
Abstract. It is shown that according to the relativistic theory of
gravity, the gravitational field slows down the rate of time flow
but stops doing so when the field is strong, thus displaying its
tendency toward self-limitation of the gravitational potential.
This property of the gravitational field prevents massive bodies
from collapsing and allows a homogeneous isotropic universe to
evolve cyclically.

1. Introduction

The relativistic theory of gravity (RTG) is described in detail
elsewhere in Physics ±Uspekhi [1]. Here, we briefly consider
some of its basic elements.

RTG is based on special relativity, which ensures the
energy ±momentum and angular momentum conservation
for all physical processes, including gravitational ones. RTG
assumes that gravity is universal and its source is a conserved
energy ±momentum tensor of all matter fields, including the
gravitational one. This is why the gravitational field is
described by a tensor field fmn. Such an approach is
consistent with the idea by Einstein, who wrote as early as
1913 [2] that ``...tensor #mn of the gravitational field acts as a
field generator in the same way as the tensor Ymn of the

material processes. An exceptional position of gravitational
energy in comparison with all other kinds of energies would
lead to untenable consequences.'' This idea was fundamental
in developing the relativistic theory of gravity. In general
relativity (GR), a gravitational field pseudotensor emerged
instead of the energy ±momentum tensor.

The approach to gravity accepted in RTG leads to
geometrization: an effective Riemannian space appears but
only endowed with simple topology. As a result, themotion of a
test body in the Minkowski space under the action of a
gravitational field turns out to be equivalent to the motion
of this body in the effective Riemannian space created by the
gravitational field. Gravitational forces are physical and
cannot vanish due to the choice of a coordinate frame. It is
this property of the theory that allows separating gravita-
tional forces from inertial ones.

In the present paper, we do not consider the process of
emission of gravitational waves. We have not studied this
process. But in connection to the problem of ghost states with
negative energy, we note that, indeed, the inclusion of a
nonzero graviton mass in the linear theory of the gravita-
tional field leads to the wave flux being not positive definite
due to spin 0. However, for the nonzero rest mass of a
graviton, the scalar curvature R in the linear approximation
is given by

R � m 2

2
f :

This means that the wave moves in the effective Riemannian
space and therefore the flux density has the form

Rf 0i � m 2

2
ff 0i :

This value can be positive or negative depending on the
overall sign.
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It was not clear for us how to take this flux into account,
but later we specially examined this problem in paper [3]. The
peculiarity of the geometrized theory of gravity is that the
gravitational field energy ±momentum tensor density,
defined in this theory according to Hilbert as the variation
of the gravitational field Lagrangian density with respect to
the metric tensor gmn, is exactly zero, in contrast to other
theories, because outside the source this variation is given by
the equation for the gravitational field.

In the field approach to gravity, an effective Riemannian
space appears, but only with simple topology. That is why the
field concept cannot lead to GR, where the topology is not
simple in general.

The above notions allow writing the following complete
system of equations [1, 4, 5]:�

R mn ÿ 1

2
g mnR

�
�m 2

2

�
g mn �

�
g mag nb ÿ 1

2
g mng ab

�
gab

�
� 8pGT mn ; �1�

Dn~g
nm � 0 : �2�

Here, T mn is the energy ±momentum tensor of matter,1 Dn is
the covariant derivative in the Minkowski space, gab is the
metric tensor of theMinkowski space, gab is the metric tensor
of the effective Riemannian space, m � mgc=�h, mg is the
graviton mass, ~g nm � �������ÿgp

g nm is the density of the metric
tensor g nm, and g � det gmn.

Due to nonzero graviton rest mass in Eqns (1), Eqns (2)
follow from gravitational field equations (1) and matter
equations.

The effectivemetric g mn of the Riemannian space is related
to the gravitational field fmn as

~g mn � ~gmn � ~f mn ;

where

~gmn � ������ÿgp
gmn ; ~f mn � ������ÿgp

fmn ; g � det gmn :

The system of equations (1), (2) is generally covariant with
respect to arbitrary coordinate transformations and form-
invariant with respect to Lorentz transformations. It directly
follows from the least action principle with the Lagrangian
density

L � Lg�gmn; ~g mn� � LM�~g mn;fA� ;

where

Lg � 1

16p
~g mn�G l

mnG
s
ls ÿ G l

msG
s
nl�ÿ

ÿ m 2

16p

�
1

2
gmn~g

mn ÿ �������ÿgp ÿ ������ÿgp �
;

G l
mn �

1

2
g ls�Dmgsn �Dngsm ÿDsgmn� ;

and fA are matter fields.
For time-like and isotropic intervals in the effective

Riemannian space not to extend outside the original

Minkowski space cone, it suffices that the conditions

gmnv
mv n � 0 ; gmnv

mv n 4 0 �3�

be satisfied, where v n is the four-velocity vector.
Thus, the motion of test bodies under the action of a

gravitational field always occurs inside both the Riemannian
cone and the Minkowski-space cone, which ensures the
geodesic completeness.

In the inertial coordinate frame, the tensor field ~f mn is
decomposed into irreducible representations corresponding
to spins 2, 1, 0, and 0 0. Equation (2) eliminates spins 1 and 0 0,
and hence only spins 2 and 0 survive. In RTG, the graviton
rest mass is introduced when spins 2 and 0 are present.
Introducing a nonzero rest mass only for spin 2 would
contradict observational effects in the Solar system (light
ray deflection by the Sun, the Mercury perihelion advance,
etc.), as shown in papers [6].

The nonzero rest mass of a graviton necessarily emerges in
the theory because only when it is introduced can the
gravitational field be treated as a physical field in the
Minkowski space, with its source being the total conserved
energy ±momentum tensor of all matter. But it is the nonzero
mass of a graviton that fundamentally changes both the
collapse process and the evolution of the Universe.

When Einstein in 1913 connected the gravitational field
with the metric tensor of a Riemannian space, it turned out
that such a field causes time dilation in physical processes. In
particular, it can be illustrated in the Schwarzschild metric,
for example, by comparing the flow of time in the vicinity of a
gravitating body with that at infinity. But GR involves only
the metric tensor of the Riemannian space in general, and
therefore no signatures of the inertial time of the Minkowski
space can be found in the Hilbert ± Einstein equations.

The appearance of the effective Riemannian space in the
field theory of gravity with the Minkowski space kept as the
underlying space allows comparing the flow of time in the
gravitational field with that in the inertial frame of the
Minkowski space in the absence of gravity.

To show how the change of the flow of time leads to the
appearance of a force, we consider the Newton equation

m
d2x

dt 2
� F :

By formally passing from the inertial time t to a time t using
the rule

dt � U�t� dt ;
we easily obtain

m
d2x

dt 2
� 1

U 2

�
Fÿm

dx

dt

d

dt
lnU

�
:

This shows that the time dilation determined by the function
U leads to the appearance of an effective force. However, the
argument is here purely formal, because there is no physical
reason for changing the time flow rate in this case. But this
formal example suggests that any time dilation process in
nature necessarily produces effective field forces that must be
taken into account in the theory. The physical gravitational
field changes both the flow of time and spatial parameters
compared to their values in the inertial Minkowski frame in
the absence of gravity.

1 Matter is assumed to include all material fields except the gravitational

field.
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The field approach allows more deeply understanding
the nature of the gravitational field and leads to the
conclusion that the gravitational field can both slow down
the flow of inertial time and stop time dilation. This
underlies both the ability of the field to limit its own value
(self-limitation) and the impossibility of stopping the flow of
time by the gravitational field. Therefore, according to RTG,
the slowing down of the flow of inertial time and the stopping
of time dilation represent one common property of the
gravitational field. Only the first part of this property has
been manifest in GR.

This confirms the statement by A S Eddington: ``The star
has to go on radiating and radiating and contracting and
contracting until, I suppose, it gets down to a few km. radius,
when gravity becomes strong enough to hold in the radiation,
and the star can at last find peace.... I felt driven to the
conclusion that this was almost a reductio ad absurdum of the
relativistic degeneracy formula. Various accidents may
intervene to save the star, but I want more protection than
that. I think there should be a law of Nature to prevent a star
from behaving in this absurd way!'' 2

It turns out that in the field concepts of gravity, all the
above features are contained in the physical property of the
gravitational field to stop the process of time dilation and
hence to restrict its potential, which stops the process of
collapse.

In what follows, using the gravitational collapse and
evolution of a homogeneous isotropic Universe as examples,
we consider how the self-limitation of the gravitational field
potential emerges. This self-limitation stops both the slowing
down of the flow of time and the process of the collapse of
matter.

2. Equations for a spherically symmetric
static gravitational field

In the inertial frame (Minkowski space), the interval in
spherical coordinates is given by

ds2 � �dx 0�2 ÿ �dr�2 ÿ r 2�dy 2 � sin2 y df 2� ; �4�

where x 0 � ct. In the effective Riemannian space, the interval
for a spherically symmetric static field is written as

ds 2� U�r��dx 0�2 ÿ V�r� dr 2ÿW 2�r��dy 2� sin2 y df 2� :
�5�

RTG equations (1) and (2) can be expressed as

R m
n ÿ

1

2
dm
n R�

m 2

2

�
dm
n � g magan ÿ

1

2
dm
n g

abgab

�
� KTm

n ; �6�

Dm~g mn � 0 : �7�

In the expanded form, Eqn (7) is

qm~g mn � g nls~g ls � 0 ; �8�

where g nls are the Christoffel symbols for the Minkowski
space.

