
Abstract. Negative refraction occurs at interfaces as a natural
consequence of the negative group velocity of waves in one of the
interfacing media. The historical origin of this understanding of
the phenomenon is briefly discussed. We consider several phys-
ical systems that may exhibit normal electromagnetic waves
(polaritons) with negative group velocity at optical frequen-
cies. These systems are analyzed in a unified way provided by
the spatial dispersion framework. The framework utilizes the
notion of the generalized dielectric tensor e i j�x; k� representing
the electromagnetic response of the medium to perturbations of
frequency x and wave vector k. Polaritons with negative group
velocity can exist in media (whether in natural or in artificial
meta-materials) with a sufficiently strong spatial dispersion.
Our examples include both gyrotropic and nongyrotropic sys-
tems, and bulk and surface polariton waves. We also discuss the
relation between the spatial dispersion approach and the more

familiar, but more restricted, description involving the dielectric
permittivity e �x� and the magnetic permeability l�x�.

1. Introduction

In this review, the phenomenon of negative refraction is
discussed in terms of the dispersion o�k� of polaritons,
which are normal electromagnetic waves propagating in a
medium in the vicinity of excitonic resonances. We focus on a
macroscopically uniform and isotropic medium with negli-
gible dissipation: in this case, no additional complications
arise, and the basic physics of the phenomena under
consideration is especially transparent. In other words, we
consider bodies with a characteristic size of the order of or
greater than the wavelength l of waves in the medium. In an
isotropic medium, the frequency o depends only on the
absolute value k � jkj of the wave vector k, and therefore
the group velocity of the wave packet

vg � do�k�
dk

� k

k

do�k�
dk

�1�

is codirected with either k or ÿk, depending on the sign of
do�k�=dk. As was noted by L I Mandel'shtam [1 ± 3], the
latter case of `negative group velocity' do�k�=dk < 0 is
related to the phenomenon of negative refraction. The
English physicist Arthur Schuster also mentions this possibi-
lity in his book [4]. But he considered the region of anomalous
dispersion in the vicinity of a resonance, where the definition
of the group velocity in (1) is inapplicable.

As is well known (see, e.g., Refs [3, 5 ± 7]), in a medium
with small dissipation, the energy propagation velocity
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coincides with the group velocity, and therefore the energy
flux vector (the Poynting vector for electromagnetic waves) is
the product

S � Uvg ; �2�

where U is the time-averaged energy density. In thermody-
namic equilibrium, U > 0, and hence, for waves with negative
group velocity, the energy flux vector S is directed opposite to
the wave vector k. The negative refraction of light and all the
unusual properties of materials with negative refraction are
natural consequences of such a relation between S and k. In
this review, we consider only the negative refraction of
electromagnetic waves. However, it was clearly shown by
Mandel'shtam (see Section 2.1) that negative refraction is a
general property of waves of any nature with a negative group
velocity.

We discuss several physical systems in which polaritons
with negative group velocity can appear and, consequently, in
which one can try to realize the negative refraction (including
the optical frequency range). The existence of polaritons with
negative group velocity is possible for a medium with a
sufficiently strong spatial dispersion of its dielectric proper-
ties [7 ± 9]. The presence of the spatial dispersion signifies a
nonlocal dielectric response; it is manifested by the depen-
dence of the generalized dielectric tensor ei j�o; k� on the wave
vector k [6, 7].

We show in what follows that the approach based on
accounting for spatial dispersion also includes, as a special
case, a more familiar approach, which is typically used in
describing the negative refraction of light in a medium with
simultaneously negative dielectric permittivity, e�o� < 0, and
magnetic permeability, m�o� < 0. In connection with such
media, Veselago's work [10] is usually referred to, although
this case was in fact discussed much earlier in Sivukhin's
paper [11] and afterwards in Pafomov's papers [12, 13]. In
particular, these works contain the remark on the negative
group velocity of waves in such amedium. The negative group
velocity branch is clearly seen in Fig. 1. Figure 1a shows the
dispersion law o�k� of transverse polaritons defined by the
well-known expression

o2e�o� m�o� � o2n 2�o� � c 2k 2 ; �3�

where n�o� is the refractive index. Here, the model equation
for the dielectric permittivity has a resonant structure,

e�o� � 1� Fe

o2
? ÿ o2

�
o2
k ÿ o2

o2
? ÿ o2

; �4�

and

m�o� � 1� Fm

o2
mp ÿ o2

� o2
mz ÿ o2

o2
mp ÿ o2

: �5�

One of three polariton branches shown in Fig. 1a is
evidently characterized by a negative group velocity, because
the polariton frequency o decreases with the increase in the
wave vector k (this branch is indicated by an arrow). Of
course, the negative group velocity branch exists exactly in
that region of frequencies where both e�o� in (4) and m�o� in
(5) are negative. With the particular choice of the parameters
used in Fig. 1, the values of the pole �omp� and of the zero
�omz� of themagnetic permeability are located inside the well-
known transverse ± longitudinal �o?ÿok� splitting gap,
which appears due to the resonance of the dielectric
permittivity. Of course, other arrangements of these frequen-
cies are possible.

Figure 1b shows the polariton dispersion with the same
expression (5) for m�o�, but with the model dielectric
permittivity given by

e�o� � 1ÿ o2
p

o2
�6�

instead of Eqn (4). This model expression corresponds to the
frequently discussed case of metallic systems, in which the
transverse frequency o? vanishes and ok equals the plasma
frequency op. One of two polariton branches has negative
group velocity.

2. The nature of negative refraction:
historical remarks

2.1 L I Mandel'shtam and the negative refraction of light
Recent observation of the negative refraction of microwaves
[14] and the theoretical prediction of perfect lensing [15] have
resulted in a burst of interest in materials with negative
refraction. A huge number of articles has been published in
scientific and popular journals, and even in newspapers. Very
often, the aforementioned work by Veselago [10], done in
1968, is regarded as the origin of the subject. In reality, as
alreadymentioned in the Introduction, the history of negative
refraction started much earlier, because a deep understanding
of the essence of this phenomenon was achieved by Man-
del'shtam at least as early as 1940, and the paper by Veselago
just did not contain the references to the previous works.

The founder of a remarkableMoscow physics school (see,
e.g., Ref. [16]),Mandel'shtam gave a series of informal lecture
courses at Moscow State University that started in the 1930s
and continued for many years. The lectures covered many
important and subtle topics in optics, the theory of relativity,
and quantum mechanics and were famous for their in-depth
analysis. They were well attended not only by students but
also by many venerable professors. Thanks to lecture notes
taken by Mandel'shtam's collaborators S M Rytov and
M A Leontovich, the lectures were then published as a part
of Mandel'shtam's Complete Works and, much later, sepa-
rately [3].
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Figure 1. Dispersion o�k� of transverse polaritons in materials described

by model magnetic permeability (5) and dielectric permittivities given by

(a) Eqn (4) and (b) Eqn (6) for a specific arrangement of characteristic

frequencies. Polariton branches with negative group velocity are indicated

by arrows. We note that neither this figure nor the following figures are

plotted to scale: the numerical parameters have been chosen only for the

purpose of better displaying qualitative features of the phenomena.
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At one of the lectures on the theory of oscillations in 1944
[1], Mandel'shtam gave a detailed analysis of the negative
refraction occurring at a plane interface with a medium
supporting waves with negative group velocity. We quote a
part of Mandel'shtam's lecture below. After discussing the
conditions under which the group velocity gives the velocity
of energy propagation, Mandel'shtam continues:

``Let these conditions be satisfied and, hence, the energy
propagate with the group velocity. But we know that the
group velocity can be negative. This means that the group
(and the energy) propagates in the direction opposite to the
propagation direction of the phase of the wave. Is this
possible in reality?

In 1904, Lamb invented some artificial mechanical models
of one-dimensional `media' in which the group velocity can be
negative. He himself probably did not think that his examples
may have physical applications. It turns out, however, that
there exist real media where the phase and group velocities are
directed opposite to each other in some frequency ranges.
This happens for the so-called `optical' branches of the
vibrational spectrum of the crystal lattice considered by
M Born. The existence of such situations allows one to
reconsider such seemingly well-known phenomena as reflec-
tion and refraction of a plane wave at the interface between
two nonabsorbing media. While traditional discussions of
this process do not even mention the notion of the group
velocity, the way it occurs significantly depends on the sign of
the group velocity.

Indeed, what is the idea underlying the derivation of
Fresnel's formulas?

One considers a sinusoidal plane wave incident at an angle
j on the interface plane y � 0,

Einc � exp
�
i
�
otÿ k�x sinj� y cosj��	

and, in addition, two other waves: the reflected one

Erefl � exp
�
i
�
otÿ k�x sinj 0 ÿ y cosj 0��	

and the refracted one

Erefr � exp
�
i
�
otÿ k1�x sinj1 � y cosj1�

�	
:

At the plane y � 0, these waves should obey the so-called
boundary conditions. For elastic bodies, those are the
conditions of continuity for the stresses and displacements
on both sides of the interface. In the electromagnetic problem,
tangential components of the fields and normal components
of the inductionsmust be continuous at the interface. It is easy
to show that with the reflected wave alone (or with the
refracted wave alone), the boundary conditions cannot be
satisfied. But with both reflected and refracted waves, the
boundary conditions can always be satisfied. From this
consideration, however, it does not follow that there should
be only three waves involved and not a larger number of
waves: in fact, boundary conditions permit one more, the
fourth wave propagating in the second medium at the angle
pÿ j1. Conventionally, it is tacitly assumed that this wave is
not involved and only one wave propagates in the second
medium.

