
Abstract. The mechanisms responsible for anomalously strong
acoustic nonlinearities in multiphase, defected, and structurally
inhomogeneous media are summarized, and nonlinear diagnos-
ticsÐ a fast-growing applied area of recent yearsÐ is reviewed
in terms of its methods and applications. This paper is an
expanded version of the introductory talk at the September
18, 2005 session of the RAS Physical Sciences Division. An
abridge version of other talks presented in the session is also
given in this issue of Physics ±Uspekhi.

1. Introduction

Nonlinear elastic properties of condensed media and the
nonlinear waves therein have been extensively studied for
over 50 years in the framework of a well-established
discipline Ð nonlinear acoustics [1 ± 3]. Recently, there has
been an increasing interest in similar studies covering
nonsingle-phase systems (gas ± liquid media, granulated and
fluid-saturated porous media, geological structures, gels, and
composites), as well as solid bodies with defects and
inhomogeneities on a mesoscopic (supramolecular) scale.
This interest is in the first place due to the unusually strong
nonlinearities in such media. It is often possible to observe
markedly pronounced nonlinear phenomena in structurally
inhomogeneous media at moderate sound intensities. This
opens up the possibility for the development of highly
sensitive nonlinear diagnostic technique and may have other
implications.

It was previously thought thatmacroscopic elastic proper-
ties are formally determined by the power series expansion of

the internal energy of a weakly deformed medium in terms of
the strain invariants [4], coefficients of the quadratic terms of
the expansion being linear moduli of elasticity and those of
the cubic terms Landau's nonlinear moduli (or third-order
moduli). Such nonlinearity is usually referred to as `physical'
[5] because it is due to the nonlinearity of intermolecular
interaction forces in a condensed medium and, naturally,
differs for various concrete media. This nonlinearity is
responsible for many well-known phenomena, besides the
effects of acoustic wave interaction, such as thermal expan-
sion of bodies, deviation from the Dulong ±Petit law at high
temperatures, sound attenuation as a result of the interaction
of coherent phonons with thermal noise (Landau ±Rumer
mechanism) [6], and some others.

Another type of nonlinearity is due to the nonlinear
relation between components of the strain tensor and
coordinate derivatives of the displacement vector compo-
nents. This relation is independent of the physical properties
of the body undergoing deformation and is called `geometric'
[5] nonlinearity.

It is worthwhile to recall how physical and geometric
nonlinearities are distinguished in the equations of hydro-
dynamics [7]
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where Z and z are the shear and bulk viscosity coefficients,
respectively. For simplicity, the change in entropy in the
system (1), (2) is disregarded. Let the unperturbed state of a
medium be r � r0, p � p0, and u � 0. Let us further denote
perturbations of the wave-associated parameters as r 0, p 0 and
assume in Eqns (1), (2) that
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Then, the equations of motion and continuity, retaining small
terms of order m 2, will have the form
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The left-hand sides of these equations contain linear terms,
and their right-hand sides nonlinear ones. The latter appear
by virtue of the nonlinearity of the initial equations and do
not depend on the properties of the medium. Hence, the term
geometric nonlinearity.

In contrast, series expansion of the equation of state:
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leads to the appearance of nonlinear terms in the dependence
interrelating increments of pressure and density; hence, the
term physical nonlinearity.

For isotropic solids, the equation of motion and the
relationship between the stress and strain tensors si k and ei k
have the form
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where Ui is the displacement vector, and K, m are the bulk
compression and shear moduli [4]; the strain tensor is defined
as
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andO�e 2i k� in formula (4) includes nonlinear terms describing
deviations from the Hooke law:
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Here, A, B, and C are the nonlinear third-order moduli of
elasticity (Landau coefficients [5] in the expansion of the
internal energy in powers of strain tensors):
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Evidently, the geometric nonlinearity appears in dependence
(5) of the strain tensor on displacement vector components,
and the physical nonlinearity grows from all the terms in
expression O�e 2i k� containing coefficients A, B, and C.

For liquids and gases, the coefficient of physical non-
linearity is usually introduced based on expansion (3):
eph � C2=2C1. The coefficient of geometric nonlinearity is
eg � 1. The sum of these quantities

e � eg � eph � 1� C2

2C1
�6�

is simply called the coefficient of acoustic nonlinearity. For
gases, this coefficient is expressed through the adiabatic index
g � cp=cv as e � �g� 1�=2. Evidently, for air (a diatomic gas),
e � 1:2. In the case of liquids, e is measured in experiment,
e.g., from the generation of the second harmonic [1 ± 3].
Typical values at 20 �C are e � 3:5 (for distilled water),
e � 5:6 (acetone), and e � 6:3 (alcohol).

It should be noted that the coefficient e introduced by
formula (6) enters principal mathematical models describing
the propagation of nonlinear waves in liquids and gases Ð
that is, in Riemann wave equations, Burgers and Khokhlov ±
Zabolotskaya equations, as well as in their various modifica-
tions [8].

Examples of such models are presented below. The
general one-dimensional equation describing the propaga-
tion of diverging and converging waves (as in horns, acoustic
concentrators, ray tubes in the approximation of nonlinear
geometric acoustics) has the form
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where S�x� is the tube cross-section area, and t � tÿ x=c0.
The important specific cases are as follows: at S�x� � const,
equation (7) transforms into Burgers equation for plane
waves, S�x� � x corresponds to cylindrical waves, and
S�x� � x 2 to spherical ones. Dissipation (the second
derivative) is associated with viscosity and heat conduction
effects. A similar equation with the fourth derivative is used
to take into account losses due to scattering by small
inhomogeneities [9].

The integro-differential equation [2]
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describes nonlinear waves in hereditarymedia. The important
case of kernel K�t� � exp �ÿt=T � corresponds to the relaxing
medium; power-like kernels are used for biological tissues,
and models with several relaxation times for melts and highly
viscous fluids.

The basic equation for intense acoustic beams is the
Khokhlov ±Zabolotskaya ±Kuznetsov (KZK) equation [10]
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where D? is the `transverse' Laplace operator. The general
construction of the equation for diffracting beams takes the
form

q
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Here, P̂� p� is the left-hand side of the corresponding
equation for one-dimensional waves [e.g., any one from
Eqns (7), (8)].
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The presence of quadratically nonlinear terms in these
equations is associatedwith the appearance of a characteristic
parameter Ð the nonlinear length

lNL � c 30 r0
eoP0

� l
2peMo

; �11�

where l is the wavelength, andMo � P0=c
2
0 r0 is the acoustic

Mach number for a wave with frequency o. In the ideal case,
i.e., when the nonlinearity predominates over competitive
factors like damping, diffraction, etc., a discontinuity in the
initial plane harmonic wave occurs (leading to shock front
formation) at distance lNL from the entrance to the medium.
For example, lNL � 25 cm for a wave with the acoustic
pressure amplitude P0 � 5:5� 105 Pa (intensity 10 W cmÿ2)
and frequency 1 MHz in water. The amplitude P2 of the
second harmonic (without regard for the redistribution of its
energy over higher harmonics) [8] would increase linearly with
increasing x and would be as large as 0:5P0 at a distance
x � lNL (both experiments and the theory taking into
consideration higher harmonics give a smaller value
P2 � J2�2�P0 � 0:35P0, where J2 is the Bessel function).
Thus, the simplest way to estimate the nonlinear parameter e
boils down to determining the nonlinear length or to
measuring the amplitude P2 of the second harmonic at small
distances x4 0:5lNL:
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where N � x=l is the number of the wavelengths being along
the distance x. There are many other methods to estimate e
based on the measurement of spatio-temporal and spectral
characteristics of running waves and on resonance phenom-
ena (see Refs [1 ± 3, 11 ± 13]). Resonance methods were
extensively employed in biomedical studies [14, 15] that
require high-precision measurement of physical nonlinearity
for the correct evaluation of conditions of tissues, organs, and
body fluids.

In solids, waves of different types can interact, which
accounts for the lack of a universal expression for nonlinear
coefficient (6). In the specific case of plane longitudinal waves
propagating in an isotropic medium [1], one finds

e � ÿ 3

2
ÿ 1

c 20 r0
�A� 3B� C� :

As shown by measurements, e for homogeneous bodies
exhibits the same order of magnitude as for liquids (e.g.,
e � 7:2 for aluminium) and rarely exceeds 10.

However, many experiments in structurally inhomoge-
neous media have given values of e � 102ÿ103. The under-
lying causes of such large values differ from those discussed
above in connection with physical and geometric nonlinea-
rities. This provides grounds for distinguishing nonlinearity
of a third type, called `structural' nonlinearity.

2. Classification of acoustic nonlinearities

It follows from the foregoing section that there is good reason
to consider three types of nonlinearity, viz. geometric,
physical, and structural, each being either dispersed in a
bulk medium or concentrated in a spatial domain that is
small compared with the wavelength [16]. Effects of bulk

nonlinearities may accumulate during wave propagation
(provided competitive processes, such as damping, diffrac-
tion, dispersion, etc. are sufficiently weak). These effects tend
to manifest themselves more strongly the longer the distance
travelled by the wave. They can be very pronounced even in
the case of weak nonlinearity. In contrast, the accumulation
of effects of boundary nonlinearity is feasible only in the case
of repeated action of the wave on the nonlinear element
(boundary), e.g., when this element is enclosed in a resonator.