For a spherically symmetric static source, the components
of Tm

n are

T 0
0 � r�r� ; T 1

1 � T 2
2 � T 3

3 � ÿ
p�r�
c 2

; �9�

where r is the mass density and p is the isotropic pressure.
To determine metric coefficients U, V, andW, we can use

Eqns (6) with the indices m � 0, n � 0; m � 1, n � 1:

1

W 2
ÿ 1

VW 2

�
dW

dr

�2

ÿ 2

VW

d2W

dr 2
ÿ 1

W

dW

dr

d

dr

�
1

V

�
� 1

2
m 2

�
1� 1

2

�
1

U
ÿ 1

V

�
ÿ r 2

W 2

�
� Kr ; �10�

1

W 2
ÿ 1

VW 2

�
dW

dr

�2

ÿ 1

UVW

dW

dr

dU

dr

� 1

2
m 2

�
1ÿ 1

2

�
1

U
ÿ 1

V

�
ÿ r 2

W 2

�
� ÿK p

c 2
: �11�

Equation (8) becomes

d

dr

� �����
U

V

r
W 2

�
� 2r

��������
UV
p

: �12�

Taking the identity

dr

dW

1

W 2

d

dr

�
W

V

�
dW

dr

�2�
� 1

VW 2

�
dW

dr

�2

� 2

VW

d2W

dr 2
� 1

W

dW

dr

d

dr

�
1

V

�

into account and passing from derivatives with respect to r to
derivatives with respect toW, we rewrite Eqns (10) ± (12) as

1ÿ d

dW

�
W

V�dr=dW �2
�

� 1

2
m 2

�
W 2 ÿ r 2 �W 2

2

�
1

U
ÿ 1

V

��
� KW 2r ; �13�

1ÿ W

V�dr=dW �2
d

dW

ÿ
lnUW

�
� 1

2
m 2

�
W 2 ÿ r 2 ÿW 2

2

�
1

U
ÿ 1

V

��
� ÿKW 2 p

c 2
; �14�

d

dW

� �����
U

V

r
W 2

�
� 2r

��������
UV
p dr

dW
: �15�

In the Solar system, the effect of a nonzero graviton rest
mass mg can be neglected with a high precision, and the
system of equations (13) ± (15) outside the source in the
inertial frame takes the form

1ÿ d

dW

�
W

V�dr=dW�2
�
� 0 ;

1ÿ W

V�dr=dW�2
d

dW

ÿ
lnUW

� � 0 ;

d

dW

� �����
U

V

r
W 2

�
� 2r

��������
UV
p dr

dW
:

2 The Observatory 58 (729) 38 (1935).
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The first two equations are identical to GR equations, but are
written in harmonic coordinates. The last equation follows
from Eqn (2), which in the inertial frame exactly coincides
with the harmonic coordinate condition. Such a system ofGR
equations was considered by V A Fock. It is easy to see that
for a source with mass M, this system of equations has the
solution

ds 2 � rÿ rg=2

r� rg=2
c 2 dt 2 ÿ r� rg=2

rÿ rg=2
dr 2

ÿ
�
r� rg

2

�2

�dy 2 � sin2 y df 2� ;

where rg � 2GM=c2 is the Schwarzschild radius.
For the light ray deflection by the Sun and for the

Mercury perihelion advance, we then obtain exactly the
same expressions as in GR in harmonic coordinates.

In what follows, we investigate the system of equations
(13) ± (15) for different state equations of matter. Using these
equations, we show in Sections 3 ± 5 that the gravitational
field has the property of self-limitation that sets a limit for the
time dilation by gravitational field.

3. External solution
for a spherically symmetric static body

We show that a nonzero graviton rest mass quantitatively
changes the character of the solution in the region close to the
Schwarzschild sphere.

Subtracting Eqn (14) from Eqn (13) and introducing the
new variable

Z � UW 2

V _r 2
; _r � dr

dt
; t �WÿW0

W0
; �16�

we obtain

dZ

dW
ÿ 2Z

U

dU

dW
ÿ 2

Z

W
ÿm 2W 3

2W 2
0

�
1ÿU

V

�
� ÿK W 3

W 2
0

�
r� p

c 2

�
U : �17�

Adding Eqns (13) and (14), we find

1ÿ 1

2

W 2
0

W

1

U

dZ

dW
�m 2

2
�W 2 ÿ r 2� � 1

2
KW 2

�
rÿ p

c 2

�
: �18�

We consider Eqns (17) and (18) outside matter in the region
determined by the inequalities

U

V
5 1 ;

1

2
m 2�W 2 ÿ r 2�5 1 : �19�

In this region, Eqn (18) is rewritten as

U � 1

2

W 2
0

W

dZ

dW
� 1

2

W0

W

dZ

dt
: �20�

Taking Eqn (20) into account, we transform Eqn (17) into the
form

Z
d2Z

dW 2
ÿ 1

2

�
dZ

dW

�2

� 1

4
m 2 W 3

W 2
0

dZ

dW
� 0 : �21�

We introduce the variable t in accordance with (16). Then
Eqn (21) becomes

Z �Zÿ 1

2
_Z 2 � a�1� t�3 _Z � 0 ; �22�

where a � m 2W 2
0 =4 and

_Z � dZ=dt. For values of t from the
interval

04 t5
1

3
; �23�

Eqn (22) is simplified:

Z �Zÿ 1

2
_Z 2 � a _Z � 0 : �24�

It has the solution

l
����
Z
p
� 2a ln

�
1� l

����
Z
p

2a

�
� l2

2
t ; �25�

where l is an arbitrary constant.
Based on (20) and (16), we have

U � 1

2

W0

W
_Z ; V _r 2 � 1

2
W0W

_Z

Z
: �26�

Using (25), we find

_Z � 2a� l
����
Z
p

: �27�

Substituting (27) in (26), we obtain

U �W0

W

�
a� l

2

����
Z
p �

; V _r 2 �W0W
a� l

����
Z
p

=2

Z
: �28�

For a � 0, it follows from (25) that����
Z
p
� l

2
t : �29�

Substituting this formula in (28), we obtain

U �
�
l
2

�2
WÿW0

W
: �30�

But this expression must exactly coincide with the Schwarz-
schild solution

U �WÿWg

W
; Wg � 2GM

c 2
: �31�

Comparing (30) and (31), we obtain3

l � 2 ; W0 �Wg : �32�

We thus find

U �Wg

W
�a�

����
Z
p
� ; V _r 2 �WgW

a� ����
Z
p

Z
: �33�

Next, we must determine the dependence of r on W with the
help of (15).

3 Strictly speaking, the constant l depends on the parameter a. But due to
the smallness of a this dependence is insignificant.
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After substituting (33) in Eqn (15) and changing the
variables as

l � r

Wg
; �34�

we obtain

d

d
����
Z
p

�
�1� t� dZ

dt

dl

d
����
Z
p
�
� 4l : �35�

Taking (27) into account and differentiating with respect to����
Z
p

in (35), we have

�1� t��a�
����
Z
p
� d2l

�d ����
Z
p �2 � �1� t�

����
Z
p
� dl

d
����
Z
p ÿ 2l � 0 :

�36�

Because we are interested in values of t from interval (23),
Eqn (36) is simplified in this region to

�a�
����
Z
p
� d2l

�d ����
Z
p �2 � �1�

����
Z
p
� dl

d
����
Z
p ÿ 2l � 0 : �37�

The general solution of Eqn (37) can be written as

l � Al1 � Bl2 ; �38�

where

l1 � F
ÿÿ2; 1ÿ a; ÿ�a�

����
Z
p
�� ;

l2 � �a�
����
Z
p
�aFÿÿ2� a; 1� a; ÿ�a�

����
Z
p
�� ;

A and B are arbitrary constants, and F is the degenerate
hypergeometric function.

The analysis of solution (38) in the region defined by
inequalities (19) and (23) yields the equality

_r �Wg : �39�

We consider the limit case where����
Z
p

4 a : �40�

With (32), it then follows from Eqn (25) that����
Z
p
� t : �41�

Substituting this expression in (28) and using (32) and (39), we
obtain the Schwarzschild solution

U �WÿWg

W
; V � W

WÿWg
: �42�

This implies that because the effect of the graviton rest
mass can be neglected in the Solar system, using the equation
for geodesic motion of a test body allows easily explaining all
observational effects in the Solar system (the light ray
deflection by the Sun, the Mercury perihelion advance, etc.).

We now consider another limit case, where the nonzero
graviton rest mass is significant. We now let the inequality����

Z
p

5 a �43�

hold. In this approximation, with (32) taken into account, it
follows from Eqn (25) that

Z � 2at : �44�

Substituting this expression in (28) and using (32) and (39), we
obtain [7]

U � a
Wg

W
; V � 1

2

W

WÿWg
: �45�

From Eqns (43) and (45), this solution is valid in the region

t5
a
2
; i:e:; WÿWg 5

1

2
Wg

�
mgc

�h

Wg

2

�2

:

It follows from (45) that the graviton mass mg does not allow
the vanishing ofU.For any body a nonzero gravitonmass sets a
limit on time dilation, which is determined by a linear function
of the Schwarzschild radius, i.e., of the mass of the body, and
is equal to

1

2

mgc

�h
Wg :

There is no such limit in GR. This feature of the gravitational
field drastically changes the motion of any body in the
gravitational field.

The motion of a test body occurs along a geodesic in the
Riemannian space

dv m

ds
� Gm

ab
dx a

ds

dx b

ds
� 0 ; �46�

where vm � dxm=ds is the four-velocity; it satisfies the
condition

gmnv
mv n � 1 : �47�

We first consider the radial motion

v y � vf � 0 ; v r � dr

ds
: �48�

If we recall the Christoffel symbol

G 0
01 �

1

2U

dU

dr
; �49�

from Eqn (46), we find

dv 0

ds
� 1

U

dU

dr
v 0v r � 0 : �50�

Solving Eqn (50), we obtain

d

dr
ln �v 0U� � 0 : �51�

From here, we find

v0 � dx 0

ds
� U0

U
; �52�

where U0 is the integration constant. Setting the velocity of a
test body equal to zero at infinity, we obtain U0 � 1. From
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formula (47) we derive

dr

ds
� ÿ

�������������
1ÿU

UV

r
: �53�

If we substitute (45) in this equation and take (39) into
account, we obtain

dW

ds
� ÿ �h

mgc

2

Wg

����������������������������������
2

W

Wg

�
1ÿWg

W

�s
: �54�

This shows that a turning point appears. Differentiating (54)
with respect to s, we find

d2W

ds 2
� 4

�
�h

mgc

�2
1

W 3
g

: �55�

It follows that the acceleration is positive at the turning point,
i.e., repulsion with an appreciable magnitude occurs. Inte-
grating (54), we obtain the expression

W �Wg � 2

�
�h

mgc

�2 �sÿ s0�2
W 3

g

;

which shows that the test body cannot cross the Schwarzschild
sphere.

