
Abstract. The problem of chaotic advection of passive scalars in
the ocean and its topological, dynamical, and fractal properties
are considered from the standpoint of the theory of dynamical
systems. Analytic and numerical results on Lagrangian trans-
port and mixing in kinematic and dynamic chaotic advection
models are described for meandering jet currents, topographical
eddies in a barotropic ocean, and a two-layer baroclinic ocean.
Laboratory experiments on hydrodynamic flows in rotating
tanks as an imitation of geophysical chaotic advection are
described. Perspectives of a dynamical system approach in
physical oceanography are discussed.

1. Introduction

In the last decade, methods of the theory of dynamical
systems were actively used in physical oceanography to
describe the transport and mixing of water masses (together
with salinity, heat, nutrients, pollutants, and other tracers) by
coherent structures in the ocean [1 ± 4]. Coherent structures
are stable meso- and submesoscale features with a lifetime
exceeding all Eulerian temporal characteristics. A modern
technique for visualizing ocean flows with the help of
neutrally buoyant floats, drifters, and radars can reveal
various Eulerian coherent structures: planetary gyres, mesos-
cale and smaller size eddies, jets, and filaments. In Fig. 1, we

show a satellite image of the Gulf Stream (for April 17, 1989)
from theNOAA-N advanced high-resolution radiometer (the
USANational Oceanic andAtmosphericAdministration) [5].
The strong meandering jet current divides the warm saline
water of the Sargasso sea and cool fresh Slope Water. A loop
of the meander is seen in the figure.

This review is devoted to the transport, mixing, and
chaotic advection in geophysical flows. If advected particles
are small enough, rapidly adjust their own velocity to that of
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Figure 1. Satellite image of the Gulf Stream for April 17, 1989. Data are

from the NOAA-N advanced high-resolution radiometer.



the ambient flow (i.e., the inertial effects are negligibly small),
and do not affect the flow properties, then the advection is
called passive, and the particles are called passive (scalars,
tracers, or Lagrangian particles). The equation of motion for
such a passive particle is very simple,

dr

dt
� v�r; t� ; �1�

where r � �x; y; z� and v � �u; v;w� are the position vector
and the particle velocity at a point with coordinates �x; y; z�.
The Eulerian velocity field is supposed to be known as a result
of solving dynamical equations of motion (the dynamical
approach) or due to some kinematical speculations or
measurements. The dynamics of tracers are described in
nontrivial cases by the set of nonlinear differential equations
(1) with fully deterministic right-hand sides (the Eulerian
velocity field being regular), whose phase space is the physical
space of advected particles. It is well known from the theory
of dynamical systems that solutions of deterministic equa-
tions can be chaotic in the sense of the exponential sensitivity
to small variations in initial conditions and/or parameters.
Dynamical chaos is not an exotic phenomenon; chaos occurs
even in very simple systems and has been observed in
numerous laboratory experiments. The geometric structures,
called invariant manifolds, that determine motion in the
phase space have been well studied in the theory of nonlinear
dynamical systems, at least in low-dimensional ones. Exam-
ples of the invariant manifolds are stationary points,
attractors (including strange ones), invariant tori, Cantor
tori, and stable and unstable manifolds (see the vast literature
on chaos theory in dynamical systems, for example, Refs [6 ±
8]). In hydrodynamics, it is natural to call such coherent
structures Lagrangian. The Lagrangian structures determine
global mixing in fluids. In real fluids, molecular diffusion and
multi-scale turbulence must also be taken into account. The
Lagrangian structures consist of fluid particles and are not
visible on maps of nonstationary currents measured by some
means or other. In laboratory experiments, they can be
visualized with the help of dye. In the ocean, we can obtain
information about them using drifters and neutrally buoyant
floats. The theory of dynamical systems is able to suggest
where and when floats should be launched, to give us
maximum information about a flow under consideration
with a minimum number of floats.

The main task in theoretical physical oceanography is to
simulate Eulerian velocity fields, typically by means of
numerical integration of relatively complicated dynamically
consistent models. Velocity fields in nontrivial models of
ocean basins and in the real ocean vary within wide spatial
and temporal ranges. By solving advection equations (1) for
passive particles, it is possible to obtain valuable information
about Lagrangian coherent structures determining barriers to
transport, exit channels, and regions of intensive mixing and
stagnation.

In Section 2, we provide general information about the
transport, mixing, and chaotic advection of passive particles
in hydrodynamic flows. A picture of an arising stochastic
layer, which is a `seed' of Hamiltonian chaos, is presented.
In Section 3, we describe the simplest kinematic model for
chaotic advection, which contains the main Eulerian struc-
tures, a vortex and a background current with a periodic
component. This model illustrates the general scenario of
arising chaotic advection and its topological, dynamical, and
fractal properties, which are typical of all kinematic and

dynamical models for this phenomenon in the ocean. In
Section 4, we briefly review kinematic models of chaotic
advection in meandering jet currents, like the Gulf Stream
and the Kuroshio, and in planetary gyres. In Section 5, we
review chaotic advection in a number of dynamical models
built on the basic of the concept of background currents
developed by V F Kozlov. We present the results of
simulation of Lagrangian transport and mixing in the
barotropic model with a semicircular basin having a source
and a sink and in the models with topographical vortices, a
background flow, and a tidal current. The simple two-layer
model of a baroclinic ocean and the efficiency of chaotic
mixing depending on a perturbation frequency are discussed
in that section. The experimental models of Eulerian coherent
structures in the ocean Ð jet currents, eddies, Rossby waves,
and their interaction Ð have been created in a number of
laboratories in the world. In Section 6, we describe laboratory
experiments on hydrodynamic flows in rotating tanks as an
imitation of the interaction between a periodic flow and two
gyres and a geostrophic jet with Rossby waves. Perspectives
of a dynamical system approach in physical oceanography are
discussed in the concluding section.

We dedicate the present review to the memory of Vadim
Fedorovich Kozlov, the outstanding scientist who made an
important contribution to physical oceanography and, in
particular, to the theory of chaotic advection in the ocean.

2. Transport, mixing, and advection

The term `transport' means the motion of fluid particles
from one spatial region to another. In the theory of
dynamical systems, it is the phase-space motion of points
representing a dynamical system with different initial
conditions. The quantitative measures of transport are the
flux of a fluid through a fixed surface and the spatial extent
determined by the size of the particle distribution. Under
certain conditions, material surfaces arise in a fluid, filled up
by trajectories of fluid particles. Trajectories of fluid
particles cannot traverse these surfaces, which are therefore
barriers to transport. For example, the so-called Kolmo-
gorov ±Arnold ±Moser (KAM) tori (or KAM tubes of
flow) [7 ± 9] are absolute barriers to transport. On the
other hand, there are so-called accelerator modes [8] that
enhance transport.

Mixing, which is a key concept in both hydrodynamics
and the theory of dynamical systems, is defined in a rigorous
mathematical sense.We consider a basin Awith a circulation,
containing a domain B with a contaminant occupying the
volume V�B0� at t � 0. We consider a domain C in A. The
volume of the contaminant in the domain C at time t is
V�Bt

T
C�, and its concentration in C is given by the ratio of

volumesV�Bt

T
C�=V�C�. The definition of mixing is that for

any domain C in A, we have the same concentration of the
contaminant as for the entire domain A, i.e.,
V�Bt

T
C�=V�C� ÿ V�B0�=V�A� ! 0 as t!1. It is the

definition of global mixing. The mixing is determined not by
an instantaneous field of passive scalars but by its evolution.
In the theory of dynamical systems, the global mixingmeans a
process of deformation of a small phase-space volume into a
long intricate filament occupying all the energetically acces-
sible domain of the phase space. The mixing measures are
Lyapunov exponents. In geophysical flows, mixing due to
flow kinematics is complicated by the accompanying mole-
cular diffusion and multi-scale turbulence.
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2.1 Chaotic advection
We consider the vector equation for advection of passive
scalars (1). If v is a nonlinear function of the particle
position r, then, as is known from the theory of dynamical
systems, chaotic solutions of Eqn (1) are possible even if the
Eulerian velocity field is deterministic and smooth. Deter-
ministic or dynamical chaos is defined rigorously in the
theory and in fact means extreme sensitivity to small
variations in the initial conditions

��dr�0���. This means that��dr�t��� increases exponentially in the course of time with
almost any choice of dr�0�,��dr�t��� � ��dr�0��� exp �lt� ; �2�

where l is a positive coefficient known as a Lyapunov
exponent and j . . . j is the norm of a vector. The exact
direction of the vector dr�0� does not matter because most of
these vectors (in the sense of zero measure) evolve in the
direction of maximum stretching of the corresponding fluid
volume. The exponent l asymptotically (as t!1) charac-
terizes the mean velocity of such a stretching. If the fluid is
incompressible �div v � 0�, the volume shrinks along another
direction with the same mean velocity but of the opposite
sign. There is a third direction in three-dimensional Hamilto-
nian flows, along which the velocity of stretching (shrinking)
is zero. In other words, the sumof all the Lyapunov exponents
in a Hamiltonian system is zero. Equation (2) implies a fact
that is important from the practical standpointÐ chaos limits
a forecast even for simple nonlinear systems by a prognosis
time of the order of

tp � 1

l
ln

Da
Da�0� ; �3�

where Da is the confidence interval for forecasting a given
dynamical variable a and Da�0� is the practically inevitable
error in measuring its initial value. Trajectories that diverge
exponentially in a short time in a bounded phase space of a
dynamical system return (at least, in Hamiltonian systems) to
their initial points (the PoincareÂ theorem on recurrences).
Because the phase space is a physical space for two-
dimensional advection problems, this property, known as
chaotic mixing, is very important for oceanic flows. Chaotic
mixing in fluids is called `chaotic advection' [10, 11] (the term
`Lagrangian turbulence' is sometimes used).

The theory of dynamical systems implies that Eqn (1) for a
steady plane flow (it does not matter how complicated it is) is
integrable, trajectories of fluid particles coincide with
streamlines C, and material lines stretch (if they stretch at
all) in direct proportion to time t. Even a simple perturbation
of a planar flow (periodic or quasi-periodic) may cause
cardinal changes: mixing, exponential stretching of material
lines in the course of time, chaos, and so on. In general, three-
dimensional steady flows cannot be written in a Hamiltonian
form, which does not prevent them from being chaotic.
Moreover, V I Arnold was the first to suggest chaos in the
field lines and, therefore, in trajectories, for a special class of
three-dimensional stationary flows (so-called ABC flows) [12,
13]. The important role of mixing in geophysical flows was
stressed by Eckart [14] and Welander [15] more than 50 years
ago. In paper [15], the ideas of fractal geometry have been
used (without mention of the term) to explain how the length
of an advected material line tends to infinity in spite of a finite
area of closing.

The velocity components of incompressible planar flows
are known [16] to be expressed in terms of a streamfunction:

u � ÿ qC
qy

;
�4�

v � qC
qx

:

Advection equations (1) are now the Hamiltonian equations

dx

dt
� ÿ qC

qy
;

�5�
dy

dt
� qC

qx

with the streamfunction C�x; y; t� playing the role of a
Hamiltonian. The particle coordinates x and y on the plane
are canonically conjugate variables and the phase space of
Eqn (5) is a configuration space. Thus, two-dimensional
advection in an incompressible fluid is equivalent to the
Hamiltonian dynamics of a system with one and a half
degrees of freedom in the nonstationary case and with one
degree of freedom in the stationary one. The Hamiltonian
character of advection follows from the incompressibility
condition and is also valid for viscous two-dimensional flows.

2.2 Stochastic layer
As was first found by PoincareÂ [17], a separatrix splitting may
occur in Hamiltonian systems under an arbitrarily small
perturbation. The splitting is an obstruction to the integr-
ability of the perturbed system under consideration. More-
over, stable and unstable manifolds of a saddle point (which
lies on the unperturbed separatrix) intersect transversely and,
as a consequence, a stochastic layer appears near the
unperturbed separatrix. The occurrence of a stochastic layer
in nonintegrable Hamiltonian systems is a universal phenom-
enon. Just this layer is a `seed' of chaos. The instability of
motion near the unperturbed separatrix has the following
simple reason: the frequency of oscillations or rotations of
particles far away from the unperturbed separatrix depends
weakly on energy (action), and its small variations result in
small variations in phase for the period of oscillations. The
period of oscillations near the unperturbed separatrix tends to
infinity, and small variations in frequency there may cause
large changes in phase. This is the reason for a local instability
of trajectories in a stochastic layer. Motion there is very
intricate, and many problems are far from being solved,
despite the extensive efforts (see a review of the results in
Ref. [8]).

Following Ref. [18], we present a visual PoincareÂ 's proof
of splitting and intersection of stable and unstable manifolds
in the homoclinic case, i.e., with a single saddle point. The
phase portrait of the unperturbed system is given by a
separatrix loop intersecting itself at the saddle point and
separating finite (inside the loop) and infinite (outside it)
trajectories (Fig. 2a). A specific example of such a flow is
given in Section 3. Let C ��� be the lines of intersection of
stable and unstable manifolds of the saddle point with the
plane t � 0. We first suppose that they do not intersect each
other under a sufficiently small perturbation and there is a
small gap D between those lines (Fig. 2b). Under the map by
the period T, the segment D shifts counter-clockwise. Because
C ��� are invariant under such amap, the domainD limited by
the curves C ��� and the segment D must occupy its proper
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subdomain (the area D minus the shadowed area). But this
contradicts the equality of the phase space volumes in
Hamiltonian systems under the map V�D� � V

ÿ
T̂�D��. The

contradiction is resolved ifC ��� andC �ÿ� intersect each other
as shown schematically in Fig. 2c.