Let us discuss examples of boundary nonlinearities.
Example 1. Geometric boundary nonlinearity. Let us

consider a flat piston whose vibration along the normal
(coincident with the x-axis) to its surface excites a running
wave in an elastic half-space x > 0. A displacement of the
piston from the mean position x � 0 is described by the law
x � X�t�. A wave moving away from the piston imparts the
velocity to medium particles varying as u � u0F�tÿ x=c�.

Because the speed of the piston surface equals the velocity
of medium particles residing at this surface, one arrives at a
functional equation for unknown F:
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c
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; �13�

the solution of which [17] nonlinearly depends on the known
function X�t�:
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For example, if the piston movements conform to the
harmonic law X�t� � ÿX0 cosot, Eqn (13) takes the form

u
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�
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c
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Evidently, the shape of the running wave F�t� contains
both a constant constituent and higher harmonics in the case
of the harmonic dependence X�t�. The difference between
X 0�t� and F�t� increases with an increasing Mach number
M � u0=c and becomes especially apparent at the speeds of
piston motion comparable with the speed of sound. Such a
situation may arise in liquids containing gas bubbles in which
the speed of sound may be very low, and also in resonators
where boundary nonlinearity effects may accumulate in the
course of time. Because the nonlinearity of relation (13) is
independent of the medium's properties, it would be worth-
while to call this nonlinearity geometric.

The shape of wave (15) at small Mach numbers is close to
sinusoidal, and its positive and negative `half-periods' are
differently distorted at finiteMÐthat is, the phase of positive
u values is shortened in time and has a higher maximum
compared with the absolute maximum of the phase of
negative u values. Spectral components (14) of this wave are
defined by the Fourier series expansion:

u
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Specifically, for the constant constituent and amplitudes of
the first two harmonics, one obtains

A0 � ÿM

2
;

B1 � J0�M� ÿ J2�M� ; �17�
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2

�
J1�2M� ÿ J3�2M�

�
:

The constant constituent of the velocity is directed toward the
piston. It appears in connection with the representation of the
vibrating boundary as an infinite plane: the pressure in any
direction orthogonal to x being identical (unlike the pressure
in the case of a piston of finite size), the fluid cannot approach
the axis (see, for instance, problem 4 in Ref. [7, æ 101]).

Thus, geometric boundary nonlinearity effects do not
depend on the properties of the medium or the distance
travelled by the wave Ð they are heightened with increasing
Mach numberM.

Geometric boundary nonlinearity may become apparent
when a cloud of cavitation bubbles forms in the fluid close to a
high-power ultrasonic source. The speed of sound in such a
medium is sometimes reduced to 20 ± 40 m sÿ1. The bubbles
vibrate, collapse, and produce broadband noise. This noise
interacts with boundary vibrations, and its spectrum is
reproduced at the `base' of discrete constituents, i.e., higher
harmonics of the fundamental frequency (Fig. 1a). As a
result, the noise builds up, and the spectrum effectively
broadens [17]. The mechanism described adds to the known
mechanisms [6] of spectrum broadening under the influence
of bulk nonlinearity.

Other problems that require consideration of the finite-
ness of the boundary displacement are related to the
accumulation of nonlinear distortions in high-Q resonators.
Because the shape of intense `standing' waves is greatly
distorted, they become saturated under harmonic pumping.
Therefore, the form of boundary vibrations needs to be
altered [18] if the process of `pumping' energy into the
resonator is to be continued (in analogy with increasing the
time interval between consecutive pushes to keep pumping a

child's swing). The form of the wall motion (one period)
necessary to maintain resonant excitation is shown in Fig. 1b.
Interestingly, resonance in a system with boundary non-
linearity is observed in frequency bands that broaden with
increasing boundary vibration amplitude, rather than at
certain discrete eigenfrequencies [19].

Example 1a. This example illustrates nonlinearity of the
same type as the example 1 but concerns well-known devices,
such as resonance sound absorbers utilized to reduce noise in
building construction. A resonance sound absorber is essen-
tially a perforated plate attached to a wall from which it is
separated by a narrow gap. Such a device is equivalent to a
system of Helmholtz resonators, with each hole functioning
as a resonator `neck', and the air enclosed in the gap behind it
as a virtually motionless compressible volume. Vibrations of
air in the holes are damped out by virtue of friction against the
hole walls or nets and special fibrous material enclosed in
them. The correct choice of resonator parameters at a certain
frequency allows having the incident waves be completely
absorbed. Nonlinearity may weaken the damping effect of an
absorber tuned to be resonant with certain linear parameters
or, vice versa, improve sound absorption by a poorly tuned
system by setting it closer to exact resonance [20]. In other
words, it is necessary to take into account boundary
nonlinearity effects when devising intense sound absorbers.
The nature of this nonlinearity bears a general character; it
manifests itself when an oscillating stream flows around a
sharp-edged body. In such a case, the flux gradients are on the
order of u=max �r0; d�, where d � ��������

n=o
p

is the thickness of
the acoustic boundary layer, r0 is the minimal radius of the
obstacle curvature, and n is the kinematic viscosity. Thickness
d determines decisively the behavior of the stream as it flows
round the sharp-edged body. The nonlinearity is essential
when the Reynolds number Re � 1 is proportional to the
ratio of the terms on the left-hand side of the equation of
motion (1) that can be evaluated as
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�����uH� u�quqt

�ÿ1���� � u������
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���������
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coZ

s
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where I is the sound intensity. In accordance with estimate
(18), the nonlinearity in the air (Z � 0:018� 10ÿ3 Pa s) is
apparent at 500 Hz when the sound intensity reaches
� 120 dB. This estimate agrees with experimental data. If
vortices are induced at the hole edges, nonlinear phenomena
can be observed even beginning with the sound intensity of
90 dB [20].

Example 2. Physical boundary nonlinearity. In many
problems, the known variable is a force F�t� applied to the
piston rather than the piston displacement law x � X�t� as in
example 1a. Thus, when an alternating voltage V is fed to an
electromechanical transducer, it is the law V�t� that is known
and, consequently, F�t�. The equation for the vibrations of a
piston having mass m and surface area S, namely

m
d2X

dt 2
� F�t� ÿ paS ; �19�

takes into account the response of pa, i.e., pressure produced
by the runaway wave. This pressure is related to the
vibrational velocity u by the nonlinear relation pa � pa�u�
known from the theory of Riemann waves [7]. Because
u � X 0�t� at the piston surface, we must set pa � pa�dX=dt�
in Eqn (19). If the nonlinearity is weak and we may restrict

b
X 0�t�=u0

ÿp ÿ2 ÿ1 0

1 2 p
ot

6 5 4 3
2

1

1 2 3

o

S�o� Â

Figure 1. (a) Broadening of the spectrum S�o� of cavitation noise

interacting with the boundary (1) vibrating in accordance with the

harmonic law; 2 Ð cavitation bubbles, and 3 Ð fluid. (b) The shape of

one boundary oscillation period that ensures accumulation of energy in

the resonator cavity under conditions of manifestation of the boundary

nonlinearity. Curves 1 ± 6 correspond to increasing u0 values.
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ourselves to a quadratic nonlinear relation, then equation (19)
takes the form

d2X

dt 2
� crS

m

dX

dt

�
1� e

2c
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dt

�
� 1

m
F�t� : �20�

It is clear that the response of the runaway wave to the piston
action is also nonlinear. If F�t� varies according to the
harmonic law, then function X�t� contains higher harmon-
ics. The nonlinearity tends tomanifest itself more strongly the
larger the product of the medium nonlinear parameter and
the Mach number, namely, eM. The response is due to the
nonlinear dependence of pressure on the velocity or the
excitation of medium density (in solids, the nonlinear
stress ± strain relation can be discussed). For this reason, the
above-described nonlinearity may be called physical non-
linearity.

Example 3. Structural boundary nonlinearity. Figure 2a
depicts a system of two plates, one of which (bottom) is
smooth, and the other rough. Evidently, the larger the
pressing force P, the more the `teethes' (i.e., microscopic
asperities at the contact sites) undergo distortion and the
rigidity of the contact increases.

Structural nonlinearity is evidenced in a simple experi-
ment [21] schematically represented in Fig. 3. In this case, the
structural nonlinearity can be used to estimate the quality of
two rough surfaces in contact [22]. As P! 0, the incident
wave with frequencyo is almost completely reflected from the
interface. Conversely, if P!1, the wave passes across the
interface due to ideal acoustic contact. In either case, there is
no reflected wave at frequency 2o. The second harmonic
arises at intermediate P values, while the P-dependence of the
displacement amplitude U2o has a maximum. Interestingly,
the curve U2o�P� represents the statistical distribution of
microasperity heights [22] (in the framework of the model
shown in Fig. 2b).

