
Abstract. Recent studies of two-band superconductors using the
Ginzburg ±Landau (GL) theory are reviewed. The upper and
lower critical fields [Hc2�T � andHc1�T �, respectively], thermo-
dynamic magnetic fieldHcm�T �, critical current density jc�T �,
magnetizationM�T � near the upper critical field, and the upper
critical field H film

c2 �T � of thin films are examined from the
viewpoint of their temperature dependence at a point Tc using
the two-band GL theory. The results are shown to be in good
agreement with the experimental data for the bulky samples of
superconducting magnesium diboride, MgB2, and nonmagnetic
borocarbides LuNi2B2C and YNi2B2C. The specific heat jump
turns out to be smaller than that calculated by single-band GL
theory. The upper critical field of thin films of two-band super-
conductors is calculated and the Little ± Parks effect is ana-
lyzed. It is shown that magnetic flux quantization and the
relationship between the surface critical magnetic field
Hc3�T � and the upper critical field Hc2�T � are the same as in
the single-band GL theory. Extension of the two-band GL
theory to the case of layered anisotropy is presented. The
anisotropy parameter of the upper critical field Hc2 and the
London penetration depth k, calculated for MgB2 single crys-
tals, are in good agreement with the experimental data and show
opposite temperature behavior to that in single-bandGL theory.

1. Introduction

The discovery of superconductivity in MgB2 [1] has attracted
considerable attention. MgB2 compound holds the highest
superconducting transition temperature, about Tc � 40 K,
among binary compounds of a relatively simple crystal
structure. Additionally, MgB2 has a high potential to replace
conventional superconducting materials in electronics appli-
cations. Large critical densities have already been reported
for bulky samples [2] and bulk superconductivity was
established immediately to support supercurrent transport
between granules [3]. The material shows a pronounced
isotope effect [4]. Measurements of the nuclear spin ± lattice
relaxation rate [5] indicate thatMgB2 constitutes a Bardeen ±
Cooper ± Schrieffer (BCS) type superconductor with phonon-
mediated pairing. Calculations of the band structure and the
phonon spectrum predict a double energy gap [6, 7], with a
larger gap being attributed to two-dimensional pxÿy orbitals,
and a smaller gap attributed to three-dimensional pz bonding
and anti-bonding orbitals. A two-band character of the
superconducting state in MgB2 is clearly evident in recently
performed tunnel measurements [8, 9] and specific heat
measurements [10].

The other class of superconductors (SCs) comprises rare-
earth transition-metal borocarbides with the general formula
RNi2B2C, which have attracted the interest of many research-
ers because of their wide variety of physical properties:
compounds withR � Lu, Y exhibit fairly high superconduct-
ing transition temperatures Tc of about 15 ± 16 K [11];
magnetism coexists with superconductivity for R � Dy, Ho,
Er, and Tm [12], whereas only antiferromagnetic order occurs
forR � Pr, Nd, Sm, Gd, and Tb [13]. These compounds show
a layered structure and therefore they are considered as
possibly close to quasi-2D cuprates. However, various band
structure calculations within the local density approximation
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[14 ± 17] clearly indicated the 3D electronic structure. Quan-
tum oscillation measurements in nonmagnetic borocarbides
LuNi2B2C and YNi2B2C give clear evidence of a multiband
character in the normal state [18].

The magnetic phase diagram for MgB2, LuNi2B2C, and
YNi2B2C compounds has also been of interest to researchers.
In contrast to conventional superconductors, the upper
critical field for a bulky MgB2, LuNi2B2C, and YNi2B2C
has a positive curvature near Tc [19 ± 22]. To understand the
nature of the unusual behavior at a microscopic level, a two-
band (TB) Eliashberg model of superconductivity was first
proposed by Shulga et al. [23] for LuNi2B2C and YNi2B2C,
and recently for MgB2 [24]. Here, it is necessary to remark
that the generalization of the BCS theory to the multiband
model was first suggested in Refs [25, 26] many years ago. The
recent development of the two-band BCS theory, taking into
account van Hove singularity of the density of states, was
presented in Ref. [27].

The temperature dependence of the thermodynamic
critical magnetic field Hcm�T � remains to be determined
theoretically. The temperature dependence of Hcm�T � is
essential for the assessment of the behavior of specific heat
at temperatures close to Tc. It is generally known that BCS
calculations, which implicitly incorporate an isotropic single-
band Fermi surface, reveal that the jump in specific heat at Tc

is constant at a magnitude of 1.43. The Eliashberg theory,
assuming a strong electron ± phonon coupling, would be
expected to give a value greater than 1.43. Several groups
have measured specific heat of magnesium diboride, MgB2

[10, 28]. The measured specific heat shows a small jump at Tc,
which is not explained within the standard BCS and
Eliashberg theories. The ab initio calculations of specific
heat in two-band Eliashberg theory were done by Golubov
et al. [29].

Although extensive theoretical studies at the microscopic
level were carried out after the discovery of borocarbides and
magnesium diboride, it is necessary to gather additional
information about its superconducting properties by using
the macroscopic Ginzburg ±Landau theory [30]. Regardless
of the origin of superconductivity, the GL theory has been
found to be adequate for explaining the measurable macro-
scopic quantities. The temperature dependences of funda-
mental measurable quantities like the lower critical field Hc1

and the upper critical field Hc2 are expected to help in
understanding the mechanism of superconductivity. The
Hc2�T � and Hc1�T � temperature dependences in borocar-
bides are different from those of the single-band (SB) s-wave
BCS theory and GL theory. The different temperature
dependences may indicate a slight difference in the pairing
state of the superconductor.

In this review paper, we summarize recent studies using
the two-band GL theory and apply it to determining the
temperature dependence ofHc2�T �,Hc1�T �, andHcm�T � for
nonmagnetic borocarbides and magnesium diboride. We will
show that the presence of two order parameters in the theory
leads to a nonlinear temperature dependence which is shown
to be in good agreement with experimental data for two-band
MgB2, LuNi2B2C, andYNi2B2C superconductors. Quantiza-
tion of the magnetic flux, Little ± Parks oscillations of critical
temperature, and the relationship between the surface critical
fieldHc3�T � and upper critical fieldHc2�T � in the framework
of the two-bandGL theorywill also be considered. The layout
of the paper is as follows. In Section 2 we will derive the two-
band GL equations for isotropic superconductors and these

equations will be applied to the calculations of several
physical quantities. At the end of this section, a general-
ization of the TB GL theory to the case of layered anisotropy
is considered. The anisotropy parameters of the upper critical
field Hc2 and London penetration depth l were calculated
within this approach. Section 3 is devoted to the results
obtained and their discussion. In Section 4 conclusions will
be drawn.

2. Theory

In the presence of two order parameters (OPs) in an isotropic
s-wave superconductor, the Ginzburg ±Landau functional of
free energy can be written down as [31 ± 33]

F�C1;C2� �
�
d3r

�
F1 � F12 � F2 �H 2

8p

�
; �1�

with

Fi � �h2

4mi

�����Hÿ 2piA
F0

�
Ci

����2 � ai�T �C 2
i �

bi
2
C 4

i ; �2�

F12 � e�C1C �2 � c:c:�

� e1

��
H� 2piA

F0

�
C �1

�
Hÿ 2piA

F0

�
C2 � c:c:

�
: �3�

Here, mi denotes the effective mass of the carriers belonging
to the i band �i � 1; 2�; Fi is the free energy of separate bands;
the coefficient a is given by ai � gi�Tÿ Tci�, which depends
on temperature linearly, gi is the proportionality constant,
while the coefficient bi is independent of temperature;H is the
external magnetic field, and H � rotA. The quantities e and
e1 describe interband mixing of two order parameters and
their gradients, respectively.