Separatrix splitting gives rise to important consequences
for geophysical flows because it breaks down impermeable
barriers and allows transporting tracers between domains not
communicating in the unperturbed flow. The estimates of
instant and mean fluxes between those domains and the
exchange rates can be given with the help of the so-called
Melnikov integral [19], which characterizes the instantaneous
distance between the splitting separatrices D and the stochas-
tic layer width. In the absence of perturbation, particles move
along the streamlines C0 (thin solid lines in Fig. 2a). Under
perturbation with a streamfunction C1�t�, particle b, placed
at t � 0 on the streamline C0�b� inside the separatrix loop,
moves for a time t to position e corresponding to another
streamline C0�e� (Fig. 2a). To compute the difference

between the two unperturbed streamlines DC0 �
C0�e� ÿC0�b�, we need to compute the derivative

dC
ÿ
x�t�; y�t��
dt

� qC1

qx
qC0

qy
ÿ qC1

qy
qC0

qx
� fC1;C0g ; �6�

which is found with the help of advection equations (5) and
the definition of the Poisson bracket fC1;C0g. It follows
from Eqn (6) that for trajectories near the unperturbed
separatrix �xs; ys�, with an accuracy up to the first order of
smallness in the perturbation strength x, this difference is

DC0�t0� �
�1
ÿ1

n
C1

�
xs�tÿ t0�; ys�tÿ t0�

�
;

C0

�
xs�tÿ t0�; ys�tÿ t0�

�o
dt ; �7�

where the parameter t0 is introduced to take a perturbation
phase into account. Using Eqn (7), the change of variable
t! t 0 � t0, and trigonometric equalities, we find

DC0�t0� � xM0 sin d ; �8�

where the Melnikov integral M0 and the phase d are
calculated by integrating Eqn (7) over t 0. The width of the
stochastic layer is estimated as

D � 2x
p
jM0j
ju0j ; �9�

where u0 is the horizontal particle velocity. Thus, the flux
F � u0D is

F � 2x
p
jM0j : �10�

It is the same expression as the one obtained using the area of
lobes in a homo- or heteroclinic structure [20].

In typical Hamiltonian systems, mixing is not homoge-
neous [8, 21]. For two-dimensional chaotic advection, this
means that there are spatial domains (so-called islands) where
fluid motion is regular. Normally, there is a hierarchy of
islands: large islands are surrounded by chains of small ones,
which are in turn surrounded by smaller ones, and so on, up to
infinity (in theory). The islands are imbedded in the chaotic
sea where the motion of fluid elements (or passive scalars) is
not regular. Particles cannot go through the island bound-
aries from either inside or outside; in other words, those
boundaries are barriers to particle transport. There are so-
called sticky zones near the outer boundaries of the islands
where particles can be trapped for a long time. Sticking may
strongly change the statistical properties of transport. For
example, the variance of particle displacements increases not
as t (the case of normal diffusion) but as tm, where the so-
called transport exponent m can be less than unity (subdiffu-
sion) or greater than unity (superdiffusion). All these
dynamical characteristics of chaotic advection are deter-
mined by specific geometric structures (the invariant mani-
fold), to be illustrated in Section 3 with a simple kinematical
model.

3. Basic model for chaotic advection

In this section, in the geometric approach framework, we
describe the mixing of passive scalars in a flow consisting of

C0�e�
C0�b�

Cs

e

b

a

D

C���

C�ÿ�

D

b

C���

C�ÿ�

c

Figure 2. Emergence of a stochastic layer: (a) the loop of the unperturbed

separatrix with the streamfunctionCs, unperturbed trajectories (thin solid

lines) of particles inside and outside the loop with the streamfunctions

C0�b� andC0�e�, respectively, and the particle trajectory under perturba-

tion (thick curve); (b) splitting of the stable C ��� and unstable C �ÿ�

manifolds of the saddle point; (c) transverse intersections of themanifolds.
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the main Eulerian coherent structures: an unsteady current
and a vortex. A planar flow of ideal fluid with the given
streamfunction is considered [22]:

C�t� � ln
����������������
x 2 � y 2

p
� ex�C1�t� ; �11�

where the first term in the right-hand side represents a point-
like vortex placed at the origin of the Cartesian plane x; y, the
second term describes a spatially homogeneous meridional
flow, i.e., a steady current along the y axis from the south to
the north with the dimensionless velocity e, and C1�t� is a
nonstationary streamfunction, which is chosen to have the
simple form C1�t� � xx sin nt.

Advection equations for passive scalars are written in
Hamiltonian form (5) as

_x � ÿ y

x 2 � y 2
;

�12�
_y � x

x 2 � y 2
� e� x sin nt ;

where the dot denotes the derivative with respect to the
normalized time t. In the absence of perturbation �x � 0�,
the phase portrait of the system is given by a collection of
finite and infinite trajectories separated by a loop passing
through a saddle point with the coordinates x � ÿ1=e, y � 0.
Depending on initial positions, particles either move inside
the separatrix loop along closed streamlines or round the loop
and move along infinite streamlines (Fig. 2a). It was shown
analytically in Ref. [22] that an arbitrarily small perturbation
splits the separatrix and gives rise to transverse intersections
of stable and unstable manifolds of the saddle point, shown
schematically in Fig. 2c, and to a homoclinic structure with an
infinite variety of periodic and aperiodic orbits. The trajec-
tories of passive scalars deviate from the steady-flow
streamlines. We define the free-stream region (with incoming
and outgoing components), the mixing region, and the vortex
core as the respective sets of trajectories for which the number
of times they wind around the vortex is zero, finite, and
infinite. The Melnikov integral

M�t0� �
�1
ÿ1

u
�
xs�tÿ t0�; ys�tÿ t0�

�
cos �nt� d� dt �13�

estimates an instant flux through the gap D between the
splitting manifolds at the time t0 (Fig. 2b). The integral
depends on the perturbation frequency n and the phase of
the meridional flow d.

The phase-space topology depends strongly on the values
of the control parameters e and x because they are defined in
terms of the velocity of the steady flow, unsteady-flow
frequency, and vortex strength that determines the particle
rotation frequency. Their relative values determine the orders
of nonlinear resonances in the system. As the value of e=x
increases, the vortex core (occupied mainly by regular
trajectories) grows and the orders of surviving resonances
increase while the mixing region shrinks correspondingly.
When e=x4 1, the dynamics of the system are almost regular.
Numerical simulation was performed for e � 0:5, x � 0:1,
and n � 1, in which case the mixing region is abundant with
various topological structures.

3.1 Invariant sets of the flow
The invariant sets of dynamical system (12), which are the
building blocks of its structure, have been described in
Ref. [23]. Particles belonging to different sets exhibit
qualitatively different behavior. The trivial examples of
invariant sets are the entire phase space, a fixed point, a
closed trajectory, and any trajectory defined over the time
interval from ÿ1 to 1. We exclude the set of trajectories
not winding around a vortex from the present analysis. We
first consider the set of invariant curves filling up the KAM
tori, the set of all periodic and quasi-periodic trajectories of
passive scalars around the vortex center. In the PoincareÂ
cross section (a collection of coordinates of particles with
different initial conditions marked by points on the flow
plane at times that are integer multiples of the period), they
make up families of nested closed smooth curves (Fig. 3).
Most of them lie inside the vortex core. Other families of
invariant curves make up stability islands centered at elliptic
points, which are located both in the vortex core and in the
mixing region. The islands arise due to nonlinear resonances
of various orders between particle motion around the vortex
and the 2p-periodic perturbation. Under a high resolution,
one can see the chains of the islands in the vortex core, which
are surrounded by narrow stochastic layers. The vortex core
is preserved for any values of the flow parameters e and x. In
other words, it is a robust structure. Because the frequency

0.3

0.2

0.1

0

ÿ0.1
ÿ0.82 ÿ0.80

xm

ym

ÿ0.78

Figure 3. The plane of the PoincareÂ cross section of flow (11).
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of particle rotations in the vortex core is much higher than
the perturbation frequency, the perturbation can be con-
sidered adiabatic with respect to most orbits inside the core
and the orbits can be considered regular, except for
trajectories near the overlapping higher-order resonances,
which make up very narrow stochastic layers. Being
absolutely impermeable barriers, the KAM tori limit trans-
port and mixing of passive scalars.

Perturbation gives rise to cantori replacing some KAM
tori, first of all, those with rotation numbers that do not
satisfy the Diophantine condition of the Kolmogorov ±
Arnold ±Moser theorem. The cantori are invariant sets
having a Cantor structure with gaps whose topological
dimension is at least lower than the measure of the curve.
The motion on them is quasi-periodic. However, cantori are
unstable and therefore have stable and unstable manifolds.
Unlike KAM tori, cantori are hardly permeable for passive
scalars. The incoming flow contains particles at the intersec-
tion of a material line with the stable manifold Ls of the so-
called chaotic invariant set L that reach the boundary
between the mixing region and the vortex core in the course
of time and rotate in a region as if theirmotionwere limited by
an invariant KAM curve. Then, they jump to the opposite
side of the cantorus and stay there for a while. The process
repeats many times until the particles cross the boundary of
the region and escape. The existence of such sticky domains at
the vortex-core and stable-island boundaries points to the
existence of cantori with small gaps. They manifest them-
selves as domains with a large density of points on a PoincareÂ
cross section. It is important that the existence of an invariant
set of cantori and sticky domains implies that the mixing is
inhomogeneous, as manifested, in particular, in topographic
trapping maps by heavy power-law tails of trapping-time
probability distribution functions and in singularities of
scattering functions [23 ± 26].

The chaotic invariant set L is a set of all trajectories
(except for the KAM tori and cantori) that never leave the
mixing region. The set consists of an infinite number of
periodic trajectories and aperiodic chaotic ones. All trajec-
tories in this set are unstable. Passive scalars with initial
conditions belonging to L remain in the mixing region as
t!1 or t! ÿ1. The PoincareÂ cross section of L is a
fractal set of points with Lebesgue measure zero. Most
tracers from the incoming flow sooner or later leave the
mixing region with the outgoing flow. But their behavior is
largely determined by the presence of L. Tracers follow
trajectories of this set, wandering for a long time in their
neighborhoods.

Each orbit in the chaotic set and, therefore, the entire setL
has both stable and unstable manifolds. The stable manifold
Ls of the chaotic set is an invariant set of all the orbits
approaching those in L as t!1. The unstable manifold Lu

is a stable manifold of time-reversed dynamics. Following
trajectories inLs, passive scalars from the incoming flow enter
the mixing region and remain there forever. It was mentioned
above that the corresponding initial conditions are in a set of
measure zero. Tracers that are initially close to the trajectories
of the stable manifold follow them for a long time and
eventually deviate from them, leaving the mixing region
along the unstable manifold. Thus, there is a unique
opportunity to determine the important properties of L by
measuring the characteristics of scattering particles and to
observe unstable manifolds directly in laboratory experi-
ments and even in geophysical flows.

An unstable manifold can be visualized by various
methods. An intricate fractal curve approaching Lu in the
course of time is formed as a result of the deformation of a
blob with many tracers chosen at the intersection of the
incoming flow with the stable manifold. A similar picture is
observed in experiments with dye streaks. Figure 4 shows an
image of the unstable manifold of the deterministic model
flow (12) at the time instant 15p, obtained numerically by
integrating the equations of motion for particles continuously
injected into the incoming flow at the point with coordinates
x0 � ÿ4:357759744 and y0 � ÿ6. Passive particles are
advected along the fractal curve of the unstable manifold,
which is a kind of attractor in aHamiltonian system (there are
no `classical' attractors in incompressible flows). Direct
computation of the so-called trapping map [24] provides an
image of the stable manifold Ls. The intersection of the
manifolds Ls and Lu is the invariant chaotic set L, which is
a fractal set of points oscillating with the period of the flow.
Tracers starting from points of this set remain in the mixing
region as t! �1. In the unperturbed flow �x � 0�, the
border line between the vortex core and the free flow has a
finite length equal to the length of the separatrix loop, but it is
infinite in a flow with a periodic perturbation.

Periodic trajectories in the chaotic set L are essentially
unstable, and the probability of finding them at the intersec-
tion of two fractal `dust clouds' is low. A numerical method to
prove their existence and to detect them was proposed in
Ref. [27]. One computes the time Tn�I; y� that a tracer with
given initial values of the angle y and action I takes to execute
n turns and a change in the action [or in the energy DEn�I; y�]
in this time. If the perturbation has a period T, then all the
orbits of the perturbed system with the periods kT
�k � 0; 1; . . .�, executing n turns, can be detected from the
conditionTn�I; y� � kT,DEn�I; y� � 0. In fact, it is possible to
detect periodic orbits arising due to a resonant structure of the
phase space (elliptic and hyperbolic points of primary,
secondary, and other resonances) and the orbits near
separatrices. Examples of orbits detected for the model
considered have been presented in Ref. [27].

3.2 Geometry of chaotic scattering and fractal dynamics
As an illustration of the geometry of the transport of passive
scalars in the mixing region, we consider initial conditions on
the segment of the line y � ÿ6 in the free-stream regionwhose
left endpoint is at the intersection of this line and the lower
`whisker' of the perturbed separatrix loop at the time
3p=2� 2pm and whose right endpoint is at the intersection
with the `whisker' of the perturbed separatrix loop at
p=2� 2pm. Figure 5 shows fragments of the evolution of
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Figure 4. Image of unstable manifold (11) obtained as a `snapshot' of a dye

streak in the flow.
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this material line at the instants t � 8p, 9p, 10p, and 11p. At
t � 0, point A was at the intersection of the perturbed
separatrix and the line y0 � ÿ6, and point G at the
intersection of this line and the separatrix at the time
p=2� 2pm. The particles with initial positions x0 < x0�A�
and x0 > x0�G� are not trapped in the vortex and are
immediately washed away into the free-stream region (see
dotted segments in Fig. 5). Particles A and G move along the
stable manifold into the neighborhood of the saddle periodic
orbit and remain in themixing region for a long time (which is
infinite in theory).

We compute the total number n of turns around the vortex
executed by most particles placed initially at the segment AG
before they escape into the outgoing free-stream region (the
part of the plane above the line y � 6). The graph of n�x0�
shown in Fig. 6 is a complicated hierarchy of sequences of
fragments of thematerial line AG (`snapshots' of its evolution
are shown in Fig. 5) with fractal properties that are generated
by infinite intersections of the stable and unstable manifolds
with the material line of initial conditions as it rotates around
the vortex. There are sequences of segments for each n5 0,
which we call `epistrophes' following Ref. [28]. The epis-
trophes make up a hierarchy. The endpoints of each segment
at the level n are the limit points of a level-�n� 1� epistrophe.
For example, there is a single epistrophe at the level n � 0
converging at the point A. The endpoints of each segment of
this epistrophe at the level n � 1 generate epistrophes b, c, d,
e, g, etc., converging at the corresponding limit points (see
Fig. 6). Numerical experiments on epistrophes lying at
different levels reveal the following laws: (1) each epistrophe
converges at a limit point in the segment under consideration;
(2) the end points of each segment in a level-n epistrophe are
the limit points of a level-�n� 1� epistrophe; (3) the lengths of
segments in an epistrophe decrease in geometric progression;

and (4) the common ratio of all progressions is equal to the
maximal Lyapunov exponent for the chaotic invariant set l.
The length lj of an epistrophe segment as a function of its
index j for the zeroth-level epistrophe and the first-level
epistrophes c, d, e, and g has been computed. The slopes of
all graphs are equal to ln l � ÿ1:59 [23], i.e., the segment
lengths in each epistrophe decrease in geometric progression
lj � l0l

j with the ratio l � 0:2. This quantity is the maximum
Lyapunov exponent for the chaotic invariant set L.

