
Abstract. Papers are discussed in which the quantum dynamics
of individual molecules and semiconductor nanocrystals is stu-
died from their fluctuating fluorescence. Presented are the
fundamental tenets of the theory of photon emission by a single
nanoparticle irradiated by continuous laser light. Fluorescence
fluctuations which occur only for single nanoparticles are shown
to open up entirely new opportunities for investigating nanopar-
ticle quantum dynamics. It is shown how the theory can be
harnessed to analyze the fluorescence fluctuations of an indivi-
dual polymer molecule and a semiconductor nanocrystal and
how the corresponding microscopic models can be constructed
proceeding from this analysis.

1. Introduction

The invention and wide use of microscopes with atomic
resolution (scanning tunnel microscopes, and atomic-force
microscopes) or with subatomic resolution (near-field micro-
scopes) have fostered the rapid broadening of investigations
of individual nanoparticles of various natures. The term
nanoparticle will be used in reference to a molecule, a
semiconductor nanocrystal, or a metal nanoparticle contain-
ing several hundred or thousand atoms interacting with each
other, which may be treated as a quasimolecule.

Luminescent methods are most effective in the investiga-
tion of single nanoparticle dynamics. Fluorescence photons
emitted by a single nanoparticle that experiences continuous
excitation by laser light or the tunnel current of a scanning
tunnel microscope are the source of information about the
local dynamics of the nanoparticle and its local environment.
The greatest wealth of material acquired to date relates to
single-molecule spectroscopy (SMS).

The spectroscopy of single molecules might be associated
with the spectroscopy of a molecule that does not interact
with the rest, i.e., with the spectroscopy of a strongly rarefied
molecular gas. This idea is an utter fallacy, because SMS is the
spectroscopy of molecules introduced into a solid matrix
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(polymer, glass, or crystal) whose natural optical absorption
domain is separated from the optical impurity absorption
domain by a substantial energy interval. It is evident that
intermolecular interaction has a significant effect on the
optical band of the impurity molecule, and it is precisely this
intermolecular interaction that is the main subject of
investigation in SMS which offers two fundamental advan-
tages over the spectroscopy of molecular ensembles.

The first advantage. In disorderedmatrices like polymer or
glass, the local environment is different for various individual
impurity molecules. This results in the inhomogeneous
broadening of the optical bands and the loss of information
about the local properties of individual impurity centers,
when we record the photons absorbed or emitted by all
molecules from the ensemble of impurity centers. When we
record the photons absorbed or emitted by only onemolecule,
such a photon sequence is a source of information about the
specific individual molecule and its local environment. SMS,
which provides us with information on the interaction
between an individual impurity center and its local environ-
ment, therefore offers an enormous advantage over the
spectroscopy of molecular ensembles, in which this informa-
tion remains concealed.

The second advantage. The spectroscopy of single mole-
cules permits investigation of the local dynamics of an
impurity center, i.e., of a molecule interacting with the
nearest environment. This dynamics manifests itself in the
absorption coefficient being time-dependent. However,
extracting this temporal dependence from experimental data
is complicated by the fact that these data in SMS are
fluctuating in nature.

Investigation of fluctuations underlies SMS. Any event in
the microworld is accidental and takes place with a certain
probability. In a molecular ensemble, random events add up
and allow us to deal with the probability of an event, which,
on the other hand, we can calculate by quantum-mechanical
techniques. That is why no fundamental problems arise when
comparing the theoretical and experimental data: the mea-
sured probability can be compared with the calculated one.
By contrast, every single event being measured in SMS
comprises a fluctuation. For instance, a change in the local
environment of an impurity molecule, occurring during its
irradiation and affecting its absorption frequency, will have
the effect that the quantum transition in the molecular
environment will manifest itself in a jump in the resonance
frequency of the molecular line. In other words, a fluctuation
of the absorption coefficient of precisely this individual
molecule will take place. SMS experimental data are imma-
nently fluctuating in nature. Therefore, in SMS there arises
the problem of statistical processing of fluctuations for the
purpose of deriving the probability which may be compared
with the probability calculated in the framework of the
theoretical model.

However, two new problems emerge in the theory of SMS
spectroscopy: the problem of calculating the absorption
coefficient dependent on the measurement time, and the
problem of calculating fluctuations. The calculated and
measured fluctuations may also be compared with each
other, although on a qualitative basis only. The form of
fluctuations depends strongly on the signal accumulation
time which is hard to vary in experiment but is quite easy to
vary in theory. That is why the theory permits investigation of
the effect of the signal accumulation time on the character of
fluctuations in SMS. This capability of the theory is of prime

importance, because it enables `interpretation' of the experi-
mentally found fluctuations. By fluctuation `interpretation' is
meant the formulation of a theoretical model capable of
reproducing fluctuations similar to those obtained in experi-
ment. Examples of such an `interpretation' of fluctuations
will be provided in Sections 12 and 13. The features of the
procedure of comparing experimental data and theoretical
calculations in SMS are schematically diagrammed in Fig. 1.
The links indicated with slanting arrows in Fig. 1, which
reveal the specific SMS features, will be discussed in detail in
Section 9.

The investigation of single nanoparticles began with a
study of single atoms in the gaseous phase [1 ± 3], which
preceded investigations of single molecules in solid matrices.
The achievements in this field are reviewed in Ref. [4]. The
spectroscopy of single molecules emerged only about fifteen
years ago [5, 6] and initially developed as the low-temperature
spectroscopy of a limited class of single impurity molecules
dissolved in a paraterphenyl crystal or polymers. The
achievements of the first years are reflected in review articles
[7 ± 10] and the monograph [11].

However, beginning in the mid-1990s there occurred a
rapid expansion of the class of molecules studied by SMS
techniques [12 ± 22] and a start was made on the investigation
of single quantum dots in semiconductors [23 ± 34]. In this
works, single molecules and sometimes quantum dots were
investigated at room temperature, which is of extraordinary
importance from the standpoint of the practical use of the
findings of these papers. This review is concerned with a
discussion of experimental data acquired during the last five
years and their theoretical interpretation.

2. Principles of experimental spectroscopic
methods for studying single nanoparticles

The technique for measuring fluorescence excitation spectra is
the central SMS research method. Indeed, the light absorp-
tion technique is inefficient in the study of a single molecule,
because it is difficult to observe the disappearance of one
photon from the huge number of photons of sample-
irradiating laser light. It is by far more expedient to
investigate absorption by observing fluorescence. That is
why measurements of the total fluorescence as a function of
the exciting laser frequency are made. This method is
equivalent to the measurement of the absorption coefficient
and relies on the premise that the fluorescence intensity of a
molecule is proportional to the intensity of light it absorbs.
Since the fluorescence spectrum always moves up in wave-
lengths with relation to the absorption spectrum, then by
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Figure 1. Diagrammatic representation of the comparison between

experiment and theory in the spectroscopy of single nanoobjects.
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placing a light filter behind the sample it is possible to
practically completely cut off the photons of exciting light,
making it much easier to detect the fluorescence photons
shifted relative to them in frequency. Furthermore, the signal-
to-noise ratio turns out to be significantly greater than in the
light absorption method.

Two development stages are clearly recognizable in the
short history of SMS. At the first stage, which lasted till
approximately the mid-1990s, pentacene molecules and
several other molecules of the aromatic series were investi-
gated as single molecules. These molecules share the common
property of large absorption coefficient and high quantum
yield of fluorescence. Paraterphenyl crystals, in which these
molecules are easily dissolved without forming aggregates or
polymers were selected for a solid matrix.

Low-temperature experiments. It is well known that the
optical band of an impurity center consists of a phononless
line (PLL) and a phonon wing (PW) which corresponds to
electron ± phonon transitions. Owing to the weakness of
electron ± phonon interaction in organic matrices, the impur-
ity band intensity is concentrated mainly in the PLL whose
width becomes smaller as the temperature is lowered. At
temperatures of 4.2 K and below, the PLL width is equal to
several hundred megahertz.

Since laser light can be focused onto a spot no smaller than
the light wavelength squared in area, i.e., on the order of 0.2 ±
0.3 mm2, the laser spot will contain dozens of impurity
molecules even for a concentration of 10ÿ9 mol lÿ1. How-
ever, since these molecules will find themselves in a different
local environment, their phononless transition frequencies in
the polymer matrix will be spread over an interval on the
order of the inhomogeneous distribution function width
equal to � 100 cmÿ1 or 3� 104 GHz in the polymer, i.e.,
over an interval which exceeds the PLLwidth by many orders
of magnitude. By selecting a laser excitation frequency equal
to the PLL frequency of some individual molecule, we will
therefore excite the fluorescence of only this particular
molecule. Despite the irradiation, other molecules are not
excited because their PLL frequencies do not coincide with
the laser radiation frequency.

If we wanted to study the time dependence of some
physical characteristics of a molecular ensemble with the aid
of fluorescence photons, we would evidently have to resort to
pulsed excitation of the sample so as to transfer the ensemble
to an unsteady state. In this case, too, the spectroscopy of
single molecules gave us a surprise: it enables the study of the
local dynamics of an impurity center, i.e., the time depen-
dence of its characteristics employing a continuous excitation
source. Furthermore, a continuous excitation source is more
advantageous than the pulsed one because it furnishes the
possibility of accumulatingmore fluorescence photons within
a given time.

Even the first experiments on single molecules revealed
that the optical line corresponding to the first electronic
transition may execute jumps in frequency [35, 36]. The line
jumps, as was established later, are related to the effect of
positional changes of the solvent atoms in the neighborhood
of an impurity molecule, i.e., to the effect of so-called two-
level systems (TLSs). More than thirty years ago Anderson et
al. [37] and Phillips [38] introduced the concept of the glass
TLSs to which there correspond spontaneous changes in the
equilibrium positions of atoms or groups of atoms in glass.
These changes were described in the framework of the TLS
model. The TLS excitation energies occupy the frequency

range from zero to � 30 cmÿ1. The TLS concept was later
extended to polymers and other disordered solids as well. The
spontaneous change in the equilibrium atomic position
represents a quantum jump from one TLS state to the other.
The local environment of the impurity molecule affects its
electronic excitation energy, i.e., the position of the molecular
spectral line. That is why the quantum jump from one TLS
state to the other would lead to a frequency jump of the
spectral line of the impurity molecule.

When the exciting laser frequency is scanned through a
spectral range which includes the optical line of a given
individual molecule, the spectral line will be measured at
different spectral positions during different laser scans, i.e., it
will execute jumps. The duration of laser scanning typically
ranges between one and several seconds [36, 39, 40].
Consequently, the spectral line jumps also occur on the time
scale of seconds. Since the line jumps are caused by the jumps
of an atom entering the local environment, these infrequent
jumps are an indication that the TLS transitions from one
quantum state to the other are tunnel type transitions.

Room-temperature experiments. A substantial broaden-
ing of the class of molecules and the passage to room-
temperature research became possible through the use of
confocal microscopes in SMS. Recourse to confocal micro-
scopy marked the onset of the second stage of SMS
development. The amount of work on SMS increased
steeply and the research subjects came to be more diversi-
fied. Considerable interest was attracted to the newly opened
possibility of investigating single polyatomic dye molecules
[14] and molecules of the biological class like polymer
molecules [12, 17, 21], dendrimer molecules [19, 22], light-
harvesting antennas of photosynthesis centers [18], protein
molecules [15], enzymes [16], and even single DNAmolecules
with built-in chromophores [13]. Since biological molecules
function at room temperature, it is vital to investigate such
single objects at room temperature. An advantage of the
confocal microscope over conventional luminescence micro-
scope consists in the cut-off of stray luminescence light from
the elements of the sample, which are not related directly to
the molecules under study. It is evident that one cannot `see'
through the confocal microscope a spot smaller than l2,
where l is the fluorescence light wavelength. Consequently,
the solution with the molecules investigated should contain
no bigger than one molecule over such an area, which is
really attainable for a concentration of less than
10ÿ10 mol lÿ1.

As regards the fluorescence of single molecules them-
selves, it can be observed with a conventional luminescence
microscope. Simple estimates suggest that this is possible.
Indeed, assuming a dye absorption cross section s �
10ÿ16 cm2, a laser power I � 100 W cmÿ2, and a photon
energy E � 3� 10ÿ19 J, we find that the number of absorp-
tion events per second is Is=E � 30;000 sÿ1. On putting the
quantum yield of fluorescence equal to 0.5, the light grasp by
the lens equal to 0.125, and the transmittance of all remaining
optics to 0.5, we arrive at an efficiency of visually recorded
light of 3%, which corresponds to about 30;000� 0:03 �
1000 photons per 1 s. This photon flux exceeds the visual
threshold by a factor of about 20.

As a rule, the optical bands of complex organic
molecules are structureless at room temperature. This is
evident from Fig. 2 which portrays the absorption and
fluorescence bands of the poly(p-phenylene vinylene) (PPV)
and poly(p-pyridine vinylene) (PPyV) copolymer measured
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at room temperature [12]. The solid curve corresponds to the
fluorescence band of an ensemble of the polymer molecules,
and the crosses show the fluorescence band of a single
polymer molecule.

From the fact that the fluorescence band of a single
molecule practically coincides with the fluorescence band of
an ensemble of molecules it follows that the inhomogeneous
broadening arising from the spread in electronic excitation
frequency is, under these conditions, significantly smaller
than the homogeneous broadening caused by electron ±
phonon interaction. Consequently, the methods of selective
spectroscopy, which eliminate inhomogeneous broadening
and narrow the optical bands at low temperatures, are
powerless in this case. There are no ways of narrowing,
with the use of selective spectroscopy techniques, the band
width and making it smaller than the homogeneous width
which is large in this case. The physical information about a
molecule, extractable from this broad band of Gaussian
shape, is extremely limited, and therefore spectral methods
for the investigation of molecules are ineffective at room
temperature. This situation is encountered in the investiga-
tion of any complex organic molecule at room temperature.
Employing SMS affords a decisive breakthrough in this
important area.

The fundamental difference between the fluorescence of a
single polymer molecule and the fluorescence of an ensemble
manifests itself not in spectral radiation characteristics (the
fluorescence bands are practically coincident), but in the
temporal behavior of the fluorescence. The fluorescence
intensity of an ensemble of polymer molecules is time-
independent on a dozens-of-seconds scale, while the fluores-
cence intensity of a single polymer molecule fluctuates, as
shown in Fig. 3.

It is precisely these intensity fluctuations of a broad
fluorescence band that permit studying the dynamics of energy
transfer and other intramolecular processes in a single polymer
molecule at room temperature. And it is precisely these
fluctuations that are the source of information about the
dynamics of a complex molecule, which is considered at
length in Section 12. In the molecular ensemble, the fluores-
cence fluctuations vanish owing to the averaging of the
fluctuations of many molecules. In parallel with this aver-
aging, an important source of information closes in the
molecular ensemble. It is evident that the central point in the
fluorescence theory of a single molecule (a nanoparticle) is the

calculation of fluorescence photon emission probability for
the molecule under continuous irradiation by laser light. The
basics of this calculation are outlined in Sections 3 ± 5.

3. Different ways
of counting fluorescence photons

An atom under continuous light irradiation emits one
fluorescence photon at random instants of time. The location
of these random instants on the time scale reflects the
quantum dynamics of the atom as discussed below in this
review. A quantum yield of fluorescence of less than unity, an
incomplete collection of the fluorescence light, and not total
counting efficiency of the photomultiplier (PM) will have the
effect that an emitted photon will not correspond to every
absorbed photon and that the notions `photon emission
event' and `photon recording event' will be distinct. The
above-listed factors are not representative of quantum
atomic dynamics and, as shown by Mandel and Wolf [41],
are responsible for relatively trivial corrections to the
formulas containing the photon counting rate. That is why
they will not be considered in this review.

