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Abstract. In the investigation of cyclotron ion heating in sys-
tems designed for plasma isotope separation, the high-fre-
quency (HF) electric field amplification effect was found to
occur in equilibrium plasma. In the present article this effect is
treated as a result of the interaction of the plasma placed in a
constant external magnetic field with the HF modes of the
vacuum chamber. Consistent elaboration of this approach al-
lowed obtaining a clear interpretation of the HF electric field
amplification effect and constructing a simple model of HF field
excitation in a plasma column embedded in the external mag-
netic field.

1. Introduction

Plasmas are characterized by the tendency of getting screened
from both constant and alternating electric and magnetic
fields. However, there are exceptions to this rule. For
instance, electromagnetic fields may be amplified during
propagation toward the interior of a plasma with a none-
quilibrium charged-particle velocity distribution. Filling a
bounded volume with the plasma may lead to the amplifica-
tion of externally excited electromagnetic fields at resonance
with the plasma eigenmodes (magnetoacoustic resonance,
resonance with Gould —Trievelpiece waves, etc.). This note
discusses one more possibility for the amplification of
electromagnetic waves by plasma with an equilibrium
charged-particle velocity distribution, which was discovered
in the investigation of ion cyclotron resonance heating (ICR
heating) of plasma placed in a constant external magnetic
field. It has been largely due to this effect that it has been
possible to achieve isotope separation by the ICR technique
(see, for instance, Ref. [1]).
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This effect was supposedly discussed for the first time by
Romesser et al. [2], who gave its qualitative interpretation. It
owes its origin to the plasma response to the longitudinal
(along the basic magnetic field) component Ej . of the
electric field excited by HF antennas. Due to high electron
mobility along the basic magnetic field, even a low-density
plasma is efficiently screened from this component. When the
external HF field is nonuniform in the transverse direction,
the redistribution of the plasma electric charge may give rise
to an appreciable transverse field.

This field amplification effect was considered in greater
detail by Compant La Fontaine and Pashkovsky [3] (see
also Ref. [4]). The analysis in these papers was based on the
notion of plasma oscillation mode — the combination of
electric and magnetic fields described by the independent
solution of the system of Maxwell equations. In the plasma
parameter range typical for ICR ion separation systems
there are two modes, which are referred to as fast and slow
in Refs [3, 4]. The transverse electric field prevails in the fast
mode. When excited at the plasma boundary, it relatively
rapidly penetrates deep into the plasma. This mode
comprises Alfvén and magnetoacoustic oscillations. The
slow mode possesses a substantial longitudinal electric field
and is characterized by lower velocities of propagation
transverse to the magnetic field. For a low plasma density,
this mode is referred to as the Gould —Trievelpiece mode.
With increasing density it turns into lower-hybrid oscilla-
tions.

The HF antennas used in ICR heating systems excite
both modes. In a vacuum, these modes are phased in such a
way that their relatively strong transverse electric fields
largely compensate each other. The screening of the slow
mode ‘releases’ the transverse electric field of the fast mode.
Calculations carried out in Ref. [3] showed that the
amplification effect, for instance, in the conditions of the
French ERIC facility, shows up even for a plasma number
density np =~ 10°—10° cm~3. Up to a density ng ~ 10'> cm~3,
the amplification factor remains constant at a level of K ~ 10.
In a narrow density range ng =~ 10'>—10'3 cm =3, the amplifi-
cation coefficient initially rises by about a factor of 2.5 after
which the regime of vacuum field amplification by the plasma
is abruptly replaced with attenuation.
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The HF electric fields in a magnetized plasma column
were experimentally investigated at the SIRENA facility [5].
It was found that the plasma does amplify the transverse
electric field.

In earlier theoretical papers [6— 8], attention was drawn to
the following fact: in a relatively broad plasma density range
corresponding to the ‘plateau’ in the E, (ny) dependence,
which was obtained in Ref. [3], the plasma has only a slight
effect on the fast mode. In thisinterval, the fast mode coincides
with the TE mode of the cylindrical vacuum chamber, whose
electric field is oriented transversely (£) = 0) to the chamber
axis. (In ICR ion separation systems, the basic, stationary
magnetic field is directed along the axis.) Another indepen-
dent mode of the vacuum chamber is the TM mode, which the
slow mode turns into. The longitudinal component of the HF
magnetic field of this mode is equal to zero. Both the TE and
TM modes possess appreciable potential components of the
transverse electric field. However, when the HF fields are
inductively excited (by current antennas) in a vacuum, the
potential components compensate each other. As a result,
there remains a relatively weak vortex electric field. The
charge separation in plasma, whereby the TM mode is
screened, restores the vacuum field of the TE mode. The
potential component of the vacuum modes prevails over the
vortical one when kjrp < 1, where r4 is the antenna radius.
The results of Refs [6—8] suggest that in the limiting case
kjra < 1 the amplification factor is K ~ (k”rA)f2 to an order
of magnitude.

