
width is 30 ± 50 mm. A dependence of the intensity of
generation on the target length has been examined experi-
mentally. Saturation of lasing has been achieved, and a
reliable estimate of the small-signal effective gain
(� 30 cmÿ1) has been obtained; the maximum energy of
laser X-ray radiation does not exceed approximately 1 mJ.
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Monte Carlo studies of critical phenomena
in spin lattice systems

A K Murtazaev

1. Introduction

The basic ideas of modern phase transition and critical
phenomena theories are those associated with and involved
in the scaling and universality hypotheses and renormaliza-
tion group theory [1, 2].

Although it was believed until very recently that static
phase transitions and critical phenomena have been fully
explored and do not really need anything more in terms of
theory, now the study of frustrated systems, magnetic super-
lattices, and spin systems with quenched nonmagnetic
disorder shows that this is by far not the case [2 ± 4].

Applied to such systems, traditional theoretical and
experimental methods run into serious difficulties in an
attempt to calculate critical parameters and to uncover the
nature and peculiarities of critical behavior (including the
mechanisms behind them), which led to the intense use of
Monte Carlo (MC) methods in studies of phase transitions
and critical phenomena in these systems [3 ± 5].

The subject matter of this report is the critical behavior of
the 3D Ising model with quenched nonmagnetic order for the
example of cubic lattice and that of a model that was
suggested to describe a real iron ± vanadium superlattice
�Fe2=V13�L.

There are quite a number of reasons for interest in the
critical behavior of such systems and their models. An
actively discussed topic in the field has been that of how
quenched nonmagnetic disorder affects the critical properties
of spin lattice systems [2 ± 4, 6 ± 8]. In an important step, the
so-called Harris criterion was developed within the frame-
work of renormalized perturbation theory, which predicts, on
a qualitative level, when and whether a particular impurity is
of great concern in determining critical behavior [9]. Accord-
ing to this criterion, nonmagnetic disorder does play a role
only in the situation when the specific heat critical exponent is
positive, a > 0: a condition which is satisfied only if the
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effective Hamiltonian of the system is isomorphic to the Ising
model near the critical point.

While it is a well-established fact, theoretically, numeri-
cally, and experimentally, that nonmagnetic impurities
change the critical exponents of the Ising model [2 ± 4, 7], the
question remains if the new critical exponents of a given
model are universal Ð that is, independent of the impurity
concentration up to the percolation thresholdÐ or whether a
certain line of fixed points exists which determines the
continuous variation of these critical exponents with the
concentration. In addition, there is every reason to believe
that critical parameters depend on exactly how disorder was
introduced into the model at hand [6].

Given, further, the inconsistent nature of the available
experimental data [10, 11], a no less interesting and hardly less
confusing situation exists with regard to the critical properties
of magnetic sublattices. While the values of some critical
exponents correspond to 2D systems, those of others are
characteristic of 3D systems. The fact that Fe=V superlattices
display the critical exponents expected for 3D systems points
to the importance of interlayer interaction for describing
critical behavior. Exposing a superlattice to a hydrogen
atmosphere causes hydrogen to penetrate into the vanadium
sublattice and so to change the thickness of the vanadium
intervening layer, thus allowing one to continuously change
the nature of this interaction from antiferromagnetic to
ferromagnetic. Because the amount of absorbed hydrogen
depends on pressure, it follows that at a certain external
pressure the interlayer interaction can be reduced to zero Ð
with the result that transitions from 3D magnetism to 2D
magnetism and back again can be observed. Because critical
exponents are highly sensitive parameters, their calculation
will make it possible to sufficiently accurately determine the
universality classes of the critical behavior of such systems, as
well as the peculiarities and conditions of the transition
(crossover) from 3D to 2D magnetism.

2. Ising model with quenched disorder,
and the investigation technique

2.1 Ising model with quenched disorder
The Ising model with quenched disorder is outlined in Fig. 1.
If the impurity distribution in our model is assumed to be
canonical, then:

(1) the sites of the cubic lattice carry spins Si that take the
following values Si � �1 and contain nonmagnetic impu-
rities (vacancies) that are distributed randomly and fixed;

(2) the binding energy between two sites is zero if at least
one site is occupied by a nonmagnetic atom, and equals jJj if
both are occupied by magnetic atoms.