Minimization of the free energy functional with respect to
the order parameters yields GL equations for two-band
superconductors in one-dimensional case for A � �0;Hx; 0�:

ÿ �h 2

4m1

�
d2

dx 2
ÿ x 2

l 4s

�
C1 � a1�T �C1 � eC2

� e1

�
d2

dx 2
ÿ x 2

l 4s

�
C2 � b1C

3
1 � 0 ; �4a�

ÿ �h 2

4m2

�
d2

dx 2
ÿ x 2

l 4s

�
C2 � a2�T �C2 � eC1

� e1

�
d2

dx 2
ÿ x 2

l 4s

�
C1 � b2C

3
2 � 0 ; �4b�

where l 2s � �hc=�2eH� is the so-called magnetic length. In
deriving the last equations without losing generality, we
consider for simplicity the case in which C and A depend
only on a single coordinate x. Boundary conditions for two-
band GL equations have the form

n

�
Hÿ 2piA

F0

�
C1 � aC1 � bC2 ; �5a�

n

�
Hÿ 2piA

F0

�
C2 � cC1 � dC2 ; �5b�
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where a, b, c, and d are constants, and n is a unit vector
normal to the superconductor surface. Here, it necessary to
remark that two-band Ginzburg ±Landau equations were
first discussed by Moskalenko [34]. However, terms describ-
ing intergradient interaction were absent in equations
presented in Ref. [34], unlike those entering equations (4a)
and (4b). In paper [34], the upper critical field problem was
only discussed in the linear approximation. As will be shown
in Sections 3.1, 3.3, and 3.11, inclusion of the term with
intergradient interaction in the equations leads to interesting
results.

Considering Ci�r� �
��Ci�r�

�� exp ÿifi�r�
�
in Eqns (1) ± (3),

with fi�r� being the phase of the OP, and
��Ci�r�

�� the modulus
of the OP, we can obtain the equilibrium values for

��Ci�r�
�� in

the absence of any external magnetic fields:

jC10j2 � ÿ
a 2
2 �T �

ÿ
a1�T � a2�T � ÿ e 2

�
e 2b2a1�T � � b1a

3
2 �T �

; �6a�

jC20j2 � ÿ
a 2
1 �T �

ÿ
a1�T � a2�T � ÿ e 2

�
e 2b1a2�T � � b2a

3
1 �T �

: �6b�

The OP phase difference at equilibrium can be given as

cos �f1 ÿ f2� � 1 if e < 0 ; �7a�
cos �f1 ÿ f2� � ÿ1 if e > 0 : �7b�

2.1 Upper critical field Hc2�T �
It is well known that Hc2�T � for the single-band SC can be
calculated as the lower eigenvalue problem of the linearized
GL equation [35]. In the vicinity of Tc we can neglect cubic
terms in Eqns (4a), (4b). Then Eqns (4a) and (4b) can be
rewritten as

ÿ �h 2

4m1

�
d2

dx 2
ÿ x 2

l 4s

�
C1 � a1�T �C1 � eC2

� e1

�
d2

dx 2
ÿ x 2

l 4s

�
C2 � 0 ;

�8a�

ÿ �h 2

4m2

�
d2

dx2
ÿ x 2

l 4s

�
C2 � a2�T �C2 � eC1

� e1

�
d2

dx 2
ÿ x 2

l 4s

�
C1 � 0 : �8b�

One can arrive at identical equations forC1�x� andC2�x� by
elimination of unknowns from equations (8). Therefore, we
can suppose that C1�x� � CC2�x�. The coefficient C is
obtained by solving the set of equations (8a) and (8b).
Substituting the eigenfunction C1�x� / exp �ÿdx 2=2� corre-
sponding to a lower energy state and taking into account the
relationshipC1�x� � CC2�x�, we then obtain expressions for
the coefficient C:

C � ÿ eÿ e1d�
�h 2=�4m1�

�
d� a1

; C � ÿ
�
�h 2=�4m2�

�
d� a2

eÿ e1d
; �9�

which are equivalent to the following equation�
�h 2

4m1
d� a1

��
�h 2

4m2
d� a2

�
� �eÿ e1d�2 : �9 0�

Using Eqn (9 0) one finds the normalized upper critical
field of a two-band SC in the isotropic case hc2 �
Hc2�T �= ~Hc2�0�, ~Hc2�0� � cTc�g1m1 � g2m2�=��he�:

hc2�y� � aÿ10

ÿÿyÿ c0 � �Ay 2 � By� c 20 �1=2
�
; �10�

y � T

Tc
ÿ 1 ;

where the following notation is applied:

A � �xÿ 1�2
�x� 1�2 � A1Z 2 ; A1 � 64

a1a2x
2

�x� 1�2 ; �10a�
x � g1m1

g2m2
; Z � Tcm2e1g2

�h 2e
;

B � 2�xÿ 1��a1xÿ a2�
�x� 1�2 � �a1 � a2�A1Z 2 � 2B1Z ;

�10b�
ai � 1ÿ Tci

Tc
;

c0 � a1x� a2
x� 1

� B1Z ; a0 � 1ÿ 16xZ 2e 2

g1g2T 2
c

:
�10c�

The critical temperature of a two-band SC is deter-
mined from Eqn (9 0) in the absence of an external magnetic
field:

�Tc ÿ Tc1��Tc ÿ Tc2� � e 2

g1g2
: �11�

Near Tc, we have asymptotic behavior of hc2 in the
form

hc2�y� � aÿ10

�
ÿ
�
1ÿ B

2c0

�
y� A

2c0
y 2

�
: �12�

2.2 Surface magnetic field Hc3�T �
In the case of single-band superconductivity, the surface
critical field is determined from the GL equation with the
vector-potential in the form of A � H�xÿ x0� [36]. Such a
procedure allows one to obtain an exact value of Hc3�T � but
requires rather sophisticated numerical calculations. How-
ever, a simple variational analysis provides us with an almost
exact solution [37]. The accuracy of simple variational
procedure is about 2% and can be improved by choosing a
proper trial function [38]. As a result, the problem of solving
GL equations may be presented as a variational problem of
finding the minimum of the free energy functional for the
single-band SC [37, 38].

