we also used the smallness of the laser field frequency in
comparison with the characteristic (Weisskopf) variation
frequency of the collision volume V st

ba. The latter frequency
is equal to the ratio between the characteristic velocity and the
larger of the following two quantities: the Landau length and
the de Broglie wavelength.We note that the imaginary part of
the collision volume, which characterizes the broadening of
the momentum distribution of particles a, is determined by
the scalar potentials of perturbing particles.

When the initial distribution functions of plasma particles
are given, their evolution may be found by multiple applica-
tion of propagators (22) ± (26). The statistically averaged in-
plasma and scattered electromagnetic fields may be found
from the plasma particle distribution functions [12]. The
Fourier components of the energy densities of the long-
itudinal and transverse electric fields are given by
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The expressions for the longitudinal and transverse
plasma permittivities are written as
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In addition, we must calculate the average ion charges.
For short femtosecond laser pulses, the ion charge at a given
point is determined by the electric field strength of the laser
field at this point [16] during the buildup of the laser field.
When the laser field intensity decreases, the charge remains
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invariable. This charge kinetics model is related to the
overbarrier nature of ion ionization by a strong laser field
and the short time of femtosecond laser pulse ± target
interaction. The laser field amplitude E�t� and the ion charge
Z are related by the Bethe formula [17] (in atomic units)

E�t� � I 2Zÿ1
4Z

; �30�

where IZÿ1 is the ionization potential of an ionwith the charge
Zÿ 1. When the plasma field differs markedly from the laser
field in a vacuum, the in-plasma electric-field energy density
calculated in accordance with expression (28) must be used
in (30). In the general case, when ionization is not of the
overbarrier type, the average ion charges may be found from
the charge kinetic equations that take both the ionization of
atoms and ions by plasma electric fields and the electron
collisions into account. Analytic expressions for the tunnel
and overbarrier ionization rates and the ejected-electron
momentum distributions were derived in Refs [18, 19] for
nonrelativistic electrons and in Refs [20 ± 22] for relativistic
electrons. Expressions for the electron velocity distribution
function for tunnel and multiphoton ionization by a relati-
vistic laser field can be found in Ref. [23]. An analytic
expression for the ionization rate in the multiphoton and
overbarrier limit was derived in Ref. [24] for nonrelativistic
electrons. We note that the investigation of ionization in
plasmas may be complicated by the presence of quasista-
tionary and alternating electric fields. The general analytic
expression for the tunnel decay rate in the presence of a
variable electric field (with the tunnel barrier produced by a
constant electric field) was derived in Ref. [25].

The inclusion of ionization in the case of a high-intensity
laser pulse leads to a small energy imbalance, which is
corrected by adding the quantity

i

�h
e�r2; t2��t2 ÿ t1�

to the effective propagator action, where e�r2; t2� is the energy
required for ionizing atoms and ions.

4. Laser radiation absorption in plasma.
Parametric instabilities

An electron embedded in a laser wave field executes an
oscillatory motion. When the intensity is high enough
(Il2 5 1018 W cmÿ2 mmÿ2), the oscillatory speed comes to
be close to the speed of light. The laser radiation may be
absorbed via energy transfer from the oscillatory motion to
the translational motion of the electron. This transfer occurs
as a result of inverse bremsstrahlung in the electron scattering
by an atom [26 ± 28], the stimulated and spontaneous
Compton effect [28], and acceleration by the ponderomotive
force in the motion in a nonuniform field [28 ± 30]. The
heating of plasma electrons due to the Compton effect
prevails over the inverse bremsstrahlung in the dense plasma
case, when the electron collision frequency is higher than the
laser field frequency [28]. Electron heating in a nonuniform
field is efficient when the nonuniformity is sufficiently strong,
when the characteristic gradient scale length is shorter than
the electron oscillation amplitude (ponderomotive scattering)
[31 ± 34]. In laser pulse ± plasma interactions, the strong
nonuniformity can result from either laser field scanning or
the short rise time of the laser pulse.