The contact nonlinearity has already been exploited in
measuring and realizing interactions between bulk and
surface waves of various types (e.g., in acoustoelectronic
devices for signal processing). The term `contact acoustic

nonlinearity' (CAN) has been coined. These issues are
discussed at greater length in Ref. [24].

The magnitude of the signal generated as a result of the
reflection from a nonlinear element depends on a variety of
parameters. Therefore, one should be cautious when speaking
of `giant medium nonlinearities'. Let us discuss, by way of
example, the problem of acoustic wave reflection in the
simplest one-dimensional representation. Let the displace-
ment X�t� of an element at point x � 0 under the action of
acoustic pressure be described by the equation L̂�X � � pa�t�,
where the pressure field is the sum of the incident (from ÿ1)
and reflected waves:

pa�x; t� � p�

�
tÿ x

c

�
� pÿ

�
t� x

c

�
:

The following system is needed to obtain the reflected wave:

rc
dX

dt
� L̂�X � � 2p��t� ; pÿ � p� ÿ rc

dX

dt
:

Specifically, for a harmonic incident wave and weak inertia-
less quadratic nonlinearity L̂�X � � E�1� eX=h�X=h (where
E, e are the Youngmodulus and the coefficient of the material
nonlinearity, respectively, and h is the thickness of the
nonlinear layer), the following relations hold:
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c
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It can be seen that the ratio of theMach number of the second
harmonic to the Mach number squared of the first harmonic
can grow not only with increasing nonlinear parameter e but
also with growing ratio c 2r=E of compressibilities of the
nonlinear material and the `buffer' medium in which the
incident signal is excited and the reflected one is registered.

It appears from the comparison of Eqn (21) in the limiting
case of low frequencies (for small G values) with the
analogous expression (12) for bulk nonlinearity that the
coefficient of e in equation (21) contains the product of the
small wave layer thickness and the square of the compressi-
bility ratio 4kh�c 2r=E�2, instead of the number pN of
wavelengths. If the nonlinear element has a linear Young
modulus smaller than the modulus for the `buffer' medium,
then it is more appropriate to speak about the strong
manifestation of weak nonlinearity rather than of strong
nonlinearity.

An example is provided by the response of a thin gas layer
�rG; cG� residing in a liquid �rL; cL� medium (Fig. 4). The
exact solution of the problem of harmonic signal reflection
from the layer [whose density shows the dependence on
acoustic pressure simulated by the expression c 2r=p� �
ln �1� p=p��] has the form [25]
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D
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where I0, In are the modified Bessel functions. This relation-
ship contains the ratio of two small parameters
z � rGcG=�rLcL� and D � oh=2cL. The curves in Fig. 4a are

P
a b

Figure 2. (a) Schematic representation of a rough surface. (b) Model of a

rough surface in the form of an ensemble of springs with different lengths

and equal rigidity.

Input o
Pì static load

Output o; 2o

Figure 3.Rough surface diagnostics based on the generation of harmonics

arising due to structural nonlinearity.
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constructed for the ratio z=D � 1 and the values of the
parameter b � P0=p� equal to 1, 2, 5, and 10. It can be seen
that nonlinear distortions are amplified with increasing b. The
reflected spectrum at b � 10 (Fig. 4b) contains some dozen
harmonics of the incident wave frequency. As shown in
Ref. [25], processing the broad spectrum of a reflected signal
permits us to solve the inverse problem, i.e., to reconstruct the
equation of state of the layer.

As distinct from a separate weakly nonlinear element
responsible for the strong nonlinear response, a distributed
system composed of such elements can be appropriately
described in such terms as `strong' and even `giant' non-
linearity because, in this case, effective elastic characteristics
of a structurally inhomogeneous medium are involved.

This does not refer to individual elements that display
strongly nonlinear behavior even under weak acoustical
action. The examples are nonlinearities inherent in systems
with couplings and constraints (see Section 3 for `clapping'
nonlinearity) as well as in systems subjected to shocks or
containing singularities in the equation of state. Such systems
may be lacking in linear regime even when a small deviation
from equilibrium exists. If a medium contains an ensemble of
such strongly nonlinear elements, there is all the more reason
to apply to it the term `giant nonlinearity'.

3. Mechanisms of structural nonlinearity

Let us discuss here some causes that lead to the appearance of
large bulk nonlinearities in structurally inhomogeneous
media.

This type of nonlinearity arises in liquids into which
strongly compressible inclusions are introduced (e.g., gas
bubbles); it is known that the nonlinear parameter of aerated
water may by two or three orders of magnitude exceed the
nonlinearity of each constituent component of the mixture:
gas �e � 1:2� and water �e � 3:5� alike.

Such nonlinearities have many times been observed and
used to realize various acoustic interactions in liquids (see, for
instance, Refs [26 ± 30]). Large nonlinearities of vapor ± liquid
and gas ± liquid systems are typical of a variety of wave
problems in mechanics and thermal physics [31, 32].

Giant nonlinearity of liquids containing gas bubbles
opened up possibilities to solve some applied problems, such

as the detection of a small number of bubbles (and even single
ones) in the wake of a seagoing ship, monitoring fermentation
processes or the start of boiling of a coolant in nuclear
reactors, diagnosis of decompression sickness, etc. It has
also been suggested that the bubble-containing fluid non-
linearity be used in different industrial technologies. In the
1980s, extensive studies along these lines were carried out at
the Institute of Applied Physics, Russian Academy of
Sciences [33, 34]. At present, medical diagnostic technologies
are being increasingly developed using stable microbubble-
based suspensions (special contrast agents) for intravenous
administration (see Section 5).

Markedly enhanced nonlinearity of media containing
strongly compressible inclusions is illustrated by the follow-
ing simple example. Let a thin layer of a light compressible
medium be imbedded in a denser medium characterized by a
high velocity of sound (for instance, a thin layer of air in water
or aqueous gel). There are two small parameters in such a
system: the acoustic impedance ratio, and the wave layer
thickness rGcG=rLcL � oh=cG 5 1. The solution of the
problem of wave passage through this layer [25] indicates
that the second harmonic at the exit from it is K4 1 times
stronger when the light layer is surrounded by a dense
medium (compared with the second harmonic in the absence
of a dense medium). The magnitude of `enhancement' of
nonlinearity, required for the generation of the second
harmonic, comes out to

K � P inh
2

Phg
2

� 2

3

eG
eL

�
c 2L rL
c 2G rG

�2

: �23�

For the air layer in water, one obtains K � 5:5� 107. A layer
composed of water containing bubbles at a bulk concentra-
tion of about 10ÿ4 produces a 5000-fold enhancement.

There is a very simple explanation for the giant enhance-
ment of nonlinearity. Let a wave propagate in a water layer
with a characteristic pressure of several atmospheres. Such a
wave is weak because the internal pressure c 2L rL in water is on
the order of 23,000 atmospheres. However, when such
pressure begins to act on the air layer, its volume changes
several times and the resulting strong deformation leads to
harmonic generation.
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Figure 4. (a) The shape of a time-periodic, strongly nonlinear response of the layer at different b values, and (b) the spectrum of the response at b � 10.
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Despite the apparent simplicity of this phenomenon, no
acceptable theory has thus far been proposed to quantita-
tively estimate the maximum values of the nonlinearity
parameter in gas ± liquid media. Formula (23) was derived
from a too much simplified model and therefore gives only an
upper bound. It is possible, followingRef. [30], to consider the
dynamics of a single bubble and thereafter move to a fluid
containing an ensemble of bubbles (nonlinear oscillators).
The equation for bubble vibrations in an acoustic pressure
field p�t� in a liquid is derived from the Rayleigh equation [7]
and, with allowance for gas compressibility inside a bubble,
has the form

d2w

dt 2
ÿ 1

6

�
2w

d2w

dt 2
�
�
dw

dt

�2�
� o2

0w�1ÿ eGw� � ÿo2
0

p�t�
c 2G rG

:

�24�

Here,w,o2
0 are the relative perturbation of the bubble volume

and the square of eigenfrequency of its linear vibrations:

w � V 0

V0
; o 2

0 �
3c 2G
R 2

0

rG
rL

; �25�

whereV0,R0 are the equilibrium volume of a spherical bubble
and its radius, and eG is the gas nonlinear parameter (6). In
accordance with formulas (25), the resonant wavelength of
the wave is much larger than the bubble radius because the
oscillator has weak compressibility (gas) and a large virtual
mass of the covibrating fluid. For example, the wavelength in
water at a frequency of 1 MHz reaches 1.5 mm, while the
`resonant' bubble radius is only 4 mm.

Equation (24) contains both geometric nonlinearity (the
term in square brackets appearing in the Rayleigh equation
because of the nonlinearity of the Euler equation) and
physical nonlinearity proportional to eG. Their ratio is a
value on the order of o2=�2eGo2

0�, where o is the frequency
of acoustic vibrations. Thus, the physical nonlinearity for
low-frequency (nonresonant) bubbles markedly exceeds the
geometric one; therefore, the latter may be neglected. It is the
large nonlinear low-frequency response related to strong gas
compressibility in a bubble that provides a basis for nonlinear
diagnostics of separate microbubbles. As the frequency
approaches the resonance one, the linear scattering predomi-
nates, and the resonance scattering cross section is 4=�kR0�2
times the bubble cross section (the relative increase for a
bubble in water is around 2� 104 [35]).