For the trial solutions we substitute functions C1�x� /
exp �ÿdx 2=2� and C1�x� � CC2�x� into Eqn (8a) with
appropriate boundary conditions

C1�x!1� � 0 ;
dC1

dx
�0� � 0 : �13�

The coefficient d must be determined from the minimum
condition for the free energy functional (1). Taking into
account the expression for the vector-potential A �
H�xÿ x0� and using the above-introduced trial functions,
we can rewrite expression (1) as follows (here we neglected
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quartic terms):

DF �
�1
0

dx

(
�h 2

4m1

�
d2

dx 2
�
�
2pH�xÿ x0�

F0

�2

� a1�T �
�

� 1

C 2

�h 2

4m2

�
d2

dx 2
�
�
2pH�xÿ x0�

F0

�2

� a2�T �
�

� 2e
C
� 2e1

C 2

�
2pH�xÿ x0�

F0

�2
)
exp �ÿdx 2� : �14�

After integration we will first find the minimum of the free
energy (14) with respect to x0. Differentiation with respect to
x0 gives

x0 � �pd�ÿ1=2 : �15�

Next, we will find the minimum of the energy functional (14)
with respect to d. This leads to a relationship between d andC
in the following form

C 2 �h 2

4m1

ÿ
a1�T � � d

�� 2C�eÿ e1d� � �h 2

4m2

ÿ
a2�T � � d

� � 0 ;

�16�

which is equivalent to Eqn (9 0). By substituting Eqns (15) and
(16) into Eqn (14) with DF � 0, we can then obtain a formula
for the surface critical fieldHc3:�

2pH
F0

�2�
1ÿ 2

p

�
� d 2 ; �17�

where d is determined from equation (9 0), which is consistent
with the result found in Ref. [32].

Finally, the surface critical field can be given as

Hc3�T � �
�

p
pÿ 2

�1=2 F0d
2p
� 1:66Hc2�T � ; �18�

where Hc2�T � is determined by Eqn (10).

2.3 Lower critical field Hc1�T �
For temperatures near Tc and magnetic fields slightly
stronger than Hc1, the influence of the field on the moduli of
the order parameters C1 and C2 can be neglected and
therefore we assume jC1j � const, jC2j � const. Then, the
wave function can be written down as Ci�r� ���Ci�r�

�� exp ÿifi�r�
�
. Here, fi�r� are the phases of the order

parameters, and the GL free energy functional (1) can be
rewritten as

F�f1;f2� �
�
d3r

"
�h 2

8m1
n1�T �

�
df1

dr
ÿ 2pA

F0

�2

� �h 2

8m2
n2�T �

�
df2

dr
ÿ 2pA

F0

�2

� e
ÿ
n1�T � n2�T �

�1=2
� cos �f1 ÿ f2� � e1

ÿ
n1�T � n2�T �

�1=2
cos �f1 ÿ f2�

�
�
df1

dr
ÿ 2pA

F0

��
df2

dr
ÿ 2pA

F0

�
�H 2

8p

#
; �19�

where n1�T � � 2jC1j2 and n2�T � � 2jC2j2 are the densities of
superconducting electrons for the corresponding bands. The

temperature dependences n1�T �, n2�T �, and f1 ÿ f2 are
defined by the equilibrium values of order parameters jC1j
and jC2j, which satisfy the two-band GL equations without
linearization [see Eqns (6a), (6b)]. The equations determining
the equilibrium values of magnetic field and the OP phases
would be obtained by minimizing the free energy functional
(19) with respect to the vector-potential A and the phases f1,
f2. The equation for the vector-potential takes the form

H� H� A

4p
� 2p

F0

(
�h 2

4m1
n1�T �

�
df1

dr
ÿ 2pA

F0

�

� �h 2

4m2
n2�T �

�
df2

dr
ÿ 2pA

F0

�
� e1

ÿ
n1�T � n2�T �

�1=2
� cos �f1 ÿ f2�

��
df1

dr
ÿ 2pA

F0

�
�
�
df2

dr
ÿ 2pA

F0

��)
: �20�

By using the appropriate Maxwell equation H�H �
�4p=c�J (for the magnetostatic case), Eqn (20) leads to the
London equation [when taking into account the equilibrium
value of the phase differences (7a), (7b)] in the form

l2
d2H

dr 2
ÿH � 0 ; �21�

where l is the London penetration depth having the following
form:

lÿ2�T � � 4pe 2

c 2

�
n1�T �
m1

� 2e1
ÿ
n1�T � n2�T �

�1=2 � n2�T �
m2

�
:

�22�

It is well known that the lower critical field Hc1 can be
obtained in the same way as in Ref. [35]:

Hc1 � F0

4pl2�T � lnk�T � : �23�

We then introduce a dimensionless lower critical field in
the isotropic case hc1 � Hc1�T �=Hc1�0�, with

Hc1�0� � F0e
2Tc

c 2

�
g1

b1m1
� g2
b2m2

�
:

The normalized lower critical field is conveniently expressed
by

hc1 � B�T � ln k�T � ; �24�

where

B�T � � ÿ 2

x�Dÿ1
�
e 2 � x�tÿ tc1�2 � 2xZe 2�tÿ tc1�

�
� y 2 � �2ÿ tc1 ÿ tc2�y
e 2D�tÿ tc2� � �tÿ tc1�3

; �25�

D � b1g
2
2

b2g 21
; tc1; c2 � Tc1; c2

Tc
: �26�

The temperature dependence of the normalized GL
parameter k�T � in the two-band SC takes the form

k�T �
k�0� �

�
hc2�T �
B�T �

�1=2

: �27�
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Here, the upper critical field hc2 of two-band superconductors
is given by expression (10).

2.4 Upper critical field Hc2 of thin films
Let us assume now that the thickness of a two-band super-
conductor film is d < xeff; l, where the London penetration
depth l for two-band superconductors is defined by expres-
sion (22), and where jC10; 20�T �j2 is given by Eqns (6a), (6b).
Then we may neglect variations in the order parameter in the
film and suppose that a magnetic field penetrates the film
almost completely. The surfaces of the film are recognized as
coinciding with the planes x � �d=2: Neglecting the change
in the order parameter in the thin film, Eqn (4a) can be
rewritten as�

�h 2

4m1
ÿ e1

C

�
x 2

l 2s
C1 �

�
a1�T � � e

C

�
C1 � b1C

3
1 � 0 : �28�

Averaging the last expression over the thickness d of the film,
we can obtain the dependence of the order parameter C1 on
the applied magnetic field:

jC1j2 � ÿ 1

b1

��
a1�T � � e

C

�
�
�

�h 2

4m1
ÿ e1

C

�
1

l 4s

d 2

12

�
: �29�

Finally, using Eqns (9) and (29) we can deduce an
equation for the upper critical field of the thin film:

d 2

12�l 2s �2
�

�h 2

4m1

�
�h 2

4m2

1

l 2s
� a2

�
� e1

�
eÿ e1

l 2s

��

�
�

�h 2

4m2

1

l 2s
� a2

�
a1 � e

�
eÿ e1

l 2s

�
� 0 : �30�

In weak magnetic fields we obviously find

d 2

12�l 2s �2
�

�h 2

4m1
a2 � ee1

�
�
�

�h 2a1
4m2

� ee1

�
1

l 2s
� �a1a2 ÿ e 2� � 0 :

�31�
The final expression forH film

c2 �T � has the form [39]

H film
c2 �T � � ÿ

�hc

2e

"
ÿ
�

�h 2a1
4m2

� ee1

�

�
������������������������������������������������������������������������������������������������������

�h 2a1
4m2

� ee1

�2

ÿ 4�a1a2 ÿ e 2� d
2

12

�
�h2

4m1
a2 � ee1

�s #

�
�
d 2

6

�
�h 2

4m1
a2 � ee1

��ÿ1
: �32�

For thin films with d5 xeff; l, we have

H film
c2 �T � � ÿ

�hc

2e

a1�T � a2�T � ÿ e 2

��h 2=4��a1�T �=m2 � 4ee1=�h
2
� : �33�

2.5 Magnetization of two-band superconductors near Hc2

It is well known that the magnetization per unit volume in the
case of single-band superconductors may be written as [35]

M�H;T � � ÿ 1

4p
Hc2�T � ÿH

�2k 2 ÿ 1� bA
; �34�

where k is the GL parameter, and bA � 1:16 for a triangular
vortex lattice [35]. As follows from formula (34), the linearity
of the experimentally examined M�T � curves in single-band
superconductors is the result of the linearity of the upper

criticalHc2�T � for a fixed value of the external magnetic field
H and the temperature-independent character of the Ginz-
burg ±Landau parameter k. From Eqn (27) it follows that the
magnetization exhibits a nonlinear character for the TB SC.