Apart from the above mechanisms of laser field absorp-
tion by a plasma due to the scattering of laser pulse photons
by electrons and the absorption of laser pulse photons by
electrons in the presence of a `third body' (ion, field
irregularity), there is the anomalous absorption due to the
parametric excitation of collective plasma motions (plasma
waves). Parameters that characterize the plasma oscillate
under the action of the laser field. This variation has the
effect that, as in the case of mechanical vibratory systems,
parametric resonance becomes possible, with the internal
field of fluctuations increasing with time. The development
of this parametric instability is inherent in the nature of the
interaction between laser radiation and the plasma, which
becomes turbulent.

The main elementary processes that determine the
absorption of high-intensity laser radiation are the two-
plasmon photon decay, stimulated Raman scattering, and
stimulated Mandel'shtam ±Brillouin scattering [3 ± 6]. These
processes are strongly affected by plasma nonuniformity,
which is responsible for an increase in the threshold
intensity of the parametric instability excitation and for
the transfer of the energy of plasma waves to lower-density
plasma regions [5]. Moreover, a sufficiently strong non-
uniformity gives rise to a new absorption mechanism termed
the plasma resonance [4, 35].

A two-plasmon decay involves the decay of a laser field
photon into the quantum of a Langmuir plasma wave and an
ion ± sound wave quantum. The internal field emerging in the
plasma is a potential field. This mechanism prevails in
sufficiently dense plasmas for the electron densities
n > ncr=4, ncr � meo2=4pe 2, where ncr is the critical electron
density. In a higher-density plasma, the electromagnetic wave
with a frequency o cannot propagate (for nonrelativistic
intensities of the laser field).

When subpicosecond laser pulses propagate through a
plasma, an important role is played by stimulated Raman
scattering, whereby a laser field photon decays into the
quantum of a Langmuir plasma wave and a transverse
electromagnetic field quantum shifted in frequency. This
instability is not potential. Stimulated Raman scattering is
observed in a relatively tenuous plasma n < ncr=4 (see, e.g.,
Refs [4, 36]). At relativistic intensities, stimulated Raman
scattering is also possible for higher densities due to the
effective increase in the electron mass and the consequential
decrease in the plasma frequency.

An ion ± sound wave is excited in Mandel'shtam ±Bril-
louin scattering. This process becomes significant for longer
(nanosecond) pulses.

When relativistic effects (specifically, the oscillations of
electron mass) are taken into account, two more parametric
instabilities emerge: laser beam filamentation and laser beam
modulation [6, 37]. As a result of the former instability, the
laser beam splits into several laser beams with a higher
intensity (transverse nonuniformity), and the modulation
instability has the effect that the laser beam intensity
becomes nonuniform in the direction of its propagation.
The emergence of the relativistic filamentation of a laser
beam is explained as follows. The dispersion relation for the
transverse electromagnetic wave in a plasma, with the
relativistic oscillation of the electron mass taken into
account, results in the phase velocity of the wave being
lower at the point where the intensity is higher. This leads to
a wavefront flexure and the consequential increase in the
focusing intensity of the laser beam in the direction of its
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propagation. The occurrence of the relativistic modulation
instability may be described as follows. The superposition of
the electron plasma wave and the laser pump wave results in
an electric field in the form of a shifted sinusoidal wave. Due
to the relativistic mass oscillation, the electrons become
lighter near the minimum of the field and heavier near the
peak. As a result, the faster plasma oscillations near the
minimum are dephased relative to the oscillations near the
maximum of the field. This increases the density modulation
and leads to relativistic instability [6]. It is worth noting that
the ponderomotive force has a marked effect on the
character of the modulation instability in a weakly relativis-
tic plasma [6]. Also worthy of mention is the anisotropy of
the filamentation instability of a linearly polarized laser
beam at near-critical plasma densities [38, 39].

In high-intensity laser fields, in which the electron motion
is relativistic, these instabilities merge with stimulated Raman
scattering and two-plasmon decay [40]. The presence of high-
energy electrons accelerated by the plasma wave exerts an
appreciable effect on the parametric instabilities: the instabil-
ity increment decreases, the instability domain in the wave-
vector space is shifted, and the frequency spectrum of the
Raman scattering changes [41].