The fractal in Fig. 6 is not strictly self-similar, because it
contains segments, called strophes, that do not belong to the
epistrophes. Some of them are labeled by Greek letters in
the graph. Thus, the fractal is characterized by partial self-
similarity: each level contains both self-similar epistrophe
sequences and additional elements (strophes) that are
preserved in the asymptotic limit and do not fit into the
regular structure. The fractal in Fig. 6 provides a compre-
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hensive illustration of tracer transport. Line segment AG
stretches and bends as it winds around the point-like vortex,
and then its part begins to fold as particles rotating around
the vortex accelerate, while other particles decelerate in the
neighborhood of the saddle point. Figure 5 illustrates the
formation of the first fold at t � 8p. Segment DE is
associated with the first segment of the zeroth-level
epistrophe (tracers that have not made a complete turn).
Segment EFG is represented by an empty segment in Fig. 6
generating an infinite sequence of strophes and epistrophes
at the higher levels. After the period �t � 10p�, the second
fold develops in the material line. After the time interval
t � 11p, two new lobes begin to develop in the stretched
portion of the first fold corresponding to epistrophe
segments e and g of the level n � 1. The particles in these
lobes escape together with the lobe BC before they complete
their second turn around the vortex, giving rise to the
second `finger' in Fig. 5. Furthermore, the snapshot taken
at t � 11p shows the folds that subsequently develop into
the strophes a and b at the level n � 2 and into the strophes
n and m at the level n � 3. These strophes give rise to four
lobes that combine with zero- and first-level epistrophe
segments to form the third `finger.'

This process repeats iteratively, i.e., the part correspond-
ing to an epistrophe segment and an empty segment in Fig. 6
unwinds off the material segment's `tail' that fingers to the
neighborhood of the saddle point with each turn around the
vortex. This scenario describes the formation of epistrophes
and strophes at all nonzero levels, except that each level-n
epistrophe segment generates two level-�n� 1� epistrophes.
In experiments with dye tracks, these events are visualized by
the periodic formation of lobe pairs. In the course of time, dye
streamlines develop into a self-similar pattern (see Fig. 5) in
the sense that new `fingers' with an increasing number of lobes
appear in each subsequent period. This reveals order hidden
in chaos.

Rigorous definitions of invariant sets and dynamical
invariant measures such as fractal dimensions, Lyapunov
exponents, entropies, and transport and time exponents are
given asymptotically, i.e., as t!1. In reality, we are
dealing with finite times and sizes. An exact self-similarity
is absent (the existence of the strophes in our flow) in typical
Hamiltonian systems with inhomogeneous mixing (the case
of our model flow) because the invariant sets are not
invariant in the statistical sense under increasing the
resolution. Thus, the asymptotic behavior of dynamical
systems may differ strongly from their behavior in a finite
time, the only one that can be measured in computer and
real experiments. It is meaningless from the physical
standpoint to compute the fractal dimension of a hydro-
dynamic flow on spatial scales smaller than molecular ones
and the Lyapunov exponent in a time exceeding the lifetime
of a coherent Eulerian structure. The effective dimensions of
dynamical `invariants' to be computed may differ from
asymptotic ones.

4. Kinematic models
for chaotic advection in the ocean

Western boundary currents, like the Kuroshio in the North
Pacific and the Gulf Stream in the North Atlantic, are
prominent jets separating water masses with different
physical and biogeochemical characteristics. Three basic
mechanisms of transport and water-mass exchange in those

frontal regions are known: the generation of so-called rings
with a cold or warm core, which may separate from the main
stream from both sides; interaction of the rings with the main
stream; and meandering of the jet. Such currents are coherent
Eulerian structures whose spatial form varies in time in a
wavy manner in a wide range (with the wavelength of the
order of 200 ± 400 km) with typical values of the phase speed
of the order of 0.1 ± 0.3 m sÿ1 (for comparison, the maximum
speed at the surface reaches 2 m sÿ1). Observations of
Lagrangian trajectories of neutrally buoyant floats,
launched at different depths in both the Kuroshio [29, 30]
and the Gulf Stream [31, 32], reveal large-scale lateral
displacements of the floats in the absence of rings correlating
with the meanders of the stream. Resuming those and other
observations in the Gulf Stream, A Bower and H Rossby [32]
came to the following conclusions: (1) water from the center
of the stream is most often lost from the current at the trailing
edges of a meander through troughs and crests, while
entrainment occurs primarily at the leading edges of mean-
der crests; (2) entrainment and transport of water masses
across the stream are enhanced with an increase in the
curvature of the jet; (3) cross-stream transport at lower
depths occurs much more easily than near the surface. The
Gulf Stream is more `transparent ' for deep-water floats than
for shallow-water ones.

In Fig. 7, we show a composition of 37 trajectories of
RAFOS isopicnal floats (floats directly tracking the motion
of fluid parcels in a flow) launched in the main thermocline
near Cape Hatteras (� 35�N, � 75�W) and tracked acousti-
cally for 30 or 45 days [32]. The evident irregularity of the
trajectories raises the question of themechanisms of transport
and mixing of the physical, chemical, and biological proper-
ties of the Gulf Stream and similar oceanic fronts. The
question of whether the trajectories of floats are chaotic is
very important for the problem of the lateral mixing of
passive scalars in the ocean [33 ± 38]. The contribution of
rings to the entire oxygen transport across the Gulf Stream
was estimated to be less than 5% [39]. Chaotic advection has
been regarded as the main mechanism of mixing in mean-
dering jet currents [40].

First kinematical and then dynamical models have been
proposed to explain observations quantitatively. The inter-
pretation of Lagrangianmotion is simplified by considering a
flow in a reference frame moving with the phase speed of a
periodic dominant meander. As the simplest kinematic model
of a meandering jet current in the fixed frame, we take the
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streamfunction [39, 40]

C�x; y; t� � C0

�
1ÿ tanh

yÿ a cos k�xÿ cxt�
d

�������������������������������������������������
1� k 2a 2 sin2 k�xÿ cxt�

q �
; �14�

where a, k � 2p=l, and cx are respectively the amplitude, wave
number, and phase speed of the meander, l is the meander
wavelength, and d a characteristic width of the jet. The
hyperbolic tangent occurring in streamfunction (14) is
related to the choice of the Bickley profile u � u0 sech

2 y for
the horizontal velocity in the jet, and the square-root term in
(14) is inserted to ensure a uniform jet width through the
meander. The normalized streamfunction in the frame
moving with the phase speed cx is

C 0�x 0; y 0; t� � ÿ tanh

�
y 0 ÿ A cos x 0

L
����������������������������
1� A2 sin2 x 0

p �
� Cy 0 ; �15�

where x 0 � k�xÿ cxt� and y 0 � y=k. The respective advec-
tion equations with streamfunction (15) and the normalized
time t � C0k

2t (primes omitted),

_x � 1

L
��������������������������
1� A2 sin2 x

p
cosh2 Y

ÿ C ;
�16�

_y � ÿA sin x �1� A2 ÿ Ay cos x�
L�1� A2 sin2 x�3=2 cosh2 Y

;

Y � yÿ A cos x

L
��������������������������
1� A2 sin2 x

p
involve three control parameters: the normalized meander
amplitude A � ak, the jet width L � dk, and the phase speed
C � cx=C0k. An analysis of Eqns (16) allows concluding [41]
that in the comoving frame, there are a few topologically
different regimes of motion determined by values of the phase
speed C.

(1) For C > Ccr1 � 1=L, there are no stationary points.
(2) For Ccr1 > C > Ccr2 � 1=

ÿ
L cosh2 �1=AL�� and

C > Ccr3, there are four stationary points: two centers and
two saddles. There are two separatrices, each of which passes
through its own saddle point. The free flow between the
separatrices is directed westward.

(3) For Ccr1 > C > Ccr2 and C < Ccr3, the stationary
points are the same as in the preceding case, but the free
flow between the respective separatrices is directed eastward.

(4) For Ccr2 > C > Ccr3, there are eight stationary points:
four centers and four saddles. The free flow between the
separatrices is directed westward.

(5) For Ccr2 > C and C < Ccr3, the stationary points are
the same as in the preceding case, but the free flow between
the respective separatrices is directed eastward.

Bifurcations arise if C is equal to one of the critical values
Ccr1, Ccr2 or Ccr3, with different relations between the critical
values. It is difficult to find Ccr3 analytically, but it can be
shown that Ccr3 > Ccr2 if

2�1� A2�
�
AL sinh

2

AL

�ÿ1
< 1 :

Otherwise, Ccr3 < Ccr2.
Figure 8a shows trajectories of particles in the fixed frame

in topological case (3) with values of the parameters estimated
to be realistic fot theGulf Stream. BecauseC depends on time
in the fixed frame, particles cannot intersect streamlines. In

the comoving frame, we have C � const, and particle
trajectories coincide with the streamlines shown in Fig. 8b.
There are three different regions: the central eastward jet
(region J), closed circulations to the north and south from the
jet (regions C, sometimes called `cat eyes' in the theory of
dynamical systems), and the peripheral westward currents
(regions P). The centers of the `cat eyes' lie at two critical lines
determined by the conditions u�yc� � cx and v�yc� � 0. The
regions are separated from each other by separatrices
connecting the equilibrium saddle points. Exchange between
them is therefore impossible. These structures disappear, of
course, in the fixed frame. Trajectories of advected particles
are rather diverse. Particles launched in the jet core move
eastward in the jet along curved trajectories. Particles
launched in domains where the central jet overlaps with one
of the circulation regions move downstream in the jet along
less curved trajectories and much more slowly, with the
meander phase speed.

It follows from the theory of dynamical systems that even
a small nonstationary perturbation typically splits stable and
unstable manifolds of saddle points. In the neighborhood of
each of them, a stochastic layer arises in themanner described
in Section 2.2. The resulting heteroclinic structure leads to
chaotic mixing and the transport of water masses with flux
values depending onmany factors (the stochastic layer width,
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the number of overlapping main resonances, etc.). Variations
in the meander amplitude are assumed to be the main factor
of the variability of the Gulf Stream and Kuroshio. Numer-
ical simulation of the advection equations with a periodically
modulated meander amplitude A�t� � A0 � e cos �nt� j�
confirms this assumption. With comparatively small pertur-
bation amplitudes, e5 1, the chaotic advection layer is
narrow and the mixing is mainly zonal. Figure 8c shows a
PoincareÂ cross section of the meandering current with a
periodically modulated meander amplitude (A � 0:785,
C � 0:1168, L � 0:628, n � 0:117, and e � 0:0728). Because
the perturbation amplitude is rather small (10% of the
meander amplitude), only the outermost KAM tori are
destroyed in the circulation regions where weak chaotic
mixing is possible. Islands inside the circulation regions are
related to resonances between the periodic perturbation and
particle rotations in those regions.

As values of the perturbation e increase, more and more
invariant tori are destroyed, the area of the chaotic `sea'
increases, and there arise more islands of regular motion
with sticking zones near their boundaries. As a result, the
fractal dynamics of mixing and the transport of passive
scalars occur. The fractal properties are illustrated in Fig. 9.
Five thousand particles, distributed uniformly along the
latitude ÿ200 < y0 < 200 km, are launched at zero longitude
x0 � 0 and the number of turns n (or the number of changes in
the zonal velocity sign) is computed for each particle with the

perturbation amplitude e � 0:2355 and the frequency
n � 0:2536. Figure 9a shows the dependence n�y0� in the
comoving frame; the dependence has a Cantor-like structure
(to be compared with Fig. 6). The dependence of the number
of events u � cx on y0 is similar in the fixed frame, where the
sign of the zonal velocity does not change. In the fixed frame,
the chaotic dependence of the instant T at which the floats
reach a given longitude (xf � 1100 km is taken in simulation)
on their initial latitude is a direct consequence of the fractality
of float trajectories in a real current. It is an irregularly
oscillating function (Fig. 9b) consisting of chaotically alter-
nating smooth and singular-like intervals. A close-up of
singular-like intervals reveals a self-similar structure
(Fig. 9c). A small initial difference in the float positions (of
the order of 100 m) may cause a large difference in the drift
time (around half a year). As the perturbation e increases
further, a meridional transport becomes possible.

In Fig. 10, to illustrate chaotic mixing of passive scalars,
we show snapshots of the evolution of a material line (with
25,000 particles distributed initially at zero longitude x0 � 0
along the latitude ÿ200 < y0 < 200 km) at successive
instants. The periodic development of lobes from elements
of the fractal depicted in Fig. 9a has been studied in detail by
one of the present authors and colleagues [41].

Besides a periodic variation in the meander amplitude A,
other types of periodic perturbations have been considered in
the literature [40]: a spatially uniform meridional flow with
the streamfunction C 0m � x cos �nt� j� and a plane wave
with the streamfunction C 0p � pÿ1 cos

�
p�xÿ cpt� � j

�
.

Adding these functions to stationary function (15), we obtain
new dynamical systems describing different types of a
periodic perturbation of the basic flow (15). A periodicity of
the perturbation simplifies solving the advection equations by
reducing them to a PoincareÂ map, i.e., allowing consideration
of a trajectory of a fluid particle in discrete time with an
interval equal to the perturbation period. To model a quasi-
periodic variability of a meandering jet, it is necessary to
incorporate a few harmonics with incommensurate frequen-
cies in a streamfunction.

The theory of dynamical systems provides a convenient
measure for the transport and mixing of chaotically advected
water masses based on the Melnikov integral (10). Estimates
of meridional and zonal fluxes help us to determine distribu-
tions of potential vorticity, temperature, nutrients, and other
characteristics of water masses in meandering currents. It is
evident that the values of the fluxes depend on the topology of
the phase portraits of the unperturbed system. The streamline
picture in the comoving frame shown in Fig. 8b allows
identifying two main fluxes: Fjc is a flux from the jet core J
to the circulation regions C and Fcp is a flux from the
circulation regions to the region of peripheral westward
currents P. It follows from symmetry considerations that the
corresponding fluxes for the northern and southern circula-
tions (with respect to the jet) and the peripheral currents are
equal. Calculations of the fluxes in Ref. [40] by means of
Melnikov integral (10) show that the values Fjc and Fcp in the
case of meandering with a fluctuating amplitude depend
strongly on the perturbation frequency n. For comparatively
high frequencies (0 0:04 cycles per day), we have Fjc > Fcp,
whereas for low frequencies (9_0:04 cycles per day), we have
Fjc < Fcp. Waves propagating along the meandering jet can
enhance the fluxes if their phase speeds correspond to the
speeds of the basic flow along the corresponding boundaries.
Numerical simulation in Refs [40, 42] confirms the observa-
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tions: transport across the jet core is much smaller than the
fluxes Fjc and Fcp. The meandering jet mixes fluid well along
each of its sides but preserves gradients across the jet core.We
emphasize that the conclusions are valid with a topological
regime specified for the simple streamfunction (14) with
periodic perturbations. Values of the fluxes calculated with
the same system but under quasi-periodic perturbations may
differ [43]. Mixing in the kinematic model of a meandering jet
interacting with an eddy was calculated in Ref. [44].