Retaining only the nonlinear term � eG in Eqn (24) and
supplementing it by the wave equation for acoustic pressure
(derived from linearized equations of hydrodynamics for a
liquidwith the effective density r � rL� p�

ÿ
1ÿ nV� p��, where

n is the number of bubbles per unit volume) it is possible to
obtain the system of equations [30]

d2w

dt 2
� o2

0w�1ÿ eGw� � ÿo2
0

p�t�
c 2G rG

; �26�

Dpÿ 1

c 2L

q2p
qt 2
� ÿrLnV0

q2w
qt 2

: �27�

System (26), (27) coincides with the equations used in
nonlinear optics of dielectrics [36], where p is the electric
field, and w is the polarization of the medium in the Drude ±
Lorentz type model. This system is convenient to use for the
solution of the problem of maximum nonlinearities.

Putting aside resonant phenomena, let us neglect the
second derivative in equation (26). In this case, the effective
low-frequency speed of sound

c 2eff �
c 2L

1� nV0 b
; b � c 2L rL

c 2G rG
; �28�

falls with the growth in both the gas content nV0 and the ratio
of medium compressibilities b. System (26), (27) is weakly
dispersive and can be reduced to the Riemann wave equation
by the method of slowly changing profile [36] [cf. Eqn (7)]:

qp
qx
ÿ eeff
c 3eff reff

p
qp
qt
� 0 ;

eeff
c 3eff reff

� eGceff
rLnV0

�c 2G rG�2
; �29�

where t � tÿ x=ceff is the time in the coordinate system
comoving the wave. Whence, the effective nonlinearity
coefficient is defined as

eeff
eG
� b 2nV0�1ÿ nV0�
�1� bnV0�2

: �30�

It can be seen that the maximum nonlinearity

eeff � eG
b 2

4�b� 1� �31�

is achieved at a gas content nV0 � �b� 2�ÿ1. Estimates for a
two-phase system consisting of water and air bubbles indicate
that the effective nonlinearity may increase by K �
eeff=eG � 3900 times compared with that of a diatomic gas
and reach a maximum value eeff � 4700 at a relative bulk
content of the gas as small as 0:7� 10ÿ4.

The above values are consistent with the results of many
measurements and also with an estimate obtained from
formula (23). At the same time, things are far from
completely clear. In a previous consideration, the bubble
was regarded as an oscillator free from losses, deformations
were assumed to be finite but small, while scattering and some
other factors were disregarded. Onewould think that the issue
of maximum eeff could be solved in principle by considering a
one-dimensional problem of periodically alternating plane-
parallel layers of two media, rGcG, rLcL, of thickness hG, hL.
In the linear formulation, such a problem was resolved long
ago (see, for instance, Refs [36, 37]). The corresponding
dispersion equation

cos
ÿ
keff�hG � hL�

� � cos �kGhG� cos �kLhL�

ÿ 1

2

�
kG
kL
� kL
kG

�
sin �kGhG� sin �kLhL� �32�

results from joining the solutions of the wave equation at the
boundaries for each layer. In the long-wave approximation, it
follows from Eqn (32) that

hG � hL

c 2eff
� hG

c 2G
� hL

c 2L
: �33�

For c 2G 5 c 2L, formula (33) yields an incorrect result being in
conflict with experimental findings. For example, it gives the
speed of sound as high as 235 m sÿ1, much in excess of 30 ±
100 m sÿ1 in a system with equally thick layers of water and
air. The fact is, classical theory (32) does not take into
consideration boundary displacements that are essential in
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the case of high compressibility of the air, i.e., boundary
nonlinearity (see example 1 in Section 2). The correct result
obtained in the framework of the quasistatic approach
(Mallock's formula [31]) is given by

�hG � hL�2
hGhL

1

c 2eff
� rL

rG

1

c 2G
� rG

rL

1

c 2L
; �34�

it indicates that the minimal possible speed ceff � 23:8 m sÿ1

in the case of equally thick layers, hG � hL, is much lower
than the speed of sound in either water or air. One order of
magnitude difference between the linear problem solution
and the real data due to disregarding boundary displacements
illustrates the difficulties of a strict solution of the problem in
the `physically nonlinear' formulation.

In addition to the lack of a clear and definite answer to the
question concerning the magnitude of nonlinear moduli,
there is an equally important question of how large the
Reynolds acoustic numbers [1 ± 3] that characterize the
relative contributions of nonlinear effects and competing
decays (due to wave dissipation, reflection, scattering, etc.)
may be. It is not infrequent that the growth of nonlinearity is
accompanied by still greater losses which hinder taking
measurements.

Let us now turn to structurally inhomogeneous solid
media. As shown in many experiments, an enhancement in
nonlinearity K in such media (granulated, fluid-saturated,
cracked, porous, etc.) may be as large as 102ÿ104. In this case,
a rise in K suggests the presence of defects.

Media possessing strongly nonlinear properties are
exemplified by a granulated system. The contact area
between granules depends on the exerted force; in other
words, the system is being deformed as an ensemble of
nonlinear springs. An example is provided by the classical
contact problem of the theory of elasticity, viz., the problem
of two spheres (the Hertz contact) [4] (Fig. 5). The force by
which two spheres of radii R1 and R2 are repulsed from each
other nonlinearly depends on the difference between the
displacements �x2 ÿ x1� of their centers under the strain
effect:

F � E

������������������
R1R2

R1 � R2

r
�x2 ÿ x1�3=2 y�x2 ÿ x1� : �35�

Here, y is the Heaviside function, and E is the effective
modulus dependent on the Young moduli of the materials
constituting the spheres and their Poisson coefficients. When
the displacement difference �x2 ÿ x1� has a negative value, the
spheres are repulsed undistorted andF is zero.When the same
difference is positive, force F depends on it as �x2 ÿ x1�3=2.
Evidently, when the system of two spheres vibrates under the
action of a periodic external force, the nonlinearity will be
essential only if the contact area between the two bodies
changes substantially. The nonlinearity decreases if the
spheres are pressed against each other by a large static force.
In the case of weak squeezing, stretching forces may break the
contact; then, granules collide in the compression phase. Such

a mechanism is referred to as `clapping' nonlinearity. The
model of a system in which compressive and stretching strains
are described by the linear Hooke law with distinct elastic
moduli is called `bimodular'; evidently, a system with
`clapping' contacts is a specific case of bimodular systems
lacking in elastic resistance to stretching.

The nonlinear mechanisms similar to the Hertz contact
mechanism described in the foregoing paragraphs are used in
the dynamic description of granulated media (see Ref. [38]),
contact between rough surfaces [22], and some other systems.

One more important example of media characterized by
large structural nonlinearity is provided by a crackedmedium
(Fig. 6). It is known that the stress s applied to a specimen of
such a medium peaks at the tip of a sharp crack �s � � Ks�
where it is enhanced by K � 1� 2

����������
l=2r0

p
times, where l is the

crack length, and r0 is the radius of curvature at the apex of
the cut (see, for instance, Ref. [39]). When r0 ! 0, the
enhancement comes after K!1. Large stresses exerting
near the sharp tip of a crack cause plastic strain of the
adjacent medium, while r0 acquires a certain finite value.

Let an alternating stress be applied to a solid sample with
internal cracks (Fig. 6a), say, through irradiation with a wave
at frequency o or two waves at frequencies o, O. The
homogeneous volume undergoes linear strain, but crack tips
generate the second harmonic 2o or combination frequencies
o� O and oÿ O (Fig. 6b). The magnitude of the nonlinear
response must increase as the number of cracks increases.

The influence of structural defects on concrete strain
nonlinearity was observed in the course of ultrasonic and
tensometric measurements [40 ± 42]. It was found that water-
saturated specimens exhibited pseudoelastic properties, and
their nonlinearity enhanced upon evaporation of moisture
(crack drying). Also, the frequency dependence of nonlinear
effects and the development of hysteretic phenomena were
revealed.

Robsman [43, 44] received direct confirmation of the
enhancement of medium nonlinearity with an increase in the
number of cracks (Fig. 7). An increasing static load was
applied to a concrete beam on a test-stand as long as it took
to break the structure. With increasing load, the number of
cracks also increased, as well as the structural nonlinearity of
the medium. Nonlinear wave interactions were enhanced
even though the beam length (6 m) and the level of the initial
signal remained unaltered. By way of example, Fig. 7
illustrates the coupling between the narrow line of the
acoustic signal and the shock-induced broad noiselike
spectrum (cf. Fig. 1a). The processes of generating higher
harmonics and the appearance of wide `pedestals' in each
spectral line were most pronounced under large loads. The
formation of new cracks gave rise to acoustic emission
signals that were also involved in interactions. The spectrum

Figure 5.Nonlinear Hertz contact.

s s

s�

1

a b

Figure 6. (a) The stress applied near the sharp tip of a crack is enhanced

K4 1 times. (b) The crack tips emit harmonics and combination

frequencies of the incident wave spectrum.
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became very complex just before the abrupt destruction of
the specimen, with the continuous spectral component
(white noise) being especially noticeable.