The boundary conditions immediately imply the laws of
reflection

sinj � sinj 0 ; j � j 0

and of refraction

k sinj � k1 sinj1 :

The last equation is, however, satisfied not only by the
angle j1 but also by the angle pÿ j1. The wave correspond-
ing to j1 propagates in the second medium away from the
interface (left panel in Fig. 2). On the contrary, the wave
corresponding to pÿ j1 propagates towards the interface
(right panel in Fig. 2). It is considered self-evident that the
second wave cannot be involved because the light is incident
from the first medium onto the second medium and, hence,
the energy in the secondmedium should propagate away from
the interface. But what is the relation to the energy? The
direction of the wave propagation is determined by its phase
velocity, while the energy propagates with the group velocity.
A leap of logic is thus made here, which goes undetected just
because we are used to the notion that the directions of the
energy and phase propagation coincide. If these directions
indeed coincide, i.e., if the group velocity is positive, then
everything is correct. But if we have the case of negative group
velocity, quite a realistic case as I have already discussed, then
everything changes. Still requiring that the energy in the
second medium propagates away from the interface, we
conclude that the phase in this case should propagate
towards the interface, and therefore the refracted wave
would propagate at the angle pÿ j1 [as shown in the right
panel in Fig. 2]. Although such a conclusion is unusual, there
is, of course, nothing surprising in it, because the phase
velocity does not say anything about the energy propagation
direction.''

These remarks byMandel'shtammademore than 60 years
ago actually explain the physical origin and the nature of
negative refraction. It is instructive that in his explanation of
the nature of negative refraction, Mandel'shtam speaks in
terms of the wave vector, group velocity, and causality
principle and not in terms of the negative refractive index,
which is quite popular presently. It follows from the causality
principle that in thermodynamic equilibrium, the intensity of
the wave propagating away from the interface should decay.
This rule determines the sign of the imaginary part of the
refractive index and, thereby, the sign of its real part, because
both should result simultaneously from the sign in the
expression n�o� � � ��������������������

e�o� m�o�p
following from Eqn (3).

The relation between negative refraction and negative
group velocity established byMandel'shtam clearly identifies
negative refraction as a general wave phenomenon. It also
indicates a way of finding materials in which negative
refraction can in principle be observed, by examining the
dispersion o�k� of the waves they can support. For a brief
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Figure 2.Reflection and refraction of an incident plane wave. (The picture

is taken fromMandelstam's lectures [1, 3].)
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recent review of the history of the negative group velocity
problem, see Ref. [17], which refers to the early discussions
such as those by Lamb [18] and von Laue [19].

The importance of the notion of group velocity for crystal
optics is extensively discussed in the monograph [7]. The
negative refraction occurring at the interface of a gyrotropic
medium was explicitly indicated already in its 1966 edition,
accompanied by the now very familiar Fig. 2 (see p. 264 in
Ref. [7]).

2.2 Cherenkov radiation
In media supporting waves with negative group velocity,
Cherenkov radiation has a peculiar character, which was
also understood a long time ago. From the theory of
Cherenkov radiation (see, e.g., Ref. [6]) and from the sign of
the group velocity, the origin of the `unusual' direction of the
propagation of the radiation can be readily seen. We suppose
that a charged particle moves in a transparent medium along
the x axis with a velocity v. As a result, the medium can emit
electromagnetic waveswith a frequencyo and awave vector k
such thato � kxv. On the other hand, thewave vector and the
frequency are related by k � no=c, where n � ��

e
p

is the
refractive index. Because k > kx, it follows that we must
have v > vph � c=n�o�, that is, the radiation of waves with
the frequency o is possible if the velocity of the particle
exceeds the phase velocity vph. If y is the angle between the
direction of the particle motion and the wave vector k of the
radiation, we immediately find that

cos y � c

n�o�v : �7�

Quoting from Ref. [6], ``...the radiation of each frequency
is emitted in the forward direction with respect to the particle
motion, and is distributed over the surface of a cone with the
vertical angle 2y, where y is given by Eqn (7).''

It is clear from the logic of the above derivation that the
conclusion on the direction of the emission tacitly assumed
that the group velocity vg corresponding to the wave vector k
was positive, that is, directed along k (this situation is
depicted in Fig. 3a). If, instead, the group velocity was
negative, i.e., vg was directed opposite to k, the direction of
the emission (the energy flow S) would in fact be opposite.
The radiation in the latter case forms an obtuse angle with
the direction of the particle motion, as was first discussed by
Pafomov [13]. The Cherenkov radiation emitted backwards is
shown in Fig. 3b. It is distributed over the surface of the cone
with the same vertical angle.

We show in what follows that negative group velocity
waves may occur in crystals due to the presence of spatial
dispersion. Various manifestations of spatial dispersion in

Cherenkov radiation have been discussed in monograph [7]
(see pp. 400, 401). Particularly interesting effects have been
indicated both in gyrotropic [7, 20] and nongyrotropic [7]
media in the vicinity of excitonic resonances: the direction of
the Cherenkov cone is modified from forward radiation to
backward radiation upon a decrease in the velocity of the
moving charge.

It is also interesting how the negative group velocity
influences the transition radiation of a charged particle
crossing the boundary between two media with different
dielectric constants. The important role of the sign of the
group velocity for the transition radiation and peculiarities of
the `inverse' Doppler effect were originally clarified in papers
by Frank [21], Barsukov [22], and Pafomov [12].

3. Maxwell equations and spatial dispersion

3.1 The dielectric permittivity tensor
The macroscopic Maxwell equations form the basis of the
electrodynamics of continuous media [6]. They are derived by
averaging the `microscopic' electromagnetic fields, charges,
and current densities and have to be supplemented by the so-
called matter equations, which determine the relations
between the averaged fields. The matter equations are
determined by the response of the medium to the fields.
Following Landau and Lifshits [6] (see also Refs [7, 23]), we
find it more correct and appropriate to use an approach based
on taking spatial dispersion into account. In this approach,
only three macroscopic fields Ð E, D, and B Ð are
considered, while the fourth field, H, is set equal to B. The
results of averaging allmicroscopic currents are then included
in the definition of the field D. The macroscopic Maxwell
equations for monochromatic plane waves then take the form

c k� E � oB ;

c k� B � ÿoD ; �8�
kD � 0 ;

kB � 0 ;

while the matter equation relating the components ofD andE
in such waves is given by

Di � ei j�o; k�Ej : �9�

In Eqn (9), the generalized dielectric tensor ei j�o; k� depends
on the wave vector k. This means that the spatial dispersion is
taken into account, that is, that the electric induction D at a
given spatial point depends not only on the electric field E at
the same point (the local medium response) but also on the
electric field in some neighborhood (the nonlocal response).
As such, this tensor ei j�o; k� describes both dielectric and
magnetic responses of the medium (the latter through a
natural account of the spatial derivatives of E). The spatial
dispersion appears in addition to the more familiar temporal,
or frequency, dispersion, which is reflected in the dependence
of the tensor on the frequencyo. The spatial dispersion effects
are usually much weaker than those arising from the
frequency dispersion, but they can lead to qualitatively new
phenomena, such as gyrotropy or the appearance of addi-
tional electromagnetic waves. The consideration of spatial
dispersion is simplified if the relevant parameter ka � a=l is
small, where a is the characteristic microscopic length or the

v
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a b
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k

S

y

Figure 3. Illustration on the direction of the Cherenkov radiation in a

medium with (a) positive and (b) negative group velocity. Here, v denotes

the direction of the particle velocity, k the direction of the wave vector of

the emitted radiation, and S the direction of the Poynting vector. The

vector S is directed along the group velocity vg and determines the actual

direction of the emission.
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mean free path of the charge carriers. In many cases, the
smallness of the parameter ka allows using only the first terms
(linear and/or quadratic) in the power-series expansion for
the tensor ei j�o; k� in the components of the wave vector k [6,
7]:

ei j�o; k� � ei j�o� � igi j l�o�kl � ai j l m�o�kl km ; �10�
eÿ1i j �o; k� � eÿ1i j �o� � idi j l�o�kl � bi j l m�o�kl km : �11�

Various tensors occurring in expansions (10) and (11) reflect
the symmetry properties of the system under consideration
and satisfy Onsager's principle of symmetry of kinetic
coefficients. In particular, in a system with the inversion
symmetry, the second terms of the expansions (those
proportional to the first power of kl) vanish.

Because Maxwell equations (8) immediately yield

D � c 2k 2

o2

�
Eÿ k�kE�

k 2

�
; �12�

it follows that Eqns (12) and (9), taken together, determine the
dispersion relations o�k� of the electromagnetic waves
propagating in the medium.