The microscopic Hamiltonian of such a system can be
written down as

H � ÿ J

2

X
i; j

riSi rjSj ; �1�

where

ri � 1 ; if the site carries a spin ;
0 ; if the site is occupied by a nonmagnetic impurity:

�

The concentration p of magnetic spins is determined by
summing the absolute value of the spin over all lattice sites,

namely

p � 1

L 3

XL 3

i� 1

rijSij : �2�

The values p � 1 and p � 0 correspond to the pure Ising
model and an empty impurity-only lattice, respectively.

2.2 Investigation technique
Cluster MC algorithms have proven to be a powerful,
reliable, and highly efficient tool for studying critical
phenomena in various systems and models [12] (see also
references cited in the papers [4, 5, 8]). Our choice among
these was the Wolff algorithm, currently viewed to be the
most efficient. Its specific realization in our study is as
follows.

(1) A lattice site is selected randomly. If the site is found to
harbor a nonmagnetic impurity, another lattice site is selected
randomly, and so on until a site with a magnetic spin Si has
been encountered.

(2) All the nearest neighbors Sj of a given spin Si are
examined. If a neighboring site is occupied by a magnetic
spin, then, with the probability p � 1ÿ exp �ÿ2K� (where
K � J=kBT, kB is the Boltzmann constant, and T is the
temperature), a link is established between Sj and Si,
provided Sj and Si have equal values for J > 0. This is
followed by scanning the nearest neighbors of the last spin
with which a link was established. This process continues
until the boundaries of the system are reached.

(3) All those spins having links established between
themselves form a `cluster'.

(4) The cluster so obtained flips with the probability unity.
Calculations were performed for systems with periodic

boundary conditions and linear dimensions L� L� L � N,
L � 20ÿ60, at spin concentrations p � 1:0, 0.95, 0.9, 0.8, 0.7,
0.65, and 0.60. Initial configurations were specified in such a
way that all the spins were aligned along the z-axis. To bring a
system into the thermodynamically equilibrium state, none-
quilibrium regions of length up to 6� 106 MC steps per spin
were cut off (here, one MC step per spin corresponds to one

Figure 1. A weakly diluted Ising model with quenched nonmagnetic

impurities.
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flip of a cluster), and an averaging over 50 to 80 various initial
configurations was carried out.

It should be remembered that simultaneously with
decreasing magnetic site concentration, the impurity distribu-
tion over the lattice fluctuates stronger, requiring that more
impurity configurations with various disorder realizations be
used for averaging various thermodynamic parameters.
Notice that modeling large-sized lattices takes much more
computational effort for each impurity configuration.

2.3 Results
To see how specific heat and susceptibility of the system
progressed with temperature we resorted to the fluctuation
relations (see references cited in the papers [4, 5])

C � �NK 2�ÿhU 2i ÿ hUi2� ; �3�
w � �NK�ÿhm 2i ÿ hmi2� ; �4�

where K � J=kBT, N � pL 3 is the number of magnetic sites,
U is the internal energy, m is the system's magnetization, and
angle brackets denote ensemble averaging. The critical
temperature was determined using the fourth-order Binder
cumulant UL [4 ± 7]:

UL�T;P� � 1ÿ


m 4�T; p;L��

3


m 2�T; p;L��2 ; �5�

wherem is the magnetization of a system possessing the linear
dimension L. In this method, the critical temperature Tc is
determined as the point where the temperature dependences
of the cumulantsUL constructed for systems of various linear
dimensions L intersect.

Figure 2 depicts the characteristic temperature depen-
dences of specific heat C for systems with different spin
concentrations. It should be noted that as the concentration
of nonmagnetic impurities c � 1ÿ p increases, the specific
heat and susceptibility peaks (in analogous dependences) shift
toward lower temperatures and get lower and higher,
respectively. Figure 3 shows the characteristic temperature
dependence of averaged Binder cumulants UL�T; p� for
systems with different linear dimensions at the spin concen-

tration p � 0:65. The point of intersection of these curves
corresponds to the critical temperature.