The systematic statement of the approach elaborated in
Refs [6—8] is the aim of this work. The complete picture has
been obtained for HF field excitation in a plasma column
embedded in an external magnetic field. In particular, the
boundary conditions at the ends of the plasma column were
established, which should be used in the determination of the
longitudinal structure of the HF fields.

The approach taken in Refs [6—8] is valid provided
N‘2 > ¢, where N is the longitudinal component of the
refractive index, and ¢, is the transverse permittivity of the
plasma. In ICR ion separation systems, this condition is
violated when the plasma density exceeds the limiting value
ng = 1012714 cm=3. The exact value of the limiting density
depends on the frequency of the HF field, the composition of
the plasma ion component, etc. When it is exceeded, the
plasma influence modifies the vacuum TE mode: it trans-
forms into Alfvén or magnetoacoustic oscillations. The
resonance with the intrinsic Alfvén oscillations of the plasma
column gives rise to a peak in the dependence of gain on
plasma density (see Ref. [3]). Upon a further increase in
plasma density, however, the transparency region of the
Alfvén oscillations shifts to the plasma periphery, and
therefore the electric field decreases at the center of the
plasma column. As regards the magnetoacoustic oscilla-
tions, because of the specific character of their polarization
they can be employed for ICR heating only when the principal
and heated ions differ greatly in concentrations and masses
(the impurity ion method).

2. HF fields in a vacuum chamber

We analyze the excitation of HF electromagnetic fields in a
cylindrical vacuum chamber and restrict ourselves to the
longitudinal direction. The chamber walls are assumed to be
perfectly conducting.

The geometry of current antennas commonly employed
for ICR plasma heating is such that they simultaneously
excite both the TE and TM modes. In a vacuum, the electric
field of the TE mode is directed transversely (£, = 0) to the
chamber axis; the same is true of the magnetic field
orientation of the TM mode (B = 0). That is why it is
convenient to describe the TE mode by the longitudinal
component B of the alternating magnetic field, and the TM
mode by the electric field component Ej. Hereinafter, the
subscripts ‘parallel’” and ‘perpendicular’ indicate the field
orientation relative to the system’s axis.

The TE mode is excited by the transverse electric current,
and the TM mode by the longitudinal current, as well as by
the charge, provided its density is modulated in the long-
itudinal direction. These processes are described by the
equations (see, for instance, Refs [6—9])
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In Eqns (1) and (2) use is made of the cylindrical coordinate
system with the 0Z-axis aligned with the axis of the vacuum
chamber. The chamber is assumed to possess axial and
azimuthal symmetry, and the alternating quantities are
therefore expanded into the Fourier series in azimuth 0 (m is
the azimuthal wave number) and longitudinal coordinate z
(k) is the axial longitudinal wave number). The antennas
employed for ICR heating are inductive (current-excited),
with p = 0 in them. They consist of conductors located on
some cylindrical surface (r = r), and the radial component
of electric current is therefore absent in Eqns (1) and (2).
The transverse components of electric and magnetic fields
are expressed by the following relations in terms of B and Ej:

i

C

E, = —1 — Nﬁ E(V X (bBH) +NHVLEH) , (3)
i ¢

BL :—1_N2 E(NHVLBH—VX (bEH))7 (4)

where N|| = ckj|/w, and b is the unit vector aligned with the
system’s axis. The first terms in parentheses in relations (3)
and (4) describe the transverse electromagnetic fields of the
TE mode, and the second terms describe those of the TM
mode.

ICR heating is due to the electric field component which is
perpendicular to the basic magnetic field and has the same
sense of rotation as the ions rotating in the Larmor circle (the
left-polarized component E). It is precisely this component
that is responsible for systematic changes in Larmor gyration
energy, when the cyclotron resonance condition w = w; (w; is
the ion cyclotron frequency) is fulfilled. At the same time, the
right-polarized component E_ of the electric field gives rise,
under resonance conditions, to merely ion energy oscillations
with a frequency 2w. For the temporal dependence of
alternating quantities of the form « exp(—iwt), the circularly
polarized components of the electric field are given by the
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Owing to the small thickness of current-antenna conduc-
tors, the radial distribution of current in them may be
approximated by the 6 function. In the region inside the
antenna (r < ra), we obtain the following expressions from
Eqns (1) and (2):

o Pa " 4n
By = 1 (pp) Py o0 (PasPB) Im(p) == Jo (6)

i PA 4r
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where J = (0,Jy,J)) is the surface current density in the
antenna, I, is the modified Bessel function, K, is the
Macdonald function, p = (rw/c) Nﬁ —1, @(pa,pp) =
In(pp) Kn(pg) — Im(pg) Kin(pa), and rp is the radius of the
vacuum chamber.