In accordance with (45), the scalar quantity g=g, where
g � det gmn and g � det gmn, develops a singularity at the point
W �Wg, which cannot be eliminated by the choice of the
coordinate frame. That is why the presence of such a
singularity in the vacuum is unacceptable, because otherwise
the outer solution cannot be matched with the solution inside
the body. It follows that the radius of the body is greater than
the Schwarzschild radius. Thus, a self-limitation of the field
value emerges in RTG and the reason for the `Schwarzschild
singularity' disappears. This is fully consistent with Einstein's
opinion, which he expressed as early as 1939 in paper [8]: ``The
essential result of this investigation is a clear understanding of
why the `Schwarzschild singularities' do not exist in physical
reality'' (highlighted by the authors). And further: ``The
'Schwarzschild singularity' does not appear for the reason
that matter cannot be concentrated arbitrarily. And this is
because otherwise the constituting particles would reach the
velocity of light'' (highlighted by the authors).

As an example, we consider the gravitational field in the
contracting (synchronous) reference frame. The transition to
that frame from the inertial frame is achieved by the
transformations

dt � 1

U

�
dtÿ dR�1ÿU�� ; dW �

�������������
1ÿU

UV

r
�dRÿ dt� :

In the synchronous frame, the intervals of the Riemannian
and pseudo-Euclidean space ± time have the form

ds 2 � dt 2 ÿ �1ÿU�X��dR 2 ÿW 2�X��dy 2 � sin2 y df 2� ;

ds 2 � dt 2
1ÿ _r 2U 2

U 2
� 2 dR dt

_r 2U 2 ÿ �1ÿU�
U 2

ÿ dR 2 _r 2U 2 ÿ �1ÿU�2
U 2

ÿ r 2�dy 2 � sin2 y df 2� ;

where X � Rÿ t and _r � dr=dX.

The RTG equations

Rmn � 8pG
�
Tmn ÿ 1

2
gmnT

�
�m 2

2
�gmn ÿ gmn� ; �56a�

Dn~g
mn � 0

for the problem determined by intervals ds 2 and ds 2 lead
outside the matter to the equations

R01 � 2 �W

W
� 1

�1ÿU�W
_U _W � m 2

2

�
1ÿU

U 2
ÿ _r 2

�
; �56b�

R00 � R01 � 1

1ÿU

�
1

2
�U�

_U 2

4�1ÿU� �
1

W
_U _W

�

� ÿm 2

2

1ÿU

U
: �56c�

In the range of the variableX, where the graviton mass can be
neglected due to its smallness, it follows from these equations
that

W �W 1=3
g

�
3

2
X

�2=3

; 1ÿU �
�
2

3
Wg

�2=3

Xÿ2=3 : �56d�

Equation (56d) for the function U implies that its value
decreases as X decreases and its derivative _U is positive. This
decrease of U continues at smaller values of X, because the
value of _U remains positive.

In approximation (19), it follows from Eqn (56a) outside
the matter that

R22 � ÿ UW

1ÿU
�Wÿ U

1ÿU
_W 2 ÿW�2ÿU�

2�1ÿU�2
_U _W� 1 � 0 :

For small values 0 < U5 1, this equation somewhat simpli-
fies and takes the form

UW �W�U _W 2 �W _U _Wÿ 1 � 0 :

This equation has the solution

_W � X

UW
:

At the stopping point

_W � 0

in accordance with Eqns (56b) and (56c), the second
derivative �W is positive for small U, which indicates the
presence of a repulsion force. It is from this point that the
process of expansion starts; it stops in the region X where
inequalities (56d) hold. In that region, �W is negative:

�W � ÿ 1

2
W 1=3

g

�
3

2
X

�ÿ4=3
;

and therefore the case of attraction occurs. Therefore, if the
stopping point were outside the matter, the expansion would
be followed by contraction, followed by stopping and
subsequent contraction, etc. But the real gravitational field
excludes this regime of motion. In GR, the formula

W �
�
3

2
�Rÿ ct�

�2=3
W 1=3

g
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pertains to this problem, but in our case we obtain the
expression

W �Wg � 2

�
�h

mgc

�2 �Rÿ ct�2
W 3

g

;

which excludes motion toward the pointW � 0. This implies
that a repulsion force emerges:

d2W

dt 2
� 4c 2

W 3
g

�
�h

mgc

�2

:

Because the gravitational field is created by matter and
self-limits its potential, the above example implies that
obtaining the physical solution requires matching the solu-
tion inside matter with the outside solution, but for this the
absolute value of the potential at the body surface must be
limited by the inequality

jfj
c 2

< 1 :

It is this solution, which corresponds to the real gravita-
tional field, that leads to the stopping point not being allowed
in the vacuum. Therefore, world lines of particles at rest
relative to the contracting frame collide with matter of the
field source. These collisions occur within a finite time for any
observer. This excludes the regime of motion mentioned
above. At the same time, this also prohibits the formation of
`black holes.'

We now turn to the analysis of the inner solution.

4. Inner Schwarzschild-like solution

In paper [9], Schwarzschild found a spherically symmetric
stationary inner solution of the GR equations. For a
homogeneous solid ball of radius a, it is described by the
interval

ds 2 � c 2
�
3

2

����������������
1ÿ qa 2

p
ÿ 1

2

������������������
1ÿ qW 2

p �2

dt 2

ÿ �1ÿ qW 2�ÿ1 dW 2 �W 2�dy 2 � sin2 y df 2� ; �57�

where

q � 1

3
Kr � 2GM

c 2a 3
; K � 8pG

c 2
; r � 3M

4pa 3
:

The common property of the inner and outer solutions in
GR is manifested in vanishing metric coefficients at the
differential dt 2 for a certain value of W, which means that
the gravitational field is able not only to slow down the flow
of time but also to stop it. In the outer solution, the metric
coefficient U vanishes when W �Wg. To eliminate such a
possibility, which is not forbidden by the theory, one usually
has to assume that the radius of a body satisfies the inequality

a >Wg : �58�

For the inner solution, this occurs when

W 2 � 9a 2 ÿ 8
a 3

Wg
: �59�

To exclude the possibility of the vanishing of the metric
coefficient U inside the body, it is necessary to assume that

a >
9

8
Wg : �60�

We emphasize that inequalities (58) and (60) are not con-
sequences of GR.

The inner Schwarzschild solution bears a somewhat
formal character, but it is interesting mainly because it
represents an exact solution of the GR equations. In
Section 3, using the outer Schwarzschild solution as an
example, we showed that in the relativistic theory of gravity
as a field theory, inequality (58) emerges exactly due to time
dilation. Below, we consider the inner Schwarzschild-like
solution in the framework of RTG.

The inner Schwarzschild solution appeared based on the
Hilbert ± Einstein equations

1ÿ d

dW

�
W

V

�
� KW 2r ;

�61�
1ÿ 1

V
ÿ W

UV

dU

dW
� ÿK W 2

c 2
p :

Because the metric coefficients coincide in accordance with
(57), it follows that

U �
�
3

2

����������������
1ÿ qa 2

p
ÿ 1

2

������������������
1ÿ qW 2

p �2

; V � �1ÿ qW 2�ÿ1:
�62�

We then find

U 0

U
� qW

� ������������������
1ÿ qW 2

p �
3

2

����������������
1ÿ qa 2

p
ÿ 1

2

������������������
1ÿ qW 2

p ��ÿ1
;

U 0 � dU

dW
:

�63�

Substituting (62) and (63) in Eqn (61), we obtain the
expression for pressure:

p

c 2
� r

2

������������������
1ÿ qW 2

p
ÿ

����������������
1ÿ qa 2

p����
U
p : �64�

This shows, in particular, that if equality (59) had been
allowed, the pressure inside the body at the circle determined
by this equality would have become infinite. The singularity
that emerges due to the metric coefficientU vanishing cannot
be eliminated by choosing a reference frame because the
scalar curvature R also has this singularity:

R � ÿ8pG 3
����������������
1ÿ qa 2

p
ÿ 2

������������������
1ÿ qW 2

p����
U
p : �65�

We now show in the example of the inner Schwarzschild-
like solution that the situation is radically different in RTG
because the time dilation process stops. The same mechanism
of the field self-limitation that in RTG led to inequality (58)
for the outer Schwarzschild solution leads to an inequality of
type (60) for the inner Schwarzschild solution.

We obtain equations for this problem from Eqns (13) and
(14). Introducing the new variable

Z � UW 2

V r 0 2
; r 0 � dr

dW
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and adding Eqns (13) and (14) yields

1ÿ 1

2UW
Z 0 �m 2

2
�W 2 ÿ r 2� � 1

2
KW 2

�
rÿ p

c 2

�
: �66�

Subtracting Eqn (14) from Eqn (13) yields

Z 0 ÿ 2Z
U 0

U
ÿ 2

Z

W
ÿm 2

2
W 3

�
1ÿU

V

�
� ÿKW 3

�
r� p

c 2

�
U :

�67�

In our problem, the components of the matter energy ±
momentum tensor are

T 0
0 � r ; T 1

1 � T 2
2 � T 3

3 � ÿ
p�W�
c 2

:

The matter equation

Hn� �������ÿgp
T n
m� � qn� �������ÿgp

T n
m� �

1

2

�������ÿgp
Tsn qmg sn � 0

for this problem reduces to the equation

1

c 2
dp

dW
� ÿ

�
r� p

c 2

�
1

2U

dU

dW
: �68�

Because the pressure increases toward the center of the ball,
the inequality

dU

dW
> 0 �69�

holds, implying that the functionU decreases in approaching
the center of the ball, and therefore time is slowing down with
respect to the inertial time. Because the density r is assumed
to be constant in the inner Schwarzschild problem, Eqn (68) is
easy to solve:

r� p

c 2
� a����

U
p : �70�

Comparing (64) and (70), we find the constant a:

a � r
����������������
1ÿ qa 2

p
: �71�

Equations (66) and (67), under the assumption that

m 2�W 2 ÿ r 2�5 1 ;
U

V
5 1 ;

and after introducing the independent variable y �W 2, take
the form

Z 0 � U�1ÿ 3qy� � aK
2

y
����
U
p

; �72�
����
U
p

Z 0 ÿ 1

y
Z
����
U
p
ÿ 4Z�

����
U
p
�0 � aK

2
yUÿm 2

4
y
����
U
p
� 0 :

�73�

Here and below, we use the notation Z 0 � dZ=dy.
In the analysis of the outer spherically symmetric

Schwarzschild solution in Section 3, we have seen that due
to the effective gravitational repulsion force, the metric
coefficient U, which determines the time dilation with respect
to the inertial time, does not vanish even in a strong
gravitational field.