The inclusion of relativistic effects and of ion motion is
important for simulations of the resonance absorption of the
laser field [42, 43]. In the nonuniform plasma case (with the
density gradient scale length of the order of several wave-
lengths), a resonance is observed in the angular dependence of
absorption of a p-polarized laser pulse obliquely incident on
the plasma.

The absorption of high-intensity laser radiation at a sharp
vacuum±plasma boundary may occur due to the `vacuum
heating' [44] and j� B heating [45, 46] of electrons. The
`vacuum heating' of electrons occurs when a p-polarized
laser pulse is obliquely incident on the vacuum±plasma
interface. The electric field of the laser pulse ejects electrons
from the plasma surface to force them into the plasma half a
period later. However, they are heated due to either the
strongly inelastic inverse bremsstrahlung or the ponderomo-
tive scattering. In the j� B heating case, the electrons that
oscillate near the plasma surface in the electric field of a laser
pulse incident normally on the vacuum± plasma interface are
forced into the plasma by themagnetic field of this laser pulse.
This occurs every half period of the laser pulse. The j� B
heating results in the production of a modulated electron
beam, whose transition radiation is observed at the rear target
surface. The transition radiation at the double frequency of
the laser pulse has been experimentally observed [47], which
confirms the j� B-heating mechanism of electron accelera-
tion in the plasma. The `vacuum heating' of electrons in the
plasma at oblique incidence of a laser pulse was indirectly
borne out in the experiment in Ref. [48] in themeasurement of
the absorption coefficient.

5. Relativistic subpicosecond
laser pulse ± plasma interaction

5.1 Wake wave
When a laser pulse passes through a tenuous �n5 ncr�
plasma, a wake wave is excited behind the pulse front [49 ±
52], which entrains and accelerates the plasma electrons. This
principle underlies the operation of the laser particle accel-
erator (see review Refs [53 ± 55]), whose main advantage is its

compactness. The wake wave is excited only when the leading
edge of the laser pulse is steep [52]. Its physical excitation
mechanism is reliant on the ponderomotive force of the laser
pulse, which results in an electron density perturbation. The
charge separation field drives a charge density wave behind
the laser pulse. A characteristic feature of the wake wave
consists in the potential of its electric field (for relativistic
intensities of the laser pulse and a sufficiently steep leading
edge) being far greater that the potential of the laser wave
field, the potential of the wake wave increasing with the
plasma density. But the longitudinal electric intensity of the
wake wave cannot exceed a certain maximum value, which
depends on the plasma parameters and the velocity of
electron oscillations in the laser field (a one-dimensional
theory was elaborated in Ref. [56]). The wake wave breaks
down for higher intensities of the longitudinal electric field.

Relativistic laser pulses are characterized by a strong
ponderomotive force, which produces a laser channel with a
lowered electron density in the plasma. The number of
periods in the wake wave behind the laser pulse edge may be
determined by its breaking due to the transverse nonunifor-
mity of the plasma frequency in the laser channel [57]. The
nonuniformity leads to an increase in the curvature of the
wake wave front with the distance from the laser pulse. When
the electron oscillation amplitude becomes equal to the
curvature radius, the wave front becomes ambiguous (wave
breaking) and the plasma electric field is no longer regular.
The electron trajectories then become self-intersecting. In the
severe breaking of the wake wave, the process of stimulated
Raman scattering prevails.

Another reason for the front curvature increase in the
wake wave responsible for its breaking is the formation of a
small-scale structure in the laser channel, which is due to the
action of the ponderomotive force of the wake wave itself [58].

