
Abstract. An elementary derivation of the fundamental relation
T/S=4c between the tensor and scalar modes of cosmological
perturbations in the early universe is given. Statements by
L P Grishchuk on this problem are commented on.

In a recent paper ``Relic gravitational waves and cosmology''
by L P Grishchuk [see Phys. Usp. 48 (12) 1235 (2005)], the
author has reviewed his studies conducted over many years
and devoted to quantum-gravity generation of gravitational
waves (tensor mode T ) and density perturbations (scalar
mode S) in a homogeneous isotropic universe. The origin of
primordial cosmological perturbations has been a key
question of 20th century physics, initiated by the pioneering
work by E M Lifshitz [2] and the first papers where
quantization of T [3] and S [4] modes of perturbations in a
flat Friedmann model has been done. The view by the author
of Ref. [1] in its principal points contradicts the widely
accepted result recognized as classical on the T-to-S mode
ratio in the early universe, which is included in textbooks on
cosmology.

Inasmuch as the central points of Ref. [1] and some earlier
papers by Grishchuk, devoted to the relation between spectra
of relic gravitational waves and density perturbations, are
based on the statement that the ``final amplitudes of gravita-
tional waves and density perturbations should be roughly equal
to each other'' [see the discussion after formula 1 (33)� ], in the
present paper we shall consider only this key statement.

The cited statement runs counter to the generally
accepted result that the ratio of the squares of the amplitudes
of the T- and S-modes of cosmological perturbations generated
quantum-gravitationally in the early universe is proportional to
gi, where the parameter g � ÿ _H=H 2 is taken at the initial time
of the parametric amplification for perturbations of a given
wavelength 2. (We recall that at the inflationary stage g < 1.)

Below, we shall present the elementary derivation of the
classical relationship T=S � 4g without solving the equation
for perturbations and then show what is erroneous in the
statements by Grishchuk.

From the theoretical point of view, the problem of small
linear cosmological perturbations is equivalent to the pro-
blem of the behavior of test fields in an unperturbed
Friedmann model is reduced in turn to the problem of
massless real fields in the Minkowski space ± time, evolving
under the influence of an external variable field:

S �q� �
�
L dZ dx ; L � 1

2
a2Zmnq; m q; n ; �1�

where S and L are the action and the Lagrangian density of
the field q, respectively, and the comma in the subscript stands
for the derivative over the Minkowskian coordinates (Z, x)
with the metric tensor Zmn � �1;ÿ1;ÿ1;ÿ1�.

The role of the external (parametric) field is played by the
time-dependent function a2. It is equal to a2T � a2=8pG for
each of two polarizations of gravitational waves (in this case,
qT is the transverse-traceless component of the gravitational
field) [3], and is a2S � a2g=4pG for density perturbations (in
that case, qS is the gauge-invariant combination of the
longitudinal gravitational potential and the potential of the
4-velocity of the medium multiplied by the Hubble para-
meter) [4].

In the Fourier representation, the field q is resolved into
elementary time-dependent oscillators qn with the Lagran-
gians (below we shall omit the subscript n of the Fourier
modes)

Ln � 1

2n3
a2�q 0 2 ÿ n2q2� : �2�

The evolution of oscillator (2) depends on the function f
determining its effective frequency:

�q 00 � n2�1ÿ f � �q � 0 ;

�q � a
n
q ; f � a 00

an2
: �3�

When j f j5 1, the oscillator q stays in the free adiabatic
oscillation regime and decays inversely proportional to a
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1 Hereinafter references to formulas from paper [1] are marked with an

asterisk.
2 In the exact theory, the parameter g=b2 in this formula and ensuing ones

should be substituted for g, where b is the speed of sound in the medium in

units of the speed of light [4]. However, in most applications considered

b � 1, so in what follows we omit the parameter b.We also use units where

c � 1 and lPl � �G�h�1=2, the scale factor is a � �1� z�ÿ1, x are the spatial

(comoving) coordinates in the flat Friedmann model, Z � � dt=a and t are

the conformal and physical time, respectively, H � _a=a � a 0=a2 is the

Hubble parameter, and a dot or prime over a function means its derivative

with respect to the physical or conformal time, respectively. (We shall

mark with a subscript T or S any variable while considering T and S

perturbation modes, respectively. Ð Author's amendment to English

proofs.)