In the practically significant wave spectrum domain
employed for ICR heating, the characteristic longitudinal
wavelength is far greater than the transverse dimension of the
chamber and at the same time is small in comparison to the
wavelength in a vacuum, so that the following inequalities are
valid: Nj > 1, kyra <1 (ordinarily, N~ 10*-10% and
k”}"A ~ 01—03)

In these approximations, from expressions (6) and (7) we
obtain
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In a plasma-filled chamber, the plasma density is highest
on the axis (r = 0). Here, the amplitude of the left-polarized
component of the electric field is nonzero only for the first
mode which travels in an azimuth in the direction of ion
gyration in the magnetic field (m = —1), while the amplitude
of the right-polarized component is nonzero only for the first
mode traveling in the direction of electron gyration (m = 1).

For all azimuthal modes, in view of the antenna current
continuity condition

m
—JG“rkHJH =0 (11)
ra

the zero-order terms of expansion in (kHrA)2 in expression
(10) cancel out. In accordance with Eqns (1) and (2), the term
in this expression that is proportional to the azimuthal
current takes into account the TE-mode contribution, and
the term proportional to the longitudinal current takes into
account the TM-mode contribution. The resultant field is due
to the fact that the transverse electric field of the TE mode in
the first order in (kjra)’ < 1 exceeds the field of the TM
mode.

The main role in ICR heating is played by the left-
polarized electric field of the first azimuthal harmonic
traveling in the direction of ion gyration. For this field at the
chamber center, from expression (10) we obtain

a2 - () - (R)] o

This integral field is K =~ (kHrA)*2 > | times weaker in the
modulus than the fields of the TE and TM modes taken
separately, which are, correct to factors on the order of
(kHrA)Z, equal to

i o A 2]
Eom+2 @ gl — (M) ],
=G aei- ()

where the plus sign corresponds to the TE mode, and the
minus sign to the TM mode.

The total field of the current antennas in a vacuum is
vortical, while all main components of the transverse electric
field of the TE and TM modes are inherently potential. For
N > 1, the latter statement is an obvious corollary of
expression (3), in which the second term defines the
transverse electric field of the TM mode. The quantity
(—i/ky) Ej plays the part of electric potential in it. It should
also be noted that Eqn (1) outside of the antenna is, under the
assumption kjra < 1, of the form V|| x E = 0, which lets us
treat the transverse electric field of the TE mode as a potential
one.

The electromagnetic oscillations employed for ICR
heating are relatively low in frequency. Vacuum chambers
are evanescent waveguides for them. The spatial structure of
the electric field of these oscillations is determined by antenna
shape. With an increase in frequency, the propagation of
electromagnetic oscillations along the waveguide becomes
possible — these oscillations are natural. The spatial structure
of the transverse electric field of cylindrical-waveguide
eigenmodes shown in Fig. 1 confirms the thesis about the
existence of a substantial potential component of the electric
field of the TE and TM modes. Indeed, the electric field lines
in Fig. 1 approach the surface of a perfectly conducting
waveguide along the normal. This testifies to the presence of
electric charges on the surface of the perfectly conducting

(13)

a b

Figure 1. Electric field lines of the lowest radial eigenmodes of the vacuum
waveguide (m = 1): (a) the TE;; mode, and (b) the TM;; mode.
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waveguide, the potential component of the transverse electric
field being due to these charges. It is pertinent to note that the
TM-mode electric field is three-dimensional and its lines of
force can change their inclination to the axis and, in
particular, become parallel to it. In the vicinity of such a
point, the projections of the lines of force onto the plane
orthogonal to the axis terminate in Fig. 1b.

3. Plasma effect on HF fields

We now analyze the plasma effect on the electric field of
current antennas. The plasma is assumed to be placed in a
longitudinal magnetic field. Owing to high electron long-
itudinal mobility, particularly active is the plasma interaction
with the TM mode which possesses a substantial longitudinal
electric field. At the same time, since £)| = 0 for the TE mode,
it experiences a weaker influence of the plasma. There is a
broad plasma density range, which is approximately deter-
mined by the conditions ¢ > 1 and NH > ¢, in which the
plasma influence mgnlflcdntly modifies the TM mode, while
the TE mode still remains a ‘vacuum’ mode. (Here, ¢ is the
plasma permittivity.) For real systems which employ ICR
plasma heating, this interval ranges from ny ~ 103—10° to

~ 102—10'3 cm~3. The plasma influence results here in a
substantial amplification of the total transverse electric field.