The wake wave is most efficiently excited by a laser pulse
with the wavelength equal to half the wavelength of the
plasma wave [53, 54]. When longer laser pulses propagate
through the plasma, efficient generation of the wake wave is
possible as a result of the development of a laser-pulse self-
modulation instability caused by stimulated Raman scatter-
ing in the direction of the laser wave. The self-modulation
may stem from two effects. First, the electron density
fluctuations related to the plasma wave lead to changes in
the group velocity, leading to a longitudinal modulation of
the laser pulse. The laser pulse splits into a sequence of short
pulses with lengths equal to half the wavelength of the plasma
wave. Second, the density fluctuations act as positive and
negative lenses to give rise to laser beam self-focusing. The
self-focusing and the self-modulation may emerge concur-
rently. In the passage of a laser pulse through a gas (but not
through a preformed plasma), self-modulation also emerges
due to excitation of a seed wake wave [59]. This wave is
generated due to a sharpening of the leading laser-pulse edge
by ionization modulation.

Both the electron density modulation and the acceleration
of plasma electrons by the wake wave have been experimen-
tally observed [53 ± 55]. The highest electron energy obtained
in experiments is equal to 200 MeV.

5.2 Stimulated Raman scattering
In the case of the plasma density high enough for the wake
wave to break up, the main process determining the nature of
the interaction between relativistic subpicosecond laser pulses
and the plasma is the stimulated Raman scattering. Back-
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scattering and forward scattering, whereby the laser wave (of
frequency o) decays into a plasma electron wave (of
frequency op) and an electromagnetic wave (with the Stokes
frequency oÿ op), which propagates in the direction of the
laser wave, are recognized. In the backscattering, the
electromagnetic wave propagates in the opposite direction
relative to the laser wave. Merging of the laser and plasma
waves, resulting in the generation of waves with the anti-
Stokes frequency o� op, also occurs. In the scattering of a
relativistic laser pulse, a broad spectrum of Stokes �oÿNop�
(N is an integer) and anti-Stokes �o�Nop� frequencies
emerges, which was observed in experiments [60, 61].

The plasma waves produced due to stimulated Raman
scattering accelerate the plasma electrons. Unlike with the
acceleration driven by the wake wave, the spectrum of
electrons accelerated due to Raman scattering is broad and
Maxwellian in nature. With an increase in the relativistic
intensity of laser pulses, saturation of the increment of
stimulated Raman scattering [62] and hence of the yield of
accelerated electrons [61] occurs.

In the backscattering of relativistic laser pulses, a high-
intensity electromagnetic wave propagating in the opposite
direction arises. Under these conditions, the electron
dynamics may become stochastic and electrons may be
stochastically accelerated [63] if the scattered wave is strong
enough. The stochastic heating of plasma electrons in the field
of counterpropagating waves was observed in numerical
simulations [64, 65].

The passage of relativistic laser pulses through the plasma
is characterized by the production of lower-density channels.
They are produced by the ponderomotive force caused by
nonuniformity of the laser beam intensity. The production of
lower-density channels in the stimulated Raman scattering of
laser pulses was observed in the experiments in Refs [66, 67],
as well as in experimental and computational work [68]. The
transmission factor increases with the intensity of laser pulses
[66, 69]. The enhancement of transmittance is attributable to
weakening of stimulated Raman scattering in the channel due
to the generation of hot electrons (with temperatures ranging
into themegaelectronvolts) [69, 70]. High-energy ions (helium
nuclei) traveling in the radial direction were discovered in
Ref. [67]. Their acceleration was caused by the Coulomb
repulsive force (Coulomb explosion) in the electron-depleted
channel. The total fast-ion energy accounts for 6% of the
laser pulse energy.

5.3 Laser-beam filamentation
On further increase in plasma density, the single laser
channel splits into several channels owing to the relativistic
self-focusing instability. This is clearly shown by the
numerical simulations of laser pulse transit through a
plasma [71 ± 74]. The self-focusing of the laser beam is also
fostered by the ponderomotive ejection of electrons from the
beam axis, with the medium acting as a positive lens in this
case. Owing to parametric instabilities, electron plasma
waves are excited in the plasma, which accelerate electrons
to produce streams of hot electrons. The Weible instability
[75] tends to break these electron currents, resulting in the
formation of filaments of fast electrons and reverse currents
caused by slow electrons [76]. The fast-electron currents
generate a strong magnetic field, whose maximum amplitude
is comparable to the magnetic field of the laser wave. It was
discovered in Ref. [76] that this magnetic field pinches the
current of fast electrons. The laser beam is deflected following