2.6 Flux quantization
This is a salient feature of a superconductor. It may be
inferred by using Eqn (20) and assuming relationships (7).
Proceeding as usual (see Ref. [35]), we arrive at

J � 2p
F0

(
�h 2

4m1
n1�T �

�
df1

dr
ÿ 2pA

F0

�

� �h 2

4m2
n2�T �

�
df2

dr
ÿ 2pA

F0

�
� e1

ÿ
n1�T � n2�T �

�1=2
cos �f1 ÿ f2�

�
��

df1

dr
ÿ 2pA

F0

�
�
�
df2

dr
ÿ 2pA

F0

��)
: �35�

Let us now consider a hollow cylinder or, to put it
differently, a tube with wall thickness larger than l. We
integrate this equation along a closed path lying entirely
within the superconductor cavity in the cylinder. If the
integration contour passes inside the wall, then J � 0 and
the integral on the right-hand side is equal to zero. Taking
into account relationships (7), we find that df1=dr � df2=dr.
As a result, the magnetic field passing through the contour
may take a discrete series of values F0:

F � nF0 : �36�

2.7 The Little ±Parks effect in two-band superconductors
Let us take a thin cylindrical film where the thickness is much
less than the penetration depth l and apply a magnetic field
along the axis of the cylinder. In this case, an SC cannot trap
the magnetic flux because of its small thickness. However, the
nonuniqueness of the phase leads to the oscillation of the
critical temperature Tc with periodicity F0 in the single-band
approximation [35]. In a manner similar to that in the single-
band superconductor case [35], using formula (19) and
relationships (7a), (7b) as well as df1=dr � df2=dr, we can
show that the critical temperatures in different bands vary as

T 0c1 � Tc1 ÿ �h 2

4m1R2g1

�
nÿ F

F0

�2

; �37a�

T 0c2 � Tc2 ÿ �h 2

4m2R2g2

�
nÿ F

F0

�2

; �37b�

where R is the radius of the cylinder. Then the critical
temperature of the two-band superconducting cylinder is
determined by the following expression [see also Eqn (11)]

�Tc ÿ T 0c1��Tc ÿ T 0c2� �
e 0 2

g1g2
; �38�

where e 0 � e� �e1=R2��nÿ F=F0�2 [40].

2.8 Thermodynamic magnetic field Hcm�T �
and specific heat jump DC=CN

The free-energy difference between normal and supercon-
ducting states can be written down as

DF � ÿ b1
2
jC1j4 ÿ b2

2
jC2j4 ÿ 2ejC1jjC2j : �39�
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The last term in formula (39) is responsible for interband
mixing and leads to an increase in free-energy differences and,
consequently, in critical temperature. On the other hand, the
thermodynamic magnetic field is related to the free-energy
difference by

ÿH 2
cm

8p
� DF : �40�

In this paper we use the notation Hcm for the thermo-
dynamic critical field of a bulky two-band superconductor,
which is different from that for thin films. The calculated
results for thin films are also important but are not considered
here. Using formulas (6a), (6b), (39), and (40) as well as a
series of appropriate manipulations, one can deduce the
following formula for the thermodynamic magnetic field:

Hcm�T � � ÿ
������
4p
p a1�T � a2�T � ÿ e 2

e 2b1a2�T � � b2a
3
1 �T �

�
�
b1e

4 � b2a
4
1 �T � ÿ 2e 2a1�T � e

2b1a2�T � � b2a
3
1 �T �

a1�T � a2�T � ÿ e 2

�1=2
:

�41�

We now introduce a dimensionless parameter of the form

hcm � Hcm�T �
Hcm�0� ;

where

Hcm�0� �
������
4p
p

Tc

�
g1
b 1=2
1

� g2
b 1=2
2

�
;

and we then arrive at a normalized form of the thermo-
dynamic magnetic field:

hcm�y� � ÿ
����
D
p

1� ����
D
p 1

�e��2D�tÿ tc2� � �tÿ tc1�3

�
�
D�e��4 � �tÿ tc1�4

ÿ 2�e ��2 �e
��2D�tÿ tc2� � �tÿ tc1�3
y 2 � �2ÿ tc1 ÿ tc2�y

�1=2
� �y 2 � �2ÿ tc1 ÿ tc2�y

�
; �42�

where �e��2 � e 2=�g1g2T 2
c �. Here, notice that all the para-

meters are dimensionless and they are defined in formulas
(10) and (26). With this result for the normalized field, we
apply the Ruthgers formula to determining the specific heat
jump at Tc for the two-band case:

DC
Tc
� 1

4p

�
qHcm

qT

�2

Tc

: �43�

For the normalized specific heat jump at Tc, we obtain [41]

Dc �
�
qhcm
qy

�2

y� 0

; �44�

where

Dc � DC
DC0

;
DC0

Tc
� 1

4p

�
Hcm�0�

Tc

�2

:

2.9 Critical current density jc�T �
It is well known that critical current density is defined by the
expression [35]

jc � 2ens�T � vc�T � ; �45�
where ns�T � is the superfluid density, and vc�T � is the critical
velocity of Cooper pairs. On the other hand, the superfluid
density ns�T � is related to the London penetration depth by
the following formula [35]

ns�T �
ns�0� �

l2�0�
l2�T � : �46�

The London penetration in the framework of the TB GL
theory is given by expression (22). The critical velocity of
Cooper pairs vc is determined by the coherence length:

vc � 2�h

m0x�T � ; �47�

where m0 is the effective mass of a Cooper pair, and the
coherence length is given by

x 2�T � � F0

2pHc2
: �48�

As a result of calculations we can get the final expression
for normalized critical current density [42]:

jc�T �
jc�0� �

l2�0�
l2�T �

ÿ
hc2�T �

�1=2
: �49�

2.10 Effects of anisotropy on the upper critical field
Results presented in Sections 2.1 ± 2.4, 2.9 are suitable for
explaining experimental data of bulky polycrystalline sam-
ples. Recent studies concerning the growth of single-crystal
magnesium diboride MgB2 [43, 44] showed anisotropy of its
physical properties. The mass anisotropy parameter
g � �mc=mab�1=2 of MgB2 in the literature ranges from 1.2
to 9 in polycrystalline samples, and 4.31 ± 4.36 in single
crystals [43]. From this point of view, derivations and
calculations in the framework of the anisotropic two-band
Ginzburg ±Landaumodel seem attractive. The SB s-waveGL
theory for layered superconductors was developed in works
[45 ± 47].