Naturally, the formation of a network of cracks leads to a
decrease in material strength. Therefore, the enhancement of
nonlinear effects in a defective medium may serve as a
criterion of strength loss.

Many recent publications have been concerned with
nonlinear acoustics of media with hereditary properties
(including hysteretic ones). However, these works have thus
far been largely dissociated from the previous many-year
studies on hereditary media mechanics, initiated long ago by
Boltzmann (1876), Rayleigh (1887), and Volterra (1913). The
authors of these works prefer the term `constitutive equa-
tions' to the former term `equations of state' containing
physical nonlinearity.

It was Volterra who constructed the nonlinear theory of
hereditary elasticity using the FrecheÂ t representation for the
functional in the form of multiple integral series generalizing
the Taylor series. For a one-dimensional case, the Volterra ±

FrecheÂ t expansion in the scalar variant has the form

s�t� �
� t

ÿ1
G1�tÿ t� de�t�

�
� t

ÿ1

� t

ÿ1
G2�tÿ t1; tÿ t2� de�t1� de�t2� � . . . ;

�36�
e�t� �

� t

ÿ1
J1�tÿ t� ds�t�

�
� t

ÿ1

� t

ÿ1
J2�tÿ t1; tÿ t2� ds�t1� ds�t2� � . . . ;

where s, e are the stress and the strain, and Gn, Jn are the
relaxation and creep functions, respectively [45]. Sometimes,
model expansions are utilized, e.g., the Rabotnov equation

j
�
e�t�� � s�t� �

� t

ÿ1
K�tÿ t� s�t� dt �37�

or the Linderman ±Rozovsky equation

e�t� � c
�
s�t��� � t

ÿ1
K�tÿ t� w�s�t��dt ; �38�

where j�e�, c�s� are certain functions; here, functional series
(36) are assumed to be partly summed. In mechanics, these
functions, as well as kernels in integrands entering Eqn (36),
are selected based on a large body of experimental data for
each particular material [45]. There are very fewer experi-
mental data in acoustics, with its wider frequency range and
considerably more complicated kernel (and spectrum) struc-
ture. Such data are available, in principle, by nonlinear
spectroscopy, in analogy with optics (see, for instance,
Ref. [46]), but we are unaware of any such measurements
and of the developments in this field at large. In acoustics, the
term `nonlinear spectroscopy' is used in quite a different
sense; for example, the term `nonlinear resonance spectro-
scopy' is taken to mean a simple measurement of the
amplitude-dependent frequency of resonator oscillations [47].

Theories like the Volterra theory are concerned with
retarded processes that are reversible in the sense that
instantaneous strain curves (in the stress ± strain depen-
dence) coincide for loading and unloading. The situation
may be different in hysteretic media. For example, nonlinear-
ity in metals is associated with the cumulation of essentially
irreversible plastic deformation and the unloading law
approximates a linear one. In materials characterized by
destructive pseudoelasticity (e.g., reinforced plastics with
stress concentrated about fibre bends, cracks), unloading
results in the `closure' of some cracks and the unloading
graph approaches the origin of coordinates: s � e � 0 [45].
Crack `healing' in the process of deformation was observed in
concrete. Recently, the phenomenon of the creation and
annihilation of a defect was detected in metals as manifested
by the generation of higher harmonics [48]. A model of the
stress ± strain dependence in the form of the Rayleigh
hysteresislike dependence is convenient in describing cyclic
processes. Such a hysteresis loop in Fig. 8a is defined by the
following formulas (for sections A0B 0A, ABA0)

s � �E� bem�e� b

2
�e 2 ÿ e 2m� ;

s � �E� bem�eÿ b

2
�e 2 ÿ e 2m� ;
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and s � Eeÿ be 2 (section OA0). Residual stresses and
hysteresis loss (per cycle) are given by the following expres-
sions

s � � b

2
e 2m ; W �

�
e ds � 4

3
e 3m :

However, this model holds only for quasistationary
processes: it is clear that in the case of quick changes in the
applied acoustic pressure the internal restructuring of the
medium falls behind and the internal processes get `frozen'
whatsoever at very high frequencies. Hysteresis loss deter-
mined by the loop area in Fig. 8a must decrease with
increasing frequency. On the whole, the picture is reminis-
cent of the one described by the Mandel'shtam ±Leontovich
relaxation theory [7]. In this theory, however, a linear internal
parameter (concentration of one of the chemically reactive
components, vibrationally excited molecules, etc.) undergoes
relaxation, approximating an equilibrium value with its own
characteristic time T; this results in the emergence of `linear
memory' in the dependence of medium density perturbation
on acoustic pressure [2]:

r 0 � p

c 2
ÿ e
c 4r

p 2 � m

c 2rT

� t

ÿ1

qp�x; t 0�
qt 0

exp

�
ÿ tÿ t 0

T

�
dt 0 :

�39�

Despite additional loss (`second viscosity' [7]) introduced
by internal motion, the response is reversible and, the wave
having passed, the medium returns to equilibrium. In
contrast, the removal of the loading in hysteretic media
gives rise to a `nonlinear memory' Ð that is, to irreversible
deformations and residual stresses.

The authors of Ref. [49] described a soil-like medium
compacted under a one-time loading (Fig. 8b), in which the
unloading process may follow different paths, depending on
its rate. The straight line 1 in Fig. 8b corresponds to a slow
process, with residual strains attaining amaximum. In a rapid
cycle, the straight line 3 is close to the loading curve. Here, as
distinct from formula (39), the internal dynamics is described
by the nonlinear integral term:

r 0 � p

c 2
ÿ e
c 4r

p 2

� e
c 4r

1

T

� t

tm

�
p�x; t 0� ÿ pm�x�

�2
exp

�
ÿ tÿ t 0

T

�
dt 0 : �40�

Evolution type wave equations for these cases look different.
For constitutive equation (39), the wave equation has the
form [2]�

q
qt
� 1

T

��
qp
qx
ÿ e
c 3r

p
qp
qt

�
� m

2c

q2p
qt 2

;

for the case described by formula (40), it is written down [49]
as �

q
qt
� 1

T

��
qp
qx
ÿ e
c 3r

p
qp
qt

�
� ÿ e

2c 3rT
q
qt

ÿ
pÿ pm�x�

�2
:

Figure 8c illustrates the process of transformation of a
unipolar pulse in a usual nonlinear medium and in a medium
with residual deformations. Some essential differences are
obvious: (1) the pulse area is constant in the usual medium
and decreases as the pulse propagates in the irreversibly
deformable medium; (2) the speed of the trailing edge of a
pulse is higher than that of the leading edge because the
former spreads through the medium compacted by the latter;
(3) the edges draw close together and thereby cause the pulse
to `collapse', and (4) in the usual medium, the pulse
asymptotically decays as x!1, while residual-strain loss
results in its disappearance over a finite distance.

Analysis of direct and inverse wave problems appears to
be of greatest interest in the area under consideration, and
possibly for the purpose of nonlinear diagnostics. However,
the majority of acoustic studies of hereditary media pertain
to materials science and are descriptive in character. It
follows from Fig. 8c that waves in such media behave
differently than in the case of the ordinary stress ± strain
algebraic dependence. Nonlinear waves were the subject of
in-depth studies [2] when their parameters were interrelated
by `relaxing' dependences (in the sense of the Mandel'sh-
tam ±Leontovich concept), but these results are insufficient
to characterize hysteretic media (see the review of this
problem in Refs [49 ± 53]).

4. On nonlinear diagnostics

The basis for conventional acoustic diagnostics is the ability
of sound waves to penetrate media opaque for other types of
radiation. It is known that low-frequency waves can propa-
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gate thousands of kilometers underwater or underground,
while high-frequency waves are focused on any internal organ
of the human body to produce its ultrasound image. That is
why acoustic diagnostics finds such wide applications in
geophysics, medicine, and industry. Linear methods allow
selected objects to be examined by varying the frequency,
phase, polarization, and traveling direction of waves. Non-
linear phenomena give rise to the dependence of the medium
response on the signal amplitude (intensity). This introduces a
`new dimension' in many methods and schemes of acoustic
diagnostics. In principle, any of the existing methods can be
generalized and extended to a nonlinear case, with the
number of such modifications being very large. Therefore, it
appears appropriate to discuss here only those schemes in
which nonlinearity has already opened up fresh interesting
opportunities.

The ideas underlying nonlinear diagnostic and nondes-
tructive testing techniques are well known. The growth of
wave amplitudes leads to the violation of the superposition
principle: strong waves intersect in time and space and the
interaction between them is accompanied by the exchange of
energy. In this process, each wave `remembers' individual
characteristics of its `partners' and material characteristics of
the medium (in the region where the interaction occurred).
This information is `delivered' to the receiver by the initial
waves, which themselves undergo cross modulation, or by
means of radiation emitted directly from the region of
interaction in the form of new spectral components that
were absent in the initial wave spectrum.