the fast electrons with the formation of a common channel for
the propagation of the laser pulse and the current of the fast
electrons. The laser beam intensity increases by about an
order of magnitude. The magnetic mechanism of channel
merging was confirmed by simulations involving an applied
external magnetic field. In the three-dimensional case, this
effect was investigated in Ref. [71]. Also noted in this paper
was a lowering of the ion density on the beam axis and an ion
acceleration in the radial direction (up to the energy 3 MeV
for the intensity 1019 W cmÿ2) caused by the ponderomotive
ejection of electrons from the laser beam axis.

Observed in the filamentation of a laser beam is an
increase in both the length of the laser channel in the plasma
and the high-energy electron heating. An experimental
observation of an increase in the hot-electron temperature
with increasing the plasma density was reported in Ref. [77].
This increase is attributable to the progressively higher ratio
between the laser pulse power and the threshold power for
the relativistic self-focusing instability. The calculation
carried out in Ref. [77] suggests that electron heating is
effected by the transverse electromagnetic field of the laser
pulse. The mechanism of this heating was proposed in
Ref. [78]: it was shown that in the presence of a weak
random force acting in the transverse direction, electron
acceleration in the longitudinal direction of laser wave
propagation occurs. A weak random force leads to dephas-
ing of electron oscillations in the laser wave and to electron
heating by a mechanism similar to the inverse bremsstrah-
lung. The dephasing may occur in transverse motion of
electrons that fall out of laser filaments.

5.4 Passage of laser pulses through a supercritical plasma
When a relativistic laser pulse is normally incident on the
plasma with a density much higher than the critical one, the
light pressure force results in the formation of a lower-density
plasma channel, which is transparent for the laser pulse (see
the data of simulations [79] and experiment [80]).

When a relativistic laser pulse is normally incident on a
nonuniform plasma, a resonance in its absorption occurs [81].
The absorption coefficient has a local peak when the density
gradient is optimum for a given laser intensity. The resonance
is attributable to distortion of the electron plasma density and
the subsequent enhancement of the ponderomotive absorp-
tion.

When a channel is formed in a supercritical-density
plasma, the laser pulse departs from the initial direction of
propagation (see the numerical simulations in Ref. [82]). The
beam of hot electrons accelerated in the plasma is accordingly
deflected. When a laser pulse was incident on a solid gold
target, the beam of hot relativistic electrons (with the average
energy several times higher than the ponderomotive energy of
electrons in the laser field) was observed to fluctuate in
direction in the experiments reported in Ref. [83].

In the passage of a laser pulse through a supercritical
plasma, a substantial part (40 ± 50%) of the laser pulse energy
transforms into the energy of hot electrons. This is evident
both from `particle-in-cell' simulations [71, 76, 79] and from
experimental data [83]. High-intensity beams of hot electrons
are proposed for use in the fast ignition of thermonuclear
targets [84], as well as a source of g-ray photons generated due
to electron bremsstrahlung [85]. These g-ray photons of an
electromagnetic field may be used in radiography [82], for the
initiation of photonuclear reactions [86], and for the produc-
tion of electron ± positron pairs [86 ± 91].

December, 2006 Kinetic theory of plasma and gas. Interaction of high-intensity laser pulses with plasmas 1247



We consider the interaction between a supercritical
plasma and a linearly polarized laser pulse with the envelope

A0x � A0 exp

�
ÿ�tÿ z=c�2

t 2

�
exp

�
ÿ x 2 � y 2

s 2

�
; �31�

with the z axis aligned with the wave vector of the laser pulse
and the x axis aligned with the polarization axis. The electron
density distribution is given by

ne�z� � ncr exp
z

L
; 0 < z < zmax ; �32�

where ncr � pmec
2=e 2l2 is the critical density: when the

critical density is exceeded, the wave can no longer propagate
through the plasma (for nonrelativistic intensities). The above
density distribution sets in due to the ablation of a solid target
under prepulse irradiation. In addition, the plasma heats up
to a temperature about 1 keV.