That is why we study the behavior of the solution of these
equations for small y in what follows. From formula (62), for

the zero graviton rest mass, we find����
U
p
' 1

2

ÿ
3
����������������
1ÿ qa 2

p
ÿ 1
�� qy

4
� 1

16
q 2y 2 �74�

for small y. This expression also shows that the function
����
U
p

can vanish for the inner Schwarzschild solution if

3
����������������
1ÿ qa 2

p
� 1 ; �75�

which leads to an infinite value of both the pressure p and the
scalar curvature R at the center. Because Eqns (72) and (73)
stop time dilation if the graviton rest mass is nonzero, it is
natural to expect that equality (75) cannot hold in the physical
(real) region for the function

����
U
p

. Based on (74), we seek the
solution of Eqns (72) and (73) for the function

����
U
p

in the form����
U
p
� b� qy

4
� 1

16
q 2y 2 ; �76�

where b is an unknown constant to be determined using
Eqns (72) and (73).

Substituting expression (76) in Eqn (72) and integrating,
we find

Z � b 2y� y 2

2

�
bq
2
ÿ 3b 2q� aKb

2

�

� y 3

3

�
q 2

8

�
b� 1

2

�
ÿ 3b

2
q 2 � aKq

8

�
: �77�

Taking formulas (76) and (77) into account in Eqn (73) and
ignoring small terms of the order of �my�2, we obtain the
equation

2b 2q� b�qÿ aK� �m 2

3
� 0 : �78�

for the unknown constant b. We remark that the term
containing y 2 is given by

ÿ qy 2

48

n
7
�
2b 2q� b�qÿ aK��� 3m 2

o
:

With Eqn (78), it can be rewritten as

ÿ q

72
m 2y 2 :

By definition, we have

aKÿ q � Kr
3

ÿ
3
����������������
1ÿ qa 2

p
ÿ 1
�
;

and therefore Eqn (78) yields

b � 3
����������������
1ÿ qa 2

p
ÿ 1� ��3 ����������������

1ÿ qa 2
p

ÿ 1�2 ÿ 8m 2=Kr
�1=2

4
:

�79�

Hence, the metric coefficient U that determines the time
dilation with respect to the inertial time is nonzero.

If the graviton rest mass is set to zero, expression (79), as
expected, exactly coincides with the constant term in expres-
sion (74). From formula (79), we can find the minimum value

1186 S S Gershtein, A A Logunov, M AMestvirishvili Physics ±Uspekhi 49 (11)



of b:

bmin �
�
m 2

2Kr

�1=2

: �80�

The value of b in the function
����
U
p

sets the bound for the
process of time dilation by a gravitational field. This means
that a further slowing down of the flow of time by the
gravitational field is impossible. This is why the scalar
curvature determined by expression (65) is finite everywhere,
in contrast to GR. Thus, the gravitational field itself stops
time dilation because of a nonzero graviton rest mass.

According to (79), equality (75), due to the smallness of
the graviton rest mass, cannot hold because of the inequality

3
����������������
1ÿ qa 2

p
ÿ 15 2

���
2
p �

m 2

Kr

�1=2

: �81�

With the equality

qa 2 �Wg

a

which holds by definition, we use inequality (81) with
Kr4m 2 to find

a5
9

8
Wg

�
1�

�
m 2

2Kr

�1=2 �
: �82�

This is the limitation on the radius of the body that occurs in
inspecting the inner solution. This constraint ismore stringent
than the bound (58) obtained in Section 3 in analyzing the
outer solution. Inequality (82), as we see, directly follows
from the theory, while in order to avoid infinite pressure
inside a body in GR, inequality (60) must be additionally
imposed. Using (70) and (71), we find the pressure as

p

c 2
� ÿr

����
U
p � r

����������������
1ÿ qa 2

p����
U
p :

Taking formula (80) into account gives the maximum
pressure at the center of a ball:

p

c 2
' r

�
2Kr
m 2
�1ÿ qa 2�

�1=2
:

The pressure at the center is finite, while in GR it is infinite
according to (57).

The self-limitation of the gravitational field that appears
in the relativistic theory of gravity makes it principally
different from Einstein's GR and Newton's theory of
gravity, which involve only attraction forces. In the field
theory of gravity, the nonzero graviton mass and the
property of stopping the time dilation result in the possibility
that the gravitational force not only can be an attraction force
but also, under certain conditions (in strong fields), can
manifest itself as an effective braking force. It is this force
that stops the time dilation by the gravitational field. Thus the
gravitational field cannot stop the flow of time in a physical
process in principle because it is endowed with the funda-
mental property of self-limitation.

In Sections 3 and 4, we have seen that the metric
coefficient U that determines the time dilation by the
gravitational field can vanish in GR. This feature was
noticed by R Feynman, who wrote [10]: ``...if our formula

for time dilation were correct, physical processes should stop
at the center of the universe, since the time would not run at
all. This is not the only physically unacceptable prediction;
since wemight expect thatmatter near the edge of the universe
should be interacting faster, light from distant galaxies should
be violet-shifted. Instead, it is well known to be shifted toward
lower, redder frequencies. Thus, our formula for the time
dilation obviously needs to be discussed further in connection
with possiblemodels of the universe. The following discussion
is purely qualitative and is meant only to stimulate wiser
thoughts on this subject.''

The self-restriction of the potential, as we have seen, is an
important property of the gravitational field. It is this
property that sets a limit to time dilation. Such a limit must
necessarily exist, otherwise physically unacceptable conse-
quences follow. Therefore, any metric field theory of the
gravitational field must accept this general statement as a
physical principle.

5. Is the Minkowski space observable?

We now consider the question: is the Minkowski space
observable in principle? For this, we write Eqns (1) as

m 2

2
gmn � 8pG

�
Tmn ÿ 1

2
gmnT

�
ÿ Rmn �m 2

2
gmn :

This shows that the right-hand side of these equations
contains only geometrical characteristics of the effective
Riemannian space and quantities determining the distribu-
tion of matter in this space.

We now use the Weyl ± Lorentz ± Petrov theorem [1],
which states: ``Knowing ... equations of all time-like and all
isotropic geodesic lines allows the metric tensor to be
determined up to a constant factor.'' This implies that by
experimentally studying the motion of particles and light in
the Riemannian space, one can in principle determine the
metric tensor gmn of the effective Riemannian space. Then by
substituting gmn in the above equation, one can determine the
metric tensor of the Minkowski space. After that, using
coordinate transformations, one can make a transition to an
inertial Galillean reference frame. Therefore, the Minkowski
space is principally observable.

Here, the words of V A Fock are relevant [12]: ``How one
should determine the straight line: as the light ray or the
straight line in that Euclidean space where harmonic
coordinates x1; x2; x3 serve as the cartesian ones? We believe
the second definition is only correct. In fact, we have used it
when said that the light near the Sun propagates along a
hyperbola, Ð and further on this: Ð considerations that the
straight line, as the light ray, is more directly observable, have
no significance: in definitions, the crucial is not the direct
observability but the correspondence to nature, even if this
correspondence is inferred from indirect considerations.''

The inertial reference frame, as we have seen, is related to
the distribution of matter in the Universe. Hence, RTG gives
us the possibility in principle to determine the inertial frame.

6. Evolution of a homogeneous isotropic universe

6.1 Equations of the scale factor evolution
In a homogeneous and isotropic universe, the interval in the
effective Riemannian space can be written in the form of the
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Friedmann ±Robertson ±Walker metric:

ds 2 � c 2U�t� dt 2 ÿ V�t�
�

dr 2

1ÿ kr 2
� r 2�dy 2 � sin2 y df 2�

�
;

�83�

and the Minkowski space interval is

ds 2 � c 2 dt 2 ÿ dr 2 ÿ r 2�dy 2 � sin2 y df 2� : �84�

We write Eqns (1) and (2) of RTG in the form

m 2

2
gmn � 8pG

�
Tmn ÿ 1

2
gmnT

�
ÿ Rmn �m 2

2
gmn ; �85�

qm~g mn � g nls~g ls � 0 : �86�

Taking into account that

g 122 � ÿr ; g 133 � ÿr sin2 y ; g 212 � g 313 � rÿ1 ;

g 233 � ÿ sin y cos y ; g 323 � cot y ;

~g 00 � V 3=2Uÿ1=2�1ÿ kr 2�ÿ1=2r 2 sin y ; �87�
~g 11 � ÿV 1=2U 1=2�1ÿ kr 2�1=2r 2 sin y ;
~g 22 � ÿV 1=2U 1=2�1ÿ kr 2�ÿ1=2 sin y ;
~g 33 � ÿV 1=2U 1=2�1ÿ kr 2�ÿ1=2�sin y�ÿ1 ;

we can rewrite Eqns (86) with n � 0 and n � 1 as

d

dt

�
V

U 1=3

�
� 0 ; �88�

ÿ d

dr

��1ÿ kr 2�1=2r 2�� 2�1ÿ kr 2�ÿ1=2r � 0 : �89�

For the components n � 2 and n � 3, Eqns (86) are satisfied
identically. From Eqns (88) and (89), it follows that

V

U 1=3
� const � b 4 6� 0 ; k � 0 : �90�

Thus, because the set ofRTG equations is complete, it leads to
a unique solution: the flat (Euclidean) geometry of theUniverse,
in contrast to GR.