One can write the TB GL functional for layered super-
conductors in the form

F�C1n;C2n� �
X
n

�
d2r

�
F1n � F1n; 2n � F2n � F1n; 1�n�1�

� F2n; 2�n�1� �H 2

8p

�
; �50�

where

Fin � �h 2

4mab
i

�����H2d ÿ 2piA
F0

�
Cin

����2 � ain�T �C 2
in �

bin
2

C 4
in ;

�51�

F1n; 2n � e�C1nC
�
2n � c:c:�

� e1

��
H2d � 2piA

F0

�
C �1n

�
H2d ÿ 2piA

F0

�
C2n � c:c:

�
; �52�

Fin; i�n�1� � �h 2

4mc
i d

2

����Cin ÿCi�n�1� exp
�
ÿi 2pdAz

F0

�����2 ; �53�
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and d is the distance between planes. We choose x; y; z axes
lying along the a, b, and c crystallographic axes, respectively.
Due to the identical character of the planes we can write
ain � ai, bin � bi. The choice of the vector-potential A in the
form of A � �0;Hx; 0� corresponds to the perpendicular
component of the magnetic field H � �0; 0;H�: In this case,
GL equations for TB layered superconductors can be reduced
to Eqns (8a), (8b). Calculation ofH?c2 leads to the result

H?c2�T � �
F0

2px 2
?
; �54�

where the effective coherence length xeff of two-band super-
conductors is defined by the expression

x 2
? �

�h 2

4

(
ÿ
�
m1a1�T � �m2a2�T � � 8ee1m1m2

�h 2

�

�
��

m1a1�T � �m2a2�T � � 8ee1m1m2

�h 2

�2

ÿ 4m1m2

ÿ
a1�T � a2�T � ÿ e 2

��1=2)ÿ1
: �55�

At small values of the upper critical field H?c2�T �, the
following relationship is valid:

H?c2�T � � ÿ
�hc

2e

a1�T � a2�T � ÿ e 2

��h 2=4��a1�T �=m2 � a2�T �=m1 � 8ee1=�h 2
� :
�56�

For the calculation of H
k
c2, we choose H � �0;H; 0� and

A � �0; 0;ÿHx�. ThenGL equations for TB superconductors
are reduced to the following forms

ÿ �h 2

4m1

d2C1

dx 2
� a1C1 � eC2 � e1

d2C2

dx 2

� 2
�h 2

4mc
1d

2

�
1ÿ cos

2pdHx

F0

�
C1 � 0 ; �57a�

ÿ �h 2

4m2

d2C2

dx 2
� a2C2 � eC1 � e1

d2C1

dx 2

� 2
�h 2

4mc
2d

2

�
1ÿ cos

2pdHx

F0

�
C2 � 0 : �57b�

By elimination of unknowns we can get equations for C1

and C2 from Eqns (57a) and (57b), which turn out to be
identical:

�h 2

4m1

�h 2

4m2

d4C1

dx 4
ÿ
�

�h 2

4m2
a1 � �h 2

4m1
a2

�
d2C1

dx 2
� a1a2C1

�
�
1ÿ cos

2pdHx

F0

��
2

�h 2

4mc
1d

2

�
ÿ �h 2

4m2

d2

dx 2
� a2

�
� 2

�h 2

4mc
2d

2

�
ÿ �h 2

4m1

d2

dx 2
� a1

��
C1

�
�
e 2 � 2ee1

d2

dx 2
� e 21

d4

dx 4

�
C1 : �58�

By neglecting high derivatives of the order parameter,
d4C1=dx

4, and small terms, we can obtain the Mathieu

equation for the calculation of the upper critical field H
k
c2:

ÿ
�

�h 2

4m2
a1 � �h 2

4m1
a2 � 2ee1

�
d2C1

dx 2

� 2

�
�h 2

4mc
1d

2
a2 � �h 2

4mc
2d

2
a1

��
1ÿ cos

2pdHx

F0

�
C1

� �e 2 ÿ a1a2�C1 : �59�

In weak magnetic fieldsH5F0=�2pd 2�, and after expansion
of cosines in Eqns (57a), (57b), we can get the final expression
for the anisotropy parameter of the upper critical field:

gHc2
� H

k
c2

H?c2
�
�

x�Tÿ Tc1� � �Tÿ Tc2� � 8e 2xZTc

�m2=m
c
2 � x�Tÿ Tc1� � �m1=m

c
1 ��Tÿ Tc2�

�1=2
:

�60�

In strong magnetic fields H > F0=�2pd 2�, the upper
critical field H

k
c2 can be determined from the lowest eigenva-

lue of theMathieu equation [48] and is given by the following
expression [49]

H
k
c2 �

F0

2pd

�
a2

�h 2

4mc
1d

2
� a1

�h 2

4mc
2d

2

�
�
��

�h 2

4m2
a1 � �h 2

4m1
a2 � 2ee1

�
�
�
a2

�h 2

4mc
2d

2
� a1

�h 2

4mc
1d

2
ÿ e 2 ÿ a1a2

2

��ÿ1=2
: �61�

This means that

H
k
c2 <

1

�Tÿ T ��1=2
; �62�

where

T � � Tc ÿ �h 2

4mc
1d

2g1
ÿ �h 2

4mc
2d

2g2
: �63�

A similar calculation in the framework of the above-
considered TB GL theory using the anisotropic mass tensor
method was carried out in the quite recent paper [50].

2.11 Effects of anisotropy on London penetration depth k
Using equations (20), (21) in the case ofH � �0; 0;H� we can
show that the London penetration depth l? perpendicular to
superconducting layer is determined by expression (22). For
the calculation of lk, we choose H � �0;H; 0� and A �
�0; 0;ÿHx�. Taking into account the equilibrium value of
the phase difference �fin ÿ fi�n� g� � 2pn� we can get the
equation for the vector-potential:

rot rotA

4p
� 2p

F0

�
�h 2

4mc
1d

n1�T � � �h 2

4mc
2d

n2�T �
�

� sin

�
2p
F0

Azd

�
nz ; �64�

where nz is a unit vector in the z-direction.
In weak magnetic fields H5F0=�2pd 2�, and after

expansion of the sine in Eqn (64) and applying the Maxwell
equation, we can get the final expression for the magnetic
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field, which is the same as Eqn (21) with the replacement of

lÿ2k �T � �
4pe 2

c 2

�
n1�T �
mc

1

� n2�T �
mc

2

�
: �65�

Correspondingly, we obtain the following expression for
the anisotropy parameter gl � lk=l? of London penetration
depth:

gl �
n1�T �=m1 � 2e1

ÿ
n1�T � n2�T �

�1=2 � n2�T �=m2

n1�T �=mc
1 � n2�T �=mc

2

: �66�

Generally, without expansion of the sines and for a
strong magnetic field of H > F0=�2pd 2�, Eqn (64) has a
solution corresponding to a single vortex directed parallel to
the superconducting layer. In this case, the boundary
condition requires that the total magnetic field flux through
the yz-plane be equal to the magnetic flux quantum F0. The
angular dependence of a magnetic field in a vortex also
seems interesting. The existence of the second order para-
meter can lead to an additional angular dependence of the
magnetic field in a vortex. Using the solution of the Ferrell ±
Prange equation [35] for the vector-potential A, we can
demonstrate that the expression for the London penetration
depth remains the same as in formula (65). This means that
the temperature-dependent anisotropy gl of the London
penetration depth, defined by expression (66), is valid in all
magnetic fields.