(q / exp�ÿinZ�=a). When f5 1, a parametric amplification
occurs and the field q `freezes out' (q / const). In variables
(�q, �p ), the Lagrangian takes the standard canonical form

Ln � n

2
� �p 2 ÿ �q 2� ;

�p � qLn

q�q 0
� aq 0

n2
� �q 0

n
ÿ s�q ; s � a 0

an
; �4�

where �p is the field momentum conjugate to �q.
The key to understanding the T=S ratio lies in choosing

the initial conditions for elementary q-oscillators. It is
convenient to determine them in the adiabatic zone as states
with minimum energy for all T- and S-oscillators (vacuum).
The quantization of systems (1) and (2) is a standard
procedure that does not require explanation. The question is
in an unambiguous choice of the initial vacuum state for the
q-oscillator. We are reminded that a free (noninteracting)
oscillator possesses a unique ground state.

In most inflationary scenarios, the adiabatic condition is
realized in a microscopic region (Z < Zi), where the period of
oscillations of the q-oscillator is smaller than the character-
istic variability time of the parameter a:

j sj < 1 ; j f j < 1 ; �5�

and the Hamiltonian of system (2) is positively determined.
When both conditions (5) are satisfied, quantum-mechanical
operators �q and �p describe in the leading order a free oscillator
of external action [see Eqns (3) and (4)]. This allows us to use
the standard procedure for the frequency decomposition (into
positive and negative sets) and for the determination of the
ground state [the absence of particles at stage (5)]:

h �p 2i � h�q 2i � �h

2
; Z < Zi ; �6�

where brackets h. . .i signify averaging over the given
(vacuum) state.

Equivalently, the ground state at stage (5) can be
constructed using the `normalized' variables q:

~q � a0
n

q ;

Ln � 1

2n
�a 2�~q 0 2 ÿ n2~q 2� � n

2

�
~p 2

�a 2
ÿ �a 2~q 2

�
;

�a � a
a0
; �7�

which canonize the Lagrangian within some period of time at
any instant Z0 (with Z0 < Zi), within which the value of a can
be considered constant (�a ' 1). Therefore, canonical pairs
~q ' �q and ~p ' �p and vacuum conditions (6), (8) turn out to be
identical:

h ~p 2i � h~q 2i � �h

2
; 8 Z0 < Zi : �8�

(One can say that variables ~q form a tangent space to the
function �q).

We stress that the adiabatic conditions (5) provide the
unique choice of the state (6), (8) as the initial state of
elementary oscillators (2) that corresponds to the minimal
initial level of their excitations (vacuum of the field q). In a
later evolution, q-oscillators enter the zone of the parametric
amplification, equalities (6) and (8) are violated, and their
state becomes multiparticle (the generation of cosmological
perturbations).

Assuming the existence of the adiabatic stage (5) in the
early universe, which at the instant Zi ( f � s � 1) changed to
the parametric amplification stage, we obtain from condition
(6) the amplitude of the q-oscillator in the `freezing-out' zone
(Z > Zi):

hq 2i ' hq 2
i i �

n2

a2i
h�q 2

i i �
�hn2

2a2i
: �9�

Hence follows the validity of the generally recognized
statement for the ratio of the perturbation modes of a given
wavelength 3:

T

S
� 2
hq 2

Ti
hq 2

Si

�����
Z> Zi

' 2

�
aS
aT

�2

i

� 4gi �10�

(both polarizations of gravitational waves were taken into
account).