Setting

a 2 � U 1=3 ; �91�

we obtain

ds 2 � b 6

�
c 2 dt 2g ÿ

�
a

b

�2

�dr 2 � r 2 dy 2 � r 2 sin2 y df 2�
�
:

�92�
Here, the quantity

dtg �
�
a

b

�3

dt �93�

characterizes time dilation in the gravitational field relative to
the inertial time t. The overall numerical constant b 6 in the
interval ds 2 equally increases both the time and the space
variables. It reflects the global dynamics of the Universe, as
an integral of motion. Time in the Universe is determined by

dt, which is the time-like part of the interval ds 2:

dt � b 3 dtg � a 3 dt ; �94�
ds 2 � c 2 dt 2 ÿ b 4a 2�t��dr 2 � r 2 dy 2 � r 2 sin2 y df 2� : �95�
The matter energy ±momentum tensor in the effective

Riemannian space has the form

Tmn � �r� p�UmUn ÿ gmnp ; �96�

where r and p are the density and pressure ofmatter in its rest-
mass frame and Um is its velocity. Because g0i and R0i vanish
for interval (95), Eqn (85) implies that

T0i � 0 and Ui � 0 : �97�

This means that in the inertial frame determined by interval
(84), matter is at rest during the evolution of the Universe.
Matter being at rest in the homogeneous isotropic Universe
(ignoring peculiar velocities of galaxies) in some sense
corresponds to the early (pre-Friedmann) concepts of Ein-
stein about the Universe.

The so-called `expansion of the Universe,' as inferred
from observations of red shifts, is due not to the motion of
matter but to the change in gravitational field with time. This
should be borne in mind when using the commonly accepted
term `the expansion of the Universe.'

When describing interval (95) in terms of the proper time
t, the interval of the original Minkowski space (84) takes the
form

ds 2 � c 2

a 6
dt 2 ÿ dr 2 ÿ r 2�dy 2 � sin2 y df 2� : �98�

Using (95) and (98) and taking into account that

R00 � ÿ3 �a

a
; R11 � b 4�a�a� 2 _a 2� ; �99�

T00 ÿ 1

2
g00T � 1

2
�r� 3p� ;

�100�
T11 ÿ 1

2
g11T � 1

2
b 4a 2�rÿ p� ;

we derive equations for the scale factor from Eqn (85) as

1

a

d2a

dt 2
� ÿ 4pG

3

�
r� 3p

c 2

�
ÿ 1

6
�mc�2

�
1ÿ 1

a 6

�
; �101��

1

a

da

dt

�2

� 8pG
3

r�t� ÿ 1

12
�mc�2

�
2ÿ 3

a 2b 4
� 1

a 6

�
: �102�

In a Universe without matter and gravitational waves,
Eqns (101) and (102) have the trivial solution a � b � 1, i.e.,
the empty Universe does not evolve and the effective
Riemannian space coincides with the Minkowski space. We
note that in our theory, the absolute value of the scale factor a
acquires a physical interpretation. For m � 0, Eqns (101) and
(102) coincide with the Friedmann equations for a flat
Universe. However, the terms with m 6� 0 significantly
change the evolution at small and large scale factors.

The appearance of additional terms with m 2 6� 0 in
Eqns (101) and (102) (in particular, terms � m 2=a 6) is due
to the difference in the inertial time t and the physical time t in
(94). Because gravity affects the flow of time, these terms turn
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out to be large enough to influence evolution in strong
gravitational fields (despite the smallness of the graviton
mass). Due to the change in the inertial time in the
gravitational field, forces emerge that manifest themselves as
repulsion forces when the Universe contracts or attraction
forces at final stages of the expansion of the Universe. The
proportionality of terms in the right-hand side of Eqns (101)
and (102) to the graviton mass squared is a manifestation of
the fact that only whenm 2 6� 0 does the effective Riemannian
space retain the relation to the underlying Minkowski space.

6.2 The absence of the cosmological singularity
From the covariant conservation law for the energy ±
momentum tensor density ~T mn � �������ÿgp

T mn,

Hm ~T mn � qm ~Tmn � Gn
ab

~T ab � 0

(where Hm is the covariant derivative and Gn
ab are the

Christoffel symbols in the Riemannian space), which follows
from Eqns (1) and (2) and expression (96), we can derive the
equation

ÿ 1

a

da

dt
� 1

3�r� p=c 2�
dr
dt

: �103�

With the equation of state p � f �r�, formula (103) determines
the dependence of the matter density on the scale factor. For
the equation of state in the form

p

c 2
� or ;

this dependence is

r � const

a 3�o�1� :

For cold matter, including dark matter and baryonic matter,
oCDM � ÿ1; for the radiation density, or � 1=3; and for the
quintessence,oq � ÿ1� n, n < 2=3. Thus, the total density of
matter in Eqns (101) and (102) is given by

r � ACDM

a 3
� Ar

a 4
� Aq

a 3n ; �104�

where ACDM, Ar, and Aq are constants. According to (104),
the radiation-dominated stage occurs in the Universe at small
scale factors �a5 1�:

r � rr �
Ar

a 4
:

Turning to Eqn (102), we note that for a5 1, the absolute
value of the negative term in the right-hand side increases as
1=a 6. Because the left-hand side is positive definite, a
minimum scale factor must exist:

amin � mc

�32pGAr�1=2
�
�

m 2c 2

32pGrmax

�1=6

: �105�

The presence of the minimum scale factor (105) implies that
the process of time dilation by the gravitational field during
the contraction of the Universe stops. Therefore, the gravita-
tional field cannot act so as to stop the flow of time.

Thus, the nonzero graviton mass and hence the appearance
of effective forces related to the change in the flow of time
eliminate the cosmological singularity and the expansion of the
Universe starts with the finite scale factor in (105). The
surprising feature of the gravitational field to create repul-

sion forces that stop the contraction of the Universe and
initiate its later accelerated expansion is fully manifested here.

We emphasize that the commonly used terms `gravita-
tional forces of attraction' and `gravitational forces of
repulsion' mean that the increase and decrease in density
and pressure of the Universe is caused not by pressure
gradients, which are absent here, but by the change in the
flow of time and the volume occupied by a given mass under
the action of the gravitational field changing in time.

Based on (101) and (105), we can determine the initial
acceleration that was the primordial `kick' initiating the
expansion of the Universe:

1

a

d2a

dt 2

����
t� 0

� 8pG
3

rmax :

Hence, according to RTG, at the radiation-dominated stage
during the period of accelerated expansion preceding the
Friedmann stage, the scalar curvature is nonzero and

R � ÿ 16pG
c 2

rmax

at t � 0, while it vanishes in GR. When the scale factor
increases to

a 2�t� � 3

2
a 2
min ;

the Hubble constant reaches a maximum,

Hmax � 3ÿ2�32pGrmax�1=2 ;

the scalar curvature is

R � ÿ
�
2

3

�3
16pGrmax

c 2
;

and the invariant is

RrlmnR
rlmn � 8� 3ÿ7

�
32pG
c 2

rmax

�2

:

Because the scalar curvature R and the invariant RrlmnR
rlmn

depend on rmax, multiple production of gravitons at the
radiation-dominated stage can be expected. A nonthermal
relativistic primordial gravitational wave background can
originate in this way.

6.3 The impossibility of an unlimited `expansion
of the Universe'
In considering the gravitational field fmn as a physical field in
the Minkowski space, the causality principle must be
imposed. This means that the light cone in the effective
Riemannian space must lie inside the light cone of the
Minkowski space, i.e., for ds 2 � 0, the condition ds 2 5 0
must be satisfied. Writing ds 2 in spherical coordinates as

ds 2 � c 2 dt 2 ÿ �dr 2 � r 2 dy 2 � r 2 sin2 y df 2� �106�

and deriving the spatial part of the interval from the condition
ds 2 � 0, we obtain

ds 2 � c 2 dt 2
�
1ÿ a 4

b 4

�
5 0 ;
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i.e.,

�a 4 ÿ b 4�4 0 : �107�

Thus, the scale factor a is limited by the condition a4b, and
it is therefore natural to accept its maximum value as

amax � b :

Choosing amax in such a way provides the flow of time dtg at
the stopping point of the expansion equal to that of the
inertial time t in the Minkowski space, although the second
derivative �a and, hence, the scalar curvature R are nonzero.
From this point, attraction forces make the Universe
contract and the time dilation dtg continues until the
contraction stops and the reverse process of the acceleration
of time dtg up to the flow of the inertial time t in the
Minkowski space begins. These physical consequences require
that the condition amax � b be satisfied. As we see in what
follows (see Section 6.7), the value of b is determined by an
integral of motion.

Condition (107) does not allow an unlimited increase in
the scale factor with time, i.e., prohibits the unbounded
`expansion' of the Universe (in the sense discussed above).
We note that the Universe itself is then infinite because the
radial coordinate is defined everywhere in the range
04 r41.

6.4 Evolution of the early Universe
At the radiation-dominated stage of the Universe �r � rr� for
a5 1, Eqns (101) and (102) take the form�

1

x
dx
dt

�2

� 1

t 2r

�
1ÿ 1

x 2

�
1

x 4
; �108�

1

x
d2x
dt 2
� 1

t 2r

�
2

x 2
ÿ 1

�
1

x 4
; �109�

where

x � a�t�
amin

; tr �
�

3

8pGrmax

�1=2

:

The solution of Eqn (108) is given by

t
tr
� 1

2

n
x�x 2 ÿ 1�1=2 � ln

�
x� �x 2 ÿ 1�1=2�o : �110�

For xÿ 15 1 �t5 tr�,

a ' amin

"
1� 1

2

�
t
tr

�2

ÿ 7

24

�
t
tr

�4
#
:

Adding Eqns (108) and (109) yields

�a

a
�
�

_a

a

�2

� �mc�2
12a 6

;

where _a � da=dt.
In GR, the left-hand side of this equation at the radiation-

dominated stage is exactly zero, and hence the Friedmann
stage with the scale factor a�t� changing as t 1=2 is realized. In
RTG, according to this equation, there is a `pre-Friedmann'
stage at the radiation-dominated epoch with the scalar

curvature

R � ÿ 1

2
�mc�2 1

a 6
:

The particle horizon is equal to

Rpart�t� � a�t�
� t

0

c dt 0

a�t 0� ' ct
�
1� 1

3

t 2

t 2r

�
:

Accelerated expansion occurs, according to (109), until
x � ���

2
p

(i.e., a � ���
2
p

amin) during the time

tin � tr
1

2

� ���
2
p
� ln �1�

���
2
p
�� ' 1:15tr :

The quantity _a=a reaches its maximum � _a=a�max � 2=3
���
3
p

tr
somewhat earlier: at a=amin �

��������
3=2

p
and at t � 0:762 tr.