An increase in meridional (cross-jet) transport with depth
is quite evident in the RAFOS float observations mentioned
above [31, 32]. The effect can be explained qualitatively in the
framework of a multi-layer kinematic model in which the
velocity u�y; z� decreases monotonically with depth. The flow
remains two-dimensional in the sense that passive scalars
move over isopicnal surfaces, but the topology of the flow
may differ for different isopicnal surfaces. Themeander phase
speed is constant but the velocity in the jet core decreases with
depth (pressure). The critical lines u�yc; z� converge as z
increases (Fig. 8b) and coincide at some value z � zc. Instead
of two chains of `cat eyes' separated by a jet, a vortex street
appears and the meridional transport becomes easier [32].
Furthermore, the meander amplitude also varies significantly
with increasing the depth of such a transport. In recent paper
[45], a dynamically consistent baroclinic (more exactly, with
two and a half layers) model of a meandering current was
proposed. In this model, meridional transport in a zonal flow

is enhanced with depth as a result of a baroclinic instability
arising when the ratio of velocities in the upper and lower
layers is greater than 2.

Chaotic transport and mixing have been studied in a
model with planetary gyres [46 ± 48]. Two gyres, subpolar
and subtropical, separated by a western boundary jet current
(the Gulf Stream in the North Atlantic and the Kuroshio in
the North Pacific) were considered. Circulation in the gyres is
forced by surface wind. Intergyre water-mass exchange in the
simple model of a two-dimensional incompressible flow is
impossible if the wind is assumed to be steady. Interannual
migration of the wind results in splitting and intersections of
stable and unstable invariant manifolds; as a consequence,
chaotic intergyre transport of water masses becomes possible.
In the framework of the simplest kinematic model with a
periodic perturbation, the maximum transport occurs for the
frequencies resonant with the circulation frequency. Incor-
poration of meandering-jet streamfunction (14) in the two-
gyre model results in an additional mixing mechanism. As
stressed above, the meandering jet is itself a good barrier for
meridional transport (at least in the undersurface layer).
Wind forcing significantly enhances the intergyre chaotic
meridional transport [47].

For three-dimensional flows, chaotic advection of passive
scalars is possible even in the stationary case. It was
mentioned above that this was first noted by V I Arnold
[12]. A kinematic model with a three-dimensional circulation,
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consisting of two planetary horizontal gyres and a thermoha-
line vertical circulation, was proposed in Ref. [49]. The
corresponding equations of motion for Lagrangian particles
are not Hamiltonian but constitute a three-dimensional
autonomous set of ordinary differential equations with
chaotic solutions. It is important from the oceanographic
standpoint that chaos in that model leads to a barrier to
transport, which is related to the outermost unbroken KAM
torus in the three-dimensional space.

Kinematic models are attractive due to their simplicity,
generality, and the possibility of revealing the underlying
geometric structures responsible for Lagrangian transport
and mixing. Kinematic models allow obtaining analytic
results and quantitative relations between topological, dyna-
mical, and statistical characteristics of flows. But kinematical
streamfunctions are not solutions of the dynamical equations
of motion and the potential vorticity is not conserved in
kinematic models in general. The concept of background
currents allows obtaining, in a closed form, a class of
dynamically consistent streamfunctions with specified basin
forms, bottom topography, and debits at boundaries. In
Section 5, this concept is used to construct a few classes of
streamfunctions in barotropic and geostrophic approxima-
tions in order to study chaotic advection in dynamically
consistent models for basins of Far Eastern margin seas,
which are known to have a high intraannual variability of
mass fluxes through their straits.

5. Dynamical models
of chaotic advection in the ocean

The kinematics of an incompressible plane fluid flow is
described by a streamfunction c�x; y; t� related to the
velocity components (4) and vorticity o as

o � vx ÿ uy � Dc : �17�

If the streamfunction c is specified disregarding the laws of
fluid motion, then (5) is a kinematic model. The problem of
dynamical compatibility lies in the fact that c must satisfy
relations following from dynamical equations. The first
nontrivial geophysical two-dimensional and dynamically
consistent model with deterministic chaos seems to have
been analyzed using a classical Kida vortex [50, 51]. As
promising models for studying chaotic advection, we con-
sider a class of simple dynamically consistent models
proposed by V F Kozlov [4, 52, 53], based on the concept of
background currents in geophysical hydrodynamics.

5.1 Background currents
In dynamical oceanography, the notion of a background
current, by which one understands an averaged (in a sense)
circulation, is commonly used. As a rule, definitions of that
notion (if they are given at all) are not productive either
because they do not allow uniquely constructing the corre-
sponding background current or because it is impossible to
actually realize the `averaging' due to the lack of information
about the fields to be averaged (e.g., in view of the lack of
observational data), in deep water in particular. An attempt
to give one possible constructive definition of a background
current was made in Ref. [53]. We illustrate the main idea of
the method proposed with a simple example [52].

One of the basic characteristics of quasi-two-dimensional
geophysical flows is the potential vorticityP, which combines

contributions of the relative vorticity o and planetary-
topographic interactions, which are generally complicated
by stratification. Because P and o are linearly related, fixing
either of them allows determining the velocity field unam-
biguously for the corresponding boundary conditions. Both
P and o can be used to distinguish between coherent
structures such as vortices, jets, and fronts. Traditionally, it
is preferable to use the relative vorticity o. In contrast, the
potential vorticityP is a Lagrangian invariant in the absence
of viscosity and satisfies the equation

dP
dt
� Pt � uPx � vPy � 0 : �18�

Owing to its invariance, the potential vorticityP is a more
convenient quantity for determining the current structure. As
the background current (a reference current, in other words),
it is reasonable to take a current with the horizontally
homogeneous and stationary distribution of P satisfying
Eqn (18) by definition. But the result depends on the value
ofP because the current structure can change drastically as its
value varies. From this set of solutions, we single out the one
for which P � �P provides a global minimum for the system
mechanical energy. Simultaneously, we determine the back-
ground relative vorticity �o depending on the bottom relief,
planetary vorticity, and stratification in the baroclinic case.
The evolution of any given initial state can then be studied as
the interaction of corresponding deviations of P from the
background value �P, which is independent of those perturba-
tions.

We consider the algorithm for constructing a background
current and the corresponding distributions of background
relative vorticities using the simplest quasi-geostropic baro-
tropic model [51], for which we have [53]

P � o� F ; �19�

where F � f �x; y� � � f0=H� h�x; y� is a given planetary-
topographic function, including contributions from the
Coriolis parameter f �x; y� with a reference value f0, the
mean basin depthH, and the topographic bottom evaluation
h�x; y�. We consider a current in a basinD with the boundary
qD described by Eqns (18) and (19), and with the function
c �b��l; t� determining debits at the boundary (l is the
coordinate of a point on the boundary):

c
���
qD
� c �b��l; t� : �20�

Using (19) and (20), we can find the relations for the
derivative with respect to the parameter F � qc=qP:

DF � 1 ; F
���
qD
� 0 : �21�

Taking (19) and (21) into account, we obtain the kinetic
energy

E � 1

2

�
D

�Hc�2 dD �22�

and, after simple transformations, the necessary minimum
condition

qE
qP
�
�
D

F�FÿP� dD � 0 ; �23�
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which implies

�P � hFi �
��

D

FF dD

���
D

F dD

�ÿ1
: �24�

The right-hand side of this relation determines a weighted
averaging of an arbitrary function F with the condition
Fmin 4 hFi4Fmax, which is always satisfied. Thus, a back-
ground current is determined unambiguously by a given
distribution of the background relative vorticity �o as a
solution of the Dirichlet problem

D �c � �o � hFi ÿ F ; �c
���
qD
� c �b��l; t� : �25�

With the expression for F, we obtain

�o � �o �h� � �o � f � ; �o �h� � f0
H

ÿhhi ÿ h
�
;

�26�
�o � f � � h f i ÿ f :

The constants hhi and h f i determine a critical isobath and a
latitude at whose intersection the corresponding components
of �o reverse signs. In the northern hemisphere, f > 0 and the
vorticity �o � f � is cyclonic (anticyclonic) to the north (to the
south) from the critical latitude. Analogously, �o �h� is cyclonic
(anticyclonic) in regions where depths are larger (smaller)
than the critical one. In particular, the background topo-
graphic circulation above bottom elevations is anticyclonic. A
formal solution of problem (25) is easily written in an explicit
form (in quadratures) if the Green's function G�r; q� for the
Laplace operator with the boundary condition G

��
qD� 0 is

known. We have [55]

�c�r; t� � �c �o��r� � �c �b��r; t� ; �27�

where the first term in the right-hand side,

�c �o��r� �
�
D

G�r; q� �o�r� dDr ; �28�

is the steady vortical part of the solution, and the second term,

�c �b��r; t� �
�
qDr

�c �b��lr; t� qGqhr dlr ; �29�

is the unsteady nonvortical part conditioned by the debits at
the boundary.

In the absence of dissipation and generation, the potential
vorticity homogenization P is justified theoretically in a
simple way for regions with closed streamlines [56]. The
fluxes on the boundary of the domain D, allowed in our
approach, have no ventilation effect because, by definition,
they import and export the potential vorticityP whose value
is adjusted to that inside the region [53]. On the other hand, it
follows from Eqn (26) that the planetary-topographic
vorticity has a zero weighted average value, i.e., it resembles
a dipole structure revealed in individual circulation rings. The
potential vorticity is homogenized in the course of time, but
the corresponding values of P are different in individual
circulation rings, which naturally leads to the problem of
fronts in the fieldP appearing in a background current. As a
result, we face the problem of the combined evolution of the
fronts P and vortices in a current [57]. In Refs [58 ± 60], an
attempt was made to apply the developed algorithms to the

construction of background currents in specific physical and
geographical conditions in the Russia Far-Eastern margin
seas. Examples of model background currents on the half-
plane with a balanced source ± sink system placed at its
boundary have been considered in Ref. [61].

In the quasi-geostrophic approximation of a two-layer
ocean with constant densities in the layers ri (i � 1; 2 in the
upper and lower layers, respectively), the motion is described
by geostrophic streamfunctions ci�x; y; t�. Equations (4), (5),
(17), and (18) describe the corresponding values in the layers.
The potential vorticity can be written as

Pi � oi � Fi ÿP �i ; �30�

where F1 � f� � f0=H1�z, F2 � f� � f0=H2��hÿ z�, z and h
are elevations of the interface and of the bottom relief,
respectively, Hi is the thicknesses of the layers
�H � H1 �H2�, and P �i is to be defined below. In accor-
dance with the dynamical condition of the pressure continuity
at the interface, we obtain

z � f0
g 0
�c2 ÿ c1� ;

where g 0 � g�r2 ÿ r1�=r2 is the reduced acceleration of
gravity. Following Ref. [53], we introduce baroclinic and
barotropic streamfunctions c � �H1c1�H2c2�=H and
c 0 � � f0=g 0�z � c2 ÿ c1 and the corresponding potential
vorticities P � �H1P1 �H2P2�=H and P 0 � P2 ÿP1.
Using Eqn (17), we obtain

Dc � Pÿ F�P � ; �31�

Dc 0 ÿ k 2 � P 0 ÿ f0
H2

h�P � 0 ; �32�

where kÿ1 � Ld � �g 0H1H2=H2�1=2= f0 is the internal defor-
mation radius. We introduce the weighted averaging

hF ik �
��

D

FF �k� dD
���

D

F �k� dD
�ÿ1

�33�

with a weight function that satisfies the equation

DF �k� ÿ k 2F �k� � 1 ; F �k�
���
qD
� 0 ; �34�

and define the parameters

hP �i �
�
f� f0

H
h

�
; hP � 0i � f0

H2
hhi :

The solutions of Eqns (31) and (32) for constant mean values
of the potential vorticities are given by

c � �PF� �c ; c 0 � �P 0F �k� � �c 0 ; �35�

where

D �c � h f i0 ÿ f� f0
H

ÿhhi0 ÿ h
�
; �c

���
qD
� c �b��l; t� ; �36�

D �c 0 ÿ k 2 �c 0 � f0
H2

ÿhhik ÿ h
�
; �c 0

���
qD
� c �b� 0�l; t� : �37�

As in the barotropic case, the energy minimum is achieved at
�P � �P 0 � 0 [53], i.e., for the background currents c � �c and
c 0 � �c 0. The geostrophic streamfunctions in the layers are
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given by [54]

�c1 � �cÿH2

H
�c 0 ; �c2 � �c�H1

H
�c 0 ; �38�

which shows the weakening role of stratification in topo-
graphic effects in the upper layer. The planetary background
current is of a purely barotropic nature.

5.2 A semicircular basin
According to the concept of background currents [53], the
streamfunction has the structure in Eqn (27), where the
stationary planetary component c1 is vortical (Dc1 � o in
the region D and c1

��
qD� 0) and the incident-flow nonsta-

tionary component c2 is nonvortical (Dc2 � 0 and c2 is fixed
at the boundary qD).

As the first example, we consider a semicircular basin
x 2 � y 2 < a 2, y > 0 with a source and a sink of intensities
�q�t� at the corner points �ÿa; 0� and �a; 0�, respectively [61].
Assuming that in the b-plane approximation f � f0 � b �y, the
bottom relief elevation is h � ÿgh0y=a (the depth linearly
increases northward if g > 0), it is easy to obtain

c1 � ÿ
b
8
�a 2 ÿ x 2 ÿ y 2� y ; �39�

where the constant parameter

b � g
f0h0
Ha
ÿ b � �40�

is expressed in terms of the mean value of the Coriolis
parameter f0, the Rossby parameter b �, the mean basin
depth H, the elevation scale of bottom relief h0, and the
meridional slope of bottom relief g. In what follows, we
assume that b > 0, i.e., the topographic effect is stronger
than the planetary one, as, for example, in the Sea of Japan
[58]. The incident-flow component has the form

c2 � ÿ
2q

p
arctan

2ya

a 2 ÿ x 2 ÿ y 2
: �41�

Passing to dimensionless variables in accordance with the
relations

�x; y� � a�x 0; y 0� ; t � 8

ba
t 0 ;

�42�
c � ba 3

8
C 0 ; q � pba 3

8
s�t 0�

and omitting the primes, we finally obtain

C � ÿ�1ÿ x 2 ÿ y 2� yÿ 2s�t� arctan 2y

1ÿ x 2 ÿ y 2
; �43�

where s�t� is a given positive-valued function of time
corresponding to the dimensionless debit ps.