Figure 9 depicts the region of intersection of two wave
beams with frequencies o, O. This region can emit harmonics
and combination frequency waves, the amplitudes of which
depend on both the initial wave amplitudes and the para-
meters of the medium. Processing the signals provides
information about linear and nonlinear properties of the
medium in the interaction region. Moreover, each beam
leaving this region undergoes modulation with the spectrum
of another beam. These phenomena are underlain by the
`sound-by-sound scattering' effect [56] (see also Refs [57, 58]
for more details). Devices that realize nonlinear `storage' of
the signal are exemplified by a `parametric' sound receiver [10,
57] employed in hydroacoustics (Fig. 10). It uses as the
receiving antenna a water column dozens or hundreds of
meters in height in which an intense high-frequency beamo is
localized. Parametric devices utilizing the air to the same

effect have begun to be increasingly applied for the remote
diagnostics of certain objects [59].

Strictly speaking, the condition of synchronous (resonant)
interaction between three waves at quadratic nonlinearity

o3 � o1 � o2 ; k3 � k1 � k2

in acoustic media with weak dispersion is fulfilled only for
small beam intersection angles. Specifically, the directional
characteristic of the receiver shown in Fig. 10 has a sharp peak
in the direction of the emitted reference beam that makes up
the `immaterial' receiving antenna [10]. In experiments,
however, it is also easy to measure effects of nonresonant
scattering at any beam intersection angle. Hence the possibi-
lity of moving the intersection region in space to measure the
distribution of medium characteristics. Also, it proved
possible to realize an acoustic tomography scheme based on
the use of colliding beams with a minimal length of
synchronous wave interaction [60]. In this scheme, scanning
the space was performed with the aid of delaying pulse
signals; this technique ensured that the pulses met and
interacted in different places.

Themost complete information on the spatial distribution
of the nonlinear parameter e�r� can be obtained using
methods of diffraction reconstructive tomography. The
simplest scheme has been described in Ref. [61]. Let a
nonlinear region (e.g., a cloud of bubbles in water or in
biological tissue or a network of cracks in a solid) be
irradiated with waves o1, o2 directed along unit vectors n1,
n2. The parameter measured is the difference frequency
o3 � o1 ÿ o2 in the n3 direction. The solution of the non-
linear equation

q2p
qt 2
ÿ c 2Dp � e�r�

c 2r
q2p 2

qt 2

in the Born approximation for the amplitude of the difference
signal in the far field takes the form

P3 � p2o2
3

c 2r
exp

ÿ
i�o3=c�r

�
r

P1P
�
2 ~e
�
o3

c
n3 ÿ o1

c
n1 � o2

c
n2

�
;

�41�

where ~e�k� is the Fourier transform of function e�r�, and the
origin of coordinates is inside the scatterer. For collinear

O O

o

o� O, oÿ O

o

Figure 9. Sound-by-sound scattering and crossmodulation in intense wave

beams.

o

o

O

oÿ O
o
o� O

Bay

Figure 10. The principle of operation of a receiving `parametric' antenna:

the strong wave o `remembers' the parameters of a weak signal.
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probing waves, n1 � n2, the outer term in formula (41)
becomes

~e � ~e
�
o3

c
�n3 ÿ n1�

�
: �42�

In other words, vectors n3, the ends of which are located on a
sphere of unit radius, are possible to measure for each
direction of irradiation. In this way, the values of the
argument of the Fourier transform (42) on a sphere of radius
o3=c are determined. By varying the difference frequency or
using different combinations of the directions of irradiation
and reception, it is possible to fill with measurement data the
inside of the corresponding sphere in the k-space. After this,
the e�r� distribution is reconstructed by numerical methods
that realize the inverse Fourier transform.

The ability of a nonlinear wave to `remember' the
properties of the track is used for the diagnostics of tapered
waveguides [62]. If function S�x� describing cross section
changes is unknown, it can be found by solving Eqn (7) for the
second harmonic, represented in the form of the Fredholm
integral equation

2c 30 r0
eo

P2�x�
P 2
0 �x�

�
� x

0

�
S�x�
S�z�

�1=2
exp

�
bo2

c 30 r0
�zÿ x�

�
dz :

The channel profile can be reconstructed using the amplitude
values of both harmonics measured at distance x and at
different frequencies of the initial signal.

It was proposed in Ref. [63] to recruit another effect for
channel profilingÐ that is, the phenomenon of self-reflection
after the formation of shock fronts in the wave [2]. By varying
the initial wave amplitude, it is possible to change the distance
at which the shock-wave discontinuity occurs, this distance
being also integrally dependent on the channel cross section.
Measurement of the arrival time of the self-reflected signal
[64], the forward front of which is delayed by time 2lNL=c0
(11) with respect to the probing pulse, makes it possible to
form a data array for the solution of the inverse problem.

It follows from the above that the general approach to the
reconstruction of the boundaries and the internal structure of
nonlinear scatterers should be based on the methods for the
solution of inverse problems realized in nonlinear acoustic
tomography. However, even the simplest diagnostic tech-
nique by means of the generation of harmonics and combina-
tion frequencies is highly efficient, especially when the
medium contains strongly nonlinear inclusions like bubbles
or cracks. Actually, any analytical solution of a direct
nonlinear problem includes parameters (nonlinear moduli,
wave amplitudes, and geometric characteristics) that can be
found through experiment by measuring the nonlinearly
distorted wave field or its spectrum.

Let us consider some basically essential features of
nonlinear diagnostics.

The dependence of the medium response on the probing
wave amplitude (intensity) may be employed to reveal
internal damages in a medium in the absence of a priori
information about the influence of defects on the variation of
the response. For example, if a batch of details is to be
checked for quality by an ordinary (linear) method, an
`acoustic certificate' of an ideal (intact) item is needed. The
degree of damage can be estimated by comparing the
responses of the defective and intact articles. Conversely, no
comparison is needed if the defect constitutes a nonlinear

scatterer. Suffice it to perform a series of measurements at
different intensities of sound excitation inside an article of
interest (Fig. 11). If the time response stops growing linearly
with increasing excitation amplitude (in this case, the
response acquires new characteristics) or if its spectrum
displays new components, these findings give reason to reject
the article. The simplest diagnostic method based on exciting
the shock-induced sound has long been used to check the
integrity of the pairs of wheels for railway cars; the quality of
cut glassware and porcelain objects is evaluated on the same
principle from the clatter produced by tapping. It should be
noted that a shockmay induce a pulse signal with pronounced
nonlinear behavior, which is able to interact with a rather
weak wave that lacks nonlinearity in itself. Today, such
interactions are frequently used for diagnostic purposes (see,
for instance, Fig. 7).

The difference between the linear and nonlinear responses
found application in many measuring schemes. For example,
the `inverted pulse method' is used in medicine. With this
technique, a volume of interest is first probed with a pulsed
signal p1�t� followed by an identical one but with pressure
inversion, p2�t� � ÿp1�t�. The scattered signals are recorded
by a receiver and the readings are used to deduce the
difference. The linear scatterer produces a zero difference,
while the presence of nonlinearity results in a nonzero
difference. The advantages of this approach also include the
possibility of focusing the probing signals into a predeter-
mined space region thereby increasing the nonlinear response
by K 2 times (where K is the amplification coefficient of the
probing signals at the focus). Another advantage is the
possibility of detuning from disturbances created by reflec-
tions from the surface (skin) and bulk inhomogeneities.

Moreover, some medical diagnostic tools take advantage
of a nonlinear method by which to control the ultrasound
energy absorption in order to raise the degree of localization
of biological tissue heating or excite radiation forces in these
tissues. It is known that excessive absorption of intense waves
may be substantially higher than the usual dissipative losses
[1 ± 3]; this phenomenon is especially apparent in the case of
strongly distorted waves with shock fronts [8]. When the
intensity of ultrasound amounts to several kilowatts per 1 cm2

as in the focal regions of modern medical devices, the
nonlinear absorption coefficient is one order of magnitude
higher than the linear one [65 ± 68]. Evidently, the task is to
transmit the acoustic energy to a given region of the medium
with minimal losses and to ensure its complete absorption
there. This goal is achieved by a preliminary distortion of the
wave being emitted, such that it ensures the formation of
shock fronts in the immediate focal region during nonlinear
diffractional evolution of the wave profile. The shape of the

ba

Figure 11.Response of an intact article is enhanced linearly with increasing

impact force (a); the time and spectral responses of a defective article

display new features (b).
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thus evolving wave is calculated from the solution of the
nonlinear inverse problem [68].