The time-averaged energy density and the Poynting vector
in the discussed �E;D;B�-approach can be found via an
analysis of the wave packets [6, 7]. These quantities are given
by

U � 1

16p

�
q�oei j�
qo

EiE
�
j � jBj2

�
; �13�

S � c

8p
Re �E� � B� ÿ o

16p
qei j
qk

E �i Ej : �14�

In the absence of dissipation, expressions (13) and (14) satisfy
the energy conservation law. Equation (14) contains an
additional (second) term [24, 25], entirely due to accounting
for spatial dispersion. This term plays a crucial role for the
appearance of negative group velocity waves.

In Section 3.2, we provide a comparative discussion of the
�E;D;B�-approach, which accounts for the spatial disper-
sion, and of the so-called `symmetric' approach based on the
consideration of all four fields E;D;B, and H. We never-
theless refer the reader to book [26], reviews [27 ± 29], and
recent paper [8] for discussions of the different standpoints,
other arguments, and details.

3.2 An isotropic medium
with the spatial inversion symmetry
When spatial dispersion is taken into account, the dielectric
response must be described by a tensor even in isotropic
systems, because the vector k selects a certain direction.
Consequently, for an isotropic medium having the inversion
symmetry (a nongyrotropic medium), the general form of the
dielectric tensor is [6]

ei j�o; k� � e?�o; k�
�
di j ÿ ki kj

k 2

�
� ek�o; k� ki kj

k 2
; �15�

where the transverse e?�o; k� and longitudinal ek�o; k�
dielectric permittivities depend on the absolute value of the
wave vector k only. These two functions provide a complete
description of the properties of the medium. In accordance
with Eqns (12) and (9), the dispersion law o�k� of the

transverse (E ? k) polaritons can be found from

o2e?�o; k� � c 2k 2 ; �16�

while the equation

ek�o; k� � 0 �17�
determines the dispersion of longitudinal �E k k, D � 0,
B � 0� waves.

The symmetric approach, which involves only the
frequency-dependent dielectric permittivity e�o� and mag-
netic permeability m�o�, corresponds to the limit k! 0 in the
approach based on accounting for the spatial dispersion [6]:

e�o� � e?�o; 0� � ek�o; 0� ; �18�

1ÿ 1

m�o� � lim
k! 0

o2
�
e?�o; k� ÿ ek�o; k�

�
c 2k 2

: �19�

It can be easily seen that the particular choice

e?�o; k� � e�o� � c 2k 2

o2

�
1ÿ 1

m�o�
�

�20�

makes the dispersion equation for transverse polaritons (16)
identical to Eqn (3) derived within the e�o�ÿm�o� description,
where k 2c 2=o2 � n 2 � e�o� m�o�. This already clearly
demonstrates a more comprehensive scope of the approach
based on accounting for spatial dispersion, because it allows
studying various effects of spatial dispersion with an accuracy
even higher than that given by accounting for the terms / k 2

in e?�o; k�. In contrast, the e�o�ÿm�o� approach allows
taking only these terms into account (and not even all of
them). Moreover, even within the k 2-accuracy, there is a
qualitative advantage offered by the spatial dispersion
approach. Indeed, in the isotropic system under considera-
tion, the response tensor ai j l m entering Eqn (10) is in general
characterized by two independent parameters. These para-
meters (a and b) can be chosen, for instance, such that the
equality

ai j l m � adi jdl m � b

2
�er i l er j m � er im er j l� ; �21�

is satisfied (er i l denotes the antisymmetric unit tensor of rank
three). Equation (21) is manifestly symmetric in both the first
�i j � and the second �lm� pairs of indices, and therefore the
longitudinal and transverse dielectric permittivities can be
written as

e?�o; k� � e�o� � �a�o� � b�o��k 2 ; �22�
ek�o; k� � e�o� � a�o�k 2 :

The corresponding matter relation (9), as follows from
Eqns (10) and (21), is

D � ÿe�o� � a�o�k 2
�
E� b�o� k� �E� k� : �23�

Equations (22) and (23) make it clear that the parameter
b�o� determines, roughly speaking, the measure of the spatial
dispersion due to the `magnetic response' of the system: the
parameter b�o� is related to the magnetic permeability [see
Eqn (19)] as

o2b�o�
c 2

� 1ÿ 1

m�o� :
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The parameter a�o�, on the other hand, determines the
measure of the spatial dispersion due to the `electric
response.' The parameter a�o� and its dependence on o
cannot be taken into account within the e�o�ÿm�o� descrip-
tion. Both types of responses contribute similarly to the
dispersion of transverse polaritons [Eqns (22) and (16)], but
only the electric response can affect the longitudinal waves
[Eqns (22) and (17)]. Particularly noteworthy is that polar-
itons with negative group velocity and, consequently,
negative refraction may occur in systems with m�o� � 1 [that
is, with b�o� � 0] if the response coefficient a�o� has an
appropriate frequency dependence.

3.3 The connection with a microscopic description
The dielectric tensor ei j�o; k� describes the response of the
medium to electromagnetic perturbations of arbitrary
frequencies o and wave vectors k. This tensor has certain
well-known analytic properties and can in principle be
derived from the microscopic description of elementary
excitations of the medium using various methods (see, e.g.,
Refs [7, 23, 30 ± 32] for discussions of many important
aspects of this question). An example of such a microscopic
relation for a perturbed ground state of a system of N
charged particles of charge e and mass m in a volume V is
given by the expression [7]

ei j�o; k� �
�
1ÿ 4pe 2N

mo2V

�
di j

ÿ 4pc 2

�ho2V

X
n

�
Mn �

i �k�Mn
j �k�

oÿ on
ÿMn

i �ÿk�Mn �
j �ÿk�

o� on

�
: �24�

The vectors M n�k� entering Eqn (24) are the perturbation
matrix elements written in Cartesian coordinates:

M n�k� � ÿ e

2mc

X
a



n
��p a exp �ikr a� � exp �ikr a� p a

��0� ; �25�
where r a is the position vector of the ath particle and
p a � ÿi�h q=qr a is its momentum operator. Here, j0i is the
wave function of the ground state of the system and jni are the
unperturbed wave functions of various excited states with
energies �hon. These zeroth-order states, which we call
excitons (`mechanical excitons,' following the terminology in
Ref. [7]), are to be calculated without taking the macroscopic
electromagnetic field into account.

It is instructive to consider the microscopic origin of
expressions of type (20) and (22) in an isotropic system with
the inversion symmetry. For the simplest model of indepen-
dent atoms or molecules, in accordance with Eqn (24), the
dielectric permittivity e�o� is determined by the elements
M n�k � 0� (more exact models are considered in Refs [33,
34]):

Mn
i � ÿ

e

mc

X
a



nj p a

i j0
�

; �26�

therefore, only electric-dipole-allowed transitions (also called
E1-transitions) contribute to e�o�. Then, with the corre-
sponding transition frequencies denoted as oen, it follows
from Eqn (24) that

e�o� � 1�
X
n

Fen

o2
en ÿ o2

; �27�

where the `oscillator strengths' Fen satisfy the sum ruleP
n Fen � 4pe 2N=mV. In the vicinity of a single resonance

frequency o?, Eqn (27) has the structure

e�o� � Eb � Fe

o2
? ÿ o2

� Eb
o2
k ÿ o2

o2
? ÿ o2

; �28�

with o2
k � o2

? � Fe=Eb, where the background constant Eb
accounts for all other allowed transitions [Eb � 1 in Eqn (4)].

The term / k 2 in Eqn (20) has a very different origin,
because it appears due to electric-dipole-forbidden transi-
tions. In the molecular picture, such forbidden transitions
become possible due to the next term in the expansion of
exp �ikr a� in Eqn (25), and their nonvanishing contribution to
Mn

i �k� is

Mn
i �k� � ÿ

e

2mc

X
a

ikl


nj p a

i r
a
l � r al p

a
i j0
� � iklX

n
i l : �29�

Magnetic dipole transitions (M1-transitions) are due to
the antisymmetric combination

r al p
a
i ÿ r ai p

a
l : �30�

This combination should occur between hnj and j0i in
Eqn (29). But the actual combination in those brackets differ
from (30) by

p a
i r

a
l � r ai p

a
l : �31�

It is well known that the combination in Eqn (31) leads to
electric quadrupole transitions (E2-transitions). The differ-
ence between the magnetic dipole and electric quadrupole
transitions is reflected in the symmetry of the tensor Xn

i l

defined in Eqn (29): it is antisymmetric �Xn�m�
i l � ÿXn�m�

l i �
for the former but symmetric �Xn�q�

i l � X
n�q�
l i � for the latter.

The contribution of both E2- and M1-transitions to the
tensor ai j l m in (21) is given by

4pc 2

�ho2V

X
n

on�Xn �
i l X

n
jm � Xn �

j l X
n
im�

o2
n ÿ o2

: �32�

We note that the magnetic dipole combinations
X

n�m��
i l X

n�m�
j m entering Eqn (32) indeed contribute only to the

magnetic response coefficient b�o� in Eqn (21). On the other
hand, the electric quadrupole combinations of the type
X

n�q��
i l X

n�q�
j m can contribute to both response coefficients a�o�

and b�o� defined in Eqn (21). The relevant examples can be
found, e.g., in Ref. [7] (for a general discussion of the electric
quadrupole polarization in macroscopic electrodynamics, see
Ref. [35]).