An instantaneous pattern of streamlines, which is sym-
metric with respect to the axis x � 0, is determined by a
corresponding value of s�t�. An elementary analysis of the
velocity field shows that if s > 1 (subcritical regime), the
incident-flow component is dominant and the flow is
quantitatively identical to a purely incident current produced
by the source ± sink system at corner points. If s � 1, the
velocity vanishes at the point �0; 1�. At s < 1 (supercritical
regime), this point splits into three critical points, two
hyperbolic ones lying on the semicircle r � 1 at azimuthal
angles y � y1 and y � pÿ y1 and an elliptic one �0; y0� lying

on the semidiameter x � 0. The corresponding streamlines
are plotted in Fig. 11. A separatrix (heteroclinic trajectory)
with y1 � min y and y2 � max y � sin y1 divides the incident-
flow region adjacent to the diameter y � 0 from the overlying
vortex region with the center at �0; y0�. Using Eqn (43), we
find the explicit relations

y 2
0 �

1

3

�
2
��������������
1� 3s
p ÿ 1

�
; y2 �

���
s
p �44�

and the transcendental equation

s � �1ÿ y 2
1 � y1

4 arctan
��1ÿ y1�=�1� y1�

� : �45�

In the stationary case with s < 1, it is easy to estimate some
characteristic times. The time it takes for a particle to pass
through the diameter y � 0 is

td �
� 1

ÿ1

dx

u�x; 0� � F
ÿ ��������������

1� 4s
p �

; �46�

where amonotonically decreasing function of the parameter p
is introduced:

F� p� � 1

2p

� ������������
p� 1

2

r
ln

��������������������� p� 1�=2p � 1��������������������� p� 1�=2p ÿ 1

ÿ 2

������������
pÿ 1

2

r
arctan

1��������������������� pÿ 1�=2p �
: �47�

In the neighborhood of the point �0; y0�, we can find the time
of particle revolution by approximating trajectories by
ellipses:

t0 � p�1� y 2
0 �

2y0

�������������������������������������
�1ÿ y 2

0 ��1� 3y 2
0 �

q : �48�
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Figure 11. Plot of field isolines d with specified values and streamlines

(shown by arrows) with the separatrix in the stationary case �s � s0�. The
instability region d > 0 is shadowed.
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The function t0�s� has a weakly pronounced minimum in the
neighborhood of s � 0:17.

If s�t� is a positive-valued periodic function, then the
separatrix and hyperbolic end points oscillate periodically.
From the topological standpoint, this model resembles the
model in Refs [46, 62], and one may expect the occurrence of
chaotic advection. However, this model is open due to a free
current, unlike, for example, the models considered in
Refs [63 ± 65].

The occurrence of chaos in nonautonomic systems of the
type _x � u�x; y; t�, _y � v�x; y; t� is closely related to the
stability properties of individual fluid particles. But these
problems are not equivalent [66]. A local analysis of the linear
stability of solutions reduces to studying eigenvalues of a
linearized matrix which, in the case of incompressible fluid
�ux � vy � 0�, satisfies the equation [2]

l2 � d � vxuy ÿ vyux : �49�

Because d is an even function of x and y, it is necessary to
analyze its behavior in the first quarter of the circle
x 2 � y 2 4 1 (see Ref. [61] for details). It turns out that in
general, the curve of neutral stability d � 0 intersects the
separatrix at the boundary approaching the intersection point
from `above.' On the other hand, the separatrix always
intersects the circular boundary horizontally, and hence
there is one more (besides the boundary one) `internal' point
where the separatrix intersects the curve d � 0. The neutral
stability curve lies to the right of this point up to the
boundary, and therefore the streamlines adjacent to the
separatrix lie at least in the linear instability region in some
intervals. In these intervals, fluid particle trajectories manifest
unstable behavior andmix in a chaotic manner. In Fig. 11, we
show streamlines with a separatrix and field isolines d
computed for the stationary case s � s0 [67].

In numerical experiments, the debit was specified as

s � s0
�
1� e sin �nt� j�� ; 0 < e < 1 ; �50�

where the parameter s0 � 0:081632 was chosen from the
condition that in the stationary case �e � 0�, the width of the
incident-flow region in the central section x � 0 be the fifth
part of the radius. The other parameters were varied. The law
of the variation of s�t� in (50) determines a perturbation of
Hamiltonian (43), and, in principle, allows applying variants
of the asymptotic perturbation theory, for example, the
Melnikov integral method (see Section 2.2). Numerical
experiments have shown that depending on the initial
positions and parameter values, three types of trajectories
are possible: those remaining in the incident-flow region (with
subsequent washing out through the sink) or in a vortex
region or those penetrating from one region into another with
possible returns. In particular, the problem ofwashing out the
tracers from a vortex region into an incident-flow one is of
interest.

Application of the standard methods for estimating the
strength of chaos, such as PoincareÂ cross sections and
Lyapunov exponents, is difficult in the present case because
the lifetime of particles with chaotic behavior is limited in
open systems. A repeated injection of particles [68] washed
out through the sink is not justified because of singularities
that do not allow restoring a trajectory of the injected tracer
outgoing from the source, as is possible in open systems
satisfying the boundary conditions of periodicity and con-

tinuity of the velocity field [69]. Therefore, the only possibi-
lity, perhaps, is an analysis of the distribution of Lyapunov
exponents computed for a finite time by themethod proposed
in Ref. [66]. It has been stressed in [70] that from the physical
standpoint, we are always interested in finite-time effects. One
more interesting characteristic is the lifetime of tracers in the
vortex region [67]. An analysis of washing out of a collection
with 8300 tracers, initially uniformly distributed over the
basin, has been carried out previously. The time of tracer
washout through the sink was computed. The results are
shown in Fig. 12 with the initial phases j and the optimum
(for the washing out) values of other parameters indicated. In
all the cases, we can distinguish the regions with `long-lived'

j � 0
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Figure 12. Distribution of times of tracer washout through the sink on

their initial positions with specified values of the initial perturbation

phase. The parameters are n � 1:875 and e � 0:5. Tracers with normal-

ized washout times less than 1 are situated in the white region in the lower

right corners in figs a ± d.
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tracers, which shift along the boundary of the vortex region
counterclockwise with increasing the phase. Comparison of
the distributions of finite-time Lyapunov exponents corre-
sponding to the initial positions of the tracers with the same
values of parameters as in Fig. 12 with j � 0 [67] allows
regarding a finite-time Lyapunov exponent as a reliable
indicator of the chaotic character of corresponding trajec-
tories. In [67], dependences of washout times for 10,000
tracers (initially distributed uniformly over the straight
intervals y � 0:408, x � ÿ0:93ÿ0, or x � ÿ0:32ÿ0) in their
initial positions were computed to illustrate the intricate
behavior of the system. The plots shown there illustrate a
strong instability of trajectories with respect to their initial
positions. Their fractal properties resemble those described in
Section 3.2 in the framework of a simple kinematic model.

The geophysical significance of the model considered can
be seen by specifying the control parameters in a dimensional
form. If the basin radius is a � 500 km (about half the width
of the Sea of Japan) and the smallest width of the free current
is 100 km, then y1 � 0:2 and s0 � 0:081632. If the debit of the
incident current is taken to be 1 Sv (Sverdrup) � 106 m3 sÿ1

and if the current is assumed to encompass a layer 100m thick
in the vertical, then we obtain q � 108 cm2 sÿ1 in the
barotropic case, the value determining the velocity scale
U � � q=pas0 � 8 cm sÿ1 and the time scale t � � aU � �
72 days. It follows from relation (39) that

b � 8U �a 2 � 2:56� 10ÿ14 �cm s�ÿ1

4 4:68� 10ÿ16 �cm s�ÿ1 � b �

(which corresponds to the latitude of the Tsugaru Strait).
Therefore, the domination of the topographic beta effect over
the planetary one is assured. All the estimates obtained are
rather reasonable and it is expected that the models proposed
may be useful in studying Far Eastern margin seas, which are
known to have a high intraannual variability of mass fluxes
through their straits.

5.3 Topographical vortices
It is known (see Ref. [71], monographs [72, 73], and the
references therein to observations in the ocean) that topo-
graphic vorticies in the ocean (and the atmosphere) appear in
fluid flows over localized bottom features (seamounts,
hollows, ridges, and troughs) due to the conservation law of
the potential vorticity on the rotating Earth. A quasi-steady
anticyclonic vortex appears over a seamount and a cyclonic
one over a hollow. Topographic vorticies provide ventilation
of oceanic water masses and are able to trap planktonic larvae
for a long time. As a result, the planktonic biomass in the
vortex region is two orders of magnitude larger than its
background value [73, 74]. The role of topographic vortices
in the formation of cobalt ±manganese crusts of guyots
(seamounts with cut tops) and in a strong transverse
asymmetry of sedimentation has been noted in Ref. [71].
The flows over Fieberling Guyot (32� 25 0N, 127� 75 0W),
situated in the Pacific Ocean at the distance about 1000 km
from the south Californian coast, have been especially well
studied. The horizontal scale of the guyot is approximately
40 km, the height is� 3:5 km, and the ocean depth is� 4 km.
Direct hydrographic measurements (see [76] and the refer-
ences therein) have revealed quasi-steady anticyclonic circula-
tion over the guyot, a wide background flow with velocities
0.1 ± 0.2 m sÿ1, and a strong tidal current with velocities
0.14 m sÿ1 (for a tide with the period 23.93 h) and about

0.7 m sÿ1 (for a tide with the period 25.82 h). The velocity of
the background tidal current is ten times smaller. Maximum
mean current velocities occurred at a height about 50m above
the seamount surface.Mixing near the guyot was estimated to
be an order of magnitude greater than the typical values for
the ocean interior.

We briefly mention other examples of interaction between
oceanic eddies and currents. Individual large-scale eddies
(with diameters of the order of a few dozen kilometers) can
separate from the main stream of the meandering Kuroshio
and the Gulf Stream. The unsteadiness of real currents and
eddies is due to variations in their velocities, circulation, and
sizes in a wide frequency range. Western boundary currents
with mesoscale eddies to their east are common in different
parts of the World Ocean. We mention (see [77] and the
references therein) the well-studied deep-water western
boundary current in the North Atlantic with mean velocities
of the order of 0.05 ± 0.1m sÿ1, whose waters are trapped for a
while by deep-water mesoscale cyclonic eddies. The well-
known surface eddies near the Kuroshio and the Gulf Stream
interact with western boundary surface currents. In shallow
seas and bays, large-scale eddies are generated due to the wind
and irregular bottom topography. Tidal currents cause
periodic perturbations, which, as is shown below, are
responsible for the intricate and inhomogeneous mixing of
water masses.

The incident-flow nonvortical components of back-
ground currents developed in boundary regions nevertheless
have deformation properties. This feature can be removed by
considering the flow on an unbounded plane. For example, in
the simplest case of an unbounded f plane (the Coriolis
parameter is f � f0 � const) with the topographic bottom
evaluation h�x; y�, we have the topographical vorticity

o � ÿ f0
H

h : �51�

The only incident flow bounded on the entire plane is a
spatially uniform flow W�t� directed at an angle y�t� to the
x-axis. The corresponding streamfunction is

c2 �W�x cos yÿ y sin y� ; W > 0 : �52�

Although the vortical part of the streamfunction c1 is
formally obtained as a convolution of the right-hand side of
Eqn (51) with the Green's function for the Laplace operator,
it is possible to obtain corresponding quadratures only for a
limited set of model bottom-relief shapes. The simplest shape
is an axially symmetric h�r�, r 2 � x 2 � y 2. The topographical
flow in this case is a circular vortex with the azimuthal
velocity V�r� � dc1=dr related to the vorticity by the Stokes
formula

rV �
� r

0

o�r� r dr � ÿ f0
2pH

t�r� ; �53�

where t�r� � 2p
� r
0 h�r� r dr is the volume of a bottom

elevation chosen in the form of a cylinder with radius r.
From the Stokes formula, we have the asymptotic formulas

V �
Or ; r! 0 ;

G
2pr

; r!1 ;

8<: �54�
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corresponding to solid body rotation with the angular
velocity O � ÿf0h�0�=2H in the neighborhood of the vortex
axis and to the velocity field of a point vortex with the
circulation G � ÿf0t1=H at a large distance from the vortex
center, where t1 � t�1� is the total elevation volume. The
above asymptotic formulas coincide [at t1 � pa 2h�0�] with
the corresponding parts of a piecewise analytic solution for a
circular cylinder of the height h�0� and radius a. The case with
an incident flow of type (53) was recently studied in Ref. [78]
without analysis of chaotic mixing.

A piecewise analytic velocity field with a discontinuity of
the vorticity at the boundary of the bottom elevation
complicates numerical integration of the equations for
trajectories intersecting the cylinder boundary. These diffi-
culties can be easily avoided by specifying any analytic relief
in (53) qualitatively representing the main features of
localized elevations. Asymptotic expressions (54) guarantee
the existence of a point r � L� at which V 0�L�� � 0. Using
characteristic scales of length L�, velocity V �, time
t � � L�=V �, streamfunction c � � V �L�, and bottom eleva-
tion h � � h�0� and introducing dimensionless variables
instead of (53), we obtain

rV � ÿs
� r

0

h�r� r dr ; �55�

where we introduce the topographic parameter s � h �=HRo
and the Rossby number Ro � V �=f0L� � 1=f0t

�. The quasi-
geostrophic approximation requires the condition
h �=H � O�Ro� to be satisfied, i.e., s � O�1� [78]. Moreover,
it is evident that

dV

dr

����
r� 1

� 0 ; �56�

i.e., the distance from the center at which azimuthal velocity
reaches its extreme value determines the horizontal scale.