The phenomenon of energy concentration at the focus is
employed in acoustic hyperthermia (thermal destruction of
malignant neoplasms), ultrasound hemostasis (arrest of
internal bleeding by noninvasive vascular coagulation) [67],
decomposition of intracellular structures in order to trigger
an immune response to neoplasia [69], and other medical
situations. We shall consider here only diagnostic tools
making use of pulsed radiation forces being created inside
the object under study by focused ultrasound. Radiation
pressure, discovered by Rayleigh in 1902, is a strong effect
much in excess of light pressure. Suffice it to say that
ultrasound focused on the water surface may produce a jet
about 10 cm in height (Fig. 12). Absorption of ultrasound or
its reflection from inhomogeneities in the medium creates an
eddy field of forces. The appearance of these forces is formally
explained by the presence of nonlinear terms in the equations
of hydrodynamics (1), (2) and the theory of elasticity (3), (4),
when these equations are averaged over rapid oscillations [2].
Hence the formation of flows (`acoustic wind') in liquids, and
stresses in biological tissues. When ultrasound is modulated
with low frequencies, the alternating field of force far from the
boundaries excites shear waves. These waves can be detected
[70] and their speed of propagation used to evaluate shear
elasticity that is highly responsive to pathological changes in
the tissues [71]. In particular, it increases by 2 or 3 orders of
magnitude in tumor tissue, whereas the variation of other
parameters (medium density, velocity of sound) does not
exceed several percent. Based on this fact, a new diagnostic
tool (SWEI) was proposed (see Section 5).

Shear waves are susceptible to structural inhomogeneities
responsible for large nonlinearities [24]. Therefore, the
method of remote excitation of shear waves may be used to
test construction materials in not easily accessible areas, for
example, in the analysis of fatigue strength at the wing/
fuselage joints of aircraft. This problem is currently discussed
in connection with the realization of new diagnostic schemes.

The advent of acoustic resonators has opened up new
opportunities for the measurement of nonlinear medium
parameters. Usual values of the Q factor for these devices
are 102ÿ104. The oscillation amplitude in the cavity of a
resonator is that much higher than the vibration amplitude of
its border. It implies the possibility of using in experiments

substantially less powerful sources than in measurements
performed with the use of running waves. Record-breaking
values of the quality factor �108ÿ109� were obtained by
Braginsky's group [72] when they developed detectors of
gravitational waves. The possibilities for the improvement
of the quality factor with regard to strong manifestations of
nonlinearity were analyzed in Ref. [73]. Measurements of
nonlinear parameters of various media in acoustic resonators
were initiated by Zarembo and co-workers in the 1960s [1]. In
a later work, Zarembo et al. [40] discussed evaluation of
concrete's strength based on acoustic data. The authors
demonstrated that ultimate compression and tensile
strengths were governed simultaneously by quadratic and
cubic nonlinearity coefficients. The cubic nonlinearity was
measured from the downward shift of resonator eigenfre-
quency; when the acoustic strain amplitude increased from
10ÿ7 to 7� 10ÿ6, the eigenfrequency of a concrete block
decreased by Df � 5� 10ÿ3 f0 (at a strain of 7� 10ÿ6) from
the initial value f0 � 6:033 kHz. Strength estimates deduced
from nonlinear parameters were in excellent agreement with
the previously known data. At present, measurements in
resonators are being carried out in other laboratories (see,
for instance, Refs [13, 47]).

It is worthwhile mentioning the recently developed
methods based on time reversal of weak waves for the
formation of intense and sharply focused signals [47]. First,
a weak pulse from a small source is fed into a vessel (tube)
where it becomes considerably protracted as a result of
multiple reflections. The enduring signal is received,
recorded, and reversed in time; thereafter, it is amplified and
sent in the opposite direction. On the way back, the pulse
again undergoes multiple reflections, becomes compressed in
time, and turns into a short intense pulse focused onto the
same small area from which the initial weak pulse originated.

Nonlinear diagnostics also make use of front-reversed
signals [74]. This issue was discussed in another report
presented at the session of the RAS Physical Sciences
Division [75].

5. Certain applications

Recent years have given rise to the publication of a
considerable number of works dealing with the nonlinearities
of inhomogeneous media, various materials, industrial
articles, building constructions, and geological structures,
including methods of their nonlinear diagnostics. A group of
scientists from almost ten European countries known as
NATEMIS was set up and meets once or twice a year at
workshops and has recently organized a series of aviation
diagnostic studies. Similar works carried out in the USA are
concerned with geological surveys, analysis of nuclear
energetics safety, and various branches of industry. Increas-
ing interest in these issues is stimulated not only by their
obvious practical implications but also by their bearing on
some unresolved fundamental problems of nonlinear physics
andmaterials science. In what follows, we discuss examples of
the diagnostic application of certain nonlinear phenomena.

The detection of single gas bubbles and their accumula-
tions in liquids, dwelt on in Section 3, has found applications
in medicine, unexpected for Russian specialists. Specifically,
it provided a basis for producing contrast agents, such as
Albunex, to be used to visualize blood flow and in other areas
of medical diagnostics. The extent of this work is illustrated
by the fact that American and European companies have

Figure 12. Water jet formation under the effect of radiation pressure.

(Photograph Ð by courtesy of O A Sapozhnikov).
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already invested hundreds of millions of dollars in the
development and clinical testing of these agents. Albunex
constitutes a stable suspension of micrometer-sized bubbles
each enclosed by a biologically inert membrane (Fig. 13). The
bubbles are injected intravascularly and their transport with
the blood flow is registered from the usual sound scattering or
based on the second harmonic and combination frequency
(Fig. 14). Marked local nonlinearity in the absence of
disturbances from linear scatterers on higher harmonics
makes it possible to keep watch on isolated bubbles and
small groups thereof or follow the travel of the bubble cloud
front; also, a vascular bed segment can be visualized as a
whole.

A similar problem was successfully resolved as applied to
the detection of bulk defects (cracks) in manufactured solid
articles. Large nonlinearity of the cracks allows for their
visualization on higher harmonics. By way of example,
Fig. 15a shows a plate surface undergoing vibrations at a
frequency of 20 kHz; the relief of surface displacements was
visualized with a laser vibrometer. At this frequency, the

signal from the crack is invisible against the background of
the surface signal that (in the case under consideration) acts as
noise. In contrast, the same signal recorded at higher
harmonic frequencies reveals a well-apparent crack
(Fig. 15b) because the harmonic (in this experiment, the
seventh one) results, first and foremost, from crack vibra-
tions and surface displacements do not interfere with the
desired signal.

A most interesting nonlinear dynamics of an isolated
defect in a solid was observed in experiment [48] (see
Fig. 16). The authors excited different vibrational modes of
a metal disk and recorded the distribution of surface acoustic
displacements by a Polytec vibrometer. The displacement
pattern of one of the modes is depicted in Fig. 16a. The mode
spectrumwas not equidistant, and a few first harmonics of the
principal mode did not match the higher mode frequencies.
For this reason, the excitation of the disk at the second ±
fourth harmonics produced only small surface displacements
but fairly well revealed vibrations of the internal defect, most
likely a crack (Fig. 16b). The local anomaly disappeared after
the prolonged exposure of the defect to large-amplitude
vibrations, probably due to `self-healing' of the crack. The
signal was observable when the displacements at the first
harmonic reached 10ÿ5 m; it existed in a narrow dynamic
range of some 10ÿ6 m. The maximum displacements on the
second, third, and fourth harmonics were estimated at
2� 10ÿ7, 1:2� 10ÿ7, and 0:2� 10ÿ7 m.

The shear wave elasticity imaging (SWEI) technique
proposed by Sarvazyan [71] is based on the remote excitation

a

b

Figure 13. (a) Bubbles in an acoustically contrasted preparation, and (b) a

vascular bed segment visualized using this agent. (Photographs Ð by

courtesy of V A Khokhlova).

Ultrasound source

Ultrasound receiver

o

2 o

Figure 14. Diagram and photo illustrating the use of bubble-containing

preparations for blood flow visualization.
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of shear waves inside an object by pulsed radiation pressure
created by an intense modulated and focused ultrasound
beam. The idea behind the method is to utilize ultrasound,
like surgeon's fingers, to `palpate' internal organs and tissues
of the human body (see Fig. 12). The area in which radiation
forces are concentrated extending along the axis of the focal
region [66], it emits a cylindrical shear wave that diverges

from the axis (Fig. 17). This wave propagates with a low speed
compared with the speed of sound; it may vary in the range
from several to hundreds of meters per second, depending on
the tissue properties. The speed was measured by an optical
method (in a transparent phantom [70]) and also by nuclear
magnetic resonance or from the Doppler frequency shift of

a

b

Figure 15. (a) Plate surface area vibrating at 20 kHz, and (b) a local

subsurface defect visualized on the seventh harmonic (140 kHz).

(Images Ð by courtesy of I Yu Solodov).

a

b

Figure 16. (a) Vibrational eigenmode of a metal disk, and (b) vibrations of

the defect at the third harmonic of the principalmode. Results provided by

A I Korobov and M Yu Izosimova. The electronic version of their paper

available at http://www.ufn.ru shows these vibrations in dynamics.

Figure 17. Consecutive positions of the shear wave front in a homogeneous phantom of biological tissue (top row). Inhomogeneous medium with two

inclusions simulating a tumor (lower row). (Photographs Ð by courtesy of A P Sarvazyan). The electronic version of their paper available at http://

www.ufn.ru shows the process of visualization in dynamics.
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the probing ultrasound beam [71]. With this approach, it is
possible to measure the parameter (shear elasticity) most
vulnerable to pathological changes. It is worth noting that
the term local compaction used to describe a palpable tumor
is incorrect. The inhomogeneity that is subjectively perceived
as compaction is actually a region of enhanced shear
elasticity.