Equation (32) explicitly shows that magnetic dipole and
electric quadrupole transitions can lead to contributions of
the same type to the transverse dielectric function e?�o; k�. To
take such a contribution from a single isolated resonance with
a frequency of into account, we must replace Eqn (28) with
the expression

e?�o; k� � Eb � Fe

o2
? ÿ o2

� c 2k 2

o2

Ff

o2
f ÿ o2

; �33�

where Ff determines the strength of the transition. The
properties of the medium, which follow from Eqn (33), are
determined by the interplay of two resonances: one that is
electric-dipole allowed, and the other that is electric-dipole
forbidden. As a result of this interplay, polaritons with
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negative group velocity can appear (see Fig. 1). It is easy to see
from Eqns (4), (5), and (20) that the frequency omz at which
m�o� � 0 corresponds to the frequency of of the forbidden
transition �omz � of�, and Fm � Ff.

It follows from the above derivation that the strength of
forbidden electronic transitions in atomic or molecular
materials is in general much weaker than the strength of
electric-dipole-allowed transitions:

Ff

Fe
� o?ofa

2

c 2
� v

2

c 2
5 1 ; �34�

where a is the characteristic atomic or molecular length and v
is the typical electron velocity. In this connection, we recall
that in Fig. 1, Fe=Eb determines the magnitude of theok ÿ o?
splitting, while Ff � Fm determines the band width of the
polariton branch with negative group velocity.

3.4 An isotropic medium
without the spatial inversion symmetry
In media with a broken spatial inversion symmetry (gyro-
tropic media), spatial dispersion alreadymanifests itself in the
first-order terms in the wave vector k, because the tensors gi j l
and di j l in expansions (10) and (11) do not vanish. The
interesting features of the polariton dispersion in such media
can readily be outlined even if only these linear terms are
retained [7, 36]. In isotropic systems, tensors of the general
forms gi j l and di j l reduce to the unit antisymmetric tensor and
the expansions become

ei j�o; k� � e�o� di j � ig�o� ei j l kl ; �35�

eÿ1i j �o; k� �
1

e�o� di j � id�o� ei j l kl : �36�

As we discuss in Sections 4.2 and 4.3, Eqn (35) is
applicable in the vicinity of the longitudinal frequency ok:
e�ok� � 0, while Eqn (36) is to be used in the vicinity of the
resonance frequency o?: 1=e�o?� � 0.

It is instructive to see the microscopic origin of the
dielectric tensor written in forms (35) and (36). For a set of
independent gyrotropic molecules, for instance, it is well
known (see Refs [32 ± 34]) that optical activity results from
transitions to the states jni with nonvanishing matrix
elements of both types [(26) and (29)]. Such transitions
indeed lead to the appearance of terms linear in k l in
Eqn (35): they give rise to the tensor gi j l (10) via combina-
tions of the type

4pc 2

�ho2V

X
n

on�Mn
i X

n �
j l ÿMn

j X
n �
i l � c:c:�

o2
n ÿ o2

: �37�

Themicroscopic meaning of the function d�o� in Eqn (36)
is addressed in Section 4.2.

4. Polaritons with negative group velocity

As was already mentioned in Section 3.1, it is the second term
in expression (14) for the Poynting vector S that explicitly
shows how spatial dispersion can `invert' the direction of the
energy propagation with respect to the wave vector k. Indeed,
the first term in (14) in an isotropic medium is a vector
directed along k. For the group velocity to become negative,
the second term has to be codirected withÿk and be larger in
magnitude. In particular, this implies that the spatial

dispersion qe?�o; k�=qk must be strong enough. This is
precisely the case in a medium characterized by Eqn (33)
with negative e�o� and m�o� for frequencies below the
forbidden frequency of. In Sections 4.1 ± 4.3, we discuss
several other examples where substantial spatial dispersion
of the dielectric permittivity leads to the appearance of
polaritons with negative group velocity.

4.1 Excitons with negative effective mass
in a nongyrotropic medium
Pekar [37] first noted in 1957 that spatial dispersion of the
dielectric permittivity near excitonic resonances could lead to
the appearance of an additional propagating light (exciton ±
polariton) wave. This possibility is connected to the fact that
excitons in the medium can move (e.g., from one molecule to
another) and their energy depends on the wave vector k. We
consider expression (28) for the transverse dielectric permit-
tivity, which determines the response corresponding to an
isolated electric-dipole-allowed excitonic transition at the
frequency o?. Matrix elements (25) `select' the excitonic
states jni with the (quasi)momentum �hk only, and hence the
energies on must correspond to such a momentum. In the
effective mass approximation, the dispersion of the exciton
energy is

o?�k� � o? � �h 2k 2

2Mexc
: �38�

Correspondingly, the transverse dielectric function is

e?�o; k� � Eb � Fe

o2
?�k� ÿ o2

; �39�

which is to coincide with Eqn (28) for motionless excitons
�Mexc � 1�. Of course, the oscillator strength Fe must also
acquire some k-dependence, but we limit our discussion to a
stronger effect related to the resonance denominator in
Eqn (39). We note that the type of spatial dispersion
exhibited, for instance, in Eqn (39) cannot be described
within the e�o�ÿm�o� framework. It is easy to find the
dispersion of transverse polaritons from Eqns (16) and (39);
the illustrative examples are displayed in Fig. 4.

o

ok
o?

0

a

k

k1 k3

k2

o

ok
o?

0

b

k

k1

k3

k2

Figure 4. Dispersion of two transverse polariton branches and of the

longitudinal wave in a system with exciton dispersion (38): (a) positive

exciton effective mass, Mexc > 0; (b) negative effective mass, Mexc < 0.

The points of intersection of the dashed lines with the dispersion curves

indicate the values of the wave vector k for the waves at a given frequency

o: k1 and k2 are for transverse polaritons and k3 is for the longitudinal

wave. In case (b), k2 corresponds to a polariton with negative group

velocity.
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Figure 4 shows that within a certain range of frequencies
o, there can indeed be two different values of k for each
frequency, corresponding to two transverse polariton waves
of the same polarization. The onewith larger k (denoted as k2)
is the additional wave predicted by Pekar.

The existence of additional exciton ± polariton waves has
been demonstrated in many crystals; the most convincing
experiments were conducted in semiconductors near the
Wannier ±Mott exciton resonances (see Ref. [7] for the
references and discussion). Of principal importance for the
sign of the polariton group velocity is the sign of the exciton
effective mass. The effective mass ofWannier ±Mott excitons
is usually positive,Mexc � me �mh > 0, whereme andmh are
the effective masses of electrons and holes. This is the
situation depicted in Fig. 4a. Evidently, the additional
exciton ± polariton wave then has a positive group velocity.

In organic crystals, however, the radius of Frenkel
excitons is typically small. The resonant intermolecular
interaction then strongly depends on the orientation of the
molecules, and as a result, the exciton effective mass can in
general be negative or have different signs in different
directions. The situation with a negative exciton mass is
depicted in Fig. 4b. It clearly illustrates that for some range
of frequencies o, the additional transverse polariton wave
(k2-wave in the figure) has a negative group velocity. This is
the transverse wave that experiences negative refraction.

Also shown in Fig. 4 is the dispersion of the longitudinal
waves determined by Eqn (17). For definiteness, we assumed
ek�o; k� � e?�o; k�. The wave vector of the longitudinal wave
is denoted by k3. In the case whereMexc < 0, the longitudinal
wave also has a negative group velocity. In general, all three
waves (two transverse and one longitudinal) can be excited in
a medium by an incident wave of an appropriate frequency.
To solve the problem of reflection and refraction of the waves
in such circumstances, we must specify so-called additional
boundary conditions (ABCs) because the usual Maxwell
boundary conditions are insufficient to find the amplitudes
of all the excitedwaves. The form of theABCs does depend on
the microscopic nature of excitons. For molecular crystals,
this question is extensively discussed in Ref. [7].

A numerical study of the reflection and refraction of light
by a planar slab of a medium supporting excitons with a
negative effective mass Mexc < 0 (Fig. 4b) was recently
performed in Ref. [38]. These results convincingly show that
due to the negative refraction of waves with negative group
velocity, such a slab can indeed focus light. The simulation in
[38] also indicates that for an experimental realization of such
a system, one has to use crystals with large oscillator strength
of the excitonic transition and rather weak dissipation of
additional polaritons at the frequencies below the excitonic
resonance frequency.

4.2 A gyrotropic medium
in the vicinity of excitonic transitions
Gyrotropic systems are well known due to the phenomena of
optical activity and circular dichroism. They can be expected
to support polaritons with negative group velocity within
certain regions of frequencieso. We start our discussion from
the case of a frequency region in the vicinity of the exciton
transition frequency o?. The additional waves in this
frequency region were considered by Ginzburg [36]. Because
the transition frequency corresponds to the pole of the
dielectric permittivity e�o�, it is more convenient to use
expansion (36) for the inverse dielectric tensor in this region.