The specific heat, susceptibility, magnetization, and
correlation radius critical exponents (denoted by a, g, b, and
n, respectively) were determined by employing finite-size
scaling theory in which, for sufficiently large systems with
periodic boundary conditions, the near-Tc behavior of the
basic thermodynamic functions Ð the free energy F, specific
heat C, susceptibility w, and magnetization m Ð scales in the
following way [13]:

F�T;L� � LÿdF0�tL 1=n� ; �6�
C�T;L� � La=nC0�tL 1=n� ; �7�
w�T;L� � L g=nw0�tL 1=n� ; �8�
m�T;L� � Lÿb=nm0�tL 1=n� ; �9�

where t � jTÿ Tcj=Tc, with Tc � Tc �L � 1�, and a, b, g, n
are the statistical critical exponents for which the hyperscal-
ing relationship 2ÿ a � dn � 2b� g holds true [1].

Furthermore, finite-size scaling theory can be used to
determine n, the critical exponent of the correlation radius.
This is done by noting that

Vn � L 1=ngVn
; �10�

where gVn
is a certain constant, and the role of Vn can be

played by

Vn � hm
nUi
hmni ÿ hUi ; n � 1; 2; 3; 4 : �11�

From relationships (8), (9) it follows that at T � Tc, the
susceptibility andmagnetization obey the following relations:

w � L g=n ; �12�
m � Lÿb=n : �13�
It is these relations which we used in evaluating g and b.

To approximate the temperature dependence of specific heat
on L, in practice other expressions are normally applied, for
example, the following ones [4, 5]:

Cmax�L� � Cmax�L � 1� ÿ ALa=n ; �14�

where A is a certain factor.

2.0

p � 1.0

p � 0.95

p � 0.9

p � 0.8

p � 0.6

L � 60

1.5

1.0

0.5

0
1 2 3 4 5

kBT=jJj

C=kB

Figure 2. Specific heat versus temperature for a 3D Ising model with

nonmagnetic impurities �L � 60�.
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2.646 2.667 2.688 2.709 2.730 2.751

Tc � 2.7028

0.6
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0.2

0

UL

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4
kBT=J

L � 20

L � 28

L � 36

L � 44

p � 0.65

Figure 3. Binder cumulants UL averaged over impurity configurations, as

functions of temperature for a system with p � 0:65.
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The critical exponents a, b, g, and n were calculated by
constructing the L-dependences of C, m, w, and Vn. The
nonlinear least square analysis of the data yielded the values
of a=n, b=n, g=n, 1=n, and then the values of n obtained in the
framework of this study were utilized for determining the
critical exponents a, b, g.

Figure 4 falls back on a log-log scale to represent the
characteristic dependence of the susceptibility on the linear
lattice dimension L for the spin concentration p � 0:8. It
should be emphasized that the susceptibility data obtained in
this study do not deviate from a straight line even at small
values of L. Clearly, the number of impurity configurations
we used for averaging and the dimensions L5 20 of the
systems studied did enable the asymptotic critical regime to be
reached. These conditions were secured for all the other
systems studied as well. Importantly, we calculated the
exponent n directly from numerical simulation results
obtained in the framework of the study, whereas many others
leant upon various types of scaling relations for the purpose.

In Table 1 are shown the values of critical exponents for
different values of p, as calculated for a corresponding n�p�. It
can be seen that the critical exponents in the covered range of
concentrations p differ from the corresponding values for a
pure system. As regards the slight concentration dependence
displayed by the critical exponents of a weakly diluted system
�p5 0:8�, the crossover from the pure system to a diluted one
could be the explanation.

At strong dilutions �p < 0:7�, the corresponding expo-
nents are seen to increase markedly in absolute values Ð
possibly due to the presence of another random fixed point
which, if it exists, is necessarily characterized by a new set of
critical exponents. This scenario of a critical behavior seems
indeed to be the case according to the experimental work

reported in Ref. [14], where the critical exponents for diluted
FepZn1ÿpF2 magnetics with p � 0:6 and p � 0:5 are found to
be practically identical to what we obtained for p � 0:6.