To understand the amplification mechanism, we consider
the plasma oscillations near the lower boundary of the above-
specified plasma density interval. The differential equation
taking into account the interaction of the longitudinal electric
field of the TM mode with the plasma is of the form of Eqn (2)
with a modified expression for the L operator:

. 1d d m2 ?
L=——r .y
rdr dr 2 Il +

in which

Wpe
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electron plasma frequency.
In the vacuum chamber in the region inside the antenna
(r < rp), one finds

E) 0<1m< ; \/N—ﬁ——l>

When the electrons are hot (o < kjjvte), Reg > 1 and
the plasma influence is equivalent to the increase in V). This
causes a sharper decrease in |Ej| from the antenna towards
the center of the plasma column. The absorption of electro-
magnetic energy, which is accounted for by the imaginary
part of ¢, has a similar effect. Due to the decrease in £, the
difference between the contributions of the TE and TM
modes to expression (5) increases, which leads to an increase
in the total circularly polarized electric field.

In the case of cold electrons (w > kjjvte), the plasma
influence decreases the longitudinal dielectric response g
and, consequently, strengthens the longitudinal electric field
of the TM mode. That is why for a very low plasma density
the difference between the TE- and TM-mode contributions

is the

> (w < kH'UTe) s

to expression (5) decreases, resulting in a lowering of the total
field. However, on further density increase, the transverse
electric field of the TM mode becomes much higher than the
transverse electric field of the TE mode. As a result, the total
circularly polarized field strengthens. When the longitudinal
dielectric plasma response becomes negative, the plasma
waveguide is no longer evanescent for the TM modes —
they turn into potential plasma oscillations (the Gould—
Trievelpiece modes). If the antenna current parameters are
close to the Gould —Trievelpiece eigenmode parameters, the
transverse electric field of the TM mode is far stronger than
the transverse field of the vacuum TE mode. In this case, the
total transverse electric field is determined by the field of
plasma waveguide eigenmodes.

It is pertinent to note that with an increase in ion mass,
when the resonance HF-field frequency lowers, the progres-
sively lower-density plasma comes to significantly affect the
HF field. Simultaneously lowered is the temperature at which
the electrons may be considered ‘hot’.

These statements are borne out by the numerical solution
of the wave equations which take into complete account the
plasma influence both on the TE mode and on the TM mode
(Figs 2, 3). These equations, as well as their comprehensive
analysis, are reported in Ref. [7]. Asin Figs 2 and 3, calculated
in this work was the HF field excited in a plasma column by an

12 - a

|E4], 1074V em™!

ro/c, 1073

‘EH‘, 1074 Vem™!

ro/c, 1073

Figure 2. Electromagnetic fields of an individual axial harmonic of helical
current for a low plasma density in the case of ‘hot’ electrons: 7. = 5 eV,
T;=05¢eV, 4= 102 cm, m; = 200 mp, my is the proton mass, w =
5x 105 s7!, w; = w/2 57!, the current amplitude is 1 A, ra =2.55x%
107* w/c, and rg = 3.7 x 107* w/c, and ry = 24, = 0.85 x 107* w/c;
1 — vacuum, 2 — ng = 10> cm™3, 3 — ng = 10> em™3, and 4 — ny =
10* cm—3.
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Figure 3. The same as in Fig. 2 for 10? times higher frequencies (‘cold’
electrons); all dimensionless lengths are accordingly increased 10%-fold:
] — vacuum, 2 — ng=10"ecm™>3, 3 — ny=2x10*ecm™3, and 4 —
ny = 10° cm=3.

individual Fourier harmonic of the helical current flowing
through the antenna cylinder. The plasma density distribu-
tion was assumed to obey the law

no(r)=np(0) [1 — tanh (%)} [1 + tanh (%)] 7

The dependences shown in Fig. 2 were obtained on the
supposition of ‘hot’ electrons (w < kjjvte), which is usually
correct for ICR-heating systems. In this case, even a low-
density plasma screens the TM mode in a thin surface layer.
The characteristic scale of screening is, to the order of
magnitude, equal to the electron Debye radius. The screening
of the TM mode ‘releases’ the electric field of the TE mode.
With an increase in plasma density, when the condition
& > 1 1is fulfilled, the plasma interaction with the transverse
HF electric field also becomes significant. In this case, the
scale of screening ceases to vary with plasma density. The
scale length depends on such parameters as the ion composi-
tion and the ratio between the HF-field frequency and the ion
cyclotron frequencies. At the same time, as long as the
inequality NV, ﬁ > ¢, is valid, the plasma influence on the TE
mode can be neglected.