The question of the probability of observing N fluores-
cence photons emitted by a single atom under continuous
light irradiation over a time interval T was first discussed by
Mandel [42]. The author of that work employed the following
formula for the probability of observing N fluorescence
photons on a time interval T [41 ± 44]:

w�N;T � �
�
T :

1

N!

� � t�T

t

dx Î�x�
�N

exp

�
ÿ
� t�T

t

dx Î�x�
�

:

�
:

�1�

Here, the normal and chronologically ordered product of
intensity operators Î appears under the sign h i of quantum-
statistical averaging, and t is the current time.

Formula (1) may equally be applied to an atomic
ensemble and a single atom. Suppose an experiment involves
counting the number of acts nN�T; t� that N fluorescence
photons are emitted during a time interval T for a total
observation time t. The probability of this event is defined by
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the formula

wN�T � � lim
t!1

nN�T; t�
n0�T; t� �

P1
N� 1 nN�T; t�

: �2�

It is precisely the experimentally obtained probability
wN�T � that can be compared with the theoretical probability
(1), i.e., wN�T � should be equal to the probability w�N;T �
calculated by formula (1) for a given physical model. The
calculation of the photon probability distribution by formula
(1) for the fluorescence of atomic ensembles can be found in
monograph [41].

Paradoxically enough, the probability calculation by
formula (1) for a single atom is a more intricate task than
for an atomic ensemble. This supposedly is the reasonwhy the
computation for a single atom has not been performed so far.
Mandel [42] replaced this calculation with a simpler problem
of calculating the distribution function moments. Mandel
came up with the idea of estimating, with the use of these
moments, the degree of deviation of the photon distribution
from the Poisson distribution by the parameter

Q�T � �


N �2��T ��ÿ 
N�T ��2


N�T �� ; �3�

where hN �2��T �i is the second factorial moment, and hN�T �i
is the average number of photons on an interval T. With
formulas (1) and (2), theMandel parameter takes on the form

Q�T � � hI i
�
2

T

� T

0

dx

� x

0

dy g�2��y� ÿ T

�
; �4�

where g�2��t� is the autocorrelation function of fluctuating
fluorescence, as discussed in Section 7.2. Formula (4)
expressing theMandel parameter in terms of the autocorrela-
tion function which may be found experimentally, turned out
to be highly convenient for a practical estimation of the
degree of photon distribution deviation from the Poisson
one and was employed for the analysis of specific situations
[45 ± 47]. For the Poisson distribution, the Mandel parameter
Q�T � is equal to zero. For a distribution narrower than the
Poisson one, i.e., for a sub-Poisson distribution, Q�T � < 0;
for a broader (super-Poisson) distribution, Q�T � > 0. For-
mula (4) is commonly employed to estimate the degree to
which the photon distribution in the luminescence of single
atoms and molecules deviates from the Poisson distribution.

It is pertinent to note that formula (4) contains a sort of
incorrectness, because it makes use of the relationship

N�T �� � hI iT which does not take into account the so-
called photon antibunching, as discussed at the end of
Section 5. As will be seen in Section 6, it is precisely the
photon antibunching that is responsible for deviations from
the Poisson photon distribution function, and it should
therefore be taken into account in the calculation of the
average number of photons as well.

Considered in Mandel's approach to the computation of
the photon distribution function is the radiation field itself.
However, the statistics of photons emitted by a single atom is
amenable to study from the dynamics of atomic excited-to-
ground state transitions, because every atomic transition to
the electronic ground state is accompanied by the emission of
a fluorescence photon. This approach to the single-atom
research is more fruitful than that employed by Mandel
because it allows a direct theoretical evaluation of the
probabilities w�N;T �, which will be shown in Sections 4

and 5. But first we consider two possible ways of fluorescence
photon counting in the conditions of continuous excitation of
a single atom.

Let a two-level atom continuously irradiated by a laser
emit fluorescence photons at random instants of time.
Vertical dashes in Fig. 4 indicate the fluorescence photons
emitted by this atom (which are numbered for convenience of
discussion). Mandel's formula (1) corresponds to that way of
photon counting in which the time scale is divided into
uniform intervals, as shown on the lower time scale in Fig. 4,
and which involves counting the number of photons emitted
during each interval. In this case, the onset of a time interval is
in no way related to the instant of photon emission. During
some of the time intervals, photons are not emitted at all, as
shown in Fig. 4.

However, in the investigation of luminescence from a
single atom, another way of fluorescence photon counting is
possible. This way is attractive in that it allows not only the
derivation of the theoretical formula for the fluorescence
photon distribution function, which will be seen to differ from
formula (1), but the calculation of this formula as well. We
will enlarge on this approach.

Let a fluorescence photon be emitted at some zero point in
time. This point is taken as the beginning of an interval. Let
another photon be emitted at the expiration of a time interval
T. This instant is taken as the end of the interval. Therefore,
only the intervals of length T with at least two photons are
considered in this case. Shownon the upper time scale in Fig. 4
are four such intervals. The following two variants are
possible.

(1) Between the emission of the photon, opening the
interval T, and the emission of the photon, closing this
interval, no other photons were emitted. Such are the
intervals between the emission of photons 2 and 3 as well as
12 and 13, shown in Fig. 4. The probability of second photon
emission is correlated. It is precisely this situation which is
described by the start ± stop correlator considered below in
Section 4. This mode was named the mode of sequentially
emitted photons by Kim et al. [48].

(2) In between the emissions of two photons, separated by
a given interval T, additional photons may be emitted, which
will be referred to as intermediate. For instance, in between
the emission events with photons 4 and 6, which are
separated by the interval T, one intermediate photon 5 was
emitted, while two intermediate photons 14 and 15 were
emitted in between the emissions of photons 13 and 16. By
counting all photon pairs separated by the interval T, we
thereby measure, no matter how many intermediate
photons were emitted on the interval T, the full two-photon
correlator, as discussed in Section 5.

By drawing on the approach developed in the author's
papers [11, 49], we now will derive the mathematical
expression for the probability of detecting different numbers
of intermediate photons on the interval T.

16 15 14 13
12 11 10 9 8 7 6 5 4 3 2 1

t T T T T

T
t

�ho

Figure 4. Photon sequence emitted by an atom under continuous light

excitation.
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4. Two-photon `start ± stop' correlator

Webeginwith a consideration of the time intervals containing
no intermediate photons. Let us assume that an atom emits a
fluorescence photon at a point in time taken to be zero. This
signifies that the atomoccupies, at the zero instant of time, the
ground electronic state with a probability equal to unity. The
probability that the atom will emit a second photon at the
point in time t can be found from the equations for
probability amplitudes:

_Glm�t� � ÿiolGlm�t� ÿ i

�h

X
s

VlsGsm�t� ; �5�

where the probability amplitudes are defined by the relation-
ship Glm�t� � ÿi



l
��exp ÿÿi�H0 � V�t=�h���m�, H0 is the

Hamiltonian of the atom± field system with the eigenvalues
�hol, and Vls are the matrix elements of the atom ± light
interaction operator in the basis of the eigenfunctions of the
H0 operator. In the resonance approximation, sometimes also
referred to as the rotating wave approximation, the interac-
tion operator links the following states of the atom± field
system between themselves:

0
n

���� �$ 1
nÿ 1

���� �
$ 0

nÿ 1; k

���� �
$ 1

nÿ 2; k

���� �
$ . . . : �6�

Here, 0 and 1 denote the ground and excited atomic states, n is
the number of photons in the laser mode, and k is the index of
the quantum state of the spontaneous fluorescence photon,
which also includes the photon polarization. We introduce
the following notation for the matrix elements [11]:

1

�h
0
n

� ����V 1
nÿ 1

���� �
� il0

�����������
n� 1
p � iw ;

�7�
1

�h
1
nÿ 1

� ����V 0
nÿ 1; k

���� �
� ÿilk ;

where w � Ed=�h is the Rabi frequency expressible in terms of
the electric field vector E of the light wave and the dipole
moment d of the atomic transition. In the basis of states (6),
the system of equations (5) takes on the form

_G 0
n �t� � ÿio0

nG
0
n � wG 1

nÿ1 ;

_G 1
nÿ1�t� � ÿi�o0

n � D�G 1
nÿ1�t� ÿ wG 0

n �t� ÿ
X
k

lkG 0
nÿ1k�t� ;

_G 0
nÿ1k�t� � ÿi�o0

n � Dk�G 0
nÿ1k�t� � lkG 1

nÿ1 � wG 1
nÿ2k ;

. . . : �8�

The system of equations (8) is infinite. Here, the subscript m
of the initial state is omitted from the amplitudes and use is
made of the following notation: D � Oÿ o0, and
Dk � ok ÿ o0, where O, o0, and ok are the respective
frequencies of electronic excitation, the laser mode, and the
spontaneously emitted photon.

We now calculate the Fourier transforms of the right- and
left-hand sides of Eqns (8). We employ the formula

� _G�o � ÿG�t � 0� ÿ i�o� i0�G�o� ;

put o0
n � 0, and take into account the initial condition

G 0
n �0� � ÿi to arrive at the following system of equations

for the Fourier components:

G0�o� � 1

o� i0
� i

o� i0
wG1�o� ;

G1�o� � ÿi
oÿ D� i0

�
wG1�o� �

X
k

lkGk�o�
�
;

�9�
Gk�o� � i

oÿ Dk � i0

�
lkG1�o� � wG1k�o�

�
;

. . . :

Here, we simplified in an obvious manner the indices on the
probability amplitudes.

In the solution of the system of equations (9) we can
represent the amplitude G1 in the form of a continued
fraction

G1 � ÿiwG0

oÿ Dÿ
X
k

l2k

oÿ Dk ÿ w 2

oÿ Dÿ Dk ÿ
X
k 0

l2k 0
. . .

; �10�

in which large quantities w 2, being corresponded to a great
number of laser mode photons, alternate with small matrix
elements l2k. A small matrix element `dumps out' the effect of
the large quantity that appears lower in the fraction and
permits us to neglect the contribution to G1 made by the
underlined fraction. We may therefore discard it. This
approximation corresponds to discarding the terms under-
lined in the systems of equations (8) and (9), i.e., to breaking
the infinite chain of equations for the probability amplitudes.
In this approximation, we can derive, in view of the system of
equations (8) and its complex conjugate system, the following
probability conservation law

d

dt

�
W0 �W1 �

X
k

Wk

�
� 0 ; �11�

where W0 � jG0j2, W1 � jG1j2, and Wk � jGkj2 are the
probabilities that an atom is found, respectively, in the
ground and excited states and again in the ground state
upon emission of the fluorescence photon k. The temporal
behavior of the probabilities appearing in expression (11) is
as follows. At the zero point in time, W0 � 1, and
W1 �

P
k Wk � 0. Since the laser light continues to irradi-

ate the atom, W0 will tend to zero, W1 will initially increase
and then tend to zero, while the probability

P
k Wk that the

fluorescence photon has been emitted will turn to unity for
large values of time, which is physically justified. In Section
5 we will show that the probability of photon emission
during the interval �t; t� dt� tends to zero. Consequently,
despite the break in the infinite chain of equations, the
temporal behavior of approximate amplitudes appears
physically reasonable. The truncated system of equations
(8) does not describe the emission of the third and
subsequent photons. In Section 5 we will consider the
equations for such processes as well.

In view of the third equation of system (8), we obtain the
relationship

d

dt

X
k

Wk �
X
k

lk
ÿ
Gk�t�G �1 �t� � G �k �t�G1�t�

�
: �12�
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On the other hand, we find, in view of the third equation of
system (9), the relation for the Fourier components:X

k

lkGk�o� � i
X
k

l2k
oÿ Dk � i0

G1�o� : �13�

Calculation of the sum on the right-hand side of Eqn (13) will
yield a real quantity and an imaginary one. The real part of
the sum may, considering the renormalization procedure
possible for electromagnetic interaction, always be included
in the corresponding resonance frequency. We therefore
consider only the imaginary quantity which describes the
decay of the excited electronic state. Its calculation was set
forth in appendix P1 to the book [11], where it was shown
that the right-hand side of Eqn (13) can be represented in the
formX

k

lkGk�o� � 1

2T1
G1�o� : �14�

Here, T1 is the lifetime of the excited atomic level. Clearly,
a similar relationship is valid for the time components as
well:X

k

lkGk�t� � 1

2T1
G1�t� : �15�

Using this relationship, we can bring equation (12) to the
form

d
X
k

Wk�t� �W1�t�
T1

dt : �16�

Since
P

k Wk�t� defines the probability that a fluorescence
photon is emitted by the point in time t, the function

s�t� �W1�t�
T1

�17�

defines the probability density for the fluorescence photon
detection on the interval �t; t� dt� which is counted from the
zero point in time Ð the instant of emission of the first
photon. This function, which describes the correlation
between the second photon emission time and the first
photon emission time, tends to zero with increasing t and
was therefore termed the start ± stop correlator [11, 49].

In view of relationship (15), we can rearrange the second
equation of system (8), with the result that the system assumes
the form

_G0 � wG1 ;
�18�

_G1 � ÿi
�
Dÿ i

2T1

�
G1 ÿ wG0 :

We introduce the following notation for the elements of the
density matrix:��G0�t�

��2 �W0 ;
��G1�t�

��2 �W1 ; �19�
G0�t�G �1 �t� �W01 ; G1�t�G �0 �t� �W10 :

Then, the system of equations (18) and its complex conjugate
system allow us to arrive at the following system of equations

for the elements of the density matrix:

_W10 � ÿi
�
Dÿ i

2T1

�
W10 � w�W0 ÿW1� ;

_W01 � i

�
D� i

2T1

�
W01 � w�W0 ÿW1� ;

�20�
_W1 � ÿw�W10 ÿW01� ÿW1

T1
;

_W0 � w�W10 ÿW01� :

The system of equations (20) contains transition probabilities
which are measured in start ± stop experiments on single
molecules [50] and is different from the Bloch equation in
that the term W1=T1 is missing from the fourth equation.
From system (20), there follows the relationship

_W0 � _W1 � ÿW1

T1
: �21�

On the other hand, from the probability conservation law
described by Eqn (11) it follows that

_W0 � _W1 � ÿ d

dt

X
k

Wk : �22�

With the aid of the last two equations we arrive again at
formulas (16) and (17), which define the start ± stop correla-
tor. The probabilityW1�t� in the start ± stop correlator should
be calculated from Eqns (20) subject to the initial condition
W0�0� � 1.

We emphasize that when the time t significantly exceeds
T1 the probability s�t� of detecting the second photon of the
start ± stop pair at the point in time t tends to zero, even though
the probability

P
k Wk�t� tends to unity, i.e., the start ± stop

correlator tends to zero rather rapidly. Such a correlator is
inadequate for the investigation of the slow dynamics of an
impurity center in a polymer or glass, which occurs over
periods significantly exceeding the time T1. That is why in
practice advantage is taken of a different experimental
scheme whereby measurements are made of the so-called full
two-photon correlator. In this case, any pair of photons
separated by a given time interval t, without regard for the
number of intermediate fluorescence photons emitted
between the emission events of the photons that open and
close this interval, is detected. We will derive below the
expression for the full two-photon correlator.