We consider a seamount of the Gaussian shape h�r� �
exp �ÿar 2�, where a > 0. From (55), we have

V � s
2ar

ÿ
exp �ÿar 2� ÿ 1

�
; �57�

whence using (56) we find a � 1:256 as the single positive root
of the equation 1� 2a � exp a and

Vm � V�1� � ÿs�1� 2a� � ÿ0:3285 s :
The azimuthal velocity distribution of form (56) with

s < 0 has been used in laboratory simulation of cyclonic
vortices in Ref. [79]. Figure 13 shows a radial profile of
velocity (57), where Re�V � and Rh�V � denote two branches
of the function inverse to V � V�r�. It is possible to obtain
many other analytic shapes of bottom relief with asymptotic
behavior (54) required. For example, in the case of the
algebraic dependence h�r� � 1=�1� r 2�2, we find the follow-
ing expressions for azimuthal velocity and streamfunction
from (55) under condition (56):

V � ÿ s
2

r

1� r 2
; c1 � ÿ

s
4
ln �1� r 2� ; �58�

where Vm � ÿs=4. In our case, Eqn (49) for linear stability
reduces to an equation that is independent of the incident
velocity relation,

d � ÿ 1

2r
�V 2� 0 : �59�

For (57), this implies stability over a seamount �r < 1� and
instability outside of this domain �r > 1�. The dependence
d�r� for (57) is also shown in Fig. 13, where rm is the position
of the azimuthal velocity maximum and W0 is the stationary
value of the incident current.

For a steady incident current W �W0 � const, it is
convenient to assume y � 0. There are no critical points in
the total flow if W� Vm > 0, whereas there are two points,
elliptic �0;ÿRe�ÿW �� and hyperbolic �0;ÿRh�ÿW ��, if
W� Vm < 0. A separatrix intersecting itself at the hyper-
bolic point divides the flow region into two parts: that with
closed streamlines surrounding the elliptic point inside a
homoclinic loop and that with unbounded trajectories out-
side it. In the nonstationary case, an instant picture of
streamlines, which no longer coincide with particle trajec-
tories, can be obtained for a givenW and y by simple rotation
by the angle y. Moreover, both critical points describe the
given parametric curves

xe; h � Re; h�ÿW � sin y ; ye;h � ÿRe; h�ÿW � cos y : �60�

The homoclinic tangle under consideration is a typical
structurally unstable picture (see Fig. 2). Its perturbation in
the form of harmonic oscillations ofW breaks the topological
equivalence of the corresponding maps and produces chaotic
effects. Deterministic chaos in dynamical systems of the type
mentioned above has been well studied in various models in
the natural sciences, including hydrodynamic problems. For
example, in classical hydrodynamics [80], the model with an
incident flow washing a cylinder produces an instant picture
of streamlines with a homoclinic separatrix loop, which is a
precursor of arising chaotic mixing under perturbations [2]. A
similar problem with a cylinder degenerated into a point-like
vortex has been studied by the perturbation method in
Ref. [81] with the aim of estimating the width of a stochastic
layer. A detailed topological analysis of chaotic scattering in
the model with a fixed-point vortex was given in Section 3.

In our case, we consider the simplest unidirectional
oscillating flow as an incident current

W �W0

�
1� e sin �nt� j�� ; y � 0 : �61�

Using the standardMelnikov technique to estimate the width
of a stochastic layer [2, 19, 82, 83], it can be shown [84] that the
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Figure 13. Radial distributions of bottom elevation (curve 1), of the

azimuthal topographic velocity (curve 2), and of the stability indicator

(curve 3) for a seamount of a Gaussian shape.
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Melnikov integral has at least one maximum with respect to
the frequency n. Numerical simulation that involves comput-
ing scattering diagrams and estimating the number of
particles reaching a fixed line has shown [84] that the
maximum washing out occurs at the frequency close to the
value n � 0:25. A prominent feature is the initial increase in
the washing out rate with increasing the frequency and a
rather slow rate of approaching the regime where particles
barely leave the vortex region. A typical picture of the chaotic
character and destruction of the vortex core was presented in
Ref. [84]. Metamorphoses of similar pictures depending on
the frequency n have been presented in Ref. [84], where one
can also find a collection of PoincareÂ cross sections for the
optimal frequency n � 0:25 and a set of values of the
perturbation amplitudes e in the range �0ÿ0:6�. As the
perturbation amplitude increases, the vortex core with
regular trajectories shrinks, individual vortices (islands)
around it are destroyed, and an area with chaotic mixing,
from which particles are carried out into a free-flow region,
expands.

The mixing and transport of passive scalars in this
problem are determined by a chaotic invariant set L of the
same type as in the basic model for chaotic advection in
Section 3. The set consists of unstable periodic orbits with all
possible periods and aperiodic orbits with stable �Ls� and
unstable �Lu�manifolds. Along trajectories fromLs, particles
from an incident flow in the phase space come into the vortex
core and remain there forever. Trajectories of particles close
to Ls remain in the vortex core near trajectories from L for a
long time, moving along the unstable manifold Lu.

The important quantitative characteristic of the diver-
gence of initially close trajectories is the Lyapunov expo-
nent, which can be calculated in a finite time interval using a
simple algorithm [84] proposed in Ref. [66]. Useful informa-
tion is also provided by the `Lyapunov time,' which is the
quantity that is inverse to the corresponding Lyapunov
exponent [85]. Comparison of distributions of the quanti-
ties mentioned above [84] allows distinguishing regions from
which tracers are not washed out but rotate in the vortex
region. Regions from which tracers are not washed out up
to a certain time and those specified by certain values of the
Lyapunov time correlate with each other. This fact confirms
once more [67] that the time of residence in the vortex
region is an adequate characteristic of chaos in open
dynamical systems of the considered type. The relation
between the residence and Lyapunov times, which are
close, on average, to a quadratic one, has been found for
the optimal frequency n � 0:25 [85].

A variety of shapes of possible bottom elevations, the
existence of boundaries with given values of nonstationary
and balanced debits determining the character of an incident
flow are the factors that generate different classes of problems
with chaotic properties.

The anisotropic geometry of a localized bottom elevation
on the unbounded f-plane was taken into account in paper
[86], where a separation of variables in the Poisson equation
for a topographic component of the streamfunction in elliptic
coordinates �p; q� was used:

x � r sin p cosh q ; 04 p4 2p ;

y � r cos p sinh q ; 04 q <1 ; �62�
r � const :

The shape of a seamount is modeled by the function

h�q� � 1

1� �g sinh 2q�2m ; �63�

where m is assumed even for simplicity. The incoming flow
has form (52) at a constant value of the angle y. Specifying the
angle, it is possible to consider variants of a longitudinal
�y � 0� and a transversal �y � p=2� flow over an obstacle with
elliptic isobaths. In numerical experiments, the values r � 2,
g � 1, m � 6, s � 0:5, andW0 � 0:2 were used (the transfor-
mation to dimensionless variables was the same as in the
axially symmetric case). The bottom relief and the corre-
sponding topographic velocity profiles in the main sections of
a family of elliptic isobaths at x � 0 and y � 0 are analogous
to those presented in Ref. [86] (see Fig. 3 in that paper).
Pictures of distributions of critical points in the total flow and
positions of the lines of linear neutral stability and of a
separatrix are topologically the same as in the axially
symmetric case, but are different in the cases of longitudinal
and transversal flows. Comparing time dependences of the
number of particles washed out from the vortex region for n
periods of the oscillating (with the frequency n) flow (61), it
has been shown that the optimal washing out was realized at
the frequency close to n � 0:2. Moreover, a ventilation of the
vortex region is more effective in the case of the transversal
flow. PoincareÂ cross sections computed for longitudinal and
transversal flows [86] have shown that the vortex region, filled
up densely with regular trajectories, breaks with increasing
the frequency n. Moreover, this occurs under the influence of
two competing mechanisms: the appearance of a stochastic
layer near the unperturbed separatrix and resonances in the
vortex core leading to the generation of new elliptic and
hyperbolic points. In comparison with the axially symmetric
case, the transport of tracers in the elliptic case is more
effective (with compatible values of the control parameters),
and the optimal frequency varies depending on the shape of a
seamount and its orientation.

The authors of [86] attempted to apply the technique of
`lobe dynamics' [83] for analyzing the initial phase of the
process of chaotization using the numerical algorithm
proposed in [87]. However, the algorithm was not fully
realized, and the PoincareÂ cross section technique was used
to estimate the effect of washing out the particles.

5.4 Model with a coastal line
Because Eqns (25) are linear, it is easy to find a solution on the
plane where the condition for the absence of leakage on the
straight boundary y � 0 is satisfied using the method of
mirror mapping. For example, a dimensionless streamfunc-
tion for a delta-like topographic perturbation at the point
�0; 1�, placed in a uniform flowwith the velocityW�t� directed
along a boundary, has the form

c � ÿW�t�y� s ln
x 2 � �y� 1�2
x 2 � �yÿ 1�2 : �64�

In the stationary case W �W0 � const, streamlines with
different values of W0 > 0 (the critical value is W0 � 4) are
plotted in Fig. 14. As the value W0 decreases, the separatrix
changes its form from a homoclinic �W0 � 4:4� to a
heteroclinic one �W0 � 3;6�. Following Ref. [81], an asymp-
totic analysis of the width of a stochastic layer, based on
simple physical considerations, has been carried out in
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Ref. [88]. It has been shown there that the presence of a
boundary near a topographic vortex increases the width of
the stochastic layer. With characteristic values of the
parameters in Ref. [81], the stochastic layer increases in the
presence of a boundary half as much again and may occupy a
significant part of the vortex region.

Stable and unstable manifolds of a chaotic invariant set
determine the washing out of particles from the vortex region;
the process evolves in accordance with the scenario described
in detail in Section 3. The topological and fractal properties of
trajectories belonging to this set change with the increasing
influence of the boundary (with a change in the values ofW0).
Nevertheless, there is an infinite variety of unstable periodic
orbits with all possible values of the period, weakly chaotic
trajectories, sticking to islands of regular motion, and chaotic
trajectories with awide range of values of the residence time in
the vortex region. To quantitatively characterize the behavior
of trajectories, the time of their trapping in the vortex region
and the corresponding Lyapunov exponent accumulated for
that time were used in Ref. [89]. Both characteristics were
calculated for all the phase portraits shown in Fig. 14. The
distribution of the accumulated Lyapunov exponents corre-
sponding to the initial particle positions allows distinguishing

the basic types of trajectories. Regions with small values of
the Lyapunov exponent are situated in the vortex core and
inside regular-motion islands immersed in a chaotic sea.
Regions with larger values of the Lyapunov exponent and
smaller values of the trapping time are situated near the
unperturbed separatrix. The corresponding initial positions
are near the unstable manifold of the chaotic invariant set.
The trajectories with intermediate values of the Lyapunov
exponent and long trapping times of particles in the vortex
region are close to the stable manifold. In the case of strong
influence of the boundary �W0 � 3:6�, it has been found that
regions with chaotic motion specified by a distribution of the
accumulated Lyapunov exponents and those specified by a
distribution of the particle trapping times may be different.

The difference mentioned above can be explained by the
presence of trajectories of a special type that are very rare in
the case of weak influence of the boundary and in its
absence [89]. These trajectories are distributed over almost
the entire vortex region. They have large values of the
accumulated Lyapunov exponent but do not escape from
the vortex region for a long time. Among them can be
trajectories tracking for periodic orbits with large periods
and periodic saddle orbits as well as wandering chaotic
trajectories sticking to the boundaries of regular motion
islands. However, their prominent feature is frequent
`jumps' between the attracting objects (possibly of different
types) and low probability of escaping from the vortex region.
This kind of behavior is typical of Hamiltonian systems with
bounded phase space. The presence of such trajectories in our
model may be explained by the appearance of a large number
of cantori, close to KAM tori, as a result of changes in the
phase space topology. In this case, percolation of a particle
through a cantorus is still more or less probable, but it can
percolate through neighboring cantori, ending up in either the
vortex core or the free-current region. Thus, the probability of
a particle going through a few cantori and exiting to the free-
current region is rather small. To identify trajectories with
such a behavior, the combined criterion was proposed in
Ref. [90]:

a � t

T

l
l�

dy

r
; �65�

where T is the time instant when most particles escape from
the vortex region, l� is the accumulated Lyapunov exponent
averaged over all trajectories, dy is the maximum distance
between successive intersections of the y axis (for y < 1), and r
is the distance between the elliptic and hyperbolic points.
Figure 15 shows the distributions of a corresponding to initial
tracer positions for three characteristic values of the velocity
(see Fig. 14) and the case without the boundary �W0 � 2:0�. It
is evident from Fig. 15 that as the influence of the boundary
increases, the number of particles with large values of a also
increases. The inequality a � < a (where a � is the maximum
value in the case of weak influence of the boundary) may be
used as a criterion for distinguishing tracers of that type. It is
important that the initial positions of those tracers be
distributed irregularly over the vortex core. Their number
can be estimated by computing those having a value of a
larger than the given one (Fig. 16).We see that their number is
7 ± 10% atW0 � 4:0 and 25% atW0 � 3:6.

We conclude that on the one hand, the influence of the
boundary increases mixing in the system, but on the other
hand, it makes the fast escape of particles difficult, which
seems to be related to the increasing number of islands of
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regular motion or, more exactly, almost broken nonlinear
resonances.

5.5 Two-layer model
We have considered barotropic dynamically consistent
models for vortex motion in the ocean allowing chaotic
advection [4, 84, 86, 90, 91]. But the real ocean is not uniform
in depth. Therefore, investigation of chaotic advection in a
baroclinic ocean seems to be a natural direction of construct-
ing more complicated models. In the framework of the
concept of background currents [4, 52], it is possible to
formulate a dynamically consistent two-layer model of the
ocean allowing chaotic mixing in the field of a point-like
topographic vortex and nonstationary incident current. The
motion of point-like vortices in a baroclinic ocean has been

studied in the framework of such models [91], but the effects
of chaotic transport have not been considered.