Moving to the case of cold electrons (w > kjvre), the
HF-field frequency was increased 102-fold, all other para-
meters remaining unchanged. In accordance with the afore-
said, initially with the increase in density the transverse electric
field lowers (see Fig. 3). However, later on the excitation of the

Gould —Trievelpiece modes, which the TM mode turns into,
becomes the governing factor. As this takes place, the electric
field strengthens sharply.

4. Simplified model of the TE mode

The phenomenon of TM-mode screening may be treated as its
excitation in antiphase with the action of the longitudinal
component of the electric current flowing through the
antenna. (According to Eqn (2), only this component excites
the TM mode.) When the distance from the plasma surface to
the antenna is small, it may be crudely assumed that the
screening layer coincides with the antenna cylinder. In this
case, the mutual neutralization condition for the longitudinal
current and the charge screening the TM mode should, as
follows from Eqn (2), be of the form

CzkH

Ji :7/% (14)

Since we assume that both the longitudinal current and
the charge are localized on the antenna surface r=rp
(jj = J0(r —ra), and p = 66(r — ra)), a relationship simi-
lar to formula (14) should also hold for the surface densities of
these quantities:

CzkH
o

J = (15)

It should be noted that the assumption about the
localization of the electric charge neutralizing the TM mode
on the antenna surface merely makes calculations easier
without affecting the result. Indeed, the role of the charge
simply consists in the ‘reestablishment’ of the electric field of
the TE mode. This electric field is ‘vacuumlike’ in all those
places where the TM mode does not penetrate.

According to the aforesaid, it is precisely the charge
neutralizing the action of longitudinal current that is
responsible for the potential electric-field component of the
TE mode. Therefore, relationship (15) may also be obtained
employing Eqns (1), (3), and (6). Indeed, the tangential
components of the alternating magnetic field experience a
discontinuity at the antenna surface, in particular, one has

r 4n
.
Bl ==

(16)

On the strength of relationship (3), the radial component
of the electric field should also experience a discontinuity:

at _
"

ras NH2 —1 wra

1 c m Fad
By (17)

FA—

In accordance with the Poisson equation, this requires
that there be a charge with a density

1 1 m

1N o

[

(18)

on the surface r = ra.

Taking into account the current continuity condition (11),
we find that in the limit V)| > 1 expression (18) coincides with
expression (15). (To also reconcile corrections to expression
(18), which are « N \\_2’ account should be taken of the
currents required to produce the charge, see below.)
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Therefore, by taking either of the independent equations
[Eqn (1) or Eqn (2)] as the starting point of our analysis, we
arrive at the same results. It should be noted that the Poisson
equation employed in obtaining expression (18) is a corollary
of the Maxwell equations and the charge conservation
equation.

We take advantage of relationship (15) for an approx-
imate calculation of the left-polarized component of the
electric field excited in ICR-heating systems. As noted
above, it is precisely this component that is responsible for
ion heating. The simplest antenna employed in ICR-heating
systems consists of two helical conductors located opposite
each other on the antenna cylinder. The conductors make a
half turn around the plasma column (a helical half-wave
antenna). The ends of the helical conductors are bridged by
circular conductors (see Fig. 4). The longitudinal current
distribution in this antenna is defined by the expression

e [o(0-3-an ) o0+ as )]

x cos(wt) i o(r—ra)l (z| <L), (19)

where L is one-half the antenna length, and /s the current in
each of the conductors, which are assumed to be infinitely
thin. In the half-wave antenna, one has 4 = 1/2.

In accordance with expressions (15) and (19), the screen-
ing charge distribution over the longitudinal coordinate is
described by a discontinuous function which undergoes
abrupt changes at the conductors. For a fixed z value, the
longitudinal currents flowing through the conductors located
on opposite sides of the antenna cylinder are opposite in
sense, and so the screening charges are also opposite in sign.
This establishes a transverse electric field. The left-polarized
field on the axis of the plasma column is defined by the first
azimuthal harmonic traveling in the direction of ion gyration
(see above). We separate it out from expression (19):

1
jl/\ = sin (0+a)t —An%) — I0(r—ra).

(20)
Tra

Hereinafter, the prime indicates the quantities characterizing
the azimuthal mode with m = —1.

Figure 4. Helical half-wave antenna (the arrows indicate the instantaneous
direction of current).

The density of charge screening the TM mode is found
from the differential analogue of Eqn (15):

0j op'
| 2 0p
| e 21
a ¢ oz 1)
In this case, we obtain
. 1 oL
p'=1(,0,2) A et I6(r—ra). (22)

For convenience in the subsequent calculations, the factor
which takes into account the spatio-temporal charge struc-
ture, namely

£(1,0,2) = sin (0+wl—An%) ,

is represented as

f(2,0,2) = sin(0 + 1) fey (z) — cos(0 + 1) foa(z) ,  (23)
where the quantity fey(z) = cos(Anz/L) for |z| < L describes
the structure of the z-coordinate-even part of the screening
charge, and the quantity foq4(z) = sin(4nz/L) the odd part.
They are displaced in phase 0’ = 0 + wt by /2 relative to
each other.