5. Full two-photon correlator

Functions (6) demonstrate that the complete Fock space of
the atom± field system may be partitioned into the Fock
subspaces characterized by a certain number N of sponta-
neously emitted fluorescence photons. An example of the
Fock subspace with N � 0 is provided by the first two
functions in scheme (6), with N � 1 being the second two
functions, etc. When an atom experiences continuous excita-
tion by light, there occur transitions between different Fock
subspaces. Figure 5 illustrates transitions of this sort:
induced, which occur with a rate k, and spontaneous, which
occur with a rate 1=T1. The scheme shows that the atom
converts the laser field photons to fluorescence photons; r�N�0 ,
and r�N�1 describe the probabilities that the atom is found,
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respectively, in the ground state and in the excited state with
spontaneous emission ofN fluorescence photons by the atom,
i.e., in the Nth Fock subspace. For a continuously operating
pump laser, the laser photons are constantly converted to
atomic fluorescence photons.

First, let us consider a simplified version of the theory and
describe the dynamics of such a system by balance equations.
For the probabilities depicted in Fig. 5, we can write out the
following system of balance equations:

_W1 � ÿ
�
k� 1

T1

�
W1 � kW0 ;

_W0 � kW1 ÿ kW0 ;

_r�1�1 � ÿ
�
k� 1

T1

�
r�1�1 � kr�1�0 ;

_r�1�0 � kr�1�1 ÿ kr�1�0 �
W1

T1
;

�23�
_r�2�1 � ÿ

�
k� 1

T1

�
r�2�1 � kr�2�0 ;

_r�2�0 � kr�2�1 ÿ kr�2�0 �
r�1�1

T1
;

. . .

_r�N�1 � ÿ
�
k� 1

T1

�
r�N�1 � kr�N�0 ;

_r�N�0 � kr�N�1 ÿ kr�N�0 � r�Nÿ1�1

T1
;

. . . :

Here, the first two equations describe the dynamics of the
system without intermediate photons, i.e., the start ± stop
mode. The next two equations for the functions r �1� describe
the dynamics of the systemwith one intermediate photon, and
so on. We introduce the functions

r0�t� �
X1
N� 0

r�N�0 �t� ; r1�t� �
X1
N� 0

r�N�1 �t� �24�

for the probability that the atom is found in the ground and
excited states for an arbitrary number of emitted fluorescence
photons. If we sum separately the odd and even equations of
system (23), we will find that the new transition probabilities
satisfy the following balance equations

_r1 � ÿ
�
k� 1

T1

�
r1 � kr0 ; �25�

_r0 �
�
k� 1

T1

�
r1 ÿ kr0 :

We take the Fourier transform of the functions W0 and
W1 in the first two Eqns (23), as well as in the system of
equations (25), and solve the resultant algebraic equations.

Since the determinants of these two systems for the Fourier
components obey the relationship detW � detr � k=T1, it is
easy to verify that their solutions are related in the following
way:

r1�o� �W1�o� � 1

T1
W1�o� r1�o� : �26�

We pass on to the time components in relationship (26) to
obtain the equation

r1�t� �W1�t� �
� t

0

dx

T1
W1�tÿ x� r1�x� ; �27�

which couples both probabilities. The last equation can be
solved by the iterative method, and we arrive at the following
formulas

r1�t� �W1�t� �
X1
N� 1

r�N�1 �t� ; �28�

where

r�N�1 �t� �
� t

0

dt1
T1

� t1

0

dt2
T1

. . .

� tNÿ 1

0

dtN
T1

W1�tÿ t1�W1�tÿ t2�

. . .W1�tNÿ 1 ÿ tN�W1�tN� : �29�

We divide both sides of formula (28) by r1�t� to obtain the
equation

1 � w0�t� �
X1
N� 1

wN�t� ; �30�

whose right-hand side may be considered as the sum of
probabilities, where

w0�t� �W1�t�
r1�t�

; wN�t� � r�N�1 �t�
r1�t�

�31�

define the respective probabilities of observing an interval of
duration t without intermediate photons and with N inter-
mediate photons. From Eqns (23) it follows thatW1�t� tends
to zero for t > T1. On the other hand, from Eqns (25) it
follows that r1�1� 6� 0. That is why the probability w0�t� of
detecting an interval without intermediate photons tends to
zero with increasing t. The formula forw0�t�may be rewritten
as

w0�t� �W1�t�
T1

T1

r1�t�
� s�t�

p�t� ; �32�

where p�t� � r1�t�=T1 may be termed the full two-photon
correlator. It defines the probability of recording a photon on
the interval �t; t� dt� with the proviso that an arbitrary
number of intermediate photons could be emitted on the
interval �0; t�. We divide both sides of Eqn (27) by T1 to find
the relation between the start ± stop correlator and the full
correlator.

In the derivation of formulas (27) ± (30) advantage was
taken of the balance equations (23) and (25), which do not
include the effect of phase relaxation occuring with a rate
1=T2. However, a more rigorous treatment carried out in
Refs [11, 49, 51 ± 54] shows that the inclusion of phase
relaxation gives rise to the following equations for the
elements of the density matrix corresponding to the quantum

r�0�1 �W1

r�0�0 �W0

k k

r�1�1

r�1�0

k

1=T1

k

r�2�1

r�2�0

k

1=T1

k
. . .

Figure 5. Radiative transitions between the states containing different

numbers of fluorescence photons.
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state of the atom± field system with N fluorescence photons,
instead of the equations forW0,W1, r0, and r1:

_r�N�10 � ÿi
�
Dÿ i

2T1

�
r�N�10 � w

ÿ
r�N�11 ÿ r�N�00

�
;

_r�N�01 �
ÿ

_r�N�10

��
; �33�

_r�N�11 � ÿw
ÿ
r�N�10 � r�N�01

�ÿ 1

T1
r�N�11 ;

_r�N�00 � w
ÿ
r�N�10 � r�N�01

�� 1

T1
r�Nÿ 1�
11 :

Here, r�N�i j is the element of the density matrix, which
corresponds to the state with N photons termed intermediate
in Section 3, w � Ed=�h is the Rabi frequency, D is the
difference between the laser frequency and the resonance
atomic frequency, and T1 is the energy relaxation time.
Although system (33) resembles the Bloch system of equa-
tions, it differs from it by the last term in the fourth equation.
Since the fourth equation contains the function r�Nÿ 1�

11 ,
system of equations (33) for r�N�i j is not closed. System (33)
at N � 0, i.e., for r�0�i j �t� �Wi j�t�, coincides with the pre-
viously discussed system (20) and describes the situation
whereby intermediate photons are lacking, which corre-
sponds to the first pair of states in Fig. 5, while at N � 1 it
corresponds to the second pair of states, etc.

It is easy to verify that the four matrix elements

ri j �
X1
N� 0

r�N�i j �34�

satisfy the Bloch equations with a phase relaxation constant
1=T2 � 1=�2T1�, i.e., the following equations

_r10 � ÿi
�
Dÿ i

2T1

�
r10 � w�r11 ÿ r00� ;

_r01 � i

�
D� i

2T1

�
r01 � w�r11 ÿ r00� ; �35�

_r11 � ÿw�r10 � r01� ÿ
r11
T1

;

_r00 � w�r10 � r01� �
r11
T1

:

A more rigorous derivation of Eqns (33) can be found in
the author's paper [49] and monograph [11]. The considera-
tion carried out in Ref. [11] allowed the following conclusion:
formulas (27) ± (29) are valid in this case, too. All one needs to
do in these formulas reduces to replacing the probabilities
W1,W0, r1, and r0, which were determined from the balance
equations, with the probabilities W11, W00, r11, and r00 that
should be obtained from Eqns (33) and (35) taking into
account the phase relaxation.

In book [11], this problem was also analyzed with the
inclusion of electron ± phonon interaction which affects the
phase relaxation rate. In the simplest variant, the influence
of phonons reduces to replacement of the phase relaxation
rate 1=�2T1� in Bloch equations (35) with a constant 1=T2

which includes the effect of phonons. In this more general
case which takes into account the interaction with
phonons, the full two-photon correlator is described by
the formula

p�t� � r11�t�
T1

; �36�

where r11�t� is found from the Bloch equations with a
constant T2 taking into account the effect of phonons.

When counting the photon pairs, the signal has to be
accumulated over several milliseconds or longer. For a fixed
acquisition interval, the signal magnitude will be propor-
tional to the count rate for the corresponding pairs. The
count rate for the photon pairs separated by an interval T in
the start ± stop mode and for all photon pairs separated in
time by T, i.e., the number of the corresponding pairs
counted per unit time, is proportional to the corresponding
s�t� and p�t� correlators.

Figure 6 depicts the dependences of the start ± stop
correlator and the full two-photon correlator on the time
delay; the dependences were calculated with the aid of
equations (20) and Bloch equations (35) subject to the initial
condition W00�0� � 1 and r00�0� � 1. The tending of the
correlators to zero for short times is termed photon anti-
bunching. Antibunching reveals a simple fact: in linear
spectroscopy, a single molecule cannot radiate two photons
simultaneously. Antibunching was established in experiment
[1, 50].
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pT1
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t=T1
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5

Figure 6. Start ± stop correlator (curves 1, 3, 5) and full two-photon correlator (curves 2, 4, 6) as functions of the time delay for different pump intensities:

wT1 � 0:2 (curves 1, 2), 0.3 (curves 3, 4), and 1.0 (curves 5, 6).

January, 2006 Blinking êuorescence of single molecules and semiconductor nanocrystals 27



6. Photon statistics in single-atom fluorescence

Formulas (29) and (31) enable the calculation of the photon
distribution function wN�T �, i.e., the function which defied
calculation for a single atom employing the Mandel formula
(1) [55]. Formulas (31) also permit us to calculate the first and
second factorial moments



N�T �� �X1

N� 0

NwN�T � ;
�37�


N �2��T �� �X1
N� 0

N�Nÿ 1�wN�T � ;

and, therefore, the Mandel parameter.
Substituting the probability in the form W1�t� �

exp �ÿkt� into expression (29), where k is the rate of
stimulated transitions, gives the Poisson distribution for the
probability of the number of emitted photons:

wN�T � � �kT �
N

N!
exp �ÿkT � :

However, it is evident that the real probability W1 � s�t�T1,
which takes into account photon antibunching, cannot be
described obviously by an exponent alone (see Fig. 6). The
distribution of photons emitted by this system will therefore
follow a non-Poisson distribution. The photon statistics in the
system under consideration will, unlike the Poisson one,
depend on two parameters: the stimulated transition prob-
ability k, and the spontaneous transition probability 1=T1. It
is precisely the antibunching that determines the sub-Poisson
statistics of the photons emitted by a single atom [55], which is
confirmed in experiment [56].

7. Photon bunching in fluorescence.
A molecule with a triplet level

In Sections 3 ± 6, we put forth the theoretical approach to the
investigation of the emission of fluorescence photons by a
two-level molecule under continuous light excitation. How-
ever, almost every organic molecule possesses a triplet level
residing between the ground level and the first excited singlet
level, which radically changes the fluorescence photon
dynamics.

Figure 7 depicts the typical diagram of the lower energy
levels for an organic molecule. Such a molecule continuously
irradiated by light will execute jumps between the ground and
first excited singlet electronic levels, with the absorption and
emission of one photon in each event. However, since the

intercombination molecular transition probability GTS is
nonzero, the molecule will occupy sometimes the ground
state and reside in it during its lifetime 1=gST, which is several
milliseconds long. The train of photons with random time
intervals between them will therefore alternate with rather
long random dark intervals void of radiation Ð photons will
be radiated as if in bunches. This phenomenon has received
the name photon bunching.

Figure 8 portrays emission of this kind. To the time
intervals with fluorescence (the on-intervals) there corre-
spond intervals during which the molecule is in singlet
electronic states and executes quantum jumps between the
ground and excited electronic states. When the molecule
executes a quantum jump to the triplet state, the fluorescence
vanishes and an off-interval sets in.

The sequence of random on- and off-intervals charac-
terizes the slow molecular dynamics on the millisecond scale,
arising frommolecular transitions from the singlet state to the
triplet state and reverse ones. The slow molecular kinetics
resulting from singlet ± triplet transitions may be treated
without the inclusion of nondiagonal elements of the density
matrix, i.e., on the basis of balance equations for diagonal
elements. The equations that correspond to the energy level
diagram shown in Fig. 7 are of the form

_r1 � ÿ�G� k� r1 � kr0 ;

_r0 �
�

1

T1
� k

�
r1 ÿ kr0 � gST r2 ; �38�

_r2 � GTS r1 ÿ gST r2 ;

where

k � 2w 2 1=T2

D 2 � �1=T2�2
; G � 1

T1
� GTS : �39�

The physical meaning of all constants appearing in these
equations becomes clear from Fig. 7, and the constant 1=T2 is
the optical dephasing rate determined by electron ± phonon
interaction.

With the aid of system (38), we calculate the two-photon
correlator p�t� � r1�t�=T1 to arrive at the formula

p�t� � k

T1

�
gST

g 20 ÿ R 2
�
�
1ÿ gST

g0 ÿ R

�
exp

�ÿ�g0 ÿ R�t�
2R

ÿ
�
1ÿ gST

g0 � R

�
exp

�ÿ�g0 � R�t�
2R

�
; �40�

1�S�

0�S�

2�T�

k k
GTS

1=T1

gST

Figure 7.Diagram of the lower energy levels for organic molecules.
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Figure 8. Fluorescence fluctuations of a single `Red Texas' fluorophore

associated with an individual DNA fiber (TR-DNA) at T � 300 K [13].
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where

g0 �
G� 2k� gST

2
; R �

�����������������������������������������������������
G� 2kÿ gST

2

�2

ÿ GSTk

s
:

�41�

Calculation by formula (40) yields the two-photon corre-
lator depicted in Fig. 9. On the logarithmic time scale, the
exponential relaxation appears like a smooth step occupy-
ing one order of magnitude on the time scale. The
logarithmic scale on the time axis makes it possible to
depict on a common drawing the relaxation processes
whose relaxation constants differ by several orders of
magnitude. The characteristics of this curve, indicated in
Fig. 9, have the following physical interpretation: p1
defines the average photon-pair count rate on the on-
interval, p2 the average on-interval count rate, time t2 the
average value of the sum of on- and off-intervals, and t1
the average filling time of excited electronic level upon the
emission of a photon by the molecule. Available theory [3,
4] also permits the calculation of the on- and off-interval
distribution function.

7.1 On- and off-interval distributions
Clearly, the probability r1 that a molecule resides in the
excited electronic state is coincident with the probability that
the molecule occupies the on-state. The on- and off-interval
durations are defined by the duration of stay in the singlet and
triplet molecular states, respectively. It is evident that the
probability of observing the on- and off-intervals should tend
to zero with an increase in their durations. That is why it is
impossible to find the on- and off-interval distribution
functions employing the system of equations (38), because
the obvious conservation law r1 � r2 � r3 � 1 follows from
Eqns (38). Described in Sections 7.1.1 ± 7.1.3 is a way of
deriving the equations for the calculation of the probabilities
ron and roff.

7.1.1 On-state equations. These equations may be developed
with the aid of system (38) if we discard in the second equation
the term gST r2 describing the triplet-to-singlet state molecu-
lar transition. Hence, we arrive at the system of equations

which describe the on-state dynamics:

_r1 � ÿ�G� k� r1 � kr0 ; �42�
_r0 �

�
1

T1
� k

�
r1 ÿ kr0 :

The functionwon � const r1, which was found from these two
equations subject to the initial condition r0�0� � 1 and was
integrally normalized to unity, will describe the distribution
of the on-intervals in duration.