We consider a two-layer oceanic model in the quasi-
geostrophic approximation in an unbounded basin. Stream-
functions of the background current generated by the
interaction between a d-like perturbation of the bottom relief
h�x; y� � t1d�x; y� and an incident current (which is assumed
to be barotropic), are solutions of Eqns (36) and (37). In the
upper and lower layers, they have the respective form [4, 52]

c1 � ÿUyÿ f0t1
2pH

�
ln kr� K0�kr�

�
; �66�

c2 � ÿUyÿ f0t1
2pH

�
ln krÿH1

H2
K0�kr�

�
; �67�
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where r �
����������������
x 2 � y 2

p
,K0�kr� is theMacdonald function of the

zeroth order,H is the depth,H1 andH2 are the thicknesses of
the layers, U � is a velocity scale, h � � h�0� is the effective
elevation of the bottom,

Ld � kÿ1 �
�����������������
g 0H1H2

Hf 2
0

s

is a linear scale, and t1 � ph �L�2 is the effective volume of
the seamount. Choosing a scale for the streamfunction
C � U �Ld and using the Rossby number e � U �=�Ld f0�
and the parameter

s � f0Ld

U �

�
L �

Ld

�2
h �

H
� h �

eH

�
L�

Ld

�2

as dimensionless parameters, we pass to dimensionless
variables denoted by primes,

k�x; y� � �x 0; y 0� ;
�u; v;U� � U ��u 0; v 0;W� ; �68�
c � Cc 0:

Omitting the primes, we obtain

c1 � ÿWyÿ s
ÿ
ln r� K0�r�

�
; �69�

c2 � ÿWyÿ s
�
ln rÿH1

H2
K0�r�

�
: �70�

The constraint e � o�1�, s � O�1� must be specified in the
quasi-geostrophic approximation. Specifying H � 4 km,
H1 � 900 m, H2 � 3100 m, f0 � 10ÿ4 sÿ1, U � � 10 cm sÿ1,
h � � 310 m, we obtain Ld � 1=k � 53 km, L� � 31:8 km,
C � 5300 m2 sÿ1, e � 0:0189, and s � 1:0, and hence the
quasi-geostrophic approximation is satisfied.

According to (69) and (70), the equations of motion of
fluid particles in the upper and lower layers have the form

u1 � ÿ qc1

qy
�W� y

r

�
1

r
ÿ K1�r�

�
;

�71�
v1 � qc1

qx
� ÿ x

r

�
1

r
ÿ K1�r�

�
;

u2 � ÿ qc2

qy
�W� y

r

�
1

r
�H1

H2
K1�r�

�
;

�72�
v2 � qc2

qx
� ÿ x

r

�
1

r
�H1

H2
K1�r�

�
:

Because the behavior of particles in the lower layer is virtually
identical to that in the barotropic case, we consider only the
upper layer. It is known from earlier studies of chaotic
advection that the transport of fluid particles from the vortex
region to the free-flow region is possible under a small
nonstationary perturbation of the incident flow in velocity
field (56). Parameters of the perturbation (frequency, ampli-
tude, and phase) significantly influence the degree of this
transport. To study the influence of the perturbation
frequency on the tracer transport, numerical experiments
with different values of these frequencies were performed
with a patch of 8250 tracers initially filling the entire vortex
region. The velocity of the incident flow was specified as

W�t� � 0:3
ÿ
1� 0:1 sin �nt�� ; �73�

where n is the perturbation frequency. The tracer was
considered washed out if its trajectory crossed the control
line jxj � 3 [91]. In Fig. 17, we show the dependence of the
normalized number of tracers N�n� escaped from the vortex
region on the perturbation frequency. Along with the
presence of the optimal perturbation frequency n � 0:59 [84,
92] at which the maximum number of tracers is washed out,
there are also a few local extrema. Such behavior ofN�n� was
not observed in any of the previous models [89, 92]. We note
that because of large computation expenses, not all local
extrema have been found.

5.6 Optimal frequency
The degree of chaotization of the system depending on the
perturbation frequency has been studied in many works. In
particular, it was shown that at high frequencies, the width of
a stochastic layer is exponentially small [84, 92, 93]. It is
reasonable to hypothesize [84, 92] that there should exist
frequency values that are optimal for chaotic mixing. We
consider threemodels for which frequency dependences of the
chaotization degree of the phase space were obtained in
Refs [86, 94] and explain the dependences based the analysis
of the rotation time of particles along unperturbed trajec-
tories around an elliptic point.

Because the systems under consideration, in contrast, e.g.,
to the system discussed in Ref. [95], are open, the task of
measuring a chaotic component in the phase space is
simplified. Indeed, irregular trajectories originally located in
the vortex region leave it in the course of time, whereas
regular trajectories remain within it [86]. Thus, uniformly
placing a sufficient number of tracers in the vortex region and
computing the fraction of tracers that leave the region for a
long time, we obtain the fraction of chaotic trajectories
among all the chosen ones, which can serve as a good
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Figure 16. The number of tracers with a that are larger than a given one.

The dashed line corresponds to the value W0 � 3:6, the solid thin line to

W0 � 4:0, and the solid thick line toW0 � 4:6.
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estimate for the measure of the chaotic component in phase
space. In Ref. [86], the time dependences of the number of
washed out tracers have been computed for different values of
the perturbation frequency. Based on the analysis of
stationary values of this quantity, it was hypothesized that
an optimal frequency for chaotic mixing must exist, and the
values of this frequency were computed with Gaussian and
elliptic elevations. Figure 17 shows the dependence of the
chaotization degree in the phase space (the fraction of tracers
washed out from the vortex region) at the perturbation
frequency for the two-layer model. Similar dependences
were presented in Ref. [86] for models with Gaussian and
elliptic seamounts, and more exact ones were shown in
Ref. [96]. We note that these curves are plotted over a wider
frequency range and with a better frequency resolution. This
enables revealing local maxima and minima in one-layer
models as well, although they are not so clearly pronounced
as those in two-layer models [96].

Figure 18 presents the dependences of the rotation
frequency in the unperturbed case �e � 0� on the initial
position of the trajectory taken on the y axis below the
elliptic point. From the curves shown in Fig. 18, we can
determine the initial position of the trajectories correspond-
ing to nonlinear resonances of different multiplicities [93, 97].
An important feature of these curves is that not all simple
nonlinear resonances can exist in the dynamical systems
under consideration.

In accordance with the KAM theorem, at a perturbation
frequency n (under the condition that this frequency is
possible in the system under consideration), nonlinear
resonances are possible near the rotation frequency
�n � �n=m�n, where n and m are integers. In the case of a
Gaussian seamount, the resonance �n � n cannot exist at
perturbation frequencies n > 0:44. The rather simple reso-
nance, closest to the elliptic point, is �n � �4=5�n or
�n � �2=3�n, and so on. A more accurate determination of
the multiplicity of the nonlinear resonance closest to the
vortex center requires a more detailed analysis. We suppose
that there exists the following mechanism determining the
chaotization degree in phase space. As long as the nonlinear
resonance closest to the vortex center is located rather far

from the center, it is overlapped by a subsequent resonance.
In accordance with the resonance overlap criterion [93, 97],
the stability islands determined by these resonances are
destroyed, either totally or partially. As a result, trajectories
are chaotic in the considered phase space region, and we
have a local maximum of the chaotization degree in the
phase space. With a further increase in the perturbation
frequency, the width of the nonlinear resonance closest to
the vortex center decreases because the rotation frequency of
the corresponding trajectories are beyond the critical value
(0.44 for a Gaussian seamount, 0.22 for an elliptic seamount,
and 0.56 for the two-layer model) until this nonlinear
resonance vanishes completely. As the width of the non-
linear resonance closest to the vortex center decreases,
overlapping with the subsequent resonance also decreases.
The destruction of the latter resonance ceases and one
observes the formation or enlargement of the corresponding
stability island, i.e., we have a local minimum of the
chaotization degree in phase space. With a further increase
in the perturbation frequency, the last nonlinear resonance
remaining in the system approaches the center, simulta-
neously expanding in accordance with the estimate of the
width of nonlinear resonance d�n � n=m in Ref. [93]. Expan-
sion of the two nonlinear resonances closest to the vortex
center leads to an increase in their overlapping degree and, in
accordance with the resonance overlap criterion, to the
destruction of the corresponding stability islands, i.e., to an
increase in the degree of chaotization in the phase space up
to the attainment of a local maximum. After that, the
subsequent resonance starts to disappear and the situation
repeats. As the resonance with n=m < 1 approaches the
vortex center, the resonance widths start to decrease with
increasing m. Apparently, the global maximum of the
chaotization degree in the phase space is located in the
vicinity of the perturbation frequency that is critical for the
model, i.e., the frequency at which the n=m � 1 resonance
leaves the system. For a Gaussian seamount, elliptic
seamounts with two orientations with respect to an incident
current, and the two-layer model, the perturbation frequen-
cies corresponding to local maxima of the chaotization
degree in phase space and the related multiplicities of the

0.6

O

0.5

0.4

0.3

0.2

0.1

1 2 r

4

1

3

2

Figure 18. Dependence of the fluid-particle rotation frequency on the

distance from the elliptic point along the line connecting the elliptic and

hyperbolic points. The Gaussian (curve 1), elliptic at y � 0 (curve 2),

elliptic at y � p=2 (curve 3), and two-layer (curve 4) models.

100

N

95

90

85

80

75

70
0 0.5 1.0 1.5 2.0

n

100
N

95

90

85

80
0.20 0.22 0.24 0.26 0.28 0.30

n

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
n

100

N

95

90

85

80

Figure 17. Perturbation-frequency dependence of the limit fraction of

washed out tracers (the two-layer model).

1172 K V Koshel, S V Prants Physics ±Uspekhi 49 (11)



resonances that attain the critical value of the frequency are
given in the table (see [86]).

In general, the values given in the table confirm the
conclusion that the perturbation frequencies at which the
degree of chaos in phase space attains its local and global
minima are related to the maximum rotation frequency of
fluid particles for the corresponding model. But the accuracy
of determining the multiplicity of the nonlinear resonances
closest to the vortex center is appreciably reduced when
approaching the optimal frequency. Apparently, this is
related to the fact that our speculations are based on the
perturbation theory, because both the KAM theorem and the
nonlinear resonance analysis are based on the assumption
that the perturbation is small. In our case, the center of the
vortex of the perturbed system is appreciably displaced with
respect to the position of the elliptic point in the unperturbed
system. This may cause a drift of the frequency of the
nonlinear resonances closest to the vortex center and the
critical frequency of its existence. An analysis of the PoincareÂ
cross sections at optimal frequencies with decreasing the
perturbation amplitude confirms this conclusion. In other
words, we observe a drift of the frequency of a nonlinear
resonance with increasing the perturbation amplitude.

Although the above estimates are rough, we can conclude
with confidence that in the models considered, the measure of
chaos in phase space is rather large within the perturbation
frequency range from half to twice the critical frequency. The
estimate of the position of local extrema in the vicinity of
frequencies corresponding to the closeness of nonlinear
resonances to the critical frequency can also be considered
convincing.

6. Laboratory experiments
on modeling geophysical chaotic advection

6.1 A current with gyres
In this section, we present the results of a laboratory
experiment carried out at the Woods Hole Oceanographic
Institution in 2002 [77] with the aim of mimicking the
interaction between a deep western boundary current and
its adjacent recirculation gyres, and discuss how they can be
interpreted with the help of geometric structures found in
the basic kinematical model of chaotic advection (see
Section 3). The experimental device is a cylindrical tank
with the diameter 42.5 cm, mean depth 20 cm, and a
slopping bottom with the slope 0.15 from the north to the

south. The tank rotates with the angular velocity
O � 2 rad sÿ1. The lid at the water surface rotates at a
differential rate DO < 0, producing a uniform anticyclonic
surface stress curl. This results in a western boundary
current (the velocity is of the order of 0.1 ± 0.3 cm sÿ1)
with two adjacent gyres. The main control parameter of the
nonlinearity is the ratio of the Stommel boundary layer
width to the inertial boundary layer width d ' 8

�������������
DO=O

p
[77]. At d4 1:1, the flow is almost steady. Varying the lid
rotation rate O�t� � DO0�1� Aosc sin 2pt=Tosc�, it is possible
to produce a time-periodic flow. Three methods were used for
measuring and visualizing the horizontal circulation. A
horizontal laser beam illuminated neutrally buoyant parti-
cles, and their tracks were recording by a digital camera.
Direct velocity measurements were made using an image
velocity meter with a spatial resolution of 1 cm. Visualization
of the flow also involved the introduction of dye into the flow
and its illumination and video recording.

Within the range 1:14d4 1:4, the flow consists of two
gyres, a northern one and a southern one, which are revealed
as an 1-like figure under injecting dye. In the steady flow,
mixing of dye occurs due to molecular diffusion. Chaotic dye
advection occurs under the periodic perturbation of the flow
(204Tosc � 2p=DO4 131 s). Figure 19 shows dye patterns
with the following three different injection points: in the
western boundary current (i.e., outside the unperturbed
separatrix, Fig. 19a), at the edge of the southern gyre (i.e.,
just inside its internal edge, Fig. 19b), and well inside the
southern gyre (Fig. 19c). The experiments were carried out at
d � 1:25, Aosc � 0:05, and Tosc � 131 s [77]. In the first two
cases, transport and mixing demonstrate prominent fila-
ments, which evolve in both the southern gyre (where they
are more visible because of injecting the dye near the southern
gyre) and the northern gyre (north is to the left and west is
downward in these figures). In the figure, we in fact see the
evolution of the unstable manifold L because the dye is
injected near the unperturbed 1-like separatrix. When the
dye is injected inside the southern gyre, it remains there for a
long time because the KAM tori are barriers penetrable only
by molecular diffusion.

We note a similarity in the tracks of numerical (see Fig. 4)
and laboratory (Fig. 19b) experiments. In both cases, dye
was injected near the corresponding unperturbed separa-
trices, and both tracks are images of the corresponding
unstable manifolds. The difference is caused by the fact
that the unperturbed separatrix of the model flow has a loop-
like form and the model flow therefore has a single

Table.Values of the perturbation frequencies corresponding to local maxima in the fraction of tracers washed out from the vortex region for models with
a Gaussian seamount, elliptic seamount, and two layers. Multiplicities of the nonlinear resonances for which these frequencies are critical are indicated.

Gaussian seamount Elliptic seamount Two-layer model

y � 0 y � p=2

n n=m � 0:44=n n n=m � 0:2=n n n=m � 0:22=n n n=m � 0:52=n

0.22
0.26
0.28
0.33
0.44

2
5=3

3=2

4=3

1
0.15
0.2

0.24
0.27
0.29
0.38

4=3

1

4=5

3=4

2=3

1=2

0.11

0.165
0.22

0.3

0.33
0.44

2=1

4=3

1

4=5

2=3

1=2

0.26
0.32
0.34
0.41
0.48
0.59
0.65

0.76
1

2
5=3

3=2

4=3

� 1

� 1

4=5

2=3

1
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(southern) gyre. The geometric analysis of the fractal
properties of the flow, transport, and mixing of passive
scalars given in Section 3 can explain the main properties
of chaotic advection in the laboratory experiment [77],
which, as is stated by the authors of Ref. [77], can be
considered a laboratory model for fluid mixing among
western boundary currents and subbasin recirculation gyres.