The inverse dielectric permittivity vanishes at the transition
frequency eÿ1�o?� � 0, highlighting the qualitative impor-
tance of the next (depending on the spatial dispersion) term in
that expansion.

Equation (36) corresponds to the matter relation

E � 1

e�o� D� id�o�D� k �40�

between E andD fields, where the parameter d�o� determines
the `strength' of gyrotropy.Relation (40) combinedwithwave
equation (12) for transverse waves leads to the equation

o2

c 2k 2
D � 1

e�o� D� id�o�D� k ; �41�

whose nontrivial solutions describe transverse polaritons in
this system. These solutions are known to correspond to
circularly polarized waves: for instance, Dy=Dx � �i for
waves propagating in the z direction. The polariton disper-
sion o�k� can be determined from the condition that the
determinant of Eqn (41) vanishes:�

1

e�o� ÿ
o2

c 2k 2

�2

� d 2�o�k 2 �42�

or, for waves of different circular polarizations,

1

e�o� ÿ
o2

c 2k 2
� ���d�o���k : �42a�

Equation (42a) is a third-order equation in k�o�; as a
result, in some frequency regions, three waves can propagate
simultaneously in the medium for a given o. Figure 5a
illustrates the transverse polariton dispersion resulting from
Eqn (42a) with the model dielectric permittivity e�o� in
Eqn (28) and a constant d�o� � d [36].

It can be easily seen that similarly to the case of a medium
with the spatial inversion symmetry (see Section 4.1), the
dispersion of polaritons can be understood as being due to a
specific dependence of the exciton energies on the wave
vector k [7, 39]. To verify this, we consider the frequency

o
o?

0

a

k

k1

k3k2

k1

k1

k2

k2

o

ok

0

b

k

Figure 5.Dispersion of transverse polaritons in a gyrotropic medium. We

note distinctly different ranges of frequencies (and wave vectors) in panels

(a) and (b). Shown in panel (a) is a range around the frequency o? and

below; the neighborhood of ok would be above this plot. Shown in panel

(b) is a range around the frequencyok and above; the neighborhood ofo?
would be below this plot. The points of intersection of dashed lines with

the dispersion curves show the allowed values of the wave vector k at a

given frequency o. Both panels show polaritons with negative group

velocity.
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range in the vicinity of the resonance o?, where the inverse
permittivity can be approximated by a linear function as

eÿ1�o� � A?�o? ÿ o� ; A? � 2o?
Fe

: �43�

We next take the limit as c!1 in Eqn (42a) (i.e. we neglect
the retarded interaction between the charges). Then

o?�k� � o? � d
A?

k : �44�

Thus, the `microscopic' origin of Eqn (42) is due to the
presence in the dispersion of the exciton of a term linear in k,
which has different signs for excitons with different polariza-
tions.

Linear behavior (44) represents the first terms of the
k-expansion of the exciton dispersion in a gyrotropic medium
with the gyrotropy parameter d. The linear dependence of the
frequency of dipole-active excitations on the wave vector was
observed for the first time in spectra of Raman scattering by
optical phonons propagating along the optical axis in quartz
crystals [40].

As is evident from Fig. 5a, the additional wave with the
wave vector k3, which corresponds to the lower polariton
branch, has a negative group velocity. There must also be two
other waves excited at the same frequency o, whose wave
vectors are denoted as k1 and k2. An experimental realization
of negative refraction of k3-waves requires large oscillator
strength of the excitonic transition, as well as large rotatory
power and rather small dissipation of additional polaritons at
the frequencies below the resonance frequency.

4.3 A gyrotropic medium in the vicinity of the frequency
of longitudinal vibrations
A negative refraction of microwaves in an artificial gyrotro-
pic medium was recently considered by Pendry [41] in the
vicinity of the frequency ok of longitudinal vibrations using
parameters e�o� and m�o�.1 In our consideration, we use the
approach based on accounting for spatial dispersion, which
allows going beyond the low-frequency region. For more
details, we refer the reader to paper [46].

Because the longitudinal frequency corresponds to a zero
of the dielectric permittivity e�o�, it is appropriate to use
expansion (35) of the dielectric tensor. The vanishing
e�ok� � 0 makes it clear that the next term in the expansion,
which accounts for spatial dispersion, is qualitatively impor-
tant. It is seen from definition (28) of the dielectric
permittivity that

ok �
�����������������
o2
? �

Fe

Eb

r
;

and therefore e�o� is a linear function of o in the vicinity of
ok:

e�o� � Ak�oÿ ok� ; Ak �
2E 2bok
Fe

: �45�

Equation (35) in an isotropic medium takes the form

D � e�o�E� ig�o�E� k ; �46�

where the parameter g�o� determines the strength of
gyrotropy. Using Eqn (12), we find that the fields of
transverse polaritons satisfy the equation

c 2k 2

o2
E � e�o�E� ig�o�E� k : �47�

Nontrivial solutions of Eqn (47) are circularly polarized
waves whose dispersion can be determined from

e�o� ÿ c 2k 2

o2
� ���g�o���k ; �48�

where the plus and minus signs correspond to waves with
different circular polarizations. Figure 5b illustrates the
transverse polariton dispersion in the frequency range
around and above ok. These curves were obtained from
Eqn (48) when using the model dielectric permittivity e�o� in
Eqn (28).

It is easy to qualitatively understand the character of the
polariton spectrum shown in Fig. 5b by substituting expres-
sion (45) in dispersion equation (48). This substitution
immediately yields the polariton dispersion curves in the
form of `displaced parabolas,'

o��k� � ok � c 2

Ako2
k
k 2 � g

Ak
k ; �49�

where g � g�ok�. As is evident from Eqn (49) and from
Fig. 5b, there are two types of solutions for each frequency
o at which the waves can exist.We let the correspondingwave
vectors be denoted by k1 and k2, and let k1 4 k2. For the
frequencieso > ok, k1- and k2-waves belong to branches with
different polarizations [o��k� and oÿ�k�], while for the
frequencies o < ok, they belong to the same branch, oÿ�k�.
This branch has a minimum oÿ�kmin� � ok ÿ D (it corre-
sponds to the lowest frequencies allowed for the propagating
wave). This minimum is achieved at k � kmin ' �o2

k=2c
2�g.

Its depth

D � ok ÿ oÿ�kmin� �
g 2o2

k
4Akc 2

�50�

strongly depends not only onok and g but also on the value of
Ak. It is clear that the branch oÿ�k < kmin� (k1-waves) has
negative group velocity at o < ok, because the frequency of
this part of the branch decreases as the wave vector k1
increases. All other parts of the spectrum in (49) have usual
(positive) group velocities. At the bottom ok ÿ D of the
allowed frequency interval, k1 � k2 � kmin, and both waves
have a vanishing group velocity.

It is interesting to note that similarly to the case illustrated
in Fig. 1, the waves with negative group velocity in Fig. 5b
occur in the frequency range forbidden for electromagnetic
waves in the absence of magnetic resonance. In a gyrotropic
medium, only one of two waves with different polarizations
has a negative group velocity, and the other one has the
ordinary positive group velocity dispersion.

Because left- and right-hand polarized waves propagate
with different phase velocities, linearly polarized light experi-

1 We here mention theoretical works [42, 43], in which negative refraction

was achieved by formally fitting the parameters e and m, as well as works
[44, 45], where the possibility of focusing is demonstrated for circularly

polarized waves by numerical simulation.
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ences rotation of its plane of polarization. It is useful to note
that the exact relation

k2 ÿ k1 � go2

c 2
�51�

for the difference between the wave vector magnitudes k2 and
k1 at the same frequencyo > ok follows fromEqn (48) for an
arbitrary dependence of e�o� and g�o� on o. Its exact
counterpart for frequencies o < ok determines the sum of
the wave vector magnitudes at the same frequency:

k2 � k1 � go2

c 2
: �52�

Equations (51) and (52) lead to the same result for the
rotatory power [46],

r � go2

2c 2
;

both below and above the frequency ok (see Ref. [46]).
Measuring r (the rotation of the polarization plane per unit
length of the ray passage) thus provides experimental access
to the gyrotropy parameter g�o�.

Dissipation can considerably complicate the practical
realization of negative refraction conditions. We give a
quantitative illustration in the above case of a gyrotropic
medium in the vicinity of the longitudinal frequency. It is
obvious that the dispersion of the waves shown in Fig. 5b
retains its physicalmeaning only if in the region of frequencies
around ok, the minimum depth D in (50) is large enough in
comparison with the dissipative width G of transverse
electromagnetic waves. As discussed in Ref. [46] with several
examples, this restriction in fact leads to quite demanding
requirements on the `allowed' magnitudes of gyrotropy and
dissipation.

It is shown in Ref. [46] that the ordinary specular
reflection can be useful in experimental studies of the
question of whether a gyrotropic material can be appropriate
for the observation of negative refraction: the interesting
frequency range around ok would be directly detectable in
the features of the reflection spectrum of linearly polarized
incident light.