Now let us consider Grishchuk's error.
The dimensional amplitudes of elementary oscillators

correspond to the following notations from Ref. [1]:

qT � h ; qS � z
2

[see formulas (11)�, (20)�]. When determining the state of the
T-oscillator, the author follows equations (7) and (8) (~qT � �h;
see Eqns (12)± (17)�). However, when moving to the S-mode,
instead of normalized variable ~qS he introduces an asym-
metric (with respect to aS / a

���
g
p

) variable �z [see Eqn (21)�]:

�z � qLPG � ~qS�����
g0
p ;

Ln� 1

2n
�a 2
Sg0��z 0 2 ÿ n2 �z 2�� n

2

�
p2LPG
�a 2
S g0
ÿ �a 2

S g0 q
2
LPG

�
; �11�

�aS � a
���
g
p

a0
�����
g0
p ;

for which the Lagrangian explicitly depends on g0. Then
equations (8), rewritten for the pair

qLPG � �z ; pLPG � qLn

q�z 0
� ~p

�����
g0
p

[q, p in notations of Eqns (24)�, (25)�], also acquire the explicit
dependence on the parameter g:

hq 2
LPGi �

�h

2g0
; h p 2

LPGi �
�h

2
g0 ; 8 Z0 < Zi : �12�

Clearly, the vacuum state is in noway related to the choice
of one pair of canonical variables or another. Equations (8)
[and identical to them Eqns (12)] bears a transparent
invariant sense: the equality of quantities h~q 2i � h ~p 2i (or
g0hq 2

LPGi � h p 2
LPGi=g0) means the equality of the mean kinetic

and potential energies of the elementary oscillator (2), while
the equality of each of these quantities to �h=2 means choosing

3 Accounting for aiHi � n, from formulas (9) and (10) we obtain the well-

known expressions for the spectra of perturbations and their slopes:

hq 2
Ti1=2 � lPlHi ; nT � d ln hq2Ti

d ln n
' ÿ2gi ' ÿ0:5

T

S
;

hq 2
Si1=2 �

lPlHi

�2gi�1=2
; nS � d lnhq 2

Si
d ln n

' ÿ
�
2g� _g

gH

�
i

:
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the minimum possible energy level of the oscillator (i.e., the
vacuum state) at the adiabatic stage (5).

Nevertheless, the author of Ref. [1] erroneously interprets
the state (12) for S-oscillators as a squeezed one [multi-
particle; see formulas after Eqns (26)�, (27)�], ignoring the
fact that the asymmetry of equations (12) has nothing to do
with the choice of the state over which the averaging was
performed, but to the choice of the variable 4 that is explicitly
dependent on g. This leads him to introduce another initial
state (we shall mark this state by the subscript LPG) which he
calls ``the genuine vacuum state for the variable z'' [see
formulas after Eqn (32)�]:

hq 2
LPGiLPG � h p 2

LPGiLPG �
�h

2
; 8 Z0 < Zi ; �13�

and, as a consequence, to the statement that T=S � 1 [see
Eqn (33)�], since for Z > Zi one finds

hq 2
SiLPG ' gihq 2

Si �
�
lPl n

ai

�2

� hq 2
Ti : �14�

Grishchuk's error consists in setting an incorrect initial
vacuum state for theS-oscillator, while his choice of the initial
state for the T-oscillator is correct. It should be noted that the
vacuum state of the elementary oscillator (2) is unique at stage
(5) and is determined exclusively by methods of quantum
mechanics 5, i.e., knowledge of physics of T- and S-modes is
not required here. In this sense, all oscillators are formally
similar: their relation to the external field is determined solely
by the function a�t� irrespective of its physical content
(whether it be the scale factor a for the T-oscillator or a

���
g
p

for the S-oscillator). In particular, this means that the
amplitude of excitation of the S-oscillator [under the action
of the field a�t�] from the minimum-energy state can only
depend on the product a

���
g
p

, and not separately on g or a, as
was found in paper [1] [cf. Eqns (9) and (14)].