3. Results and discussion

3.1 Upper critical field Hc2�T �
The experimental data for the upper critical field hc2 ofMgB2,
LuNi2B2C, and YNi2B2C compounds can be described with
high accuracy by the simple expression

hc2�y� � Hc2

H �c2�0�
� �ÿy�1�a

1ÿ �1� a�w� lw 2 �mw 3
; �67�

where w � (1+y��ÿy�1�a. This formula was applied by
Drechsler et al. [51] to fitting the experimental data on hc2 in
nonmagnetic borocarbides. The critical exponent a defines
the temperature dependence more effectively, being very
sensitive to disorder, i.e. to the quality of the samples. With
increasing disorder the positive curvature and, correspond-
ingly, a decrease [19]. The saturation (negative curvature) at
low temperatures is well described by the ratio l=m, which is
assumed by analogy to be sensitive to the electronic structure.
For l > m, the temperature range with negative curvature
widens. For l < m, we have an upper critical field changing
almost linearly with temperature.

In Fig. 1 we plotted the experimental data by Freuden-
berger et al. [19] for the upper critical field Hc2�T � in
LuNi2B2C versus the reduced temperature T=Tc, and also
showed the theoretical fits with this data by using formulas
(10) and (67). The best fit with the experimental data was
obtained by using formula (67) (shown by the dashed line)
with fitting parameters m0H

�
c2�0� � 7:75 T, a � 0:24, l � 3,

and m � ÿ1. The solid line in Fig. 1 displays the results of
two-band GL fitting by using formulas (10). For this fitting,
the GL parameters, together with other fitting parameters,
were A � 0:66, B � ÿ0:03, c0 � 0:19, x � 5, m0 ~Hc2�0� �
7:02 T, Tc1 � 9:8 K, and Tc2 � 2:3 K.

In Fig. 2 we plotted the first and second derivatives of hc2
with respect to reduced temperature T=Tc in LuNi2B2C using
formulas (10) and (67). The two-band GL theory (white
circles) yields a negative first derivative below Tc. On the
other hand, the first derivative of the fitting formula (67)
(black circles) starts from zero at absolute zero of tempera-
ture, goes through a negative region, and returns to zero atTc.
There is good agreement in the temperature range from 0:4Tc

to 0:95Tc. The plots of the second derivatives are also
presented in the same figure. Good agreement in the same
temperature range is observed for the second derivatives, too.
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Figure 1. Dependence of the upper critical field Hc2�T � for LuNi2B2C

versus reduced temperatureT=Tc. The black circles show the experimental

data [19], while the solid line is for the GL theoretical expectations of

Hc2�T �. The dashed line corresponds to calculations with the fitting

formula (67).
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Figure 2. The first and second derivatives of quantities defined by

equations (10) and (67) versus reduced temperature T=Tc for LuNi2B2C.

The white circles show the derivatives calculated using GL equations (10),

while the black circles show the fitting formula (67) derivatives.
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The fitted results for YNi2B2C are presented in Figs 3 and
4. We utilized the following values of the parameters [20]:
m0H

�
c2�0� � 8:6 T, a � 0:28, l � 7, andm � ÿ13, while for the

GL set of parameters we resorted to A � 0:71, B � ÿ0:044,
c0 � 0:157, x � 5, m0 ~Hc2�0� � 8 T, Tc1 � 10 K, and
Tc2 � 1:825 K. Similar calculations for the bulky MgB2

using Eqns (10) and (67) have been done in Ref. [32] and
good agreement with experimental data [21, 22] have been
achieved.

In the case of no intergradient interaction of order
parameters �Z � 0�, the GL curvature reaches its maximum
at the point y � B=�2A� � 0:5. The inclusion of a negative

intergradient interaction shifts this maximum to the region
close to critical temperature. Physically, this means that in the
vicinity of Tc, when both order parameters are small, their
interaction becomes important for the behavior of the upper
critical field. As shown by relationship (11), the critical
temperature of about Tc � 16 K can be obtained from
Tc1 � 9:8 K and Tc2 � 2:3 K with the interaction parameter
equal approximately to 0.33 in the case of the LuNi2B2C
compound. In the case of YNi2B2C, the following parameters
have been used: Tc1 � 10 K, Tc2 � 1:825 K, and 0.33 for the
interaction parameter. It should be emphasized that we must
take two rather different critical temperatures, Tc1 4Tc2, in
contrast to similar calculations for MgB2 [32].

The upper critical field hc2 is governed by the parameters e
and e1. As follows from expression (10), the upper critical field
is determined mainly by the larger mass m1, while the
contribution from the smaller mass can be neglected in the
case of two different effective masses. In calculating mass
ratio parameter x for LuNi2B2C and YNi2B2C borocarbides,
we set the Fermi velocity in different bands equal to
vF1 � 0:85� 107 cm sÿ1, vF2 � 3:8� 107 cm sÿ1 [23]. This
leads to the mass ratio parameter x being taken as 5, while for
MgB2 x is equal to 3 [32, 33].

Notice that the discordance between theory and experi-
ment comes into prominence at temperatures very close to Tc

(see Figs 2 and 4). It seems likely that we have two main
reasons for the mismatch between theory and experiment at
these temperatures. First, the thermal fluctuations may
increase the positive curvature near Tc, which are ignored in
the GL theory entering the class of mean field theories.
Fluctuations might be strongly enhanced due to the nested
regions on the Fermi surface, which contribute significantly
to the group of slow electrons described within our two-band
model [13]. Second, in the calculations, we resorted to a linear
two-band GL theory for which there exist analytical solu-
tions. For a better fit, the cubic terms must be included in the
two-band GL theory. Then the equations to be solved would
necessitate solutions for the vortex state and its symmetry in
the two-band GL theory.

3.2 Surface critical field Hc3�T �
From Eqn (18) one can see that the surface critical field
Hc3�T � possesses the temperature dependence similar to
those of Hc2�T � for both single-band and two-band GL
models. The appropriate calculations favor the existence of
the surface critical field. The first angle-resolved photoemis-
sion spectroscopy measurements on an MgB2 single crystal
were reported by Uchiyama et al. [52]. They observed several
surface states. The effect of the surface states on the
superconductivity has been discussed in Ref. [53]. The
authors reasoned that the surface critical magnetic field
does not exist and that the surface electronic states can be
responsible for the nonexistence of the surface critical field.
As mentioned in this paper, no Hc3 has been observed in
nonmagnetic borocarbides. However, Welp et al. [54]
presented data on Hc3�T � for an MgB2 single crystal very
recently. In their c-axis measurements, the surface critical
field features a linear dependence, whereas it has a positive
curvature for ab-plane measurements. It should be noted
that anisotropy shows itself in the measurements. However,
the calculations also presented here take advantage of
isotropic superconductivity for the two-band GL theory.
Although the influence of the surface states on super-
conductivity is still controversial, it has been suggested that
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Figure 3. Dependence of the upper critical field Hc2�T � for YNi2B2C

versus reduced temperature T=Tc. Black circles show the experimental

data [20], while the solid line is the GL theoretical expectations ofHc2�T �.
The dashed line corresponds to calculations with the fitting formula (67).
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Figure 4. The first and second derivatives of quantities defined by

equations (10) and (67) versus reduced temperature for YNi2B2C. The

white circles show the derivatives calculated using GL equations (10),

while the black circles show the fitting formula (67) derivatives.
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superconductivity is suppressed on ab-surfaces, while it is
unaffected along the c-axis.