4.4 Surface polaritons
Surface waves can also have negative group velocity. As an
example, we consider surface polariton waves near the
resonance with the modes of a surface transition layer. It is
known that a surface transition layer (e.g., a thin film on a
substrate) can drastically alter the dispersion of surface
polaritons if they are in resonance with vibrational or
electronic excitations of the layer [47]. If chosen properly,
the transition layer can lead to surface polariton dispersion
curves exhibiting regions of negative group velocity.

We consider a system composed of a thin film of
thickness d4 a (a being the lattice constant) with a
dielectric permittivity e�o�, placed between two semi-
infinite media with dielectric permittivities e1�o� > 0 and
e2�o� < 0. Surface polaritons in this system exist in a certain
frequency range, and their dispersion curve o�k� is deter-
mined by the equation [47]

K1
e1
� K2

e2
� k 2p� K1

e1

K2
e2

q � 0 ; �53�

where k is the magnitude of the two-dimensional wave vector
of surface polaritons directed along the interface (the medium
is supposed to be isotropic in the interface plane). The
parameters in Eqn (53) are defined as

Ki �
���������������������
k 2 ÿ o2

c 2
ei

r
; i � 1; 2 ;

q � �eÿ e2�d ; p �
�
1

e
ÿ 1

e2

�
d ;

and kd5 1 is assumed. For d � 0, the parameters p and q also
vanish, and Eqn (53) reduces to the familiar dispersion
equation of surface polaritons at a single interface between
two semi-infinite media. The effect we describe arises due to
the thin film, that is, due to d 6� 0. However, because kd5 1,
it is clear that the terms proportional to d in Eqn (53) become
especially important for those frequency regions where either
the dielectric permittivity e�o� � 0 (longitudinal resonance)
or its inverse eÿ1�o� � 0 (transverse resonance). The effect of
a thin film on the surface polariton dispersion is often
stronger in the first of these two cases.

To illustrate the substantial effect of a thin film overlayer
on surface polaritons near a resonance, we consider a thin
metallic film covering a metal substrate. In this case, e1 � 1
and we can approximate the optical responses of the film and
of the substrate by the respective Drude-model expressions

e�o� � 1ÿ o2
p

o2
; e2�o� � 1ÿ o2

2p

o2
: �54�

In the absence of the thin film, the surface plasmon ±
polaritons of the substrate exist in the frequency interval

0 < o <
o2p���
2
p :

We now let op 5o2p, such that the surface polaritons of
the substrate are resonant with the plasmons of the thin
metallic film at a frequency o � op.

Figure 6 shows the dispersion of polaritons that occur in
such a system.We use the value of the ratio �o2p=op�2 � 15:2
and the film thickness d � 26 A

�
corresponding to the

experiments in [48] made for an aluminum substrate coated
by a silver film. Due to the resonance, the polariton spectrum
in Fig. 6 is split into two branches with a frequency gap
appearing between them. Evidently, the lower branch of the
polariton spectrum exhibits two modes for a given frequency
o. The mode with larger k (denoted as k2) is the additional
surface polariton wave with a negative group velocity. It is
clearly seen in the figure that the polariton wave frequency
decreases linearly with the increase in the wave vector; the
reason for this can be readily revealed in the following
analysis.

Foro � op 5o2p, themagnitudes of dielectric permittiv-
ities (54) must satisfy the conditions

ÿe2�o�4 1 ;
��e�o���5 1 :

The second and the fourth terms in Eqn (53) can then be
neglected, because jK2=e2j5 K1 and

���K1K2=e1e2�q��5 k 2j pj.
At large enough k, it is true that K1 � k, and Eqn (53)
immediately yields the following dispersion equation for the
polariton:

o�k� � op

�
1ÿ kd

2

�
: �55�
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Equation (55) describes the negative group velocity of the
lower polariton branch seen in Fig. 6.

Thermally excited radiation from such surface polar-
itons with negative group velocity was observed experimen-
tally in Ref. [49] in systems of ZnSe films on Al and Cr
substrates. Also, experiments in [50] for thin films of LiF on
a sapphire substrate confirmed the square-root dependence
of the frequency gap magnitude on the film thickness (the
magnitude of the gap being proportional to

���
d
p

) following
from Eqn (53). This gap can increase substantially as the
resonant plasma frequency increases. In fact, a gap of the
magnitude 0.4 eV was reported in Ref. [48] for surface
plasmons on an aluminum substrate coated by a silver film
of d � 2:6 nm, in good agreement with the theoretical
estimate. The splitting in the surface polariton dispersion
curve has also been observed in systems consisting of an
organic monolayer [51] and of a thin organic film [52] on
silver substrates.

The theory of surface wave propagation with additional
surface waves and the diffraction of waves at the edge of the
film taken into account was developed in Ref. [53]. The
presence of the diffraction and conversion of surface waves
into bulk radiation and, vice versa, of bulk radiation into
surface waves, considerably complicates the problem of
finding ABCs for surface waves.

5. Magnetic permeability at optical frequencies

In Sections 3.1, 3.2, and 3.4, we have already discussed certain
aspects of the correspondence between two approaches used
in the electrodynamics of continuous media. One of the
approaches is based on taking spatial dispersion into
account; in the framework of this approach, three fields
(E;D;B) supplemented by matter equation (9) with the
dielectric tensor ei j�o; k� are considered. In the other,
perhaps more familiar (so-called `symmetric') approach, all
four fields �E;D;B;H� are explicitly considered, and the

matter equations

D � e�o�E ; B � m�o�H �56�

are used for monochromatic fields.
Using Eqn (56) with the Maxwell equations leads to the

standard dispersion law (3) for plane waves propagating in a
spatially uniform medium.

In this section, we discuss conditions at which the
magnetic permeability m�o� in Eqn (56) may retain its
physical meaning in the description of a continuous med-
ium. An analysis of this question for natural materials has
been provided in the textbook by Landau and Lifshits [6] with
the conclusion that ``unlike e�o�, when the frequency
increases, the magnetic permeability m�o� ceases to have any
physical meaning at relatively low frequency.''What does this
mean? As is well known, a macroscopic description involves
spatial averaging and, therefore, necessitates that a micro-
scopic length a (there can be more than one such length)
characterizing themedium bemuch smaller than the length of
the spatial variation of themacroscopic electromagnetic fields
(that is, for instance, than the wavelength l of the electro-
magnetic waves in the medium: a5 l). For natural materials,
a is typically of an atomic or molecular size, like a crystal
lattice constant, or of the order of the mean free path of
charge carriers.

In many recent studies that followed Pendry's work [54],
the macroscopic Maxwell equations are used to study wave
propagation and negative refraction in artificial periodic or
amorphous structures (meta-materials). References to earlier
investigations within the same approach in both amorphous
and periodic artificial structures can be found in Ref. [55].
These materials are composites comprising objects of
various shapes (spheres, rods, pillars, etc.). The geometrical
sizes of these constituent objects (`artificial molecules') and
the corresponding lattice constants (new length scale a) can
be hundreds of times larger than in natural materials. As an
example, we mention a structure comprised of pairs of gold
nano-pillars of about 80 ± 200 nm studied in Ref. [56] within
the range of vacuum wavelengths from 400 to 700 nm.
Another example is a recent work [57], in which a double-
periodic array of pairs of parallel gold nano-rods was used,
with the rods measuring 780� 220� 50 nm. The wave-
length of the illuminating light varied between 500 and
2000 nm. The structures used in Refs [56, 57] were
developed with the goal of fabricating meta-materials with
a negative refractive index at optical frequencies. However,
in both cases, not bulk materials but `monolayers' were in
fact fabricated.

Two different ways to analyze the properties of such a
composite can be distinguished. Because the size of the
objects is much larger than the atomic sizes, each of the
objects can be described within the framework of the usual
macroscopic theory, being characterized, e.g., by appropri-
ate e�o� and m�o�. The wave propagation in the composite
can then be studied by applying the Maxwell boundary
conditions on the objects' surfaces, for example, within the
finite-difference time domain method of computational
electrodynamics [58]. Evidently, in this powerful straightfor-
ward approach, there is no need to evaluate the effective
material constants of the meta-material, while customary
values of e�o� and m�o� are spatially variable. Any
restriction on the meaning of m�o� in this approach would
be the same as for natural materials.

o

op

k

k1 k2

0

Figure 6.Dispersion of surface polaritons at a resonance with vibrations in

a thin overlayer. The resonance is at a frequency op. Both the gap in the

polariton spectrum and the branch with negative group velocity (exem-

plified by wave vector k2 at a given frequency) are clearly seen.
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A different way, which is conceptually attractive and
allows an analytical solution, is to perform a `secondary
averaging' over composite's structure and to use the macro-
scopic Maxwell equations in the resulting effectively uniform
medium. This method is applicable as long as l4 a, i.e., as
long as the medium can be characterized by the correspond-
ing effective permittivity and permeability. It is important
that wave propagation can be considered similarly to the way
typically used in natural homogeneous condensed matter
with a5 l only if coordinate-independent effective para-
meters e, m, or ei j�o; k� can be introduced. It turns out,
however, that the notion of the effective permeability m�o�
has a restricted range of applicability [6].