System (42) may be further simplified when it is
considered that the average time interval separating the
jumps between the singlet 1 and 0 states is significantly
shorter than the duration of stay in the molecular singlet
state. For such frequent jumps between the states 0 and 1, the
probability that the molecule occupies the singlet state, viz.

ron � r1 � r0 ; �43�

is exactly the probability of its being in the on-state. For a
time far greater than T1, we may resort to the quasistationary
approximation by setting _r1 � 0. Under this approximation,
we arrive with the aid of system (42) at the following equation
for the probability of finding the molecule in the on-state:

_ron � ÿ ron
ton

; �44�

where

1

ton
� k

GTST1

1� GTST1
� kYISC : �45�

Here, YISC is the quantum yield of intercombination conver-
sion. The solution of Eqn (44), integrally normalized to unity,
is the function

won � 1

ton
exp

�
ÿ t

ton

�
�46�

which describes the probability density for discovering an on-
interval of duration t. Clearly, ton is the average on-interval
duration, which depends on the pump intensity k in such a
way that the average on-interval duration shortens with
increasing pump intensity.

7.1.2 Off-state equations. When a molecule occupies a triplet
state, its fluorescence terminates. Consequently, one has

roff � r2 ; �47�

which describes the probability that the molecule resides in
the off-state. The equation for the probability of finding the
molecule in the off-state may be obtained if we discard in the
third equation of system (38) the term GTS r1 describing the
on-to-off state transition of the molecule. The off-state
dynamics is therefore governed by the equation

_roff � ÿgST roff ; �48�

whence it follows that the probability density for finding the
molecule in the off-state is given by

woff � gST exp �ÿgSTt� ; �49�
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Figure 9. Two-photon correlator of a molecule with a triplet energy level

exposed to resonance excitation corresponding to the following values of

constants: T2 � 5� 10ÿ11 s, T1 � 5� 10ÿ9 s, w � 4� 107 sÿ1, gST �
2� 104 sÿ1, and GTS � 9=T1.
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where

toff � 1

gST
�50�

is the average off-interval duration independent of the pump
intensity. We emphasize the following important circum-
stance. Since Eqns (42) and (48) where obtained from the
system of equations (38), which describes the dynamics of the
system under consideration, by discarding certain terms, one
may gain the impression that Eqns (42) and (48), which were
derived to determine the on- and off-interval distributions,
are approximate. This fallacy is begotten by the way in which
they were derived. As a matter of fact, Eqns (42) and (48) are
exact for the desired distribution functions of the system
involved.

7.1.3 Equation for fluctuation calculations. The on-to-off state
transitions and reverse ones will occur at random points in
time with the probabilities described by formulas (46) and
(49). To find these random instants, we take advantage of the
equation

rnd �1� �
� t

0

w�t� dt ; �51�

where the function rnd �1� determines a random number with
a uniform probability density in the range between 0 and 1.
The t values determined from Eqn (51) are just the random
points in time distributed with a probability density w�t�.

Figure 10 illustrates the fluorescence intensity fluctua-
tions calculated in this way. The fluctuations in Fig. 10a
represent the fluctuations of molecular residence in the singlet
(the ordinate value is equal to unity) and triplet (the ordinate
value is equal to zero) states. During its residence in the singlet
state, the molecule fluoresces but does not do so in the triplet
state, and therefore depicted in Fig. 10a are the fluorescence
intensity fluctuations in the ideal case whereby the photon
accumulation time is infinitely short. That is why the
fluorescence intensity distribution in Fig. 10a is appreciably
different from the experimentally found distribution which is
plotted in Fig. 8.

In a real experiments there is a signal acquisition time tint
during which the fluorescence photons are counted. This

signifies that the whole time axis is divided into segments of
length tint, and the number of all the photons counted during
the interval tint is plotted on the ordinate axis. When the
photon accumulation time is comparable to or greater than
the average on-interval duration, the picture of fluctuations
radically changes and approaches that observed in a real
experiment. This is easy to verify by comparing Figs 10b and
8. Measurements of the on- and off-interval distributions in
fluorescence intensity fluctuations, depicted in Fig. 10a, show
that these functions are really described by the exponential
dependences (46) and (49), with the aid of which these
fluctuation curves were constructed.

7.2 Fluorescence autocorrelation function
Having at our disposal the record of the fluctuating fluores-
cence of a single molecule, we can directly measure the
probability of fluctuation-generating processes and compare
it with the full two-photon correlator. The question concerns
the second-order autocorrelation function (AF) determined
in experiment and denoted, as a rule, by g �2��t� [1, 41]. The
autocorrelation function is commonly defined as

g �2��t� � lim
t!1



I�t� I�t� t��


I�t��2 ; �52�

where I�t� is the fluctuating fluorescence intensity similar to
that represented in Figs 8 and 10. The autocorrelation
function tends to unity for an infinite delay t. In practice,
the determination of AF reduces to multiplication of the
measured fluctuating fluorescence intensity, like the function
plotted in Fig. 8, by itself shifted by a time t.

The overlap integral taken of two quantum trajectories
shifted by t and normalized to unity for t! 0 will be referred
to as the autocorrelator C:

C�t� �


I�t� I�t� t��


I 2�t�� �
� 1
ÿ1 I�t� I�t� t� dt� 1
ÿ1 I 2�t� dt : �53�

There is a simple relation between the experimentally
obtained AF g �2��t� and the autocorrelator C�t�, on the one
hand, and the theoretically evaluated two-photon correlator
p�t�, on the other hand [45, 57]:

C�t� � p�t�
k

; g �2��t� � p�t�
p�1� : �54�

When the magnitudes of the constants 1=T1 and k, which
define the time t1 (see Fig. 9), are far greater than the
magnitudes of the constants GTS and gST, which define the
slow dynamics, i.e., the time t2 in that same Fig. 9, the two-
photon correlator defined by formula (40) for t4T1 may be
expressed in terms of the average on- and off-interval
durations:

p�t� � k

1=ton � 1=toff

�
1

toff
� 1

ton
exp

�
ÿ
�

1

toff
� 1

ton

�
t
��
;

�55�

where the average on- and off-interval durations are defined
by formulas (45) and (50). An expression similar to formula
(55) was also obtained by Verberk and Orrit [58].

If we construct the correlator C�t�, i.e., the left side of the
first of Eqns (54), with the aid of the fluctuating intensity
function plotted in Fig. 10a and calculate the ratio p�t�=k by

200
t=ton

1

In
te
n
si
ty
,r
el
.u

n
it
s

0

0

0

1

2

1

100 125 150 175

a

b

c

Figure 10. Fluorescence fluctuations calculated employing Eqn (51) for

ton � 1 ms and toff � 3 ms (a), and fluorescence fluctuation change for an

accumulation time tint � ton (b) and tint � 2ton (c).
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formula (55), i.e., construct the function on the right-hand
side of the first of formulas (54), they will coincide with each
other.We are reminded that the probability densitiesw�t� and
simple equations (44) and (48) for determining the on- and
off-interval probabilities were obtained from exact system
(38) by discarding certain terms, i.e., as if by moving to
`approximate' equations. However, the autocorrelation func-
tion found with the aid of random quantum intensity
trajectories (QITs) calculated by these `approximate' equa-
tions is nevertheless practically coincident with the two-
photon correlator p�t� obtained by way of solution of exact
system (38). This coincidence paves the way for two nontrivial
implications:

(1) The method of obtaining the equations describing the
on- and off-interval distributions, which was proposed in
Refs [3, 4, 11] and described in Section 7.1, is correct.

(2) There is a simple relation between the experimentally
obtained correlator C�t�, which appears on the left-hand side
of the first of formulas (54), and the theoretically evaluated
photon-pair count rate p�t�, which appears on the right sides
of formulas (54)Ðmeasuring the correlatorC�t� or the AF is
equivalent to counting the photon pairs in SMS.

It should be emphasized that with the aid of QITs we can
obtain both the on-/off-interval distribution functions and
the two-photon correlator. By employing only the measured
two-photon correlator it is possible to find the left sides of the
following equations

1

t0
� 1

ton
� 1

toff
;

p�0�
p�1� �

ton
ton � toff

; �56�

and from this determine the average on-/off-interval dura-
tions. However, there is no way of calculating the on-/off-
interval distribution functions with the aid of the two-photon
correlator.

8. A molecule in a fluctuating environment

As noted in Section 2, even the first experiments with single
molecules introduced into polymer matrices exhibited spec-
tral line jumps occurring on a scale ranging from several
milliseconds to several dozen seconds. Suchlike jumps are
exemplified in Fig. 11a. These jumps signify that the
absorption coefficient of a single molecule fluctuates.
Indeed, an optical line with one resonance frequency is
measured in one laser scanning, and a line with another
frequency in another laser scanning. At the same time, it was
recognized that these absorption coefficient fluctuations are
due to the existence of interaction between the chromophore
of the molecule and the TLSs of polymers and glasses.

According to Anderson's model [37], TLSs may be
described in the context of a model that uses a two-well
adiabatic potential in some configuration coordinate, which
is plotted in Fig. 11b showing all transitions Ð both vertical
optical transitions in the molecule and horizontal tunnel
transitions in the TLS, which define the dynamics of this
system. Levels 0 and 2 belong to the electronically nonexcited
impurity molecule, and levels 1 and 3 to the electronically
excited one.

8.1 Theory of the time-dependent absorption coefficient
One can see from Fig. 11a that the absorption spectrum of a
single molecule depends on the duration of laser scanning.
This brings up the question of the method for calculating the

absorption coefficient of a single molecule that would contain
the measuring time. Two lines of attack on the problem have
been advanced.

The first line, which was suggested by the author of this
review, involves extending the dynamic theory for an optical
band, which the author had earlier formulated [59, 60] for a
chromophore interacting with equilibrium TLSs, to the case
of nonequilibrium TLSs. This generalization was made in
Ref. [61], where the equilibrium density matrix for the TLS
was replaced with a nonequilibrium one, i.e., dependent on
the initial conditions. This is a purely dynamic approach to
the problem of the fluctuating absorption coefficient. More
recently, the replacement of the equilibrium density matrix
for a TLS with a nonequilibrium one was substantiated in
Refs [62, 63], resulting in the development of a consistent
dynamic theory of the fluctuating absorption coefficient. For
the first time, this theory was applied to experimental data
processing in Refs [57, 64]. Zheng and Brown [53, 54] and
Kilin et al. [65] also employed the dynamic approach in SMS,
although for the solution of some other problems.

The second line combines the dynamic and stochastic
approaches and was employed in Refs [46, 47, 66 ± 76]. The
dynamic and stochastic approaches were combined in
different ways. For instance, the SchroÈ dinger equation
included the assumption of fluctuating energy [66, 70], and
the fluctuating resonance frequency was artificially intro-
duced into the optical Bloch equations [46, 47].

Since the purely dynamic approach is the most consistent
one, there is good reason to consider the problem of the
fluctuating absorption coefficient by invoking precisely this
approach. Such an approach, which involves using the
system's Hamiltonian and the equations for the density
matrix, obtained on the basis of this Hamiltonian, necessa-
rily brings into existence the initial conditions for the TLS in
the expression for the absorption coefficient.

Indeed, the evolution of a quantum system is defined by
the equation

C�t� t0� � exp

�
ÿ iH

�h
t

�
C�t0� � exp

�
ÿ iH

�h
�t� t0�

�
C�0� ;
�57�
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Figure 11. (a) Jumps of the spectral line of a single tetra-tert-butyl terrylene

molecule introduced into polyisobutylene at T � 7 K [40]. The laser scan

duration is 8 s. (b) Energy level diagram describing a molecule which

strongly interacts with one TLS.

January, 2006 Blinking êuorescence of single molecules and semiconductor nanocrystals 31



where H is the total Hamiltonian of the system, and C�t0�,
C�0� are the different initial states of the system. According to
Eqn (57), the state of the system at any instant of time may be
treated as the initial one. The formulas of the dynamic theory
for the absorption coefficient should also include the initial
conditions. How can this be achieved?

The diagram shown in Fig. 11b describes the chromo-
phore ±TLS interaction. When the TLS is in thermal
equilibrium with the medium, the absorption coefficient of
this system may be represented as

k�t;o� � ÿ1ÿ f �T ��L0�o� � f �T �L2�o� ; �58�

where the Lorentzians

L0�o� � 2w 2 1=T2

�oÿ o0�2 � 1=T 2
2

;

�59�
L2�o� � 2w 2 1=T2

�oÿ o0 � D�2 � 1=T 2
2

describe the absorption lines corresponding to the 0 ± 1 and
2 ± 3 interstate transitions, and T2 is the optical dephasing
time which accounts for rapid jumps in the picosecond range.
The coefficients of the Lorentzians in expression (58), which
contain the function f �T � � ÿexp �e=kBT � � 1

�ÿ1
, where e

according to Fig. 11b is the level splitting in the TLS, and kB is
the Boltzmann constant, are the probabilities that the system
occupies the initial state for light absorption under thermal
equilibrium at a temperature T.

Under continuous excitation by light, the system, upon
the emission of a photon corresponding to the 0 ± 1 transition,
finds itself in the state 0 with a probability equal to unity. This
is a nonequilibrium probability, and it will therefore begin to
changewith time. To take this into account, we should replace
the equilibrium probability with the nonequilibrium one, i.e.,
bring about the following change in expression (58):

f �T � ! r�t;T � � f �T � � ÿr�0� ÿ f �T �� exp �ÿRt� ; �60�
where R � a� A. The physical meaning of the relaxation
constants a and A is elucidated by Fig. 11b. The time and
initial conditions will appear in formula (58) after this change.
For instance, if the instant of photon emission via the 0 ± 1
transition is taken to be zero, wemust put r�0� � 0 in formula
(60). It is easily verified that the probability (60) is also
amenable to time translation, as in formula (57), namely

r�t� t0;T � � r�1� � ÿ r�t0� ÿ r�1�� exp �ÿRt�
� r�1� � ÿr�0� ÿ r�1�� exp �ÿR�t� t0�

�
: �61�

It is precisely the inclusion of initial conditions that enables
the dynamic theory to adequately describe the quantum
jumps of a spectral line, because every quantum jump
signifies a change in the initial conditions. This will be
shown clearly in Section 8.3.

A disadvantage of the above way of introducing non-
equilibrium features into the formula for the absorption
coefficient, which was first employed in Ref. [61], is the lack
of a rigorous mathematical substantiation of the validity of
the change made. More recently, the possibility of such a
change was rigorously substantiated in Refs [62, 63]. It was
established that this change can really be effected if one takes

into account the smallness of the parameter T1R, where T1 is
the energy relaxation time, andR is the tunnel relaxation rate.