6.2 A geostrophical jet with Rossby waves
In this section, we present results of laboratory experiments
by H Swinney's group on chaotic advection of passive
particles in a laboratory model of a quasi-geostrophic jet
current with Rossby waves [98 ± 100]. A tank with fluid,
confined between two cylinders, rotates rapidly. The top and
sides are transparent to allow recording dye particle trajec-
tories with a video camera mounted on a rotating platform
above the tank. A quasi-two-dimensional flow is forced by
continuously pumping fluid in and out of the tank through
holes in a sloped bottom (alternating sources and outlets,
each of which consists of a large number of small-diameter
holes). The sloped bottom mimics the beta-effect Ð a
variation of the Coriolis force with the latitude. The pumping

creates a radial pressure gradient, which, due to the Coriolis
force, produces an azimuthal jet. The jet has a stable wavy
shape in a wide range of the experimental parameters.
Depending on the pumping force and the rotation velocity,
two-dimensional currents with different wavenumbers or a
different number of vortices are created. The azimuthal
component of the velocity of the jet was two orders of
magnitude larger than the mean radial velocity.

The measured radial dependence of the azimuthal
component of the velocity for Reynolds numbers � 104 has
the form of the Bickley jet sech2

��rÿ �r�=d �, where �r and d are,
respectively, the measured values of the mean radius and
width of the jet. Hence, the streamfunction should have the
form of a hyperbolic tangent. Fourier transforms of the
azimuthal component of the velocity indicate that there are
two or more azimuthal modes. The simple streamfunction in
polar coordinates was therefore assumed in Ref. [99] to be

C � du0
X
j

ej tanh
rÿ �rÿ b cosmj�yÿ ojt�

d
: �74�

It is similar to streamfunction (14) for the kinematic model of
the meandering jet current. Here,

P
ej � 1, u0 is the

maximum possible velocity, oj is the azimuthal velocity of
the j th wave with respect to the laboratory reference frame,
and kj is the wavenumber of the j th wave. In the reference
frame rotating with a speed o1 (i.e., with the new set of polar
coordinates r and j � yÿ o1t), function (74) becomes

C 0 � du0

�
e1 tanh

rÿ �rÿ b cosm1j
d

� e2 tanh
rÿ �rÿ b cosm2�jÿ do2t�

d
� . . .

�
ÿ o1r

2 ; �75�

where doj � oj ÿ o1. It is evident that in the presence of only
one wave o1, streamfunction (75) is stationary. With two or
more waves, the equations of motion

dr

dt
� ÿ 1

r

qC 0

qj
;

dj
dt
� qC 0

qr
�76�

are nonintegrable in general, and advection may be chaotic.
We note that in contrast to the time dependence in the
experiments in [77] (see Section 6.1) and other experiments
on chaotic advection with periodic pumping [2], the time
dependence in the present flow arises in a natural way due to
the azimuthal waves.

The study of radial transport in the discussed experiments
showed the presence of a barrier to mixing across the jet even
with Reynolds numbers of � 105, for which the Eulerian
velocity field was turbulent. PoincareÂ cross sections computed
with nonlinear dynamical system (76) with streamfunction
(75) demonstrated the existence of such a barrier with both
two-wave and three-wave perturbations [99] at reasonable
values of the parameter b=d < 1 (the experimental values are
in the range b=d � 0:5ÿ0:6). Variance is a measure of the
azimuthal transport,

s 2�t� � 
Dy 2�t; t��ÿ 
Dy�t; t��2 ; �77�
Dy�t; t� � y�t� t� ÿ y�t� ;

where the averaging is over time t for individual trajectories
and over different trajectories in the ensemble. Spreading of a
dye patch in an inhomogeneous velocity field is possible due
to spatial and temporal variations in the fluid velocity or

a

b

c

Figure 19.Dye patterns in the laboratory experiment [77] with injection (a)

in the western boundary current, (b) just inside the edge of the southern

gyre, and (c) well inside the southern gyre. Courtesy of L Pratt (Woods

Hole Oceanographic Institution, Woods Hole, USA).
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molecular diffusion. Molecular diffusion is totally negligible
on the time scale of the experiments. But in real experiments,
technical noise and finite-size particle effects (neutrally
buoyant tracers � 1 mm in diameter) deviate real trajectories
from the corresponding theoretical ones.

The presence of coherent structures (jets and vortices)
results in correlations in particle motion that can persist for
long distances and/or times. This may result in the inapplic-
ability of the central limit theorem and, therefore, in an
anomalous diffusion s 2 � t g, g 6� 1 (see reviews on the
anomalous diffusion [8, 101]). Both subdiffusion with g < 1
and superdiffusion with g > 1 are possible. Transport proper-
ties are very simple in the case of the stationary streamfunc-
tion in the moving frame. The azimuthal coordinate y�t� of
the particles in the vortex oscillates around a constant value
and grows linearly in time for the particles in the jet. The
breakup of some invariant curves in flows with periodic
streamfunction (75) results in effects typical of Hamiltonian
systems described in Section 3: `stickiness' of trajectories to
the boundaries of `islands' in the phase space, fractals, Levy
flights, anomalous transport, etc. These effects are due to the
existence of the basic invariant sets in Hamiltonian systems
(see Section 3). A typical chaotic trajectory in a nonhyper-
bolic Hamiltonian system demonstrates intermittency, i.e., its
chaotic fragments alternate with regular ones. The regular
fragments consist of events of two kinds: trapping of
trajectories in dynamical traps (`stickiness'), easily identified
in y�t� records as small oscillations, and Levy flights with a
steady azimuthal velocity represented by long diagonal
straight lines on the graph y�t�.

Recording trajectories of a large number of particles
(from 1300 to 1700), the authors of Ref. [102] stated the
following properties of the probability distribution functions
P�t� for these events. The most representative results were
obtained with a seven-vortex jet flow. The probability
distribution function for the flight duration shows a clear
power-law `tail', PF�t� � tÿm, where m � 3:2� 0:2. This value
is approximately the same for both clockwise and counter-
clockwise flights. The sticking probability distribution func-
tion does not show an exponential decay or a clear power-law
`tail.' The variance for an ensemble of tracers wasmeasured to
be s 2 � t 1:5; a superdiffusion therefore occurs. We note that
for m > 3, the central limit theorem predicts normal diffusion
with s 2 � t g, where g � 1. Analogous measurement with a
six-vortex periodic flow showed the magnitude m � 2:5� 0:2
and superdiffusion with g � 1:65� 0:15.

Laboratory experiments in a two-layer rotating fluid were
described in Ref. [103]. A sequence of period-doubling
bifurcations were observed in Ref. [104] en route to
baroclinic chaos. Theoretical and experimental works on
chaotic behavior in unstable baroclinic systems were
reviewed in Ref. [105]. Chaotic mixing and transport of
passive particles in a quasi-two-dimensional four-vortex
flow with a time-periodic dependence of the Eulerian velocity
field were studied experimentally in Refs [106 ± 108]. The
experiments were performed in a thin layer of electrolyte
where the flow was generated magnetohydrodynamically. A
review of the stability of the vortex structures in quasi-two-
dimensional shear flows was given in Ref. [109].

7. Conclusion

We have shown the fruitfulness of the ideas and methods of
the theory of dynamical systems in describing Lagrangian

transport and mixing in the ocean. We briefly mention some
problems left beyond the scope of this review. Advection
equations with fully deterministic right-hand sides are, of
course, idealistic models of geophysical flows. Even numer-
ical computation is subject to random errors. The smallness
of errors in computing stable trajectories guarantees a
reproducible result. In the case with unstable chaotic
trajectories, an exponential increase in a small error rapidly
leads to a departure of the computer trajectory from the
theoretical deterministic one. This may seem to disavow any
numerical computation of chaotic trajectories. But it is
known that in strongly chaotic systems, there is always a
chaotic deterministic orbit (i.e., without any noise) near any
noisy orbit. This has been rigorously proved for maps with
hyperbolic dynamics. We are therefore unable to exactly
compute a theoretical chaotic orbit with a given initial
point. Instead, we obtain a noisy computer orbit, which is a
theoretical orbit for a close initial point. In J Ford's words:
``Gods of chaos help us to compute uncomputable.''

In modeling transport and mixing in real geophysical
flows, it is necessary to take multi-scale turbulence into
account. In the framework of the dynamical approach, a
random velocity field with given statistical properties must be
added to the right-hand side of the advection equations. With
kinematic models, the respective streamfunction can be
written as a sum with a large number of harmonics with
random phases within a given frequency range. In papers [25,
27, 110], it has been shown for the chaotic advection model
with a fixed point-like vortex in an unsteady incoming flow
that some fractal and anomalous statistical properties of
transport are persistent under small and moderate noise.
Moreover, some properties of the Lyapunov stability of
motion survive under a noisy perturbation. As a result, there
arise the so-called coherent clusters in Hamiltonian systems
with noise [110, 111], which are compact blobs of passive
tracers advected coherently in noisy hydrodynamical incom-
pressible flows for a long time (as comparedwith the temporal
characteristics of the flow). This phenomenon occurs due to
nonlinear resonances in Hamiltonian systems, in contrast to
stochastic clusterization, which may occur in totally random
velocity fields [112, 113].

Thus, there are three basic mechanisms of nonlinear
transport. In the first, as a result of bifurcations, there arise
hyperbolic (saddle) points with corresponding stable and
unstable manifolds that strongly change the direction of
transport in their neighborhoods. The second mechanism is
caused by periodic or quasiperiodic perturbations (chaotic
advection), and the third by random perturbations. If the
Eckman transport, forced by wind, occurs only in the very
upper layer of the ocean, then chaotic advection may be a
dominant mechanism at large depths.

Chaotic advection is an effective mechanism of transport
for plankton, larvae, and fry. Mathematical models for the
processes of survival, death, and transport of biological
phenomena are self-consistent sets of equations of advec-
tion, reaction, and diffusion [114]. The dynamical system
approach in physical oceanography is not limited to problems
of advection of passive particles. This approach may be used
successfully and has already been used in studies of convective
mixing and transport (for example, in thermohaline convec-
tion), advection of biologically and chemically active parti-
cles, and advection of finite-size tracers in viscous fluids.
These tasks require methods of the theory not of Hamiltonian
but of dissipative systems.
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In physical oceanography, a problem is conventionally
considered solved as soon as hydrodynamic equations of
motion are solved. From the standpoint of the dynamical
approach to the problems of transport and mixing, it is only a
beginning. A Eulerian velocity field can be found experimen-
tally or as a result of numerical integration of relatively
complicated dynamically consistent models of flows. Then
the corresponding data are substituted in the right-hand side
of the advection equations for passive scalars (1). The
discovery and investigation of the Lagrangian structures,
barriers to transport, exit channels, and regions of intensive
mixing provide valuable information about basic properties
of transport and mixing of water masses in the ocean and
atmosphere. But the velocity fields, which are input data in
computing invariant Lagrangian manifolds, contain inevita-
ble errors due to finite-size griding, uncertainties in initial
conditions and parameters (for example, in a field of wind),
and so on. How robust and stable (in the common sense) are
the Lagrangian structures with respect to errors in a Eulerian
velocity field, and how strongly do the Lagrangian and
Eulerian errors correlate with each other? These questions
are far from being answered yet. We mention paper [115],
where they have been discussed.

Another problem is connected with the fact that a
Eulerian velocity field, computed or measured, is not a
dynamical system in the strict sense, but is a collection of
numbers on a spatial and temporal grid. This field is known
(with a finite accuracy) in a finite time interval and is therefore
aperiodic. Mathematical notions in the theory of dynamical
systems (invariant manifolds, fractals, sets, chaos, Lyapunov
exponents, etc.) are defined in infinite time. Mathematicians
have been able to generalize the basic notions in the theory of
dynamical systems to finite times. Strictly speaking, the
simple kinematic model considered in Section 3 is not chaotic
because all trajectories of passive particles in an open flow are
asymptotically regular. But we have shown that motion in the
mixing region has all the signatures of authentic chaos with a
homoclinic structure, fractals, a chaotic invariant set, and a
positive Lyapunov exponent. Because infinite time is not a
physical reality, we should not worry about this, but care is
necessary if the velocity field is determined not analytically
but numerically in a finite time interval. It is evident that an
extrapolation of results to longer times is generally speaking
incorrect. A hyperbolic structure in real flows, whose
complexity is the reason for chaotic transport, is of a
transient nature.

In conclusion, we mention chaotic transport and mixing
in the atmosphere. Application of the dynamical system
approach in describing transport and mixing in the atmo-
sphere is motivated by two circumstances. Stable atmospheric
stratification suppresses vertical motion. As a result, trans-
port is mainly quasi-horizontal and occurs at isoentropic
surfaces. Large-scale flows with a characteristic scale of the
order of hundreds of kilometers (which is much larger than
the size of clouds) are dominant. The most important passive
tracers in the atmosphere are water vapor, ozone, various
chemicals, and potential vorticity, which can be approxi-
mately considered a passive scalar. The rapid rotation of the
Earth produces large-scale Rossby waves in the atmosphere.
In two-dimensional and incompressible atmospheric flows, it
is possible to introduce a streamfunction and obtain Hamil-
tonian equations of motion for passive particles of type (5).
Using the same methods that have been applied to oceanic
flows in this review, one can study manifestations of

dynamical chaos in specific atmospheric models, its dynami-
cal, statistical, and topological properties, and the fractal
dynamics of transport in the atmosphere. Results of labora-
tory modeling of transport by Rossby waves were presented
in Section 6. In references [116 ± 120], mathematical aspects of
transport and mixing of passive particles in running waves
were studied. Some of the models considered in the cited
papers had been developed in earlier papers on Hamiltonian
chaos with particles in the field of two or more waves (see
books [7, 121] and the references therein). Numerical
simulation of chaotic advection in the atmosphere has
revealed inhomogeneous mixing, barriers to transport, and
anomalous transport [122 ± 126] that are typical of Hamilto-
nian geophysical flows. Similar features have been found in
the real atmosphere. For example, the boundary of the winter
polar vortex in the stratosphere (the atmospheric zone
ranging from 10 to 50 km) is apparently a barely permeable
barrier across which transport is difficult. Atmiddle latitudes,
there are regions of strong mixing outside the vortex and to
some extent inside it. The subtropical jet is a barrier
separating the upper troposphere and the lower tropo-
sphere, whereas the mixing regions are located at both sides
of the jet in the directions of the poles and the equator. The
dynamics of chemically or biologically active diffusive
impurities are of practical interest. The important role of the
chaotic invariant set in geophysical flows advecting active
impurities, for example, phytoplankton in the ocean and
chemical reactants in the atmosphere, should be mentioned.
Such sets are kinds of dynamical catalysts of biological
productivity and chemical reactions.
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