5.1 The magnetic moment of a macroscopic body
A difficulty with the definition of the physical meaning of
m�o� at higher frequencies, which is important for theory as
well as for the interpretation of experiments, is related in [6] to
the fact that it may be impossible to `measure' the perme-
ability by measuring the total induced magnetic moment of a
macroscopic body. Indeed, the induced macroscopic current
density J in time-dependent fields arises not only from the
magnetization

M � BÿH

4p
�57�

but also from the dielectric polarization P � �Dÿ E�=4p:

J � cH�M� qP
qt

: �58�

Equation (58) follows, on the one hand, directly from the
averaged macroscopic Maxwell equations

H� B � 4p
c

J� 1

c

qE
qt

; �59�
H�H � 1

c

qD
qt

;

and, on the other hand, from the derivation of this current
as the average of the microscopic current density J � h rvi
using positions and velocities of charged particles in the
medium [33, 35].

The induced total magnetic moment

M tot � 1

2c

�
�r� J� dV

of a macroscopic body must therefore also have two
corresponding contributions:

M tot �M tot
1 �M tot

2 ; �60�

where

M tot
1 �

�
M dV ; �61�

M tot
2 �

1

2c

��
r� qP

qt

�
dV : �62�

Thus, the magnetizationM has the physical meaning of a
magnetic moment of a unit volume of the body when the
contribution (62) from the time-dependent dielectric polar-
ization can be omitted in (60). Only if this contribution can be
neglected can the permeability m�o� be treated as the physical

quantity that determines the magnetic moment of a unit
volume.

We note that the analogous problem does not arise for
the electric dipole moment [6], because the total electric
dipole moment is defined by an expression similar to (61):
P tot � � PdV.

A natural question arises: under which conditions is the
contribution M tot

2 into M tot small? Using Maxwell equation
(59) and the definitions of M in (57) and of P, we can
immediately evaluate relative contributions to the induced
current (58) for a monochromatic electromagnetic wave. For
the magnetic current to dominate, i.e., to have

jcH�Mj4
���� qPqt

���� ;
which allows neglecting the termM tot

2 , the following inequal-
ity must be satisfied:

R�o� �
���� e�o�

ÿ
m�o� ÿ 1

�
e�o� ÿ 1

����4 1 : �63�

Therefore, ifR�o�4 1 for given e�o� and m�o�, thenM tot
2

can be neglected, and the quantity m�o� entering one of
equations (56), with reasonable accuracy, defines the mag-
netic moment of a unit volume in the field of the plane
electromagnetic wave propagating in the medium. If, on the
contrary, inequality (63) is not satisfied, then the magnetic
moment of a unit volume is dominated by the contribution of
the electric polarization current and the physical meaning of
the magnetic permeability m�o� (which, in particular, defines
the magnitude of the refraction coefficient of the waves) is
unclear. Because m�o� no longer determines the magnetic
moment of a unit volume, the appropriateness of using this
quantity and, consequently, the symmetric approach, is
doubtful. Nevertheless, the physical meaning of the quantity
m�o� can also be defined in this case if it can be independently
measured. It is not the best way to define the magnetic
permeability m�o� using the plane wave, as was done to
obtain inequality (63), because the electromagnetic wave
does not provide the most favorable conditions for reduction
of the value of M tot

2 due to a relatively strong electric field of
the wave. Instead, as discussed in Ref. [6], a small macro-
scopic body can be placed in a time-dependent (monochro-
matic) magnetic field produced by some external current
density Jext. The electric field must be relatively weak, such
that the contribution of electric polarization into the
magnetic moment of a unit volume can be reduced. To solve
the problem analytically, we consider a cylindrical sample of
length L and radius l placed in a solenoid. Let an external
circular current produce a magnetic field inside the solenoid.
The smallness of the sample in this geometry means that

l5 l : �64�

But the sample must still be macroscopic,

l4 a ; �65�

for the very notion of the (effective)macroscopic permeability
to be valid.

If Eqn (64) is satisfied, then the magnetic field in the
sample is mostly produced by the external current. Let H be
the magnitude of this uniform field. This field leads to the
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uniform magnetizationM � ÿ m�o� ÿ 1
�
H=4p of the sample,

and its contribution (61) to the total magnetic moment is

M tot
1 �

����l 2Lÿm�o� ÿ 1
� H
4

���� : �66�

But the time-dependent magnetic field also induces the
electric field in the sample according to theMaxwell equation

H� E � ÿ 1

c

qB
qt

:

In our geometry, the magnitude of this field varies with the
distance x from the cylinder axis as E � ��om�o�Hx=2c

��. The
magnitude of the dielectric polarization current density is
therefore jqP=qtj � ��o2m�o�ÿe�o� ÿ 1

�
Hx=8pc

��, and hence
the second contribution (62) to the total magnetic moment is

M tot
2 �

����l 4Lo2m�o�ÿe�o� ÿ 1
� H

32c 2

���� : �67�

Equations (66) and (67) show that for the magnetization
contribution to dominate, i.e., for

jM tot
1 j4 jM tot

2 j

to be true, the following inequality must be satisfied:

8c 2

o2l 2

���� 1ÿ 1=m�o�
e�o� ÿ 1

����4 1 : �68�

With the corresponding wavelength l�o� � 2pc=o
�����
em
p

for plane waves in the medium used instead of the frequency
o, criterion (68) can be rewritten as

2

p2
R�o�

�
l�o�
l

�2

4 1 : �69�

If criterion (68) is satisfied, the quantity m�o� preserves its
physical meaning independently of whether inequality (63) is
satisfied. This criterion is `weaker' than Eqn (63) owing to
condition (64). Clearly, the numerical coefficients in Eqns (68)
and (69) are affected by the particular shape of the sample
considered, and the frequency intervals where condition (64)
is not satisfied must be excluded from the above considera-
tion.

We note that inequalities (63) and (68) naturally follow
from the comparison of the medium response contributions
to the generalized dielectric permittivity e?�o; k� ÿ 1 in
Eqn (20): these inequalities require that the contribution of
the spatial dispersion term / k 2 be larger than the term
without the spatial dispersion. For a given frequency o,
inequality (63) corresponds in Eqn (20) to the wave vector k
of the wave in the medium, while inequality (68) corresponds
to the wave vector k � 1=l, i.e., 1=k is of the order of the
sample size.

For inequality (68) to be better satisfied, the size of the
sample l should be made as small as possible but still large
enough for the sample to remain macroscopic [see Eqn (65)].
Evidently, the smaller the microscopic scale a, the smaller l
can be, and the easier it is to satisfy inequality (69). The
smallest possible magnitudes of a (of atomic or molecular
size) are found in natural materials. The presence of the factor
o2 in the denominator in the left-hand side of (68) clearly
shows that this criterion can be easily satisfied at sufficiently

low frequencies because theo-dependence of e�o� and m�o� is
then weak. It becomes in general harder and harder to satisfy
criterion (68) as the frequency increases.

Of course, the possibility of satisfying this criterion also
depends on the details of the frequency dependence of the
functions e�o� and m�o�: for instance, using model expres-
sions (4) and (5), we can write the left-hand side of Eqn (68) as

8c 2

o2l 2
Fm

Fe

���� o2
? ÿ o2

o2
mz ÿ o2

���� : �70�

The magnitude of expression (70) has a `hump' in a narrow
region around the zero of the magnetic permeability omz,
which is in reality substantially mitigated by dissipation.
Apart from that, the magnitude of expression (70) is
determined by the factor

c 2

o2l 2
Fm

Fe
� a 2

l 2
; �71�

where the estimate in the right-hand side is made for natural
(consisting of atoms or molecules) materials at optical
frequencies o � o? � omz [see Eqn (34)]. Evidently, for a
given macroscopic size of sample (65), inequality (68) cannot
be satisfied at optical frequencies in general. A measurement
or a model calculation of the total magnetic moment of a
macroscopic body in this frequency region is not related to the
magnetization M, with the exception, perhaps, of some
frequency intervals.

It seems reasonable to assume the same estimate (71) and
the same conclusion to be valid for a meta-material built of
sufficiently small �a5 l� metallic or other structures if the
electric and magnetic resonance frequencies are of the same
order as op, while the quantity equivalent to Fm=Fe is of the
order of o2

pa
2=c 2. Results for various structural shapes

suggested in the literature can be used to check whether a
condition similar to Eqn (68) is satisfied and to establish the
frequency range where the permeability m�o� retains its
physical meaning within a macroscopic description of the
sample. Although the characteristic length scale a in meta-
materials greatly exceeds the atomic size (it is a few dozen or
hundred nanometers), it is obvious that the range of
frequencies o with the reasonably satisfied inequalities

a5 l5 l�o� �72�

must in general shift to lower frequencies as the size a
increases. In fact, it is possible that in meta-materials with
larger a, inequalities (72) cannot be satisfied in awide range of
frequencies, but the wavelength l is still appreciably larger
than a. It is then impossible to measure the permeability (and,
consequently, to define its physical meaning) with the help of
the aforementioned solenoidal setup. In this situation, only
criterion (63) is left for estimates. We are not aware of a better
configuration to `measure' the permeability.