A more rigorous theory [11] yields the following expres-
sion for the time-dependent absorption coefficient depending
also on the initial conditions:

k�o; t� / d 2

�1
ÿ1

ITLS�y; t� exp
�
ÿi
�
oÿ i

T2�t�
�
y

�
dy ; �62�

where the function

exp

�
ÿ y

T2�t�
�
ITLS�y; t� � exp �ÿio0y� exp

�
ÿ y

T2�t�
�

�
YN
j� 1

�
1ÿ Dj

Dj ÿ iRj
rj�t�

ÿ
1ÿ exp

ÿÿi�Dj ÿ iRj� y
�� �63�

describes the time dependence of the dipole correlator of the
system consisting of the chromophore and the TLS set
interacting with it. Here, Dj is the change in TLS splitting
under electronic excitation of the molecule, and Rj is the TLS
relaxation rate. The function

rj�t� � rj�1� ÿ
ÿ
rj�0� ÿ rj�1�

�
exp �ÿRjt� �64�

describes the relaxation of a TLS removed from the equili-
brium state by a quantum jump at the zero point in time, and

rj�1� � fj�T � �
�
1� exp

ej
kT

�ÿ1
; �65�

where ej is the TLS level splitting, describes the equilibrium
probability that the TLS is found in the upper level. The
integration with respect to y in expression (62) is actually
performed over an interval having a duration of several T2

and comprising the time t.
The dynamic theory permits the establishment of a simple

relation between the absorption coefficient of a single
molecule, which is commonly measured by laser frequency
scanning, and the two-photon correlator, i.e., the AF.
Osad'ko and Yershova [57, 64] have made good use of this
theory to process the experimentally obtained autocorrela-
tion functions g �2��t�.

An entirely different approach to the calculation of the
time-dependent absorption coefficient was taken by Geva
and Skinner [67, 68], which was also employed by other
authors [46, 47]. In Refs [67, 68], the problem of scanning-
time introduction into the formula for the absorption
coefficient was solved on the assumption that only the TLSs
that have reached thermal equilibrium, i.e., the TLSs whose
populations from this point on depend only on the tempera-
ture, are capable of making a contribution to the dipole
correlator. This assumption is reflected in the model adopted
in these papers for the dipole correlator of a single molecule
interacting with one TLS of the polymer:

Ij �
Ij�t;T;Rj� ; Rj >

1

t
;

1 ; Rj <
1

t
;

8>><>>: �66�

whereRj is the relaxation rate of the jth TLS. In the approach
pursued by Geva and Skinner, the scanning time determines
howmany cofactors for a given scanning time should be left in
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the product

I�t; tsc� �
YN�tsc�
j� 1

Ij �67�

which describes the dipole correlator of the molecule
interacting with all TLSs of the polymer. The jth-TLS
contribution described by the function Ij�t;T;Rj� is indepen-
dent of the scanning duration. The unity on the right-hand
side of formula (66) signifies that the contribution from
nonequilibrium TLSs to the optical band of a single molecule
is ignored. This drawback of the Geva ± Skinner theory was
discussed by Plakhotnik [69]; in an attempt to take into
account the fluctuating absorption coefficient, he considered
a quantity which is, in our notation, expressed as

S�o 0; t� /
� o0

0

k�o; 0� k�o� o 0; t� do ; �68�

where k is the absorption coefficient measured by way of laser
scans.However, this formula, being differed from the formula
for the two-photon correlator only in that every Lorentzian in
it is replaced with a convolution of two Lorentzians, does not
solve the problem of calculating the fluctuating absorption
coefficient.

Following the Geva ± Skinner approach, Barkai et al. [77]
considered cumulants of different types in connection with
the problem of calculation of the moments of optical bands.
The moments of optical band distributions for single
molecules were measured by Naumov et al. [78].

8.2 Role of near and far two-level systems
in optical band formation
In the above-cited papers [67, 68], Geva and Skinner
calculated the optical band shape with the inclusion of the
effect of several hundred TLSs and the employment of
computer simulations of TLS parameters through the use of
random functions. Had they employed a more correct
correlator (63) in lieu of correlator (67), the problem of
optical band calculation for a single impurity center interact-
ing with a set of TLSs would have been amply solved. Geva
and Skinner drew a correct conclusion that not all of the
polymer TLSs by far make a significant contribution to the
product with respect to j in formula (67), which also follows
from formula (63). Indeed, the dipole ± dipole chromo-
phore ±TLS interaction energy D�r� � DdF�#;j�=r 3, where
D and d are the respective dipole moments of the chromo-
phore and the TLS, decreases rapidly with the chromo-
phore ±TLS intermolecular distance r. Since D is the spacing
between the lines, and 2=T2 is the half-width of these lines, the
condition of resolution of the two lines, viz.

2

T2
� D�r� � Dd

r 3
; �69�

may be considered as the equation for the determination of
the radius of the closest neighborhood harboring the TLSs
which interact most strongly with the chromophore and are
therefore capable of giving rise to well-resolved optical lines.
It is evident that remote TLSs, for which D5 2=T2, can
hardly make a contribution to the product (63). Indeed, for
terms with such small D we have

�Dÿ iR�y4 �Dÿ iR�T2 ! 0 ;

and therefore the corresponding exponential term in formula
(63) turns to unity irrespective of the magnitude of the ratio
D=R. In other words, the contribution from remote TLSs to
the product with respect to j may be neglected. The greatest
contribution to the product with respect to j is therefore
made by several TLSs residing in the immediate vicinity of the
chromophore and obeying the inequality D > 2=T2, which
signifies that the separation between the lines exceeds their
half-widths. Putting 2=T2 � 200 MHz and D � d � 0:4 D
[79], we find that the radius of the closest neighborhood
reaches 1.07 nm, and the volume is 5 nm3. For a TLS
concentration on the order of 5� 10ÿ21 cmÿ3, we find that
the closest neighborhood of the chromophore contains one to
two TLSs. The experiment of Orrit's group [39] testifies that
the optical band consists of two lines for 40%of themolecules
investigated. This is consistent with our estimate. That is why
the situation where the closest neighborhood of the chromo-
phore contains only one TLS holds the greatest practical
interest.

8.3 Several absorption coefficients for a single molecule
When the measuring time is shorter than the TLS relaxation
time, one molecule may exhibit several absorption coeffi-
cients. This is a new effect. We consider this phenomenon
through the example of a situation whereby there is only one
TLS in the immediate vicinity of the impurity molecule. Then,
the impurity center possesses two optical lines arising from
the 0ÿ1 and 2ÿ3 transitions between the quantum states
shown in Fig. 11b. Levels 0 and 2 correspond to the ground
electronic state of the impurity molecule for two possible
positions of the matrix atom, while levels 1 and 3 to the
excited electronic state of the impurity molecule for the same
two positions of the matrix atom. When the photon
absorption probabilities L0 and L2 are comparable to the
excited-electronic-state decay probabilities G1 and G3,
account should be taken of the 1ÿ3 transitions along with
the 0ÿ2 transitions. In this case, the frequency of jumps
between the left and right well pairs will depend on the
exciting laser intensity. Such a model was considered by
Kilin et al. [65], who studied the fluorescence of single
terrylene molecules in polyethylene versus irradiation power.

For a low exciting radiation intensity, the photon
absorption probabilities L0, L2 are much lower than the
decay probabilities G1, G3 for the excited electronic states. In
this case, the transitions between the levels 1 and 3 may be
neglected, which signifies neglecting the jumps of the matrix
atom, when the impurity is excited. Then, only the probabil-
ities A and a for the transition between the two possible
ground states of the impurity molecule are taken into account
in the diagram shown in Fig. 11b. At low temperatures, the
reciprocal of these probabilities may lie in the time interval
from several microseconds to several seconds or even dozens
and hundreds of seconds. When observing the jumps on such
a temporal scale, the rapid jumps corresponding to the nano-
and picosecond ranges are taken into account by the optical
dephasing rate 1=T2.

We analyze here the effect of only one TLS strongly
coupled to the impurity center in the case when the
magnitude of spectral line jump is far greater than the
linewidth. With the aid of correlator (63) for D4R, we find
the absorption coefficient corresponding to the doublet of
lines whose amplitudes are time-dependent:

k�t;o� � ÿ1ÿ r�t;T ��L0�o� � r�t;T �L2�o� ; �70�
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where the Lorentzians are defined by formulas (59), and a
function r�t;T �was set out in formula (60). For convenience,
the lower-frequency line corresponding to L2 will be referred
to as the red line, and the higher-frequency line corresponding
to L0 as the blue line. The absorption coefficient depends not
only on the time, but on the initial conditions as well. The
dependence on the initial conditions has the effect that there
appear two types of absorption coefficients for the impurity
molecule interacting with the TLS. We consider this question
in greater detail.

Let the molecule `jump' into state 2 at some random point
in time. At this instant of time, taken as the initial one,
r�0� � 1. We substitute this initial value into expression (60)
to arrive at the following expression for the absorption
coefficient:

kr�t;o� � A

R

�
1ÿ exp �ÿRt��L0�o�

�
�
a

R
� A

R
exp �ÿRt�

�
L2�o� : �71�

According to formula (71), the detection probability for the
red linewill decrease with time and the probability for the blue
line will increase.

When the molecule `jumps' to the state 0, r�0� � 0. We
substitute this value into expression (60) to obtain the
absorption coefficient which is different from expression (71):

kb�t;o� �
�
A

R
� a

R
exp �ÿRt�

�
L0�o�

� a

R

�
1ÿ exp �ÿRt��L2�o� : �72�

The probability of detecting the blue line will become lower
with time, and the probability of observing the red line will
rise. For Rt4 1, formulas (71) and (72) assume the form

k � �1ÿ f �L0 � fL2 : �73�

For long measuring times, the dependence on the initial
conditions therefore vanishes. In this case, the absorption
coefficient is time-independent, and the line amplitude ratio
in the doublet is only determined by the temperature.

Clearly, the existence of two different absorption coeffi-
cients for one molecule is due to the fact that we considered a
single molecule that interacts appreciably with only one TLS.
Along similar lines it may be shown that a molecule that
strongly interacts with two, three, or more TLSs will possess
four, eight, etc. absorption coefficients. In Section 9, we will
discuss how these absorption coefficients can be measured in
experiment.

9. Averaging the fluctuating absorption
coefficient

It was shown in Section 8 that the theory predicts the existence
of several types of absorption coefficients for short times, i.e.,
for Rt5 1. It is precisely for these short measuring times that
a fluctuating absorption coefficient is dealt with in experi-
ments. The above-derived formulas (71) and (72) allow
description of the experimental data with the fluctuating
absorption coefficient. However, the values calculated by
formulas (71) and (72) may be compared only with the
absorption coefficients averaged in a certain way. In this

connection, it is first required to find the averaging procedure
whereby the averaged absorption coefficient would be time-
dependent.

9.1 Calculation of the fluctuating absorption coefficient
At first we consider how it is possible to calculate the instants
of time of random jumps from state 2 to state 0 and back, i.e.,
how it is possible to simulate the experimentally obtained
fluctuations. Clearly, the quantities 1=A � t2 and 1=a � t0
determine the system lifetimes in the states corresponding to
the left and right pairs of the potential wells in Fig. 11b.
Consequently, should the system find itself in state 2 with a
unit probability, then

W2�t� � exp �ÿAt� �74�

describes the probability of discovering the system in state 2
by the point in time t, i.e., the probability that a jump has not
occurred. The probability that the system changes to state 0
by the point in time t is described as

P2�t� � 1ÿW2�t� � 1ÿ exp �ÿAt� : �75�

Since the instant t of jump is random, P2�t� � rnd �t�
represents a random function of time, which assumes values
ranging from zero to unity. The random points in time t2 at
which there occurs a jump from state 2 to state 0 may be
defined by the formula

t2 � ÿ 1

A
ln
ÿ
1ÿ P2�t�

� �76�

obtained from Eqn (75). Using this line of reasoning, we find
the following expression for the random points in time at
which there occurs a transition from state 0 to state 2:

t0 � ÿ 1

a
ln
ÿ
1ÿ P0�t�

�
; �77�

where P0�t� � rnd �t�. In the calculation of random instants
of jumps, Jung et al. [47] and Kilin et al. [65] also employed
equations similar to Eqns (76) and (77). Setting A � 3a for
definiteness, we can model the temporal dependence of the
system's residence in states 2 and 0 with the aid of formulas
(76), (77) and the random function rnd �t�.

It would appear reasonable that the fluorescence photon
accumulation time tint is proportional to the duration of laser
scanning. That is why for short laser scans we will measure
only one line in each laser scanning Ð either red, or blue.
With increasing scanning duration, the laser scans in rare
instances will culminate in measuring two lines. Lastly, for
scans far longer than 1=R we will measure the line doublet
virtually in every scan. Figure 12 demonstrates the fluctuating
optical spectra calculated in Ref. [80] for different values of
the signal acquisition interval tint. As noted above, tint is
proportional to the laser scan duration.

For short tint, as is seen from the extreme left column of
the images in Fig. 12, the optical line jumps randomly
between two spectral positions. For medium tint, as evi-
denced by two middle columns, the spectral line doublet
with fluctuating intensities of the doublet components is
measured in many laser scans. Lastly, for long tint, which
corresponds to the right-most column, the line doublet is
measured virtually in every laser scan. This brings up the
natural question: how should this fluctuating absorption
coefficient be processed with the aid of theoretical formulas
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(71) and (72)? The averaging procedure is discussed below in
Section 9.2.

9.2 Averaged absorption coefficient
The fluctuating absorption coefficient may be averaged in
different ways. In this section we outline the averaging
procedure leading to two average absorption coefficients
which may be directly compared with theoretical expressions
(71) and (72). For convenience of discussion, the fluorescence
excited with absorption line frequencies corresponding to the
0ÿ1 and 2ÿ3 transitions will be termed the `blue' and `red'
fluorescence, respectively. For `short' scans, whose duration
is far shorter than t0 and t2, the blue I1�t� and red I3�t�
fluorescence intensities are directly proportional to the
probabilities of the system residence in states 0 and 2,
respectively. These functions Ð quantum intensity trajec-
tories Ð describe the temporal behavior of the fluorescence
under excitation at the o0 and o0 ÿ D frequencies, respec-
tively. With their aid it is possible to construct two AFs which
may be determined in experiment:

g
�2�
1 �t� � lim

t!1



I1�t� t� I1�t�

�

I1�t�

�2 ;
�78�

g
�2�
3 �t� � lim

t!1
hI3�t� t� I3�t�

�

I3�t�

�2 :

The autocorrelation functions are normalized to unity at
infinity. However, for convenience of comparison with
theoretical expressions it is more expedient to measure the
correlator C�t� which is related in a simple way to the
calculated two-photon correlator p�t�.