Due to TM mode screening, the electric field amplification
effect under discussion is significant for antennas sufficiently
elongated along the magnetic field (L > ra). In this case, the
longitudinal-coordinate dependences of the electric charge
and potential are close to each other, and as an approxima-
tion it may be assumed that ¢(z) o p’(z), omitting the term
0% /022 in the Poisson equation:

1 d d

PR 29

1
¢ ——=¢=—4np".
r

Here, as in the foregoing, the azimuthal wave number is taken
tobem = —1.
The solution to Eqn (24) takes the form

. - 2
5 By (r<ra),
o—2ms 5 7 L\

'sB | r

(25)
- (r>ra),
7 '

where

woll
o' = erv(od)

is the surface density of the even (odd) part of the charge.
Using expression (25), we find that in the region inside the
antenna (r < ra)

E.(z) = —\/% %(%%) ¢(r,2)

- _2\/§no’/(2){1 - (:2)2] '

This formula relates the potential component of the left-
polarized electric field to the screening charge density, and
thereby to the longitudinal electric current in the antenna.

(26)
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It is easily seen that formula (26) is equivalent to
expression (13). Indeed, if we put [in accordance with
formula (20)]

Am
L A
== " A

in expression (13), the latter will define the amplitude of the
Fourier harmonic « sin(0 + wt — Anz/L) in expression (26).

By comparing the total vacuum field (12) with the field of
the TE mode [see expression (13) or (26)], we find the
amplification factor

1
K=— _ 27
(erra)? 1q), (27)
where 7(¢) =4(1 — ¢*)(1 —¢* —4Ing)~", and ¢ = ra/rg; if
rg —ra < ra, then y(q) =~ 4/3.

The amplification factor (27) can be given a simple
qualitative interpretation. The electric field of the plasma
charges is potential, and its components therefore obey the
relation (E,/E|),=ki/k). In a vacuum, due to the low
frequency of the processes under consideration, the inductive
electric field may be considered as being directed along the
helical conductors, and therefore its inclination to the basic
magnetic field is equal approximately to (E./E|),. =
O ra/L, where O is the conductor twist angle. By assuming
that the electric field of the plasma charges compensates for

the longitudinal vacuum field (|E)| 1| = |Ejj, vac|), we obtain
Eip _ Orak,
K=—F= . 28
EL,VaC LkH ( )

There is good reason to believe that the quantities £, and
ky are equal approximately to ry' and L~', respectively.
Under these assumptions, expressions (27) and (28) are in
good agreement with each other.

5. Conditions at the ends
of an ICR-heating system

In the screening charge density ¢’ entering into expression
(26) there appear the quantities fe(oq) Which were defined
above only within the bounds of the antenna (|z| < L). The
size of ICR-heating systems normally exceeds the antenna
length. To extend function (26) beyond the antenna requires
making specific the boundary conditions at the ends of the
system. The approach elaborated in our work permits
establishing the form of the boundary conditions by taking
into consideration only the general character of the electric
coupling of the plasma to the system’s ends, omitting a
detailed analysis of the processes in this region.

For simplicity we assume that the ends are located
symmetrically about the antenna center at z = 4L,
(Ly > L). In this case, the portion of longitudinal antenna
current even in the z-coordinate is related via the electric
charge [see Eqn (21)] to the odd part of the distribution of
transverse electric field, and the odd portion of the current to
the even part of the field.

When the condition kyrp, < 1 is fulfilled, the E, (z) and
p(z) dependences are identical, ie., E.(z) x p(z), with
Jjj(z) o< 8p/0z. This information is sufficient to establish the
boundary conditions at the ends of the plasma column.
Boundary conditions E,(£L;) = 0 of the first kind permit

the existence of a nonzero derivative dE,/dz at the
boundary. In this case, dp/dz # 0 at the boundary and,
therefore, jj # 0 in accordance with Eqn (21).

The longitudinal current distribution independent of the
z-coordinate (jjj(z) = const) satisfies the continuity equation
for an arbitrary value of the azimuthal wave number m. If the
electric charge linearly distributed in the coordinate oscillates
simultaneously with this current, p(z) = z (¢?k/w) ji|, the TM
mode is not excited, in accordance with Eqn (21).

Another combination of the longitudinal current and the
charge that satisfies Eqns (11) and (21)is jj; = 0, p(z) = const.