So far, with l4 a, a meta-material can of course be
treated as a continuous medium, and the approach based on
taking spatial dispersion into account and using the tensor
ei j�o; k� is a powerful alternative to the approach involving
e�o� and m�o� at the frequencies where m�o� loses its physical
meaning. But it follows from our discussion in Section 3 that
as long as the spatial dispersion is restricted to terms / k 2

[e.g., as in Eqn (22)], the formal description of transverse
polaritons within the e�o�ÿm�o� formalism is adequate if
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some effective m�o� is introduced via Eqn (20) with the
resulting standard expression (3) for the refractive index.
But the discussion in this section implies that m�o� thus
defined cannot be related to the total magnetic moment of a
macroscopic body at optical frequencies in general, because
only the part of spatial dispersion due to magnetic-dipole-
allowed transitions is taken into account. The method based
on the account of spatial dispersion, of course, also allows
analyzing other types of dispersion and the corresponding
qualitatively new effects (such as additional polariton waves),
which are completely missed in the description of the material
properties of the medium in terms of e�o� and m�o�.

As soon as any of the structural sizes a in meta-materials
becomes comparable to the wavelength l in the medium, the
analysis of the wave propagation in the composite with the
help of the electrodynamics of continuous media ceases to be
possible: as alreadymentioned, a composite cannot be treated
as an `effectively continuous' medium, and descriptions
involving spatially variable (position-dependent) material
response functions must then be used.

An analysis of the applicability of the e�o�ÿm�o�
approach to the already published results claiming the
observation of negative refraction in the optical domain in
meta-materials is of current importance. Unfortunately, the
data on the dispersions of e�o� and m�o� are not always
available in the papers. In some cases, the reported imaginary
part of the refractive index is around or even larger than its
real part, which does not allow taking the published
statements seriously. It is also important that the experimen-
tally studied structures be truly three-dimensional bodies,
rather than two-dimensional monolayers: even for artificial
materials, monolayers should be taken into account only via a
corresponding modification of the boundary conditions.
Experiments with `monolayers' have, in general, absolutely
no relation to negative refraction in bulk materials.

6. Related interesting effects

6.1 The generation of harmonics in a medium
with negative group velocity
The generation of harmonics in media with negative group
velocity can have some peculiarities. Here, following Ref. [8],

we briefly consider one of the interesting effects on a
qualitative level. We consider a semi-infinite medium that
supports waves with a negative group velocity in some
frequency interval. Usually, the spectral width Do of this
interval is relatively narrow: Do5o. We suppose that a laser
beam of a frequency ol is incident on the medium from a
vacuum, with ol being within the range Do. Then the
frequencies of the second �2ol� and higher harmonics belong
to those regions of the spectrum where the medium supports
waves with positive group velocities. As is known, the sources
of harmonics generation are determined by a tensor product
of the nonlinear susceptibilities w�2�; w�3�; . . . and the ampli-
tudes of the fields in the medium. For example, the source of
the generation of the second harmonic is given by
w�2�i j Ei�o; k�Ej�o; k�, and similarly for higher harmonics. At
low intensities, the field E�o; k� can be calculated in the linear
approximation neglecting the nonlinear interaction. Because
the incoming refracted wave is in the frequency interval of
negative refraction, its wave vector k is directed from the bulk
of the medium to its surface, as depicted in Fig. 7a. Then the
wave vector of the source, for instance, of the second
harmonic, is 2k, and is also directed towards the vacuum±
medium interface. On the other hand, the wave vector of the
wave at the frequency 2ol, which carries the energy from the
surface into the bulk of the nonlinear medium, is directed
from the interface into the bulk of the medium. Therefore, the
wave vectors of the source of the second harmonic and of this
normal transmitted wave are phase-mismatched, their inter-
action is weak, and this wave is also excited only weakly. This
mismatch then causes the dominant part of the energy from
the source of the second harmonic to be transferred to the
second harmonic propagating in the vacuum away from the
interface, as schematically shown in Fig. 7a. Thus, a medium
with negative group velocity, as it were, reflects the second
harmonic generated by the incident laser beam, and thus
works as an effective `mirror.' Details of the corresponding
calculations can be found in Refs [8, 59] (see Ref. [60] for the
discussion of the generation of harmonics of acoustic waves in
one-dimensional phononic crystals with negative refraction).
Experimental studies of nonlinear effects are only beginning;
we can mention paper [61], where an enhancement of the
intensity of the reflected second harmonic in transmission
lines with negative group velocity caused by nonlinear effects

Do
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S3o

S2o

k So

2o

a

D
o

DO

So

Incident
wave Reêected

wave

Refracted
wave

Medium with negative
group velocity

b

Figure 7. Schematic illustrations for the effects discussed in Section 6. (a) Harmonic generation. The frequencyo of the incident wave belongs to a narrow

interval Do of frequencies for which the waves in the medium have a negative group velocity. The energy transferred to higher harmonics 2o and 3o
mostly propagates (the Poynting vector S) in the reflected mode. (b) An ultra-short pulse �DO > Do� incident on a medium with negative group velocity

leads to the appearance of two refracted pulses with different spectral contents.
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has been observed. Other nonlinear properties of artificial
materials with negative group velocity are discussed in
Refs [62 ± 64].

6.2 Ultra-short pulse propagation in a medium
with negative group velocity
Ultra-short pulses are currently available in a wide frequency
range, from the terahertz region to the far ultraviolet. An
interesting manifestation of negative refraction may occur
when the spectral width DO of a pulse is appreciably larger
than the spectral width Do of the frequency range where
waves with negative group velocity exist in a negative-
refraction material [8]. Qualitatively speaking, the ultra-
short pulse can be decomposed into a sum of its Fourier
components, the propagation of each component can then be
followed, and the components composed after their propaga-
tion through the medium.

If DO4Do, then the pulse incident on the medium with
negative group velocity is expected to split into three outgoing
pulses with different spectral content, as schematically shown
in Fig. 7b. The reflected pulse has approximately the same
spectral content as the incident pulse. The two transmitted
pulses have different propagation directions and different
spectral contents. The central part of the pulse spectrum (of
the width Do) experiences negative refraction at the interface,
but the components from the `wings' located outside the
interval Do propagate according to the rules of ordinary
`positive' refraction. Therefore, the frequency intervalDo can
be determined by spectroscopical methods examining spectra
of differently refracted transmitted pulses.

Interesting effects can also be expected when ultra-short
pulses are used for harmonic generation and wave mixing,
because higher harmonics also propagate in an unusual way.
Only some part of the spectrum of the input or output signals
experiences negative refraction, and therefore the output
pulses of transmitted and reflected light can be drastically
different: the energy, pulse shape, spectral content, and
direction of propagation may differ from those expected in
an ordinary nonlinear medium. The details of the description
are complicated and depend on the spectral content of the
ultra-short pulse and on thematerial with negative refraction.

7. Conclusion

It was a pleasure for us in this review to once more pay
homage to L I Mandel'shtam, who pointed out in the early
1940s that negative refraction of waves at interfaces occurs as
a result of a negative group velocity of waves in one of the
interfacing media [1 ± 3]. The understanding of this fact is a
motivation for drawing special attention to various factors
that may affect the dispersion law o�k� of waves propagating
in the medium.

The most general approach to analyze such factors for
electromagnetic waves in an effectively homogeneous med-
ium is based on taking spatial dispersion into account. In the
framework of this approach, a generalized dielectric tensor
ei j�o; k� is introduced, which represents the response of the
medium to perturbations of the frequency o and wave
vector k. Normal waves (polaritons) with negative group
velocity can propagate in a medium (whether in natural or in
artificial meta-materials) when the spatial dispersion (the
dependence of the dielectric tensor on k) is strong enough. A
particular case where such a situation arises (which corre-
sponds to the spatial dispersion / k 2) is better known as the

case of a material in which the dielectric permittivity e�o� and
the magnetic permeability m�o� are simultaneously negative.
The approach based on taking spatial dispersion into account
also allows working in the optical frequency region, where
m�o� loses its traditional physical meaning, and even in
situations where the medium does not exhibit a response of
the magnetic dipole type.

The tensor ei j�o; k� also allows considering more compli-
cated matter equations and the resulting qualitatively new
effects, such as additional polariton waves in a unified fashion.
In this review, we have used this approach to describe several
physical systems in which conditions for the propagation of
polaritons with negative group velocity at optical frequencies
exist. Our examples included gyrotropic and nongyrotropic
systems and bulk and surface polariton waves. We hope that
these examples can be useful in choosing materials suitable
for experiments.

We focused mainly on the physical origin of the appear-
ance of polaritons with negative group velocity. Due to this,
we were unable to discuss many important factors that affect
the possibility of practically realizing the effects related to the
existence of the negative refraction. One of those factors is the
presence of dissipation, which is, of course, the problem
common to all frequency intervals. This means, for instance,
that the crystals with intensive and narrow excitonic reso-
nances deserve special attention. Another problem consists in
the relatively low efficiency of the excitation of additional
polaritons due to wave vector mismatch. Certain schemes
have been proposed to increase the efficiency of their
investigation for crystals with a positive group velocity of
additional waves. These schemes can possibly also be applied
to crystals with negative refraction.
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