First of all, it should be emphasized that with the use of
two QITs we can construct two autocorrelators

Cbb�t� �
� 1
ÿ1 I1�t� I1�t� t� dt� 1

ÿ1 I 21 �t� dt
;

�79�
Crr�t� �

� 1
ÿ1 I3�t� I3�t� t� dt� 1

ÿ1 I 23 �t� dt
;

and two so-called cross-correlators

Cbr�t� �
� 1
ÿ1 I1�t� I3�t� t� dt� 1

ÿ1 I 21 �t� dt
;

�80�
Crb�t� �

� 1
ÿ1 I3�t� I1�t� t� dt� 1

ÿ1 I 23 �t� dt
:

The fluorescence photons emitted upon system excitation
by radiation with the frequencies of the red and blue lines
will be referred to as r and b type photons, respectively.
During the time interval, when the laser frequency coincides
with the frequency of the red line, it is evident that the system
emits r-photons, and the b-photons are emitted when it
coincides with the frequency of the blue line. There there-
fore exist nonzero probabilities to detect four photon-pair
types: bb, rr, br, and rb. These probabilities are defined by
the formulas

dWbb�t� � pbb�t� dt ; dWrr�t� � prr�t� dt ; �81�
dWbr�t� � pbr�t� dt ; dWrb�t� � prb�t� dt :

The two-photon correlator of a molecule interacting with
a set of TLSs of polymers was calculated in Refs [62, 63]. We
apply formula (39) from Ref. [63] in the case of a chromo-
phore interacting with one TLS to arrive at

p�t� � k�t;T �
�
1ÿ exp

�
ÿ t
T1

��
; �82�

where k is determined from expressions (71) and (72) at t � t,
and T1 is the lifetime of the excited electronic level. When the
first photon is of the r type, use should be made of formula
(71), and formula (72) for a b-type photon. In view of the
initial conditions described above, for t4T1 it is possible to
derive the expressions for the four two-photon correlators

pbb�t� �
�
A

R
� a

R
exp �ÿRt�

�
L0�o� ;

pbr�t� � a

R

ÿ
1ÿ exp �ÿRt��L2�o� ;

�83�
prb�t� � A

R

ÿ
1ÿ exp �ÿRt��L0�o� ;

prr�t� �
�
a

R
� A

R
exp �ÿRt�

�
L2�o� :

We note that the expressions for the pbb and prr autocorre-
lators coincide with those derived by Kilin et al. [65] if it is
assumed that the exciting laser intensity is low (cross-
correlators were not considered in Ref. [65]). It is easily seen
that the two-photon correlators are closely related to the two
absorption coefficients defined by formulas (71) and (72). We
will dwell on this question in greater detail.

The symbols in Fig. 13a display the auto- and cross-
correlatormagnitudes calculated by formulas (79) and (80) by
way of computer QIT simulation. Naturally, the above
correlators can also be determined in experiment. The curves
at the left of Fig. 13 portray the Lorentzian amplitudes
calculated by formulas (71) and (72). A comparison of the
correlators obtained from numerical experiments (symbols)
with the two-photon correlators calculated by quantum-
mechanical techniques (curves) showed that the following
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simple relationships exist:

Cbb�t� � pbb�t�
L0

; Crr�t� � prr�t�
L2

;

�84�
Cbr�t� � pbr�t�

L2
; Crb�t� � prb�t�

L0
:

The four two-photon correlators are functions of exciting
radiation frequency, and functions of time delay for emitted
photon pairs. If we construct, with the aid of auto- and cross-
correlators found in experiment with the use of QITs, the
following frequency functions

kr�t;o� � Crb�t�L0�o� � Crr�t�L2�o� ; �85�
kb�t;o� � Cbb�t�L0�o� � Cbr�t�L2�o� ;

they will coincide with the absorption coefficients kr and kb
calculated by formulas (71) and (72). Formulas (85) furnish
the expressions for two averaged absorption coefficients
which may be compared with the two absorption coefficients
worked out theoretically by formulas (71) and (72). Conse-
quently, formulas (85) indicate how to process QITs and pass
from the fluctuating absorption coefficient to two averaged
coefficients in such a way that these averaged absorption
coefficients could be compared with the absorption coeffi-
cients evaluated by theoretical formulas.

Figure 13b shows the absorption coefficients kr and kb
calculated by formulas (85) for the time delays indicated by
the vertical lines in Fig. 13a. For a time delay satisfying the
condition Rt5 1, we arrive at two averaged absorption
coefficients, each of which corresponds to one spectral line.
For a longer time delay satisfying the condition Rt � 1, each
averaged absorption coefficient corresponds to a line doublet.
Lastly, for a very long delay satisfying the condition Rt4 1,
we arrive at the single absorption coefficient corresponding to
the line doublet.

10. Temporal broadening of the optical band
of a single molecule

In Section 9.2, we considered a method of determining the
averaged absorption coefficients which may be compared

with the theoretically predicted absorption coefficients. This
method is only adequate when the lines of the optical band are
clearly separated from each other on the frequency scale.
However, the case when the lines of one optical band
appreciably overlap is quite often encountered in experi-
ment, and the method described in Section 9.2 is inapplic-
able. Then, to compare experimental and theoretical findings,
advantage can be taken of the method involving measure-
ments of the half-width of the complex optical band and its
comparison with the theoretically determined half-width. In
this connection, the problem of optical line broadeningwill be
our initial concern.

The temperature broadening of the phononless lines
emitted by impurity centers in crystals, polymers, and glass
has been the subject of numerous experimental and theore-
tical works (see reviews [81, 82] and references cited therein).
The electron ± phonon interaction is responsible for this
broadening in crystals, while in polymers and glass it is
added with the interaction with TLS excitations. The latter
defines the low-temperature behavior of the PLL half-widths
for impurity centers in polymers and glass [82 ± 84].

It is pertinent to note that the chromophore ±TLS
interaction problem is mathematically equivalent to the
problem of the interaction of a spin resonant to microwave
radiation with the ensemble of other nonresonance spins.
Fifty years ago this problem was solved by Anderson [85] in
the framework of the stochastic approach and, as shown in
Ref. [11], yields an expression for the dipole correlator, which
coincides with formula (63) if the nonequilibrium TLS
population r�t� is replaced in it with the equilibrium one,
r�1� � f �T �. Then, the following formula results for the
absorption coefficient in the case of interaction with only one
TLS, i.e., for the model depicted in Fig. 11b, and disregarding
the tunneling in the excited electronic state Ð that is, for
b � B � 0:

k�o� � 2w 2

�1ÿ f � g0
�oÿ o0�2 � g 20

�

� f
g0 � g

�oÿ o0 ÿ D�2 � �g0 � g�2 ; D4 g ;

g0
�oÿ o0�2 � g 20

; D5 g :

8>>>>>>><>>>>>>>:
�86�

Here, the first and second Lorentzians correspond to the 0ÿ1
and 2ÿ3 transitions, and g � A is the decay rate of state 2.
The dynamic theory elaborated in Ref. [82] leads to a similar
result. The difference between the two theories shows up in
the expression for the half-width g0 of the line arising from the
0ÿ1 transition:

g0 �
2f �T �g D 2

D 2 � g 2
�stochastic�;

2f �T ��1ÿ f �T �� g D 2

D 2 � g 2
�dynamic�:

8>>><>>>: �87�

According to expressions (87), the half-width of the 0ÿ1 line
is a nonmonotonic function of the transition rate between the
two equilibrium positions; it passes through a maximum at
g � D, and tends to zero for g4D.

The shape of the optical band depends strongly on the
ratio between the state-2 decay rate g (Fig. 11b) and the
amplitude D of the resonance frequency jump. From relation-
ship (86) it follows that the optical band consists of two lines
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in the case of infrequent jumps, when the average jump
frequency g is much less than D. These two lines are described
by Lorentzians with the widths g0 � 2fg and g0 � g, which
significantly differ in magnitude only at a low temperature,
when g0 5 g. Conversely, in the case of frequent jumps, when
g4D, the optical band comprises a single line of width

g0 � 2f
D
g
D � 2f

�
D
g

�2

g ;

which is much smaller than the level-2 decay rate g. In the
domain of g values, where the half-width g0 decreases with
increasing jump frequency g, the optical band consists of one
line, this line becoming narrower with increasing g. This effect
is referred to as motional narrowing.

From formulas (86) and (87) it follows that, despite the
fact that Anderson's stochastic approach [85] invokes the
notion of resonance frequency jumps, the absorption coeffi-
cient is time-independent and is equivalent to the absorption
coefficient in the dynamic theory employing for the TLS an
equilibrium density matrix which is time-independent as well.
That is why formula (86) cannot describe the absorption
coefficient fluctuations observed in SMS on the scale of
milliseconds and seconds.

Apart from the works discussed in Section 8, attempts to
obtain the time-dependent absorption coefficient were
repeatedly made in connection with the problem of spectral
diffusion [86 ± 88] in polymers and glass, as well as in
connection with the SMS [89]. The dynamic approach
considered in Section 8 turned out to be the most effective.
That is why our subsequent discussion of the problem of
optical band broadening for single molecules relies on the
findings of the dynamic theory [90 ± 92].

10.1 Band broadening due to confluence of optical lines
When the frequency separation between two lines emitted by
one molecule is smaller than the half-width of each of them,
the half-width of the optical band of a single molecule will
depend on the laser scan duration in experiment. This
situation is illustrated in Fig. 14 corresponding to the case
where the chromophore of the impurity molecule interacts
with only one TLS, i.e., to the case depicted in Fig. 11b, except
thatD < 0, when the right vertical arrow is longer than the left
one and therefore corresponds to the blue line, and the left
arrow to the red line. These spectra were calculated in
Refs [90, 91] employing two absorption coefficients defined
by formulas (71) and (72) for different values of time
appearing in these formulas. We showed in Section 9 that
these two absorption coefficients may be used for comparison

with the averaged absorption coefficients (85) obtained by
statistical processing of the fluctuating absorption coefficient
found in experiment. The auto- and cross-correlators which
are amplitudes in expressions (85) are measured by counting
the photon pairs consisting of the r- and b-type photons.
However, these measurements may be realized when the red
and blue lines are spectrally resolved. In the case depicted in
Fig. 14, the lines are poorly resolved, and such a measuring
method is inappropriate. How should this situation be
treated?

Clearly, the half-width of the optical band may become
the measurable quantity in this case. This brings up two
questions: first, how should optical band half-width measure-
ments be carried out and, second, what theoretical expression
is to be compared with the measured half-width?

Figure 15 depicts the time dependence of the optical band
half-width measured by Orrit's group [39] in the following
way. The laser frequency was scanned and optical bands were
measured in laser scans from the first to the nth. By
summation of all the bands they obtained a spectrum
averaged over the first n scans. Subsequently, the procedure
was repeated for scans from the second to the �n� 1�, from
the third to the �n� 2�, etc. All spectra averaged over n scans
were summed. This double averaging yielded an optical band
whose half-width was measured. This half-width is plotted in
Fig. 15 as a function of time t � ntsc.

According to Fig. 11a, when performing N laser scans we
fall fN times on the discrete lower-frequency vertical band
which will be referred to as the red trail, i.e., the first emitted
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photon will be of the r-type, and �1ÿ f �N times on the
discrete higher-frequency vertical band which will be referred
to as the blue trail, i.e., the first emitted photon will be of the
b-type. In the former case, by summing all the photons
delayed by a time interval ntsc relative to the r-type photon
emission time, we measure the absorption coefficient
kr�ntsc;o� defined by the first of formulas (85), while in the
latter case the coefficient kb�ntsc;o� defined by the second of
formulas (85). In the event of poor line resolution, attempts to
separate these two different cases do not meet with success,
and, therefore, the absorption coefficient

k�ntsc;o� � kr�ntsc;o� f� kb�ntsc;o��1ÿ f � �88�

is examined in experiment.
On the other hand, the absorption coefficient may be

calculated employing formulas (71) and (72), and its half-
width may thus be found. In Fig. 15, this half-width for
different values of the time is shown with a solid curve which
fits the experimental data (squares) quite well.

The abovemethod for the theoretical processing of optical
band half-width also applies to more complex cases, when the
structure of the optical band is formed due to the interaction
with more than one TLS. In the interaction with two TLSs,
for instance, two cofactors should be left in the product in
formula (63) for the dipole correlator; whence we arrive at the
absorption coefficient in the form

k�D0; t� � r�t� r 0�t�L�D0� �
ÿ
1ÿ r�t�� r 0�t�L�D0 ÿ D�

� r�t�ÿ1ÿ r 0�t��L�D0 ÿ D 0� � ÿ1ÿ r�t��ÿ1ÿ r 0�t��
� L�D0 ÿ Dÿ D 0� ; �89�

where

L�D0� � 2w 2 1=T2

�oÿ o0�2 � 1=T 2
2

: �90�

For short times, i.e., for rapid laser scans, four absorption
coefficients result from formula (89) for the four types of
initial conditions, and in this case the line jumps from one of
four spectral positions to another. In the scanning with
intermediate duration, the thermal equilibrium in one TLS
manages to set in, with the effect that the dependence on two
initial conditions vanishes. In this event, formula (89)
generates absorption coefficients of two types. Lastly, the
thermal equilibrium manages to settle in both TLSs for long
laser scans, and there therefore exists a single absorption
coefficient independent of the initial conditions, and the
fluctuations of the absorption coefficient are absent.

10.2 Light-induced broadening of lines
Apart from the temporal broadening of the optical bands due
to line merging considered in Section 10.1, the line itself of an
individual molecule may broaden with time if the intensity of
fluorescence-exciting laser radiation is high enough. The
dependence of the linewidth of an individual molecule on
the excitation intensity was observed by Moerner et al. [36].
The temporal dependence of the light-induced broadening of
the optical line emitted by an individual molecule was
theoretically analyzed in Ref. [92].

Let us derive a formula that would furnish the description
of light-induced broadening of isolated lines. With this in
mind we will assume that the local neighborhood contains
only one TLS, then this impurity center will possess only two

optical lines and will be described by the energy level diagram
given in Fig. 11b.

We now consider the case where the light excitation is
effected only at the 0ÿ1 transition frequency. Then, the
system of balance equations with the transitions depicted in
Fig. 11b takes on the form

_r1 � ÿ�G� B� r1 � Lr0 � br3 ;

_r3 � Br1 ÿ
�

1

T1
� b

�
r3 ; �91�

_r0 � Gr1 ÿ �L� a� r0 � Ar2 ;

_r2 � ar0 �
r3
T1
ÿ Ar2 ;

where L � k0ÿ1, and G � L� 1=T1. The constants describing
the transition rates are assumed to satisfy the inequalities

G4L4A ; B > a; b; �92�

i.e., the frequency of molecular jumps from the ground state
to the excited state and back ismuch higher that the frequency
of the tunneling jumps which are indicated by horizontal
arrows in Fig. 11b. For this ratio between the constants, the
temporal evolution of the probabilities rj experiences two
stages Ð a short and a long one Ð reflecting the rapid and
slow evolution of the rj probabilities, respectively. The rapid
evolution occurs in a time on the order of T1, and to it there
corresponds an increase in the probability of finding the
molecule in state 1. However, we are concerned with the
slow relaxation which occurs upon the establishment of
quasi-equilibrium between the populations r1 and r3 of
electronically excited states, on the one hand, and the
population r0, on the other. The relation between the
probabilities in the quasi-equilibrium state can be found by
putting _r1 � _r3 � 0. Then, in view of inequality (92), we find
the following relationships from the first and second equa-
tions:

r1 �
�1=T1 � b�Lr0
�G� B�=T1 � bG

� L

G
r0 ;

�93�
r3 �

BLr0
�G� B�=T1 � bG

� L

G
T1Br0 :

Substituting the expressions for r1 and r3 into the last two
equations of system (91) we arrive at the system of equations

_r0 � ÿ� ~B� a� r0 � Ar2 ; �94�
_r2 � � ~B� a� r0 ÿ Ar2

which describes the slow relaxation in the impurity center
interacting with the TLS. Employing the relationship
r2�t� � 1ÿ r0�t�, from the system of equations (94) it is easy
to obtain the equation

_r0 � ÿ� ~B� R� r0 � A �95�

comprising the function ~B, which is a function of the
frequency and depends on the laser light intensity. The
solution to Eqn (95) equals

r0�t� �
A

~B� R
�
�
r0�0� ÿ

A

~B� R

�
exp

�ÿ� ~B� R�t� ; �96�
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where

~B � L

G
B ; R � A� a : �97�

According to formulas (93) and (96), the slow relaxation
of all populations is determined by tunneling both between
states 0 and 2 and between 1 and 3. The transition between
states 1 and 3 represents a light-induced tunneling. Its rate ~B is
proportional to the pumping L.