Neither the TM mode nor the TE mode is excited under
the two above distributions of the longitudinal current and
charge. However, they affect the dependence of the TE-mode
electric field on the longitudinal coordinate via the boundary
conditions.

On the strength of the identity of the E,(z) and p(z)
dependences, the electric field

E+(Z) =C|+ Cyz. (29)
corresponds to these charge distributions.

The constants C; and C; may be selected in such a way as
to satisfy the boundary conditions E, (+L,)=0. In this case,
by selecting Cj it is possible to make the even part of E,(z)
vanish at the boundary, and by selecting C;, to make the odd
part of E, (z) vanish there.

The presence of arbitrariness in the dependence of the left-
polarized electric field on the longitudinal coordinate also
follows from relationship (5). Its differential analogue for
Ej; = 0 is the second-order equation

d’E. o\’ .o d m
“VE =iZ(—-=)8B.
dz2 +<c> * 1c(dr r) I

In the low-frequency limit (N > 1), the second term on
the left-hand side of equation (30) may be omitted. In this
approximation, it defines E, up to the expressions of the form
(29).

In the above reasoning, no account was taken of the
current j"" needed to produce the required charge distribu-
tions. This current is produced by longitudinal electron
motion and it may be found from the charge conservation
equation

(30)

—wp + kHj‘/‘l =0.

In this case,j"’/j” ~ NH*Z, in accordance with relation (14). In
real-life conditions, N} ~ 103 —10%, and the influence of the
longitudinal current flowing through the plasma can there-
fore be neglected.

In Ref. [8], the electromagnetic fields of the TE mode were
determined by Eqns (1), (6), and (9), which were solved with
the aid of the Fourier transform in the z-coordinate. For
boundary conditions £, (+L;) = 0 of the first kind, the even
part of solutions describing the dependences Bj|(z) and E, (z)
was expanded in terms of the functions

cos +1nZ
)L

and the odd part in terms of the functions

sin | nm :
nm— |.
L
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In this case, the relevant selection of the constants Cj, in
expression (29) occurs automatically.

In view of relationships (15) and (26), meeting the
requirement E, (£L;)=0 entails the necessity of electric
coupling to the ends. In the plasma density range under
discussion (see above), longitudinal currents are produced
by the electron motion between the plasma and the ends.
Since the currents periodically change direction, their flow
through the ends is possible only in the presence of electron
emission. When the ends are insulated from the plasma (the
emission is absent), both 0p/0z and OE, /Oz vanish at the
ends, along with the longitudinal current. To satisfy the
boundary conditions of the second kind in the case of
insulated ends in the solution of Eqns (1), (6), and (9) in
Ref. [8], the even part of the transverse electric field was
expanded in terms of the functions

z
cos [ nm —
L)’

and the odd part in terms of the functions

olled)ei]

The situation is quite realistic where highly conducting
ends do not emit electric current. Since the left-polarized field
is parallel to the end planes, in the perfect-conductivity
approximation it should vanish on their surface. This
requirement is satisfied due to the charges induced on the
ends. However, the influence of these charges extends only
over the interval |z — zg| < rg. The electric field distribution
outside this interval may be found by solving the electro-
dynamic problem subject to the condition dE, /dz|Z:iL1 =0.

The issue of boundary conditions is of prime importance
for the problem of ICR plasma heating because the coupling
between the electric field of the TE mode and its magnetic
field contains a factor 1/(NH2 — 1) [see Eqn (5)]. For N > 1it
increases steeply with an increase in longitudinal wavelength.
If the boundary conditions are disregarded, which is
equivalent to the assumption that the system is unbounded,
waves with arbitrary lengths become admissible (see, for
instance, Refs [3, 4]). The inclusion of waves with k|| < L!
in the analysis of an electric field excitation results in an
overestimation of the field amplitude.

Having elucidated the possible form of boundary condi-
tions, we continue the electric field to the boundary, initially
assuming the ends to be insulated from the plasma. In this
case, use should be made of the boundary conditions
dE+/dz]Z:iL] = 0 of the second kind. They can be satisfied
by adding expressions of the form of Eqn (29) to the £, (z)
dependence. The additions may be different in different
z-coordinate intervals; however, the total charge density
should be continuous in accordance with equation (21). In
view of these considerations, we arrive at the following
expression for the fq function which defines the distribution
of the odd portion of charge in the z-coordinate:

foa = sin <oc %)

sin(«) sgn (z)

(el < 1), a1)
(lz2| > L).