In the pursuance of calculations, we can conveniently pass
to the purely coordinate representation in formulas (25) and
(26) in accordance with (21). All integrals in formulas (25) and
(26) were calculated by the stationary phase method (in the
multidimensional case) [92]. They belong to the type of
integrals of rapidly oscillating functions because the plasma
is classical (nondegenerate) in the case under discussion.

Initial simulations were carried out for a hydrogen plasma
with the same pulse parameters and degree of plasma
nonuniformity as in Ref. [93]: t � 150 fs, s � 6l, L � 30l
(l � 1 mm is the wavelength of the laser pulse). The computa-
tion range was somewhat shorter: zmax � 40l. The simula-
tions were performed for peak intensities I0 � 1018, 1019, and
1020 W cmÿ2. The electronmomentum z-component distribu-
tion for I0 � 1020 W cmÿ2 is depicted in Fig. 1. It is mainly in
this direction that electrons experience acceleration. The
results of calculations are consistent with the data in
Ref. [93]. Indeed, for the intensity I0 � 1018 W cmÿ2, fast
electrons are heated to the temperature Th � 0:8 MeV, for
I0 � 1019 W cmÿ2 to Th � 4:5MeV in the energy range below
12.5MeV (the averageTh � 8MeV in the energy range below
50MeV), for I0 � 1020 W cmÿ2 toTh � 15MeV in the energy
range above 25 MeV, and the respective fast-electron
temperatures in Ref. [93] lie in the ranges 0.5 ± 1.2 MeV, 3 ±
8MeV, and 9 ± 16MeV. Figure 1 clearly shows the occurrence
of fast electrons traveling in the opposite direction. This

occurs due to the development of a Weible instability of
the anisotropic electron momentum distribution in the
plasma [75]. In addition, thermal electrons are heated to
temperatures of the order of 10 keV due to anomalous
conductivity.

To gain an insight into the electron acceleration mechan-
ism, we consider the variation of the momentum z-
component distribution function at earlier instants, prior to
the settling of the stationary distribution. Figure 2 shows this
distribution function at consecutive instants (for I0 �
1019 W cmÿ2). We can see irregular variations with time
caused by turbulent pulsations of the plasma field. There-
fore, electrons are primarily accelerated by the turbulent
pulsations of the plasma field by a mechanism similar to
Fermi acceleration [94]. The acceleration mechanism discov-
ered in Ref. [93], related to the mechanical resonance between
electron betatron oscillations in quasistationary magnetic
and electric fields and the laser field, is not the dominant one.

Figure 1 shows clearly that the momentum distribution of
hot electrons has a two-temperature form. This may be
attributed to the combined action of both the ponderomotive
force and the turbulent plasma field, specifically, to ponder-
omotive-force acceleration of the tail of electrons already
accelerated by the plasma field.

Simulations were also carried out for a plasma of multiply
charged gold ions for peak intensities I0 � 1020 W cmÿ2 and
I0 � 3� 1020 W cmÿ2. At these intensities, gold atoms ionize
to the charge Zi � 51 according to Bethe formula (30). This
charge is close to the equilibrium charge at characteristic
temperatures about 300 ± 500 eV and the critical density. The
following parameters were taken in formulas (31) and (32):
t � 150 fs, s � 9l, L � 20l (l � 1 mm), and zmax � 60l. The
calculated data are shown in Fig. 3. In the 10 ± 25MeV energy
range, electrons are heated to the temperature Th � 10 MeV,
which is consistent with the estimate Th � 4� 1 MeV
obtained experimentally in Ref. [83]. The results of the last-
mentioned calculations are also in agreement with some of the
experimental data in Ref. [86], the discrepancy between the
parameters of the distribution functions being less than 25%.
Indeed, the energy distribution of hot electrons measured at
an angle of 30� has a two-temperature form: Th � 7 MeV in
the range from 10 to 30 MeV and Th � 20 MeV in the range
from 40 to 100 MeV; in Fig. 3, Th � 8:6 MeV (making
allowance for the observation angle of 30�) in the 10 ±
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25MeV range andTh � 20MeV in the 25 ± 90MeV range. As
in the case of a hydrogen plasma, electrons are accelerated by
turbulent pulsations of the plasma field. Thermal electrons
are heated to a temperature about 10 keV due to anomalous
plasma conductivity. All these calculations were made with a
Pentium-4 class PC.