The type of critical behavior we saw occur at strong
dilution �p < 0:7� is consistent with the assumed influence
of another Ð `percolation' Ð fixed point [15, 16]. Also note,
finally, that for p � 1:0 our values of critical exponents are
in excellent agreement with those currently considered
standard [3 ± 5].

3. �Fe2=V13�L superlattice model and the
investigation technique

3.1 �Fe2=V13�L superlattice model
�Fe2=V13�L superlattices are themost interesting ones in which
to study critical properties and, possibly, the crossover from
3D to 2D magnetism. It should be noted that, with the iron
layer only two monolayers thick, every iron atom in these
superlattices possesses four nearest neighbors in the adjacent
iron layer. The iron layers are shifted with respect to each
other by a half lattice constant along the x- and y-axes. The
interaction between the nearest neighbors is ferromagnetic in
nature and determined by the intralayer exchange parameter
Jk. In addition to that, the atoms of iron layers interact with
each other through the vanadium layers (interlayer interac-
tion), the coupling parameter J? depending both for its
magnitude and sign on the iron layer separation, i.e., on the
hydrogen atmosphere pressure [10, 11]. The magnetic
moments of the iron atoms are aligned in the xy-plane. A
schematic of a vanadium± iron superlattice is given in Fig. 5.
The Hamiltonian of such a system can be represented in the
form of a modified three-dimensional xy-model, namely

H � ÿ 1

2

X
i; j

Jk�Sx
i S

x
j � S

y
i S

y
j � ÿ

1

2

X
i; k

J?�Sx
i S

x
k � S

y
i S

y
k � ;

�15�
where the first (second) sum accounts for the exchange
interaction between a magnetic atom and the nearest
neighbors within the layer (between a magnetic atom and
one atom in the neighboring layer, through the vanadium
intervening layer), while Sx

i andS
y
i are the spin projections on

the x- and y-axes. The interlayer-to-intralayer exchange ratio
J?=Jk depends on the iron layer separation which in turn
depends on how much hydrogen the vanadium layers have
adsorbed. In our model r � J?=Jk is a specified parameter
and can be varied from r � ÿ1:0 to r � 1:0.

3.2 Investigation technique
The calculations were performed on model systems with
periodic boundary conditions and linear dimensions

Table 1. Finite-size scaling results for the critical exponents of a 3D Ising
model with quenched nonmagnetic impurities.

p kBTc=jJj n a g b

1.0

0.95

0.9

0.8

0.7

0.65

0.6

4.5106(6)

4.2591(4)

4.0079(8)

3.4956(6)

2.9682(8)

2.7028(9)

2.4173(9)

0.624(2)

0.646(2)

0.664(3)

0.683(4)

0.716(6)

0.708(8)

0.725(9)

0.108(2)

ÿ0.010(2)
ÿ0.014(3)
ÿ0.016(3)
ÿ0.087(6)
ÿ0.091(8)
ÿ0.093(9)

1.236(2)

1.262(2)

1.285(3)

1.299(3)

1.431(6)

1.426(8)

1.446(9)

0.322(2)

0.306(3)

0.308(3)

0.310(3)

0.341(6)

0.343(8)

0.349(9)

Fe (2 monolayers)

Fe (2 monolayers)
Jk

J? V (13 monolayers)

Figure 5. Schematic of a vanadium± iron superlattice �Fe2=V13�L.
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Tc � 3.4956
p � 0.8

Figure 4. Log-log plot of susceptibility w versus linear dimension L for a

system with p � 0:8.
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L� L� L � N (L � 8ÿ40 is the number of magnetic Fe
layers) using the same Wolff single-cluster algorithm (a
version of the MC method) described in Section 2.2. To
bring a system into the thermodynamically equilibrium
state, a nonequilibrium region of the Markov chain with
length up to 3� 104 MC steps per spin was cut off.
Thermodynamic variables were averaged along a Markov
chain of length up to 1:2� 106 Monte Carlo steps per spin.
Initial configurations were specified in such a way that all the
spins were aligned along the x-axis.