For the even portion of the charge we additionally take
into account that the charge is, in the case of insulated ends,
conserved on each magnetic field line (for the odd portion this

requirement is automatically satisfied):
L 1.
cos (oc %) —cosa —|—L— <cosoc - &smoc> (lz| < L),

1
L cos o ! sino
L1 o

In the case of conducting ends, advantage should be taken
of the boundary conditions E (+L;) = 0 of the first kind. In
this case, the continuity conditions at z = 4L and the
vanishing conditions at z = +L; will be fulfilled for the even
portion of the charge density if it is assumed that

cos <oc%> —cosa  (|z| < L),
0 (lz| > L) .

f6v =
(lz2] > L).

(32)

Jov = (33)

To satisfy the boundary conditions for the odd portion of
the charge density we introduce a term which linearly depends
on the z-coordinate:

sin (oc %) — sin() Lil (2| < L),

Jod = . (34)
sina(sgn(z) - —) (lz2l > L).
Ly
16 — a
E+, 102Vem™! 1478 ]
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Figure 5. Axial dependence of the left-polarized electric field of a helical
half-wave antenna (4 = 1/2) (ra = 2.5 x 107 w/c,rg = 3.4 x 107* w/c,
L =18.35x10"* w/c, and the width of the antenna conductor is 0.1L):
(a) insulated ends; (b) conducting ends. In both figures: / — the even part;
2—the odd part; solid lines — the total left-polarized electric field; dashed
lines — its potential part; L; = 2L, and the amplitude of the total current
in the antenna is 100 A.
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Expressions (31)—(34) define the longitudinal distribution
of space charge density. The left-polarized electric field, which
is of immediate interest to us, can be found with the help of
relationships (22)—(26).

Figure 5 taken from Ref. [8] shows that the potential
component of the left-polarized electric field calculated by the
above-outlined scheme turns out to be close to the total field
of the TE mode. In Ref. [8], the distribution of the electric
current flowing through the helical antenna depicted in Fig. 2
was represented as the sum of axial Fourier harmonics. The
fields of individual harmonics are given by expressions (5) and
(6).

A half-wave helical antenna, in which either of the two
conductors describes half a turn around the system’s axis
[4 =1/2 in expression (19)], was considered above . The
electric field of this antenna extends beyond its bounds to
occupy the entire system up to the ends. This may be
undesirable, for instance, in ICR isotope separation systems.
The electric field outside the antenna may be substantially
weaken by replacing the half-wave antenna with a one-wave
antenna (4 = 1). In the latter case, both helical conductors
appear on either side of the antenna cylinder, the currents
J||(2) carried by these conductors being opposite in direction.
In this case, the screening charge density undergoes abrupt
changes of different signs at the conductors [see Eqns (19)—
(21)]. As a result, the charge density outside the antenna
(|z] > L) will be zero, and the potential component of the
transverse electric field should be absent. This leads to
weakening the transverse electric field outside the antenna
(see Fig. 6).

The HF-field — plasma interaction model proposed above
may be verified without the plasma. It may be replaced with a
hollow cylinder made up of conducting wires insulated from
each other, which should be oriented along the external
magnetic field. Such a cylinder imitates the surface of a
plasma column possessing anisotropic conductivity. The
plasma conducts the electric current directed along the
magnetic field very well and shows weak conductivity for
the current flowing across the magnetic field. In this device it
is easy to realize different versions of electric coupling
between the conducting cylinder and the ends.

E,;,1072Vcem™!

Figure 6. Axial dependence of the left-polarized electric field of a helical
one-wave antenna (4 = 1); all other parameters are the same as in Fig. 5:
1 —even part; 2— odd part; solid lines — insulated ends; dashed lines —
conducting ends; L; = 2L, and the total current in the antenna is 100 A.

6. Conclusion

We have analyzed the interaction of HF fields excited
inductively (by a current antenna) in a plasma column
embedded in an external magnetic field. We have discussed
the amplification mechanism of the transverse (relative to the
external magnetic field) component of the HF electric field.
The amplification is due to longitudinal field screening caused
by electron flow along the external magnetic field. The electric
charge bunches arising in this case enhance the transverse HF
field. This process can be adequately described by treating the
HF field of the current antenna as the superposition of the TE
and TM modes. In this case, the screening of the longitudinal
electric field turns out to be equivalent to TM-mode screen-
ing. The condition for TM-mode screening by the plasma
relates the longitudinal component of the antenna electric
current to the screening plasma charge. To calculate the
electric field in the plasma requires knowing, along with the
electric charge density, the conditions at the ends of the
plasma column. The latter have been shown to be determined
by the character of electric coupling between the plasma and
the ends. The spatial distribution of an electric field in the
plasma has been calculated in the two limiting cases: complete
insulation of the plasma from the ends and perfect electric
contact between the plasma and the ends. It is shown that the
proposed simplified model of plasma interaction with the HF
fields of the current antennas permits calculating the electric
field with a high accuracy.
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