As already noted in Section 7.2, in polymers and glass
there is a set of TLSs inherent in the solvent (intrinsic
TLSs), whose existence is not caused by the presence of an
impurity in the polymer. The number of such TLSs is huge
and may significantly exceed the number of impurity
centers. In such TLSs, the constants b and B of sponta-
neous tunneling for an excited chromophore are comparable
in magnitude to the tunneling constants A and a in the
ground electronic state of the chromophore. If the effect of
these TLSs is taken into account, the light-induced transi-
tions between states 1 and 3 may be neglected according to
formulas (93) and (97), because L=G5 1. Such a situation is
realized for a chromophore interacting with the TLSs of
polymers and glass.

However, the probability of light-induced transitions
may exceed the probability of spontaneous ones. This
situation prevails in TLSs modeling some transformations
in the impurity center, for instance, the attachment of a
solvent proton by it. It is precisely these TLSs that
participate in the photochemical burning of stable spectral
holes in inhomogeneously broadened optical bands. The
burning in SMS looks like the disappearance of the optical
molecular line for a long time from the spectral region under
consideration. These TLSs, as a rule, describe the states of
the chromophore itself, i.e., belong to the type of TLSs
produced upon introduction of the impurity molecule in the
solvent (extrinsic TLSs). Clearly, the number of such TLSs is
approximately equal to the number of impurity centers. In
the presence of the TLSs produced upon introducing the
impurity molecule into the solvent there occurs, as shown by
experiment, stable spectral hole burning in the inhomogen-
eously broadened optical band due to precisely the light-
induced tunneling. Since such a hole exists, at low tempera-
tures and when the pump is switched off, for several days or
even weeks, this testifies to an extremely low tunneling
efficiency in the ground electronic state, i.e., to the smallness
of the constants A and a in the extrinsic TLS. Consequently,
the light-induced tunneling may not be neglected in these
TLSs.

Clearly, the absorption line experimentally found as a
result of n laser scans reflects the dependence of fluorescence
photon detection probability on the frequency of the exciting
laser light. The photon emission probability is proportional
to the probability of finding an excited chromophore, i.e., to
the probability r1�t�, where t � ntsc. Employing formulas (93)
and (96), for the probability of finding an excited molecule we
obtain

r1�D; t� �
L

G

�
A

~B� R
�
�
1ÿ A

~B� R

�
exp

ÿÿ� ~B� R�t�� :
�98�

Here, use was made of the initial condition r0�0� � 1. If ~B
defined by formula (97) is substituted into expression (98), we

arrive, in view of

L � 2w 2 1=T2

D 2 � 1=T 2
2

; �99�

at the following expressions for the probability r1 for short
and long observation times:

r1�D; t�

�
L

G
� 2w 2 T1=T2

D 2 � 1=T 2
2

; t5
1

~B� R
;

2w 2 T1=T2

D 2 � 1=T 2
2 �1� 2w 2T2T1B=R�

; t4
1

~B� R
:

8>>><>>>:
�100�

The probability (100) is a function of the exciting laser
frequency, the passage from the Lorentzian with a half-
width 2=T2 to the Lorentzian with a larger half-width

Do1=2�1� � 2

T2

�����������������������������
1� 2w 2T2T1B

R

r
�101�

taking place for t / 1=� ~B� R�. From formula (101) it follows
that the maximum half-width value increases as the square
root of the excitation intensity, which was observed by
Moerner et al. [36]. It was shown in Ref. [92] that formula
(101) may be represented as

Do1=2�1� � 2

T2

���������������������
1� toff

ton�0�
r

; �102�

and the time interval on which the optical line half-width
increases is defined as

1

t
� ~B� R � 1

ton�D� �
1

toff
: �103�

The last two formulas are convenient in that they do not
contain unknown parameters, for instance, tunnel transition
probabilities. All the quantities that enter into them may be
measured in one experiment with relative ease.

Line broadening takes place due to the `escape' of
probability to the off-state. This is evident from formula
(102), according to which there occurs no line broadening at
toff � 0, i.e., when the off-state is absent. The role of the `dark'
state is, according to themodel considered, played by the TLS
state not excited by the laser radiation of the given frequency.
Clearly, the role of the dark state can also be played by the
triplet molecular state. The triplet broadening mechanism
becomes actual for a high probability of the intercombination
transition between the singlet and triplet states.

10.3 Temporal broadening of the optical line
of an individual molecule caused by interaction
with distant two-level systems
There exists one more type of temporal line broadening not
discussed above. As already noted, it is possible to derive
formula (86) for the time-independent absorption coefficient
both in the context of stochastic and dynamic approaches.
The difference between these approaches manifests itself only
in expression (87) for the optical line half-width. However,
unlike the stochastic approach, the dynamic approach allows
a simple generalization of formulas (86) and (87) to the case of
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a nonequilibrium density matrix for the TLS. It reduces to the
replacement of the functions f �T � � �1� exp �E=kBT �

�ÿ1
by the elements r�t;T � of the nonequilibrium TLS density
matrix in the formulas derived assuming thermal equilibrium.
On making this replacement in formula (87) we arrive at the
expression

g0
2
� r�t;T �ÿ1ÿ r�t;T �� gD 2

D 2 � g 2
�104�

for the optical line half-width caused by the interaction
between the chromophore of the molecule and one non-
equilibrium TLS. Here r�t;T � is described by formula (60).
In the framework of the standard TLS model, the interaction
between TLSs is neglected. Under these conditions, the
contributions of every TLS to the optical line half-width are
additive, and the expression for the line half-width assumes
the form

g0
2
�
XN
j

gj D
2
j

D 2
j � g 2j

rj�t;T �
ÿ
1ÿ rj�t;T �

�
; �105�

where j is the TLS number. According to formula (104), the
contribution of slowly relaxing TLSs to the line half-width is
vanishingly small due to the smallness of the value of gj which
describes the rate of this relaxation. For instance, for a TLS
relaxing in 1 s, we arrive at the expression for the contribution
to the line half-width: g0 / g � 1 sÿ1, which is ten orders of
magnitude smaller than the experimentally examined half-
width. However, according to the standard TLS model
proposed by Anderson et al. [37], the distribution of the
TLSs over the relaxation constants is hyperbolic, i.e.,
N�g� / 1=g. This signifies that the slowly relaxing TLSs far
outnumber the fast-relaxing ones. Although the contribution
of a slow-relaxing TLS to the line half-width is small, such
TLSs are great in number and their integral contribution is
therefore noticeable.

From the stochastic theory [88] and formula (105) of the
dynamic theory [93] it follows that the line half-width depends
linearly on the temperature T, and logarithmically on the
time:

g0 �
1

T2
/ kBT log �Rmaxt� ; �106�

if the TLS ± chromophore interaction is of the dipole ± dipole
type. Here Rmax is the highest TLS relaxation rate.

The logarithmic dependence on the 1-to-100 s time
interval is evident, for instance, from the experimental data
given in Fig. 15. Only when the logarithmic dependence in
theoretical formulas is taken into account can the calculated
curve be fitted with experimental points. The logarithmic
temporal line broadening also shows up in an AF fluores-
cence experiment. This issue will be discussed in greater detail
in Section 11.

However, the predictions of stochastic and dynamic
theories diverge significantly for a different chromo-
phore ±TLS interaction type. The stochastic theory pre-
dicts a non-Lorentzian line profile, while the dynamic
theory predicts the Lorentzian profile but a different
temporal behavior of the line half-width. This behavior
depends on the rate of spatial weakening of the above
chromophore ±TLS interaction. It was shown in Ref. [93]
that the form of the temporal dependence of the optical line
half-width depends on the type of electrostatic chromo-

phore ±TLS interaction. For a dipole ± quadrupole interac-
tion, one finds g0 / 1ÿ �Rmaxt�ÿ1=4, while for a dipole ±
monopole interaction g0�t�/ �Rmaxt�1=2 ÿ 1. So far, both
dependences have been observed only in experiments invol-
ving spectral hole burning, specifically the half-widths of
spectral holes which were burned in these experiments in an
inhomogeneously broadened optical band [94, 95].

It is pertinent to note that formula (105) describes only the
TLS's contribution to the half-width. In a real solvent, there is
always an interaction between the impurity molecule and
phonons. That is why the experimentally found PLL half-
width is expressed in the following form

Do1=2 � 2

T2
� g0�t;T � � gph�T � ; �107�

where the second term on the right-hand side describes the
contribution of electron ± phonon interaction to the half-
width. The contribution from phonons is time-independent,
because phonons are rapidly relaxing quasiparticles. For a
temperature of 4.2 K and lower, the contribution to a PLL
broadening is made primarily by TLSs. However, the
contribution from phonons begins to prevail with increasing
temperature. This fact was established in photon echo
experiments [84].

11. Diversity of the optical bands
of individual impurity centers

The inhomogeneous broadening of the optical bands from
impurity centers in polymers and glass, which typically
exceeds 100 cmÿ1, has commonly been attributed to the fact
that the local environment of individual impurity centers in
these matrices varies from center to center, which is
responsible for the spread in their resonance frequencies.

Even in their first works on single molecules, Moerner's
group [35, 96] demonstrated that the resonance frequency
jumps of individual impurity centers, occurring on a scale of
several thousand seconds, i.e., the quantum trajectories of the
resonance frequency, vary strongly in going from center to
center. In other words, the resonance frequency fluctuations
of individual impurity molecules are also individual. How-
ever, at that time it was not yet clear how to extract the
information about the local environment from the quantum
frequency trajectories.

The next step was made by Orrit's group [97] which
investigated not the fluctuations but the autocorrelation
functions of individual molecules, which are related by
simple formulas (54) to the probability of observing photon
pairs separated by a time interval Dt. It turned out that the
AFs of individual impurity centers were also individual; an
example of this kind is given in Fig. 16. The AF is
conveniently plotted on a logarithmic time scale, for it
permits us to demonstrate in one drawing the relaxation
effects described by exponential functions with characteristic
times varying by orders of magnitude. Here, the weak
logarithmic time dependence of the AF arises from the
logarithmic time dependence of the optical dephasing rate
1=T2, considered in Section 10. Aswe saw in the consideration
of the AF for a molecule with a triplet level, the smoothed AF
step, which occupies one order ofmagnitude on the time scale,
corresponds to the exponential relaxation in going from the
singlet system to the triplet one. The TLS relaxation is also
described by an exponential function. Curve 1 in Fig. 16
exhibits two such smoothed steps, while curves 2 and 3 show

40 I S Osad'ko Physics ±Uspekhi 49 (1)



one step each. This signifies that impurity center 1 obeys a
biexponential relaxation law, while impurity centers 2 and 3
obey monoexponential laws, their relaxation constants
differing by two orders of magnitude. In this case, we are
dealing with the relaxation of TLSs strongly coupled to the
impurity center, i.e., resided in its local environment. The
question of how it is possible to judge the microscopic
impurity center model from the AF form is considered in
greater detail in Refs [57, 63, 64].

At present, it is valid to say that two avenues of SMS
development exist. Works pursuing the first line study the
dynamics of individual molecules, which manifest themselves
in the time dependence of the measurement data. Works of
this kind were discussed in Sections 3 ± 10. Work along the
second line involves statistical processing of the experimental

data obtained in the investigation of several hundred
individual molecules but for a fixed measuring time. Belong-
ing to the latter are Refs [69, 78, 97 ± 101] which were
concerned with the statistical processing of experimentally
obtained optical bands of several hundred individual mole-
cules.

The first finding resulting from this statistical processing
was the distribution functions of the optical band half-widths
of individual molecules [97, 98]. The band half-width was
measured for a fixed time. Such a distribution is exemplified
in Fig. 17e. In Sections 10.1 ± 10.3, we considered three types
of optical band broadening. The distribution in Fig. 17e was
plotted for the widths discussed in Section 10.1. Distributions
of this kind were measured in Ref. [98] for terrylene molecules
in different polymermatrices and even in an anthracene single
crystal. The latter signifies that a discrete set of local
environments in which a foreign molecule may find itself
exists even in a single crystal.

The half-width averaged over this distribution was found
to be in satisfactory agreement with the half-width of spectral
holes burned in the same matrices. The question of what half-
width is measured in echo experiments was also cleared up.
Vainer et al. [101] discovered that the smallest widths of these
distributions correspond to the optical dephasing rate 1=T2

measured in photon echo experiments. These width distribu-
tions were also found to shift to the right with increasing
temperature, which is attributable to temperature line broad-
ening.

The above examples demonstrate that the analysis of
linewidth distributions for individual molecules, i.e., the
actual second moments of the optical bands, allowed the
solution of several problems hotly debated prior to the advent
of SMS. That is why a group of Russian and German
researchers [78, 99, 100] proceeded further along this path
and measured the distribution functions for the moments
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from the first to the fourth for several hundred individual
tetra-tert-butyl terrylenemolecules introduced into a polymer
polyisobutylene matrix. These experimental data are given in
Fig. 17.

On the other hand, by setting, say, one hundred times the
random parameter distributions of TLSs interacting with an
impurity molecule it is possible to obtain with the aid of
theory [67, 68] one hundred sets of optical bands and to
construct the theoretical curves for the moments. The curves
in Fig. 17 were calculated employing the Geva ± Skinner
theory [67, 68].

When discussing the Geva ± Skinner theory in Section 9,
we noted as a drawback the poor description of the temporal
behavior of the optical bands from individual molecules.
However, this drawback does not affect the calculated shape
of the optical band, when the measuring time is far longer
than the relaxation times of all the TLSs from the closest
environment of the chromophore. In this case, all the TLSs of
the local environment are in a state of thermal equilibrium,
and the Geva ± Skinner theory adequately takes into account
the effect of the thermally equilibrium TLSs on the optical
band. Since the distributions plotted in Fig. 17 weremeasured
under precisely this condition, satisfactory agreement
between the theoretical and experimental results in Fig. 17 is
hardly surprising despite the drawbacks of the theory relating
to the description of the local dynamics of individual
molecules. These drawbacks of the Geva ± Skinner theory
supposedly cannot manifest themselves in such averaged
characteristics as optical band moments.

The characteristic which relates to the fourth moment and
was termed `spikiness' by the authors of Ref. [78] was
investigated more recently by the same authors [100]. In this
work, they measured the ratio between the number of optical
bands unsplitted into lines and the number of observed
doublets, quadruplets, etc. The authors established that the
theory which takes into account the dipole ± dipole nature of
the interaction between the chromophore of the impurity
molecule and the TLS is capable of reproducing the
experimentally examined ratio between the number of
doublets and the number of single lines, this being so only
for a certain value of the minimal distance between the
impurity molecule and the nearest TLS, which turned out to
be equal to about 2 nm. Clearly, this is the average distance
value.

During the early years of developing the low-temperature
SMS, verification and refinement of the TLSmodel proposed
by P Anderson et al. [37, 38] for the description of low-
temperature anomalies of glass became one of the main areas
of SMS studies. This model had previously proved to be
efficient in many nonoptical low-temperature experiments
performed on glass. In optical experiments, this model was
widely used for describing impurity centers in polymers. The
interaction between the chromophore of an impurity mole-
cule and a TLS had to give rise to optical line doublets and to
optical bands with amore complex shape, which had not been
observed prior to the advent of SMS. The spectra of single
molecules removed any doubt which might have remained
regarding the TLS model. At the same time, SMS provided a
wealth of exemplifying spectra which defy explanation by the
standard TLS model.