5.5 A nonuniform plasma with sharp boundaries
A nonuniform plasma with sharp boundaries emerges either
in the interaction of relativistic laser pulses with a thin solid
target or when a pulse with a high contrast ratio (with a
weak prepulse) is incident on a thick target. This interaction
results in the production of high-intensity fast ion beams
(primarily protons), which have been observed in numerous
experiments [83, 86, 95 ± 114] and in particle-in-cell simula-
tions [114 ± 128]. Energy-wise investigations are made of the
angular distribution of fast ions, which may be used for the
fast ignition of a thermonuclear target [129 ± 131], protono-
graphic diagnostics of fast processes in plasmas [132, 133],
isochoric heating of a solid with the aim of obtaining high
pressures [134] or a neutron source [96, 114, 135, 136],
initiating nuclear reactions [137], and investigating neutrino
oscillations [138].

The scenario of proton acceleration in the interaction of a
high-intensity femtosecond laser pulse with a thin target is as
follows. The ponderomotive force accelerates electrons, with
the consequence that charge separation occurs near both the
front and rear target boundaries. The resultant ambipolar
electric field accelerates the ions in the plasma of the target.
Additional acceleration may arise from the Coulomb ion
explosion [115] and the vortex electric field [116]. An efficient
stochastic mechanism of electron acceleration also exists [64,
65], whereby optimum conditions for proton acceleration
emerge [126]. The collisionless electrostatic shock wave
produced by the strong ponderomotive force may also be
responsible for efficient ion acceleration [46, 128]. Ions may
be accelerated both near the front side of a thin target [96, 97,
105, 118, 119] and near its rear side [83, 99, 104, 112, 115, 116,
120]. In the simulations reported in Ref. [127], the accelerat-
ing ambipolar field is distributed over a broad region.When a
laser pulse is incident on a thick target, ions are also
accelerated due to the ambipolar field [102, 124] arising
from the action exerted on electrons by the ponderomotive
force of both the incident and reflected laser pulses. It is

pertinent to note that the accelerated-ion energy distribution
depends on the ejected-electron distribution function. For a
free plasma expansion in a vacuum, this was demonstrated in
Refs [114, 139, 140].

In what follows, we consider the interaction between a
linearly polarized laser pulse with envelope (31) and alumi-
num foil [141]. The laser pulse parameters are t � 20T,
s � 7l, and l � 0:8 mm, where T and l are the period
and wavelength of the laser pulse. The peak intensity is as
high as I0 � 1020 W cmÿ2. The angle the laser wave vector
makes with the normal to the plane of the foil is equal to
22�, as in the experiment in Ref. [104]. The foil thickness is
3 mm and the initial electron and Al13� ion densities
correspond to the solid-state density. There are also hydro-
gen impurity ions.

Given the initial distribution functions of plasma parti-
cles, their evolution may be found by means of multiple,
sequential application of propagators (22) ± (26) in accor-
dance with relation (10). To investigate the generation of fast
protons, three sorts of particles are to be considered:
electrons, target ions, and hydrogen impurity ions.

On the whole, the interaction proceeds as in particle-in-
cell simulations. The strong ponderomotive force of the laser
pulse ejects and accelerates electrons along its direction of
propagation, resulting in a strong charge separation. The
electron distributions in the phase planes �z; pz� and �y; pz�
are depicted in Figs 4 and 5, respectively. These distributions
are given for the instant of cessation of laser pulse ± target
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interaction. It can be seen from Figs 4 and 5 that the electrons
are accelerated to relativistic velocities in the direction of
pulse propagation. The development of a Weible instability
[75] is responsible for the generation of an oppositely directed
electron current. The averaged description (the characteristic
scale length is of the order of the wavelength) of this
instability is given in Fig. 5. Normally, the Weible instability
develops to smaller scales [142].