3.3 Results
Thermodynamic parameters and critical exponents were
calculated using the methodology similar to that described
in Section 2.3.

To keep watch on the peculiarities of behavior of the
specific heat and susceptibility, relationships (3) and (4) were
applied. A typical temperature dependence of the suscept-
ibility w for systems of various sizes but with the same
interlayer-to-intralayer exchange ratio r � 0:4 is displayed in
Fig. 6. We see that as the linear dimensions of the system
increase, the susceptibility peak wmax�L� rises and shifts
toward lower temperatures. The specific heat shows similar
behavior, but in this case the peaks Cmax�L� shift to higher
temperatures. The value of Tc was determined using the
method of Binder cumulants. The fourth-order Binder
cumulants UL were calculated from formula (5) and then,
similarly to Fig. 3, temperature dependences of UL were
constructed for various values of L. As follow from the
analysis of critical temperatures obtained for various values
of r, the critical temperature decreases with decreasing r,

consistent with the results of laboratory measurements [17].
Shown in Fig. 7 are typical susceptibility-vs-temperature
curves for various values of interlayer-to-intralayer exchange
ratio r. Similar dependences were also obtained for the
specific heat. As r decreases, the specific heat and suscept-
ibility peaks shift towards lower temperatures, their heights
decreasing and increasing, respectively.

The critical exponents a of the specific heat, g of the
susceptibility, and b of the magnetization and the correlation
radius were calculated using the methodology and analytical
expressions described in Section 2.3. Table 2 lists the values of
all critical parameters calculated for various values of r.
Notice that at r � 1:0, our model corresponds to the classical
xy-model. The critical exponents we determined for this case
agree to high accuracy with the best values found by other
methods for the xy-model [1, 5].

Decreasing the parameter r results in a smooth change in
the values of the critical exponents, and up to a certain
threshold the critical exponents obey the well-known scaling
relations (for example, the Rushbrook relation) [1]. How-
ever, at r � 0:01, the critical exponents undergo a significant
change in their values and at the same time the scaling
relations between them break down, all this presumably
marking the transition from 3D to 2D magnetism at the
above-indicated boundary value of r. It should be empha-
sized that the temperature dependences of some thermo-
dynamic parameters also show at r � 0:01 some character-
istic features absent at larger values of r, suggesting that
r � 0:01 can be viewed as a threshold value and that for
r < 0:01 the system can be considered quasi-two-dimen-
sional.

kBT=Jk

0
0.6 0.8 1.0 1.2 1.4 1.81.6 2.0

w

12

10

8

6

4

2

J?=Jk � 0.04

J?=Jk � 0.07

J?=Jk � 0.1

J?=Jk � 0.4

J?=Jk � 0.7

J?=Jk � 1.0

Figure 7. Susceptibility versus temperature for various values of

r � J?=Jk.

Table 2. Critical exponents for the model of magnetic superlattice Fe2=V13.

J?=Jk kBTc=Jk nav a b g a� 2b� g

1.0

0.7

0.4

0.1

0.07

0.04

0.01

1.7463(3)

1.6197

1.4616

1.2219

1.1832

1.1346

1.0559

0.6706(3)

0.6696

0.6689

0.6617

0.6618

0.6548

0.6012

ÿ0.0184(3)
ÿ0.0099
ÿ0.0068
0.0187

0.0288

0.0635

0.1621

0.3417(3)

0.3392

0.3380

0.3284

0.3267

0.3166

0.2878

1.3398(3)

1.3284

1.3289

1.3231

1.3243

1.3172

1.2298

2.0048

1.9969

1.9981

1.9986

2.0065

2.0139

1.9675
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Figure 6. Temperature dependence of susceptibility for a model of a

magnetic superlattice �Fe2=V13�L at r � J?=Jk � 0:4.
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4. Conclusions

Presented in this report is a study, within a unified research
framework, of the critical properties of a 3D diluted Ising
model with canonically distributed nonmagnetic impurities
and of a modified xy-model supposed to describe the
peculiarities of iron ± vanadium superlattices �Fe=V�.