According to our calculations in the framework of the
isotropic TB GL theory, the upper critical field reveals
positive curvature at temperatures close to Tc. With the
parameters of TB GL theory presented in Ref. [32] one can
examine experimentally a surface critical field Hc3 with a
positive curvature similar to that for Hc2 in a bulky MgB2

superconductor. In our opinion, the preparation of bulk
samples with smooth and clean surfaces would be enough
for taking the measurements in MgB2. The paramagnetic
Meissner effect associated with the existence of the surface
critical field was observed for the first time in finite-sized
MgB2 pellets and superconducting cores of iron-sheathed
MgB2 tubes in Ref. [55]. The paramagnetic Meissner effect
can be attained in the framework of the self-consistent
solution of single-band GL equations for a cylinder of a
finite size [56]. The surface magnetic field in dirty two-band
superconductors was calculated in Ref. [57] using the BCS
theory. It was shown that interaction of the two bands leads
to a novel scenario, with the ratio Hc3=Hc2 varying with
temperature. The results were applied to MgB2, and the ratio
turned out to be less than 1.6946.

3.3 Lower critical field Hc1�T �
In Fig. 5, we plotted hc1�T � as a function of the reduced
temperature T=Tc. Ghosh et al. [58] found that the lower
critical field of YNi2B2C borocarbides follows a power law
dependence of the form hc1 � Hc1=H

�
c1�0� � 1ÿ �T=Tc�2,

withH �c1�0� � 22 mT. The black circles in the graph in Fig. 5
depict their results. To our best knowledge, no measurements
of the lower critical field for LuNi2B2C have ever been made.
The line exhibits the results of calculations done in the context
of the two-band GL theory. Here, we utilized expressions
(10), (24), and (27) with the parameterD � 1:5. The rest of the
GL parameter set was similar to that used to determine the
temperature dependence of the upper critical field hc2 in
YNi2B2C (see Section 3.1). The temperature dependence of

the GL parameter k�T �, obtained from Eqn (27) with the
same fitting parameters, is presented in Fig. 6. As shown in
the figure, k�T � varies slowly with temperature and, as a
result, the temperature dependence of hc1 in Eqn (22) is
mainly determined by the London penetration depth l�T �.
Calculations of hc1 for magnesium diboride MgB2 using the
TB GL theory were carried out in Ref. [33], and good
agreement has also been achieved.

It should be noted that the temperature dependence hc1 in
the two-band GL theory is predominantly determined by the
interaction parameters e and e1. When the carriers have
various effective masses in different bands �m1 4m2�, the
lower critical field hc1 can more effectively be determined by
the small mass, in contrast to the upper critical field. The
contribution from the larger mass can be neglected in such a
case. As shown in Fig. 5, the theoretical data of the two-band
GL theory are in good agreement with available experimental
data [58].

3.4 Upper critical field Hc2 of thin films
As follows from formula (32), the upper critical field of the
thin film of two-band superconductors increases as dÿ2 with
decreasing film thickness. It is well known that H film

c2 �T � for
single-band superconducting films increases as dÿ1 [35]. The
common feature of expressions (10) and (33) is the presence
of positive curvature at critical temperature Tc for bulk
samples and films. Such a conclusion is in agreement with
experimental data for bulk samples of nonmagnetic bor-
ocarbides and magnesium diboride [32, 33], and for MgB2

thin films [59].
Using expression (32) we can calculate the slope angle of

the upper critical field in bulk and thin-film samples atTc. For
the estimation of the ratio of slopes at Tc, namely

dH film
c2 �T �=dT

dHm
c2�T �=dT

;

we can draw on Eqns (30) ± (33) with the parameters which
were also used in Refs [32, 33] when determining the
temperature dependences of different physical quantities for

Y(NiB)2C

1.0

h
c1

0.8

0.6

0.4

0.2

0
0.70.6 0.8 0.9 1.0

T=Tc

Figure 5. Dependence of the lower critical field Hc1�T � for YNi2B2C

versus reduced temperature T=Tc. Black circles show the experimental

data [58], while the solid line corresponds to the GL theoretical expecta-

tions ofHc1�T �.

k�
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Figure 6. Dependence of the GL parameter for YNi2B2C versus reduced

temperature T=Tc, based on Eqn (27).
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bulk MgB2 samples. With this choice of parameters, the ratio
of slopes at Tc, i.e.

dH film
c2 �T �=dT

dHm
c2�T �=dT

;

is equal approximately to 1.65. As follows fromRefs [59 ± 62],
the ratio of slopes for bulk samples and thin films varies over
the interval 1.5 ± 2.2.

3.5 Magnetization M�T �
The temperature dependence of Hc2�T � near Tc exhibits a
positive curvature, implying that the temperature dependence
of the magnetization of two-band superconductors near
Hc2�T � demonstrates nonlinear behavior at a fixed external
magnetic field. Nonlinear magnetization of MgB2 in the
vicinity of Hc2�T � was reported in Ref. [28], and more
recently in Ref. [63]. The temperature variation in the GL
parameter k leads to changing the type of superconductor
from type II to type I in the vicinity of the critical temperature.
Similar effects in cuprate superconductors were discussed
recently by Landau and Ott [64].

3.6 Flux quantization
Experiments with quantum interference devices based on
MgB2 were reported in Refs [65, 66]. As follows from
relationship (36), quantization of the magnetic flux in two-
band SCs remains the same as in the single-band case. The
results of these experiments [65, 66] confirms the flux
quantization phenomenon (36).

3.7 The Little ±Parks effect
As follows from expression (38), due to different periods of
oscillations of critical temperature in different bands (37a),
(37b), periodicity in changing Tc of a two-band super-
conductor is absent, in contrast to single-band superconduc-
tors. Unfortunately, no experimental data on the Little ±
Parks effect are available in two-band MgB2, LuNi2B2C, or
YNi2B2C superconductors.

3.8 Thermodynamic magnetic field Hcm�T � and DC=CN

It should be emphasized that the thermodynamic magnetic
field Hcm�T � does not comprise a directly measurable
quantity. Fortunately, it can be calculated from specific heat
measurements. In Fig. 7, we plotted the temperature
dependence of Hcm�T � in MgB2, calculated using formula
(42) (circles). To produce the data for Fig. 7, we have
employed the same parameters as in Refs [32, 33]. Empirical
data for hcm (squares) were extracted from the results of
Bouquet et al. [10] withH �cm�0� � 0:36 T. Similar results were
also obtained experimentally in the work by Wang et al. [28].

Substituting a calculated value of qhcm=qy at the critical
temperature into Eqn (44), we can estimate the specific heat
jump at Tc. The estimated value for the jump was found to be
0.64, which is small compared to the value of unity calculated
in the single-band GL theory. However, this value is
consistent with the experimental data obtained in Ref. [10],
according to which DC=CN � 0:8 is smaller than the single-
band BCS value of 1.43. Analogous reduction in the specific
heat jump was revealed by two-band BCS calculations which
were conducted by Moskalenko et al. [67] and more recently
in Refs [68, 69].