At present, Artannlabs [71] is developing a modification
of SWEI for the diagnosis of bone and joint disorders. In this
case, ultrasound penetrates soft tissues and produces radia-
tion pressure on the bone, exciting various acoustic modes.
The propagation speed contains information about deficient
calcium content, and the analysis of the output signal
spectrum provides data on other abnormalities.

Evidently, the idea of employing radiation pressure is
equally promising for diagnostics of complex constructions
because the respective methodmay be used for the contactless
excitation of vibrations of an isolated element inside a
construction and for analyzing its response.

Noteworthy among the achievements in the field of
nonlinear acoustic diagnostics reached in this country are
the results of its application in the building industry. These
studies date back to the late 1980s. A group headed by
V A Robsman at the Institute of Transport Construction
(TsNIIS) was participating in the construction of the
Sevan ±Arpa tunnel in Armenia, when a devastating earth-
quake levelled the city of Spitak, caused severe damage, and
killed thousands of people. The researchers were asked to
assess the state of damaged buildings and to enable decision-
makers to choose which ones to reconstruct and which to
demolish for safety reasons. Ultrasound-raying of key
construction elements (beams, load-bearing walls, span
panels, etc.) demonstrated that the greater the damage, the
stronger the distortion of the acoustic spectrum. The
empirical criteria were later explained based on the results
of experimental (see Fig. 7) and theoretical [43, 44] studies;
since then, the reliability of `nonlinear' forecasts has
substantially improved.

The diagnostic methods developed in this country have
been successfully employed in the construction of the
Moscow Third Ring Road (see, for instance, Ref. [49]),
reconstruction and restoration of historical architectural
monuments (Fig. 18), building of subway lines, inspection
of power facilities with a view to strengthening their
structures and improving seismic resistance, and diagnostics
of defects in the piers of large bridges and other long-span

structures (over 30 in number) for assessing their real
carrying capacity and the elaboration of projects of their
reconstruction.

6. Atypical nonlinear phenomena
in structurally inhomogeneous media

Structurally inhomogeneous media are of interest due to
certain nonlinear phenomena manifested in them, besides
the giant nonlinearity that accounts for the high sensitivity of
nonlinear measuring methods.

One such phenomenon is the presence of a `dominant'
frequency in such media as wet sand, clay, and cracked rocks.
The `dominant' output signal is recorded in these media
regardless of the frequency at which their vibrations are
excited, while other spectral components, including the
initial frequency, remain weak [76 ± 79]. Characteristic
values of the dominant frequency for gravel are 8 ± 10 Hz,
sea sand 25Hz, clay 40Hz, and eroded granite 100Hz [77, 78].
Interestingly, the action of vibrations with a dominant
frequency of 12 Hz on an irrigated oil-bearing stratum
resulted in a two-fold increase in the share of oil in the total
debit [80]. Dominant frequencies appear by virtue of the
internal resonant properties of fragmented soils and rocks
and their strong nonlinearity responsible for the vibrational
energy transfer to these frequencies.

By `ordinary' nonlinear phenomena are meant such
processes as the generation of higher harmonics, subharmo-
nics, and combination frequencies. In this context, direct
generation of a very high (e.g., the hundredth) harmonic
without previous generation of a cascade of lower harmonics
looks unusual. Similarly, the generation of a low-frequency
spectrum with characteristic frequencies considerably lower
than the pump frequency looks, at first sight, rather exotic.
Nevertheless, these processes do occur and have a rather
simple explanation.

Let us consider an ensemble of granules imbedded in a
liquid. The structure of such a system is strongly nonlinear in
itself due to boundary contacts. The presence of an
oscillating liquid gives rise to an additional inertial non-
linearity caused by the accelerated particle motion [38]. The
streamlining of particles by the liquid generates attractive
forces between them, while deformation of colliding granules
results in their Hertzian repulsion (35) (see Fig. 5). Here,
large spatial force gradients are due to the marked non-
uniformity of the mass distribution. The linear eigenfre-
quency of vibrations of an elementary oscillator in such a
medium is given by

flin � 1
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where a is a coefficient dependent on the volumes and
densities of two neighboring spherically shaped particles, F0

is the static pressing force, and the remaining notations are
the same as in formula (35). However, the nonlinear
frequency for the vibration amplitudes A close to the granule
diameter, viz.
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turns out to be 2 ± 3 orders of magnitude smaller. An acoustic
wave running through the liquid makes granules attract one

Figure 18. Illustration to a computer model for the calculation of force

interactions between a new building and an old church in Moscow.

Characteristics of the church building were obtained by acoustic

diagnostic techniques. The construction project was not implemented.

(Drawing Ð by courtesy of V A Robsman).
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another, collide, and then slightly diverge to move almost
freely within the medium. After each new collision, the
granules turn out to be farther and farther apart. The relative
velocities of neighboring granules at the moment of collision
being random, the resulting picture is that of random
vibrations (Fig. 19a). The mean vibration amplitude grows
with time, and the spectrum shifts to the low-frequency region
(Fig. 19b).

Such behavior of granules has many analogies. A similar
picture is observed in the field of gravity force when a ball
elastically rebounds off a horizontal plate oscillating along
the normal to its surface. The ball dropping on the plate at
random instants of time after the onset of vibrations jumps up
higher and higher after each fall until the energy receipts and
losses achieve equilibrium. This process was first described in
the 1920s by NNAndreev [81], a pioneer in acoustic research
in this country; hence its name `Andreev's hammer' (see
Refs [82, 83]). Stochastic speed-up of the particles (Fermi
acceleration) is invoked for explaining many phenomena; in
the simplest model, this process is described by the Ulam
point transformation [84].

Let us consider now the generation of high-frequency
spectra. Let a confined volume of a medium contain
discontinuities and look like a set of loosely pressed or free
blocks. An example is a geological structure of the so-called
`weakly consolidated units' (Fig. 20a). An acoustic wave with
a wavelength larger than the size of an inhomogeneity,
propagating through such a medium, causes the appearance
of quasistatic strains due to the inertia of separate structural
units. Let periodic pressure changes accelerate the rigid
boundary of the volume of interest in the positive direction
(Fig. 20b); during this process, the units are displaced and
packed. A change in the acceleration sign results in repacking
(Fig. 20c). Each collision of units ( blocks) with one another

and with the boundaries of the consolidated medium induces
a high-frequency pulse with a frequency on the order of the
inverse time of sound passage through the block. Another
characteristic frequency is determined by the number of
collisions per period (i.e., the number of blocks in the bulk).
Because the acoustic spectrum of each such impact lies much
higher than the incident wave frequency, the structure
presented in Fig. 20 generates a high-frequency noise
acoustic field. The output spectrum contains, besides the
initial low frequency, collision frequency harmonics and a
set of eigenfrequencies (`ringing') of separate blocks
(Fig. 20d).

A similar transformation of the acoustic spectrum takes
place in a rattle, a Latin American musical instrument also
known as a maraca. Shaking a hollow vessel containing
granules produces vibrations with frequencies on the order
of 1Hz that undergo transformation into the audio-frequency
band. Certainly, separate units of a geological structure travel
distances much smaller than their sizes.

The existence of mechanisms that transfer the vibrational
energy to the low-frequency (see Fig. 19) and high-frequency
(Fig. 20d) spectral regions means that the signal being
received after it passes through a real structurally inhomoge-
neous medium carries information not only about its source
but even more so about its track. Marked spectral changes
were observed when an earthquake-induced seismic wave
spread across a tectonic break [77]. This means that the
signals from distant earthquakes may be used for the purpose
of nonlinear diagnostics of localized geological structures by
measuring incident and scattered signals [85].

In conclusion, it should be noted that the number of
publications on giant nonlinearities and nonlinear diagnos-
tics continues to grow in the Russian and foreign scientific
literature. To mention but a few, in addition to the works
cited in this review, there are some recent ones devoted to
nonlinear diagnostics of metals [86], granulated media [87],
gas bubbles in biological tissues [88], etc. A supplementary
issue of the Akusticheskii Zhurnal (Acoustical Physics) was
out in 2005 with articles on the problems related to acoustics
and geophysics. Large amounts of information can be found
in the abstracts and proceedings of numerous conferences
held in the past 2 ± 3 years. Reports by my colleagues
presented in this issue of Physics ±Uspekhi further illustrate
the current situation in the field of keen interest.
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Figure 19. (a) Time dependence of the distance between the centers d of

neighboring granules. (b) Stationary spectrum S of these vibrations.

a b c

d

Figure 20. Schematic representation of structural changes in a volumewith

weakly consolidated units: (a) system at rest; (b) rigid boundary of the

volume is accelerated by a wave to the right; (c) a change in wave polarity

causes the repacking of units, and (d) input and output signals in the

structure depicted in figures a ± c.
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