In the paper [1], the Lagrangian of the S-mode (22)� was
derived from the Lagrangian of the T-mode (13)� with
~a � a

���
g
p

substituted for a and �z for �h. However, the correct
transition from T to S, as seen from formula (2), occurs when
substituting aS for aT and qS for qT. Here, to within a
numerical factor of order unity, a0h / h goes over into
~a0z / �����

g0
p �z and not into �z, as Grishchuk believes. As a

result, the correct Lagrangian (11) is obtained by multiplying
Eqn (22)� by the factor g0.

The Lagrangian (22)� is inconsistent with other formulas
from paper [1]. For example, in the high-frequency limit
gravitational effects are insignificant, and the Lagrangian
for the S-mode should turn into the Lagrangian for sound
waves in a medium:

Ln4 aH � 1

2n3
a2�j 0 21 ÿ n2j 2

1 � ;

where

j1 '
�

g
16pG

�1=2

z � aS
a

qS

is the potential of the matter field for n4 aH; see
Eqns (19)�± (20)�. Clearly, the Lagrangian (22)� does not
satisfy this limit.

Another inconsistency: the canonical variables qLPG and
pLPG, considered

6 in Eqns (24)� and (25)�, are canonical with
regard to Lagrangian (11), but not (22)�, which is easily
verified by directly inserting expressions (11) and (22)� into
equation (25)�. In addition, by rewriting Lagrangian (22)� in
terms of the initial field variable z, we see that it turns to be
dependent on the arbitrary instant of time Z0, which is
inadmissible. Removal of the inconsistency in formula (22)�

would eliminate these contradictions.
Summarizing, we can state that Lagrangian (22)� does not

follow from the field Lagrangian for a scalar field minimally
coupled with gravity [see the formula preceding Eqn (19)�],
and then further discussion is senseless. If one considers
Eqn (22)� as a result of a technical inaccuracy and uses the
correct Lagrangian, then the statement on the `false char-
acter' of the standard inflationary result (see, for example, the
title of Section 4 in Ref. [1]) is due to the incorrect choice of
initial conditions.

Our second remark deals with the measurements of the
value of T=S. It is not negligibly small, as the author of paper
[1] repeatedly states [see, for example, his commentary to
formula (6)�].

The estimate T=S ' 4gi is confirmed by exact calculations
for a broad range of inflationarymodels (see, for example, the
quantity r in Ref. [5]). In particular, all models of the chaotic
inflation with p > 1 (V�j� / j2p, p is a natural number)
contradict observations since they predict a significant value
of the T=S ratio and a deviation from the Zel'dovich
spectrum:

T

S
' 2p

N
' �1ÿ nS� 2p

1� p
� 0:04p ; �15�

whereN � 2pGj 2=p � 50 on a scale on the order of 103 Mpc.
The case of a massive scalar field ( p � 1) is exceptional in

providing a gravitational-wave mode amplitude only five
times smaller than the scalar one (

���������
0:04
p � 1=5), which does

not contradict observational constraints at the 95% con-
fidence level (see, for example, Ref. [6]).

It should be emphasized that all values T=S > 0:2 are
excluded by the modern observations, since in that case the
amplitude of the S-mode is insufficient to produce the
observed large-scale structure of the universe (we should
remember that the sum T� S is fixed by the data on the
anisotropy of cosmic microwave background).
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4 We recall that S-oscillators are coupled to the product a
���
g
p

and not to a

or g separately.
5 In essence, it is mathematics (of Lagrangian systems), or ``the art of

calling different things by the same names'', in the definition by Henry

PoincareÂ .

6 Note that the factor g0 in Eqns (24)
� and (25)� should be substituted for g,

since z decreases inversely proportional to ~a � a
���
g
p

in the adiabatic limit

[see Eqn (20)�].
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