3.9 Critical current density jc�T �
Figure 8 displays the critical current density (49) as compared
with that given by the single-band Ginzburg ±Landau model
[35]: jc�T �= jc�0� � �1ÿ T=Tc�3=2. It is easily seen that both
curves exhibit positive curvature of critical current density at
Tc. The triangles show the experimental data of recent
measurements in Ref. [70]. It is apparent that the TB GL
theory gives a good approximation to the experimental data
[70] (see also review [71]).

3.10 Hc2 anisotropy effects
Experimental studies of the anisotropy of the superconduct-
ing state properties in MgB2 were recently conducted [72 ±
74]. In Fig. 9, we plotted anisotropy parameter g versus
reduced temperature T=Tc. Experimental results by Lyard et
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Figure 7. Temperature dependence of the thermodynamic magnetic field

for MgB2.
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Figure 8. Temperature dependence of the critical current density forMgB2

(black circles are the results of the two-band GL theory; black squares are

the results of the single-band GL model; black triangles represent

experimental data [70]).

October, 2006 Ginzburg ëLandau theory: the case of two-band superconductors 1013



al. [73] are marked by the black circles. The white circles
denote the results of calculations from the above-presented
TB GL theory for layered superconductors. The same values
of the parameters were also utilized in Refs [32, 33] for
determining the temperature dependence of SC state para-
meters in the framework of the isotropic TB GL theory.
Anisotropy mass parameters for single crystals (m2=m

c
2 � 1:3

and m1=m
c
1 � 0:03) are the same as in Ref. [75]. As follows

from formula (60), the influence of a p (weak) band is
effectively `switched off' and the anisotropy parameter is
mainly determined by the s (strong) band. As a conse-
quence, at a small magnetic field there is a good agreement
with experimental data on investigation of the upper critical
field anisotropy. An increase in gwith decreasing temperature
has been examined experimentally by many groups [77, 78].
Thus, there is a consensus for understanding the temperature
behavior of g in SCs.

In a high magnetic field, H
k
c2 goes to infinity as

�Tÿ T ��1=2: This means that the orbital depairing effect of a
magnetic field parallel to the layers does not destroy the
superconductivity. This corresponds to the case where the
cores of the vortices reside between the SC layers and the
external magnetic field has no influence on the superconduc-
tivity. In fact, other magnetic mechanisms can restrict the
divergence. The divergence ofH

k
c2 at T

� is removed by taking
into account spin ± orbit scattering [79] and the paramagnetic
effect [80, 81]. An analogous anisotropy of the upper critical
field was observed for the other possible class of two-band
superconductors Ð nonmagnetic Y�Lu�Ni2B2C borocar-
bides [82].

Here, it is necessary to remark that similar two-band GL
equations were recently analyzed in Refs [83, 84]. However,
terms similar to the intergradient interaction terms in
Eqns (4a), (4b) and (8a), (8b) are absent in equations
presented in Refs [83, 84]. As shown in Refs [32, 33],
maximum positive curvature of the upper critical field in
bulky samples can be achieved by the inclusion of an
intergradient interaction. In the case of no intergradients of
order parameters �Z � 0�, the curvature reaches a maximum
at the point 0:5Tc. Intergradient interaction shifts this
maximum to the region close to the critical temperature.
Such a behavior is in good agreement with experimental data
for bulky samples. As we can see from expression (60), in the

case of anisotropic GL equations, the intergradient interac-
tion term also plays a crucial role in the temperature
dependence of the anisotropy parameter gHc2

.
Another version of the GL approximation was presented

in Ref. [85]. This approach corresponds to an effective single-
band GL theory. In the framework of theory [85], the ratio of
order parameters is temperature- and field-independent, i.e.,
it is constant, meaning that the two-band GL theory is
equivalent to the effective single-band approximation. In
contrast to Ref. [85], in our consideration the ratio of order
parameters is temperature- and field-dependent [see also
Eqns (4a), (4b) and (8a), (8b)].

3.11 k anisotropy effects
In Fig. 10, we plotted anisotropy parameter gl versus reduced
temperature T=Tc. Experimental data obtained by Lyard et
al. [86] are given by the black circles. The white circles denote
the results of calculations using Eqns (6a), (6b), and (66). Due
to negative sign of the intergradient interaction Z, the
anisotropy factor gl of the London penetration depth
reduces with decreasing temperature. Similar experimental
results were also obtained by Cubitt et al. [87] and Zehet-
mayer et al. [44].

In papers [75, 76], the anisotropy parameters ofHc2 and l
were calculated within the weak-coupling TB anisotropic
BCS model by introducing average parameters. The results
of these calculations are also in agreement with the above-
presented TB GL theory calculations. The anisotropy
parameter gl of London penetration depth was evaluated
for two-band superconductors with arbitrary interband and
intraband scattering times using the Eilenberger theory in
Ref. [88].

As shown by Bulaevskii [89], the upper critical field in the
case of SB layered superconductors is defined by the
expressions

H
k
c2 �

F0

2px?xk
; H?c2 �

F0

2px 2
k
:

Notice that in this event the anisotropy parameter gHc2
proves

to be temperature-independent. As stated at the beginning, all
the coefficients a and b in the GL model are field-indepen-
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Figure 10. Temperature dependence of the anisotropy parameter of the

London penetration depth for MgB2 single crystals (black circles are

experimental data taken from Ref. [86]; white circles are the results of

analysis using the anisotropic TB GL theory).
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Figure 9. Temperature dependence of the anisotropy parameter for MgB2

single crystals (black circles are experimental data taken from Ref. [73];

white circles are the results of the anisotropic TB GL theory).
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dent. Another generalization of the model considered focuses
on introducing field-dependent parameters a and b. It is
necessary to remark on the very recent paper that took into
account the field-dependent TB GL theory without the
intergradient interaction term [90].

4. Conclusions

The single-band GL theory gives a well-known linear
temperature dependence of the upper, lower, and thermo-
dynamic critical fields:Hc1;Hc2, andHcm / 1ÿ T=Tc. It was
noted that single-band calculations were found to be inade-
quate for describing the temperature dependence of fields,
while the two-gap model was found to be satisfactory. We
claim that the two-band isotropic GL theory can successfully
be applied to determining the temperature dependence of
critical fields in bulky nonmagnetic MgB2, LuNi2B2C, and
YNi2B2C borocarbides. The presence of two order para-
meters and their coupling plays a significant role in determin-
ing their temperature dependences. The results of such
calculations are in good agreement with experimental data
for bulk nonmagnetic borocarbides andmagnesium diboride.

We also conclude that the two-band GL theory explains
the reduced magnitude of the specific heat jump and the small
slope of the thermodynamic magnetic field in MgB2. It is
shown that the relation between the upper critical field and
the so-called surface critical field is the same as in the case of
single-band superconductors. The temperature dependence
of the surface critical field in two-band superconductors must
give positive curvature. The quantization of magnetic flux in
the case of two-band SCs remains the same as in single-band
SCs. However, the periodicity of Little ± Parks oscillations of
Tc in two-band superconductors is absent. The generalization
of the TB GL theory to the case of layered anisotropy was
presented. We have calculated the anisotropy parameter of
the upper critical field Hc2 and London penetration depth l
for magnesium diboride single crystals. The temperature-
dependent anisotropy of the upper critical field is shown,
which, in an agreement with experimental data for MgB2,
reveals the opposite temperature tendency.
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