Large acceleration when the scale factor grows from its
minimum value ��a=a�0 � 1=t 2r is established by the effective
forces that appear due to the difference in the flow of time t and t
(see Eqn (94)) caused by gravity. These forces are due to the
term m 2=a 6 in Eqns (101) and (102). At t > tin, the
deceleration follows the acceleration. When x4 1, the
expansion (110) reaches the Friedmann regime correspond-
ing to the radiation-dominated stage,

a�t� � amin x ' amin

�
2t
tr

�1=2

with the well-known dependence

r ' rr�t� �
3

32pGt 2
; t4 tr : �111�

For the primordial nucleosynthesis conditions to be
satisfied during the first seconds after the expansion starts, it
suffices to have tr 9 10ÿ2 s. The corresponding constraint for
rmax is fairly weak:

rmax > 2� 1010 g cmÿ3 :

The value of rmax at the electroweak energy scale kT ' 1 TeV,
with all the degrees of freedom of leptons, quarks, etc. taken
into account is

rmax ' 1031 g cmÿ3 ;

and at the Grand Unification scale kT ' 1015 GeV,

rmax ' 1079 g cmÿ3 :

Consequently, because the scale factor a cannot be zero
according to RTG, no Big Bang could have taken place in the
Universe in this theory. In the past, everywhere in the
Universe, matter was in the gravitational field and had a
high temperature and density, and then evolved as described
above.

6.5 The total relative density of matter
and the graviton mass
Let a0 be the present value of the scale factor and r 0

c be the
critical density determined by the present values of the
Hubble constant

H �
�
1

a

da

dt

�
0
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by the relation

H 2 � 8pG
3

r 0
c :

Introducing the variable

x � a

a0

and the density ratios

O 0
r �

r 0
r

r 0
c

; O 0
m �

r 0
m

r 0
c

; O 0
q �

r 0
q

r 0
c

;

and taking formula (104) into account, we can rewrite
Eqns (101) and (102) as�

1

x

dx

dt

�2

� H 2

�
O 0

r

x 4
� O 0

m

x 3
� O 0

q

x 3n ÿ
f 2

6

�
1ÿ 3

2b 4a 2
� 1

2a 6

��
;

�112�
1

x

d2x

dt 2
� ÿH 2

2

�
2O 0

r

x 4
� O 0

m

x 3
ÿ 2

�
1ÿ 3n

2

�
O 0

q

x 3n�

� f 2

3

�
1ÿ 1

a 6

��
; �113�

where

f � mc

H
� mgc

2

�hH
: �114�

For the present value of the quantities at a0 4 1, Eqn (112)
yields

1 � O 0
tot ÿ

f 2

6
;

i.e., the total relative density is

O 0
tot �

r 0
tot

r 0
c

� O 0
r � O 0

m � O 0
q � 1� f 2

6
: �115�

Thus, the Universe with the Euclidean space geometry
(according to RTG) must have O 0

tot > 1, while in theories
with primordial inflationary expansion leading to the flat
geometry of space, the condition O 0

tot � 1 must be satisfied
with high accuracy �� 10ÿ3 ± 10ÿ5�. Equation (115) allows the
graviton mass to be determined from the modern measure-
ments of O 0

tot and H.

6.6 The upper limit on the graviton mass
The determination of cosmological parameters from mea-
surements of the angular inhomogeneity of the cosmic
microwave background (CMB) systematically leads to the
mean value O 0

tot > 1. This follows from the first quantitative
experiments COBE [13], Maxima-1 [14], and Boomerang-98
[15], whose joint analysis [16] yields O 0

tot � 1:11� 0:07, and
from the superb data of the WMAP experiment [17 ± 19],
which alone (without invoking measurements of distant type-
Ia supernovae [20, 21] or processing galaxy catalogs like
2dFGRS [22] and SDSS [23]) suggest (depending on the
parameters assumed)

O 0
tot � 1:095�0:094ÿ0:144 and O 0

tot � 1:086�0:057ÿ0:128 :

Within measurement errors, these values, of course, do not
contradict the flat Universe O 0

tot � 1, as predicted by infla-

tionary cosmology; however, they can also indicate a nonzero
graviton mass in accordance with Eqns (114) and (115). In
any case, taking the value O 0

tot � 1:3, which is more than 2s
higher than the mean valueO 0

tot, we obtain a 95%-probability
upper limit on the mass of the graviton from (114) and (115).
The quantity f in (114) can be conveniently expressed as the
ratio of the graviton mass to the value

mH � �hH

c 2
� 3:80� 10ÿ66 h ;

which could be named the `Hubble mass.' For f 2=6 � 0:3,
the upper limit on the graviton mass is [24]

mg 4 1:34mH � 5:1� 10ÿ66 h ;

or with h � 0:70,

mg < 3:6� 10ÿ66 g : �116�

TheCompton length of a graviton turns out to be comparable
to the Hubble radius of the Universe c=H:

�h

mgc
4 0:75

c

H
:

Estimates of the upper limit on the graviton mass obtained in
earlier works were based on the gravitational potential of the
Yukawa form for massive gravitons. In papers [22, 26], from
the analysis of the dynamics of galaxy clusters and conserva-
tive estimates of distances (� 580 kpc) where the gravitational
connection between galaxies in clusters still exists, the upper
limit on the graviton mass was obtained as

mg < 2� 10ÿ62 g :

Our estimate (116) is more than 5000 times stronger than this
limit. This is due to our systematic treatment of the
gravitational field in the Minkowski space. Our considera-
tion includes both the equation showing that the potential of a
weak gravitational field has the Yukawa form and the general
equations (1) and (2), which are consistent with all gravita-
tional phenomena observed in the Solar system and applic-
able to the entire Universe at a scale of the order
c=H ' 1028 cm, i.e., 5000 times as high as the distance
between gravitationally bound galaxies in clusters.

6.7 The evolution integral of the Universe
and the present value of the scale factor
Using Eqn (103) to eliminate the pressure p from Eqn (101),
we obtain

1

a

d2a

dt 2
� 4pG

3

�
a
dr
da
� 2r

�
ÿ 1

6
�mc�2

�
1ÿ 1

a 6

�
;

and then rewrite this equation as

d2a

dt 2
� dV

da
� 0 ; �117�

where

V � ÿ 4pG
3

a 2r� �mc�2
12

�
a 2 � 1

2a 4

�
: �118�
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Multiplying both parts of Eqn (117) by da=dt, we obtain

d

dt

�
1

2

�
da

dt

�2

� V

�
� 0 ;

or

1

2

�
da

dt

�2

� V � E � const : �119�

Expression (119) resembles the energy of a unit mass. If the
quantity a had had the dimension of length, the first term in
(119) would have been the kinetic energy and the second term
the potential energy. The quantity

ÿ 4pG
3

a 2r

in (118) corresponds to the gravitational potential at the
boundary of a ball with the radius a filled with matter with
the constant density r, and additional terms in (118),
proportional to m 2, correspond to the effective forces
emerging due to the gravitational influence on the flow of
time, as we discussed above.

The quantity E is an integral of the evolution of the
Universe. It is extremely small but nonzero if m 6� 0.
Expressing �da=dt�2 from Eqn (102) and substituting it in
Eqn (119), we find

E � �mc�2
8b 4

: �120�

Therefore, the constant b [see (107)], which enters the
expression for interval (95) and according to (107) bounds
the growth of the scale factor a, can be expressed through the
integral of motion E.

In what follows, we need the present value of the scale
factor a0. It can be estimated from the following considera-
tions. Assuming the evolution of the Universe to begin at the
radiation-dominated epoch, we express a0=amin as

a0
amin
�
�
rmax

r 0
r

�1=4

;

where r 0
r is the present-day radiation energy density. In turn,

r 0
r can be expressed through the relative density O 0

r and the
critical density r 0

c :

r 0
r � O 0

r r
0
c � O 0

r

3H 2

8pG
:

Therefore,

a0
amin
�
�
8p
3

Grmax

H 2O 0
r

�1=4

� 1:34� 1010�Grmax�1=4 ;

where Grmax is expressed in sÿ2. (The numerical coefficient in
this expression was calculated using the standard values
H � h=3:0857� 1017c and O 0

r � O 0
g � 2:471� 10ÿ5=h 2.)

Then, using definition (114), we can express the value amin

from (105) as

amin �
�
f 2

6

�1=6�
3

16p
H 2

Grmax

�1=6

� 8:21� 10ÿ7
�
f 2

6

�1=6
1

�Grmax�1=6
;

where

f 2

6
� O 0

tot ÿ 1

in accordance with (115). On the electroweak scale,

amin ' 5� 10ÿ11 ;

and on the GUT scale,

amin ' 5� 10ÿ19 :

From the relation a0=amin for a0, we have
4

a0 �
�
f 2

6

�1=6�
2p
3

Grmax

H 2

�1=12
1

�O 0
r �1=4

' 1:1� 104
�
f 2

6

�1=6

�Grmax�1=12 : �121�

For rmax taken on the electroweak scale, we have

a0 ' 5� 105 ;

and on the GUT scale,

a0 ' 5:5� 109 :

In RTG, the absolute value of the scale factor acquires
meaning (see Section 6.1). For the mean value Otot � 1:02
(i.e., f 2=6 � 0:02) and rmax 0 1010 g cmÿ3, the value a0 4 1.
This justifies approximations made in deriving Eqn (115).