(1) Our data indicate that at low impurity concentrations
�p5 0:8�, the nonmagnetically-doped Ising model forms a
new universality class different from that of the pure Ising
model �p � 1:0�.

(2) Strongly diluted systems �p4 0:7� are characterized by
a different set of critical exponents and form a universality
class of their own.

In this case there are also two crossover regions:
(1) between a pure system �p � 1:0� and weakly diluted

�p5 0:8� systems, and
(2) between weakly diluted �p � 0:8� and strongly diluted

�p4 0:7� systems.
Possibly, it is the existence of the crossover and the large

extent of these regions which explains the inconsistent and
sometimes conflicting results the study of this model has
produced.

The results obtained with the modified xy-model provide
insight into how and when a magnetic superlattice makes a
transition from the three-dimensional behavior to the quasi-
two-dimensional. The critical exponents show dependence on
the ratio of the interlayer-to-intralayer exchange interaction.
At the same time, the values of the critical exponents obey
scaling relations for values of r up to a threshold value of
r � 0:01.
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Relativistic multiwave oscillators
and their possible applications

V A Cherepenin

This report is a brief review of advances in a rapidly
developing realm of science Ð relativistic high-frequency
electronics. The term relativistic high-frequency electronics
is presently used in reference to that area of vacuum
electronics which harnesses electron beams with energies of
0.2 ± 100 MeV and currents up to 104 A. The resultant
microwave oscillators (MOs) range up to 109ÿ1010 W in
power for a pulse duration of 10ÿ9ÿ10ÿ7 s. The wavelengths
utilized in this field lie in the interval from several dozen
centimeters to values belonging to the visible range, i.e., span
six orders of magnitude. Naturally, the family of the devices
employed in these ranges is highly diversified. However, it
turns out that many of them are well known in conventional
microwave electronics. In this connection, of interest is the
advancement of new ideas of vacuum electronics, aimed at
raising the generated- or amplified-signal power and at
mastering new wavelength ranges. The present report is
concerned with this aspect of relativistic high-frequency
electronics. It is pertinent to note that there are excellent
reviews dedicated to relativistic high-frequency electronics
and its application (see, for instance, Ref. [1]). Here, we
endeavor to call attention to those aspects of the develop-
ment of this area, which for several reasons have not been
adequately discussed in the foregoing and other reviews.

The first vacuum devices Ð grid electron tubes Ð date
back to the beginning of the 20th century and, having
undergone a series of modifications, are employed to the
present day. The shortest-wavelength devices can operate in
the decimetric wavelength range. The output power of these
devices can be quite high and some of their other character-
istics, for instance, radiation resistance, give promise that they
will, despite the rapid development of semiconductor devices,
also find use in the future, at least in special-purpose tasks.
The physical principles of the operation of grid electron tubes
are well known even from school textbooks and do not call for
analysis. We only mention the relatively recent ideas of
employing them to produce high-power radiation by incor-
porating a great number of these devices into a transmission
line. Broadly speaking, methods for making a high-power
device out of many lower-power devices are vigorously being
developed and sometimes come to fruition. Naturally, the last
mentioned remark pertains to devices of any kind.

The 1920s ± 1940s saw the advent of microwave devices of
a new type, in which the `intrinsic' properties of the electron
beam had profound significance: the time of electron transit
through the interaction region, electron bunching, the space
charge, etc. The electrodynamic notions of the quasistation-
ary theory, like the induced current theorem or coupled
transmission lines, were sufficient for their description and
design. It was then that the vacuum devices which still enjoy
wide use were invented and fabricated. It will suffice to
mention klystrons, traveling-wave tubes (TWTs), backward-
wave tubes (BWTs), and magnetrons.

Initially, work in the area of microwave electronics, as a
rule, was unrelated to the self-radiation of charged particles
(usually, electrons), which was viewed from the application
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