The electron density distribution at the instant of
cessation of the laser pulse ± target interaction is shown in
Fig. 6. It can be seen that electron detachment at the target
center occurs, the electron density in the detached parts
remaining close to the solid-state density. In particle-in-cell
simulations, relativistic electrons make up a tenuous halo
around the target (see, e.g., Refs [104, 119, 120], but the initial
electron density assumed in these papers is an order of
magnitude lower than the solid-state density).

The ambipolar electric field produced due to charge
separation accelerates ions and impurity protons, primarily
the impurity protons being accelerated. If the initial proton
and aluminum ion densities are equal, the fast-proton
temperature Tph � 4 MeV and the total number of acceler-
ated protons with energies above 1 MeV is approximately
equal to 3:5� 1011 (the uncertainty of calculation is � 20%).
These data are consistent with the experimental data in
Ref. [104], which reported the temperature Tph �
3:2� 0:3 MeV and the number of accelerated protons
1:6� 1011. The total number of accelerated protons depends
heavily on their initial relative density in the target: for a
proton fraction of 3%, the number of accelerated protons
decreases to 0:5� 1010. The discrepancy in the number of
accelerated protons stems from the fact that the initial proton
density in the target is unknown.

From the fast-proton distribution in the �z; pz� phase
plane shown in Fig. 7, it is evident that themajority of protons
are accelerated in the region z � �5ÿ6�l, which is close to the
value of z at which the plane x � 0 intersects the rear target
boundary. Consequently, protons are accelerated primarily
near the rear side of the target, which corresponds to the data
of simulations in Ref. [104].

An interesting feature of the in-target proton acceleration
is its absence near y � 0 (Fig. 8). This is supposedly due to the
intense reverse current of relativistic electrons near this value

of y (see Fig. 5). The simulations were carried out on a
Pentium-4 class PC.

6. Conclusion

A kinetic theory of tenuous plasmas and gases has been
developed, which involves construction of a distribution
function propagator dependent on this distribution func-
tion. An analytic expression has been obtained for the
propagator describing the evolution of a classical Coulomb
plasma in the field of a high-intensity short laser pulse for
times shorter than the relaxation time. This theory was used
to investigate the generation of fast electrons by relativistic
femtosecond pulses in plasmas with densities of the order of
and higher than the critical density, as well as the interaction
of a relativistic (I0 � 1020 W cmÿ2) femtosecond laser pulse
with thin aluminum foil. The new computational technique
enables carrying out simulations for realistic large ion
charges and high plasma densities. In some cases, three-
dimensional calculations become feasible with a personal
computer.

High-energy electron and ion streams obtained under
different regimes of the relativistic laser pulse±plasma
interaction may be used for the fast ignition of a thermo-
nuclear target, the production of high pressures, X-ray and
protonographic diagnostics of fast processes in plasmas and
neutron sources, the initiation of nuclear reactions, and
electron ±positron pair production. Furthermore, the pre-
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sently existing terawatt lasers offer promise as compact
accelerators of electrons and ions.

Applying the newmethod to some problems of relativistic
laser pulse ± plasma interaction has led to a reinterpretation
of the calculations in the case of hot-electron generation in
supercritical-density plasmas and to a somewhat different
regime of interaction with a thin target. The momentum
distributions of hot electrons and fast protons obtained in
this case are consistent with simulations by the standard
particle-in-cell method and with experimental data. By and
large, the numerical simulations of laser-produced plasmas
carried out by the particle-in-cell method are in qualitative
agreement with experimental data. These simulations are, as a
rule, performed involving model plasmas with lower ion
charges and densities. The method elaborated here holds
promise for investigations of the kinetics of laser-produced
plasmas with multiply charged ions and the kinetics of the
interaction between laser pulses and dense plasmas. Plasmas
of this kind emerge in the interaction of high-intensity laser
pulses with heavy gases and solid targets.
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