6.8 Incompatibility of RTG with the nonzero cosmological
term (KCDM-cosmology). The need for a quintessence
with m > 0
As noted above, in considering the gravitational field as a
physical field in the Minkowski space, the causality principle
must be satisfied. This requirement, when applied to the
evolution of the Universe, leads to inequality (107), accord-
ing to which the scale factor is bounded by the inequality
a4 amax � b. In other words, according to RTG, unlimited
expansion of the Universe is impossible. Mathematical
equations of RTG automatically ensure this condition when
the matter density decreases as the scale factor increases.
Indeed, the structure of the term proportional to m 2

g in
Eqn (102) is such that the positive definite left-hand side of
the equation implies that the third term in parentheses ensures
the absence of the cosmological singularity at a5 1 and the
first term restricts the minimum value of the matter density

4 For numerical estimates, the relative density of relativistic particlesO 0
r is

taken to be equal to the CMB energy density O 0
g , because neutrino

oscillations suggest that at least two types of neutrino are nonrelativistic

at present. When extrapolating to the early Universe, one should of course

take into account that the CMB temperature increases due to e�eÿ

annihilations. Before that, it was equal to the temperature of the neutrino

gas, which at that time consisted of relativistic neutrinos and contributed

to the total density of relativistic particles. Similarly, when extrapolating

to the early Universe, the density of the relativistic gas increases due to the

creation of other relativistic particles. But because the quantity O 0
r enters

(121) as �O 0
r �1=4, the numerical coefficient in (121) changes less than three

times (even if we assume the number of the degrees of freedom in the

relativistic gas to be as high as 100).
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frombelow (and hence, the scale factor fromabove) for a4 1.
The condition

8pG
3

rÿ �mc�2
6
� 0 ;

written as

H 2

r 0
c

rÿ �mc�2
6
� 0 ;

where H is the present value of the Hubble constant, leads to
the equality

rmin �
�mc�2
6H 2

r 0
c ;

or, in another form,

rmin

r 0
c

� f 2

6
� O 0

tot ÿ 1 : �122�

The field theory of gravity turns out to be inconsistent with the
existence of a constant cosmological term leading to unlimited
expansion of the Universe. Indeed, when a4 1, Eqn (112) and
the causality principle imply

O 0
L <

f 2

6
:

But this inequality is inconsistent with the condition

O 0
L >

f 2

6
;

which is required for accelerated expansion to be realized at
the present time in accordance with Eqn (113).

Thus, the only possibility in the framework of RTG to
explain the accelerated expansion of the Universe observed
presently is to assume the existence of a quintessence with n > 0
or another substance whose density decreases with the increase
in the scale factor (but slower than const=a 2).RTG excludes the
possible existence of both the cosmological constant term
�n � 0� and `phantom' expansion with �n < 0� [27].

6.9 The beginning and the end
of the present accelerated expansion
The strongest constraints on the value O 0

tot � 1:018�0:013ÿ0:022 are
inferred from the WMAP experiment [17 ± 19] using the
LCDM-model and the SDSS galaxy catalog in combination
with the SNIa data. These results allow O 0

tot � 1:03 within 1s
uncertainty. The difference of this value from unity, accord-
ing to RTG relations (114) and (115), determines the graviton
mass

mg � 0:424mH � 1:6� 10ÿ66 h :

For definiteness, we use this value of the graviton mass in the
estimates below. Because Or 5Om and a4 1 before the
beginning of the present accelerated expansion, it follows
that the beginning and the end of the accelerated expansion is
determined in accordance with (113) by roots x1 < x < x2 of
the equation F�x� � 0, where

F�x� � O 0
m

x 3
ÿ 2

�
1ÿ 3n

2

�
O 0

q

x 3n �
f 2

3
:

The accelerating stage is possible if n < 2=3. The value of the
first root x1 is related to the redshift Z1 corresponding to the
start of the acceleration stage:

1

x1
� a0

a1
� Z1 � 1 : �123�

The time since the beginning of expansion until the
present acceleration stage can be found from Eqn (112). If
we neglect the duration of the radiation-dominated stage and
the value of the scale factor at its end, we obtain

t1 � 1

H

� x1

0

dx

x
ÿ
F�x��1=2

� 1

H

�1
Z1�1

dy

y�O 0
my

3 � O 0
qy

3n ÿ f 2=6�1=2
;

where

F�x� � O 0
m

x 3
� O 0

q

x 3n ÿ
f 2

6

and we assumed O 0
m � 0:27, O 0

q � 0:73 following Refs [17 ±
19].

Accordingly, the time of the end of the accelerated
expansion and the transition to deceleration is

t2 � 1

H

� x2

0

dx

x
ÿ
F�x��1=2 ;

and the present age of the Universe is

t0 � 1

H

� 1

0

dx

x
ÿ
F�x��1=2 :

The physical distance traveled by light (the particle horizon)
up to the present time is determined by the relation

Dpart�t0� � c

H

� a0=amin

1

dy

�
O 0

r y
4 � O 0

my
3 � O 0

qy
3n

ÿ f 2

6

�
1� y 6

2a 6
0

��ÿ1=2
' 2�������

O 0
m

q c

H
:

This value determines the size of the presently observable
Universe. Qualitatively (using arbitrary scales), the time
dependence of the scale factor and its derivatives _a and �a are
shown in Fig. 1.

6.10 The maximum value of the scale factor
and the evolution integral of the Universe
The time corresponding to the end of the accelerated
expansion and the transition to deceleration stopping the
expansion strongly depends on the parameter n (see Table 1).

Table 1. The time of the beginning of accelerated expansion of the
Universe t1, the time of its end t2, and the duration of the maximum
expansion (the oscillation half-period) tmax, in billions of years.

n t1 t2 tmax

0.05
0.10
0.15
0.20
0.25
0.30

7.0 ë 8.2
7.0 ë 8.2
7.1 ë 8.3
7.1 ë 8.3
7.2 ë 8.5
7.5 ë 8.7

980 ë 1080
440 ë 485
275 ë 295
190 ë 205
142 ë 149
109 ë 113

1220 ë 1360
620 ë 685
430 ë 460
325 ë 347
263 ë 280
227 ë 235
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The scale factor corresponding to the end of expansion is
determined by the root of Eqn (112) and for small n is, to high
accuracy,

xmax '
�
6O 0

q

f 2

�1=3n

�
�

O 0
q

O 0
tot ÿ 1

�1=3n

: �124�

After substituting a0 from Eqn (121) in (124), we find

a 4
max �

1

O 0
r

�
f 2

6

�2=3�
2p
3

Grmax

H 2

�1=3� O 0
q

O 0
tot ÿ 1

�4=3n

:

Taking this equality into account and considering the integral
of motion

E � �mc�2
8a 4

max

;

we obtain

E � �mc�2
8

O 0
r

�
6

f 2

�2=3�
3

2p
H 2

Grmax

�1=3�O 0
tot ÿ 1

O 0
q

�4=3n

:

This shows that the integral of motion for the evolution of the
Universe is extremely small. Using the expression for xmax, it
is easy to determine the relative attraction acceleration at the
end of expansion

�a

a
� ÿ n

4

�
mgc

2

�h

�2

;

and hence the scalar curvature

R � 3n
2c 2

�
mgc

2

�h

�2

:

It is essential that the relative minimum value of the
density rmin=r

0
c corresponding to the expansion maximum

depend only on the difference O 0
tot ÿ 1, i.e., on the graviton

mass [see (115) and (116)]. ForO 0
tot � 1:02, the value of rmin is

quite large and even strongly exceeds the present radiation
density. In paper [24], the authors used the present age of the
Universe �13:7� 0:2� � 109 years from [17, 19], which is
inferred using the LCDM-model. It is very important that
the new observations of SN1a [28, 29] at Z0 1 provide direct
information on the beginning of the present acceleration.
According to the data obtained in the seminal paper [29], the
present acceleration alternates with deceleration at the red-
shift

Z � 0:46� 0:13 :

This result is consistent with the evolutionary picture
considered here. It allows the direct determination of x1 [see
(123)] and precise measurement of cosmological parameters.5

The expansion to the maximum scale factor and the
subsequent contraction lead to the oscillating evolution of
theUniverse. The concept of the oscillatingUniverse has been
argued earlier bymany authors, primarily from philosophical
considerations (see, e.g., Refs [30 ± 32]). This regime, in
principle, could be expected in the closed Friedmann model
with Otot > 1. But the need to pass through the cosmological
singularity in this model and the entropy increase from cycle
to cycle [32] seam to be unsurmountable obstacles.

We emphasize that in the framework of the Hilbert ±
Einstein equations, a flat Universe cannot be oscillating. 6 In
RTG, an infinite Universe does not encounter these

a

amin

_a=a

�a=a

0

amax

tin t1 t0 t2 t3

Figure 1. The qualitative time dependences of the scale factor a, the

expansion velocity _a=a, and the acceleration �a=a. Here, tin � 1:15tr and t0
is the present time. Initially, the scale factor increases from someminimum

value amin with a very large acceleration that vanishes over a quite short

period of time tin. During this period, the expansion velocity increases

from zero to a maximum value, while the scale factor does not increase

significantly: a�tin� �
���
2
p

amin. Then the expansion occurs with a negative

acceleration that vanishes at some instant t1. The expansion velocity

decreases and at an instant slightly later than t1 reaches some minimum.

The scale factor continues to increase here (the expansion continues). The

motion with positive acceleration proceeds up to some instant t2. The
expansion velocity and the scale factor increase. For t > t2, the motion

with negative acceleration resumes and proceeds up to the instant t3, when
it stops. The scale factor reaches its maximum value, the half-cycle ends,

and everything repeats in the reverse order: contraction alternates with

expansion. The first maximum of _a=a is reached at a � ��������
3=2

p
amin

�t � 0:76 tr�, somewhat earlier than tin; similarly, the second maximum

occurs earlier than t2. The minimum of _a=a, in contrast, is reached

later than t1. This follows from the negative value of �d=dt�� _a=a� �
�a=aÿ _a2=a2 at �a � 0.

5 We note that the distance to supernovae �DL� derived from the relation

F � L=4pD 2
L (where L is the luminosity of the standard SN1a and F is the

flux obtained) is expressed through the cosmological parameters in RTG

as

DL � c

H
�Z� 1�

� 1�Z

1

�
O 0

my
3 � O 0

qy
3n ÿ f 2

6

�ÿ1=2
dy :

6 Paper [33] on the oscillating evolution of the Universe is erroneous

because the `solution' given there is in fact not a solution of the original

Hilbert ±Einstein equations, as can be checked by direct substitution. Also

erroneous is paper [34] because the system of equations (3), (17), and (18)

in that paper is inconsistent. We also note that Eqn (21) in paper [34]

directly contradicts the system of equations (17) and (18), because (21)

implies that _R is a discontinuous function, while (17) and (18) show that _R
is continuous.
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difficulties. Because there is no singularity in RTG, the
Universe could have existed for an infinite period of time
during which its different regions interacted, which ultimately
led to homogeneity and isotropy of the Universe with some
structural inhomogeneity that we neglected in our study for
simplicity.

In this approximation, the scale factor x2 corresponding
to the end of the accelerated expansion is related to xmax as

x2 �
�
1ÿ 3

2
n
�1=3n

xmax � 1���
e
p xmax :

The time corresponding to the stopping of the expansion
(the oscillation half-period) for the graviton mass mg �
0:49mH chosen in [24] is about 1300� 109 years at n � 0:05,
650� 109 years at n � 0:10, and around 270� 109 years at
n � 0:25.

The attractiveness of the oscillating Universe was noted in
the recent paper [35]. The oscillating regime in that model is
due to introducing a scalarj field interacting with matter and
using the concept of extra dimensions. Important ideas have
been put forward that the stage of accelerated expansion helps
to preserve entropy in the repeating evolutionary cycles. In
RTG, the oscillating evolution of the Universe is entirely due to
treating the gravitational field as a physical field generated by
the total energy ±momentum tensor in the Minkowski space.

7. Conclusion

The above results suggest that the field approach, in which the
gravitational field is considered a classical physical field in the
Minkowski space, leads to the conclusion that the gravita-
tional field can both slow down the flow of time and stop
doing so, and, hence, stop the gravitational collapse of
matter. This is in full agreement with the general statement:
if the gravitational field in a physical theory can slow down time,
this theory must stop slowing down the flow of time, otherwise
the flow of time would be fully stopped by the gravitational field,
which is physically unacceptable.

This is revealed in the property of `self-limitation' of the
gravitational field precluding the unlimited compression of
matter. In an isotropic and homogeneous Friedmann Uni-
verse, this property is responsible for the cyclic evolution from
the maximummatter density to the minimum value, etc. This
model solves the well-known cosmological paradoxes [such as
singularity, causality (horizon), flatness (Euclidean space)].

The theory implies the existence of a large hidden mass
(`dark matter') in the Universe. This conclusion was made in
1984 in paper [36]. More accurate observational measure-
ments of the total relative density of matter in the Universe
Otot could serve as a critical test for our theory. The `self-
limitation' property of the gravitational field precludes the
existence of `black holes' (objects without material bound-
aries and `isolated' from the surrounding world).

According to our theory, the spherically symmetric
accretion of matter onto a massive body at the final
evolutionary stage (after the nuclear resources have been
exhausted) must be accompanied by an appreciable energy
release, while such an accretion onto a `black hole' proceeds
with a small energy release because the infalling matter brings
energy inside the `black hole.' Searches for and observations
of such objects could shed light on the fate of massive stars at
the final evolutionary stages after their nuclear resources have
been exhausted.

In conclusion, the authors gratefully acknowledge the
valuable discussions with V V Kiselev, V V Lasukov,
Yu M Loskutov, V A Petrov, and N E Tyurin.

References

1. Logunov A A Usp. Fiz. Nauk 165 187 (1995) [Phys. Usp. 38 179

(1995)]

2. Einstein ASobranie Nauchnykh Trudov (Collection ofWorks) Vol. 1

(Moscow: Nauka, 1965) p. 242; The Collected Papers of Albert

Einstein Vol. 4 (Princeton, NJ: Princeton Univ. Press, 1996) p. 302]

3. Gershte|̄n S S, Logunov A A, Mestvirishvili M ADokl. Ross. Akad.

Nauk 411 (3) (2006) [Dokl. Phys. 51 595 (2006)]

4. Logunov A A, Mestvirishvili M A Relyativistskaya Teoriya Gra-

vitatsii (The Relativistic Theory of Gravitation) (Moscow: Nauka,

1989) [Translated into English (Moscow: Mir Publ., 1989)]

5. Logunov A A Teoriya Gravitatsionnogo Polya (Theory of Gravita-

tional Field) (Moscow: Nauka, 2001); gr-qc/0210005

6. Zakharov V I Pis'ma Zh. Eksp. Teor. Fiz. 12 447 (1970) [JETP Lett.

12 312 (1970)]; van DamH, VeltmanMNucl. Phys. B 22 397 (1970)

7. Vlasov A A, Logunov A A Teor. Mat. Fiz. 78 323 (1989) [Theor.

Math. Phys. 78 229 (1989)]

8. Einstein ASobranie Nauchnykh Trudov (Collection ofWorks) Vol. 1

(Moscow: Nauka, 1965) p. 531

9. Schwarzschild K ``�Uber das Gravitationsfeld einer Kugel aus

inkompressibler FluÈ ssigkeit der Einsteinschen Theorie'' Sitzungs-

ber. Preuû. Akad. Wiss. Berlin 424 (1916)

10. Feynman R P, Morinigo F B, Wagner W G Feynmann Lectures on

Gravitation (Ed. B Hatfield) (Reading, Mass.: Addison-Wesley,

1995) [Translated into Russian (Moscow: Yanus-K, 2000)]

11. Petrov A Z Novye Metody v Obshchei Teorii Otnositel'nosti (New

Methods in General Relativity) (Moscow: Nauka, 1966)

12. Fok V A Teoriya Prostranstva, Vremeni i Tyagoteniya (The Theory

of Space, Time, and Gravitation) (Moscow: Gostekhizdat, 1961)

[Translated into English (New York: Macmillan, 1964)]

13. Bennett C L et al. Astrophys. J. 464 L1 (1996)

14. Hanany S et al. Astrophys. J. 545 L5 (2000)

15. de Bernardis P et al. Nature 404 955 (2000)

16. Jaffe A H et al. Phys. Rev. Lett. 86 3475 (2001)

17. Bennett C L et al. Astrophys J. Suppl. Ser. 148 1 (2003)

18. Spergel D N et al. Astrophys J. Suppl. Ser. 148 175 (2003)

19. Tegmark M et al. Phys. Rev. D 69 103501 (2004)

20. Riess AG et al. Astron. J. 116 1009 (1998)

21. Perlmutter S et al.Nature 391 51 (1998);Astrophys. J. 517 565 (1999)

22. Percival W J et al. Mon. Not. R. Astron. Soc. 327 1297 (2001);

Verde L et al. Mon. Not. R. Astron. Soc. 335 432 (2002); Astrophys.

J. Suppl. 148 195 (2003)

23. York DG et al. Astron. J. 120 1579 (2000); Stoughton C et al.

Astron. J. 123 485 (2002); Abazajian K et al. Astron. J. 126 2081

(2003)

24. Gershtein S S, Logunov A A, Mestvirishvili M A, Tkachenko N P

Yad. Fiz. 67 1618 (2004) [Phys. At. Nucl. 67 1596 (2004)]

25. Hiida EK, Yamaguchi Y ``Gravitation physics'' Prog. Theor. Phys.

Suppl. (Extra number) 261 (1965)

26. Goldhaber A S, Nieto MM Phys. Rev. D 9 1119 (1974)

27. Caldwell RR,KamionkowskiM,Weinberg NNPhys. Rev. Lett. 91

071301 (2003)

28. Tonry J L et al. Astrophys. J. 594 1 (2003)

29. Riess A G et al. Astrophys. J. 607 665 (2004)

30. Al'tshuler B L et al. (Eds) Akademik A.D. Sakharov. Nauchnye

Trudy (Academician A.D. Sakharov. Scientific Works) (Moscow:

Tsentr-kom OTF FIAN, 1995)

31. Aman J M, Markov M A Teor. Mat. Fiz. 58 163 (1984); Ann. Phys.

(New York) 155 333 (1984)

32. Tolman R C Relativity, Thermodynamics and Cosmology (Oxford:

The Clarendon Press, 1934)

33. Loskutov Yu M Vestn. Mosk. Gos. Univ. Ser. 3 Fiz. Astron. (6) 3

(2003) [Moscow Univ. Phys. Bull. 58 (6) 1 (2003)]

34. Loskutov Yu M Vestn. Mosk. Gos. Univ. Ser. 3 Fiz. Astron. (2) 7

(2005) [Moscow Univ. Phys. Bull. 60 (2) 6 (2005)]

35. Steinhardt P J, Turok N, hep-th/0111030

36. Logunov A A, Mestvirishvili M A Teor. Mat. Fiz. 61 327 (1984)

[Theor. Math. Phys. 61 1170 (1984)]

November, 2006 Gravitational éeld self-limitation and its role in the Universe 1195


	1. Introduction
	2. Equations for a spherically symmetric static gravitational field
	3. External solution for a spherically symmetric static body
	4. Inner Schwarzschild-like solution
	5. Is the Minkowski space observable?
	6. Evolution of a homogeneous isotropic universe
	6.1 Equations of the scale factor evolution
	6.2 The absence of the cosmological singularity
	6.3 The impossibility of an unlimited 'expansion of the Universe'
	6.4 Evolution of the early Universe
	6.5 The total relative density of matter and the graviton mass
	6.6 The upper limit on the graviton mass
	6.7 The evolution integral of the Universe and the present value of the scale factor
	6.8 Incompatibility of RTG with the nonzero cosmological term ( CDM-cosmology). The need for...
	6.9 The beginning and the end of the present accelerated expansion
	6.10 The maximum value of the scale factor and the evolution integral of the Universe

	7. Conclusion
	 References