The trails of individual molecules, similar to those shown
in Fig. 11a, might serve as a tool for the verification of the
TLS model. Although this model had been introduced three
decades prior to the commencement of investigations of single

molecules, it continued to raise numerous discussions due to
its phenomenological nature and the lack of convincing
theoretical substantiation. The time-dependent trails char-
acterizing the dynamics of individual molecules, which were
measured by Orrit's group [39] for many individual mole-
cules, yielded much new information on the TLS model.

Boiron et al. [39] measured the trails of 70 individual
terrylene molecules in a purely amorphous polyisobutylene
polymer and of 14 terrylene molecules in a semicrystalline
polyethylene polymer at a temperature of 1.8 K. Both
polymers were nonpolar. From the trails it was established
that the optical bands of 70% of the molecules correspond to
the bands predicted by the standard TLS model. In view of
this fact, it becomes clear why the experimental data obtained
by the method of spectral hole burning are well described by
the TLS model. Manifested in this method are ensembles of
the molecules with one and the same resonance frequency,
and the dynamics of the majority of impurity centers of an
ensemble is, as evidenced by the data of Ref. [39], described by
the TLS model.

Of those centers whose dynamics were described by the
TLS model, 40% possessed an optical band consisting of one
optical line, another 40% possessed optical bands consisting
of line doublets, 16% exhibited an optical band comprising
line quadruplets, and all the remaining cases accounted for
closing 4%. Among the spectra of individual molecules
measured in Ref. [39], 30% contained trails which could not
be described by the standard TLS model.

12. Fluorescence fluctuations
of single polymer molecules

As noted in Section 2, since the mid-1990s it has become
apparent that SMS techniques are effective at room tempera-
ture, too. Single-molecule spectroscopy permits the investiga-
tion of the dynamics of a complex quantum system at room
temperature, because in SMS, along with spectroscopic
studies traditional for molecular ensembles, it is also possible
to measure the fluorescence fluctuations, which underlies the
efficiency of room-temperature SMS. This is a circumstance
of great significance, since such objects as the light-harvesting
systems of photosynthesis centers, proteins, and other
biologically active molecules function in living organisms at
room temperature.

This brings up the natural question of what we must bear
in mind while on the subject of a single molecule. Why, for
instance, do ten anthracene molecules (chromophores)
dissolved in a polymer behave like a molecular ensemble
with a nonfluctuating fluorescence and therefore yield little
information at room temperature, whereas a polymer chain
comprising a hundred chromophores and possessing an
atomic weight above 20,000 a.m.u. may be treated as a single
molecule, as evidenced by its fluctuating fluorescence?

When answering this question we are reminded that a
single molecule in SMS is irradiated by the light of a cw laser
and the information about the molecular dynamics is
extracted by counting the fluorescence photons. Early in
SMS development, investigations were made of molecules
with one chromophore: such molecules are unable to absorb
the second photon prior to the emission of the previously
absorbed photon. Such a single molecule may be termed a
single absorber and single emitter of photons. However,
polymer molecules and light-harvesting antennas of photo-
synthesis centers exhibit exciton type absorption [102]. This
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signifies that light is simultaneously absorbed by many
chromophores and therefore the simultaneous absorption of
two or more photons with the production of two or more
excitons is possible, i.e., in the latter case the single molecules
are no longer single absorbers.

Clearly, for a low light intensity, the probability that there
exists one exciton in a single molecule will prevail even in
polyatomic light absorption, of which exciton absorption is
one type. Therefore, despite the polyatomic nature of the
absorption, the emission retains its single-photon nature.
This circumstance is of decisive importance for the emer-
gence of fluorescence fluctuations.

By a specific example, we will show how the theorymay be
applied in the analysis of experimental data in the case of
fluctuating fluorescence of complex molecules. This was
demonstrated in Ref. [103]. For the experimental material,
advantage was taken of the data on the fluorescence of a
single PPV±PPyV copolymer molecule, obtained by Bar-
bara's group [12].

12.1 Experimental data
Spectroscopic investigations of the ensembles of polymer
molecules reveal that light is absorbed by a set of polymer
chromophores, and that emission occurs upon electronic
energy migration to the local minima of the potential
Frank ±Condon surface in a polymer molecule [104]. For
instance, in a polymer in which anthracene molecules were
used as pendants to the polymer chain, the emission took
place from anthracene molecules located at the ends of the
polymer chain [105]. Unfortunately, it is impossible to
separate the intermolecular energy transfer from the intra-
molecular one in molecular ensembles. That is why the
Barbara group undertook a number of studies of the energy
transfer in single PPV±PPyV copolymer molecules in which
the electronic energy transfer is known to be an intramole-
cular process. The energy transfer was examined by observing
the fluorescence of individual molecules of this polymer.

The molecular weight of the molecules under investiga-
tion was equal to about 20,000 a.m.u., i.e., they contained
80 ± 100 chromophores capable of absorbing light. Figure 2
portrays the absorption and emission bands of this polymer.
Since the optical polymer bands are structureless, informa-
tion about polymer dynamics cannot be extracted from them.
The fundamental difference between the fluorescence of a
single polymer molecule and the fluorescence of an ensemble
manifests itself in the temporal fluorescence behavior. The
fluorescence intensity of the ensemble of polymermolecules is
time-independent, while the fluorescence intensity of a single
molecule fluctuates, as shown in Fig. 3. The fluorescence
signal was accumulated within the span of 0.1 s. The character
of the fluorescence QIT was shown to remain invariable
under excitation by l � 514 nm light.

Van den Bout et al. [12] performed a statistical QIT
processing for several dozen single polymer molecules. Their
results are presented in Fig. 18. These data suggest that the
fluorescence intensity of every single polymer molecule
flickers, i.e., it now emerges (on-intervals), now vanishes
(off-intervals). The on-interval fluorescence may have two
intensity levels: I1, conventionally termed average, and the
high level I2, i.e., the fluorescence is binary in intensity. The
on-interval duration depends on the excitation intensity,
while the off-interval duration does not. The data given in
Figs 2, 3, and 18 underlie the theoretical model considered in
next Section 12.2.

12.2 Theoretical model
The theoreticalmodel should describe both the double level of
fluorescence intensity and its blinking, i.e., the existence of the
on-intervals, as well as of the off-intervals.

Model with a double fluorescence intensity. We are
reminded that the fluorescence with two intensity levels has
been observed not only for a single polymer molecule. For
instance, the fluorescence of a single tetra-tert-butyl terrylene
molecule introduced into polyisobutylene, shown in Fig. 11a,
also exhibits two intensity levels. The theoretical model
invoked to explain this fluorescence takes into account the
interaction between the chromophore of the molecule and the
TLS of the polymer matrix. Modelled with the aid of the TLS
is the conformational change in the impurity complex
consisting of the impurity molecule and the closest polymer
molecular environment. Since the absorption at the 1ÿ0 and
3ÿ2 transition frequencies is different, the fluorescence
intensities are also different, i.e., we are faced with two
fluorescence intensity levels. The ratio between the integral
values of the two fluorescence intensities for a long scanning
time is equal to the ratio between the peak values of the curves
in Fig. 13b.

Blinking fluorescence model. The model considered above
cannot explain the disappearance of fluorescence at certain
instants of time, i.e., the occurrence of off-intervals. This can
be done with another model represented in Fig. 7 which
depicts the energy level diagram comprising two singlet levels
and one triplet level. This diagram is typical of organic
molecules. Such a molecule fluoresces during the on-inter-
vals interrupted by off-intervals, when there is no fluores-
cence. This model was discussed in detail in Section 7.

Model reproducing the fluorescence dynamics of a polymer
chain. This is a combination of the two models considered
above. The key elements allowing one to construct the
physical polymer model capable of reproducing the QIT
depicted in Fig. 3 are as follows:

(i) the existence of three fluorescence intensity levels: zero,
medium, and high (Fig. 18);

(ii) accounting for the fact that jumps from the medium
fluorescence level I1 to the high level I2 and back take place, as
a rule, when the intensity drops to zero (see Fig. 3);

(iii) the reverse on-interval duration which depends
linearly on the excitation power, and the power-independent
off-interval duration;
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(iv) the glow-interval (on-interval) and non-glow-interval
(off-interval) durations belonging to a time scale of seconds
(see Fig. 3).

A polymer chain along which N light-absorbing chromo-
phores are located at regular intervals offers a model of a one-
dimensional crystal. Clearly, the three levels depicted in Fig. 7
may correspond to every chromophore. Owing to the
interaction between the chromophores, N excited singlet
levels make up a singlet exciton band responsible for light
absorption by the polymer, and 3N triplet levels form a triplet
exciton band; when the polymer finds itself in the triplet
exciton band, it does not radiate.

The interaction between the solvent molecules and the
polymer chromophores will result in the emergence of defect
levels below the bottom of the singlet band and the bottom of
the triplet band; singlet or triplet electronic excitations may
end up in these levels. The defect levels play the part of traps
for electronic excitation. The shape of the fluorescence bands
of shallow traps and its dependence on the temperature and
trap depth were considered in Refs [81, 106].

Strictly speaking, several defect levels, i.e., traps, may be
located below the bottom of the singlet exciton band.
However, the clearly defined fluorescence intensity fluctua-
tions with drops to zero, which are depicted in Fig. 3, are an
indication that the polymer molecule emits photons from a
single channel whose role is supposedly played by the lowest
defect level. It would therefore be sufficient to include only
one defect level. Indeed, if there were two independent
emitters, the radiation picture would result from the summa-
tion of two QITs, similar to the QIT depicted in Fig. 3, with a
random shift on the time scale. Clearly, the newQIT resulting
from the summation would possess more fluorescence
intensity levels than we see in Fig. 18.

The existence of an exciton band and defect levels, which
play an important part in luminescence kinetics, will hardly
affect the shape of an absorption band and fluorescence at
room temperature. The Gaussian shape of the bands in Fig. 2
suggests that the strong electron ± phonon interaction `hides'
the electronic level structure caused by the exciton band and
the defect level. In the case of impurity centers with a strong
electron ± phonon interaction, the absorption and fluores-
cence bands depicted in Fig. 2 may therefore be described by
the following functions [11]

I a; e�o� � 1���������
2pD
p exp

�
ÿ�oÿ o0 � C �2

2D

�
: �108�

Here, the Stokes shift 2C and the half-width
Do1=2 �

���������������
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where nq and aq are the normal vibration frequencies of the
polymer molecule and the shifts of the equilibrium positions
of the normal coordinates, respectively, and T is the
temperature of the sample.

In accordance with the aforesaid, the energy diagram of a
polymer molecule may be represented in the form shown in
Fig. 19. According to this diagram, the polymer molecule
possesses two conformations, to which there correspond
levels 0, 1, 2 and 0 0, 1 0, 2 0. The energies of 1 and 1 0 levels
correspond to the singlet exciton and the singlet trap in these
conformational forms. Two fluorescences with different

intensity levels are clearly relevant to transitions from states
1 and 1 0 to the ground state. The energies of 2 and 2 0

correspond to the triplet exciton and the triplet trap. Without
an assumption that there occur jumps of the polymer
molecule from one conformational form to the other, it is
impossible to explain the existence of fluorescence with two
intensity levels, and without the inclusion of triplet states it is
impossible to account for the emergence of the off-intervals.

We have tried to represent the magnitude of the
probabilities for transitions indicated by arrows via their
thickness: the thicker the arrow, the higher the transition
probability. Therefore, we make use of the following
hierarchy of relaxation constants:

1

T1
4 k; k 04 g2; g2 0 ; g1; g1 0 ;B; b : �110�

The absence of stimulated fluorescence in the diagram drawn
in Fig. 19 is attributable to the fact that light absorption is
effected by excitons whose energy thermalization time is
shorter than the duration of a fluorescence event. Under
these conditions there is no resonance fluorescence.

It is evident that the conformational change on the time
scale of seconds may occur either in the ground state or in the
long-lived triplet state of a polymer molecule. If the con-
formational change occurred in the ground electronic state,
the medium-to-high fluorescence level transition of the
system would take place in jumps without reaching the off-
state. This is at variance with the fact that the jumps from the
medium fluorescence level to the high level and back take
place after the intensity drops to zero. That is why we showed
in the diagram in Fig. 19 that the conformational change
occurs when the polymer molecule finds itself in the triplet
state of the trap.

The balance equations for the probabilities of finding a
polymer molecule in one of the six quantum states repre-
sented in Fig. 19 take on the following form:

_r1 � ÿ
�

1

T1
� g1

�
r1 � kr0 ;
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T1
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Figure 19.Energy diagramof a PPV ±PPyVpolymermolecule subjected to

conformational changes in the triplet state.
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The meaning of all constants is evident from Fig. 19. System
of equations (111) describes both the fast relaxation taking a
course on the T1-time scale and the slower relaxation
occurring on the time scale of singlet ± triplet transitions and
of the transitions from one conformation to the other. In the
experiment under discussion, the information about the fast
relaxation was lost due to the insufficient temporal resolution
of the facility, which allowed measuring only the slow
relaxation. If we are concerned with only the slow relaxation
in the polymer molecule, system of equations (111) may be
simplified as follows. We put _r1 � _r1 0 � 0. Then, from the
first and fourth equations of system (111) we find that

r1 �
kT1

1� g1T1
r0 ; r1 0 �

k 0T1

1� g1 0T1
r0 0 : �112�

Substituting these expressions into the remaining four
equations we arrive at the system of equations

_r0 � ÿker0 � g2r2 ;

_r2 � ker0 ÿ �g2 � B� r2 � br2 0 ; �113�
_r0 0 � ÿk 0er0 0 � g2 0r2 0 ;

_r2 0 � k 0e r0 0 � Br2 ÿ �g2 0 � b� r2 0 ;

where

ke � g1T1

1� g1T1
k ; k 0e �

g1 0T1

1� g1 0T1
k 0 �114�

describe the effective rate of triplet states pumping via excited
singlet states in both conformational forms. System of
equations (113) governs the slow relaxation of the system
involved, which proceeds upon rapid population of levels 1
and 1 0 and enables the calculation of the on- and off-interval
distributions in duration, as well as the determination of the
average durations of these intervals. Since the polymer
molecule can reside in two fluorescing conformational
forms, we should observe in its fluorescence two types of on-
intervals and two types of off-intervals.

12.3 Autocorrelation function
The fluorescence intensity is proportional to the effective
absorption coefficients which describe not only the exciton
absorption but also comprise the rate of energy transfer from
a polymer molecule to the luminescent trap. Since the
polymer molecule executes quantum jumps from one con-
formation to the other, the effective absorption coefficient
will fluctuate. Bymeasuring the fluctuating fluorescence QIT,
it is possible to construct the AF

g �2��t� � lim
t!1



I�t� I�t� t��

I�t� I�t�1�� � lim

t!1



I�t� I�t� t��


I�t��2 ; �115�

where I�t� is the fluorescence QIT. According to formula
(115), to measure the AF requires shifting the QIT by a time t
relative to itself and count the number of photon pairs with
the given time delay, which will be proportional to the QIT
length and the degree of on-intervals coincident in the two
QITs shifted by the time t relative to each other.

This brings up the question: how is it possible to
theoretically evaluate the AF? As shown in Section 7, the
AF is related to the full two-photon correlator p�t� by the

simple formula

p�t�
p�1� � g �2��t� :

The full two-photon correlator, which is defined as the
counting rate for the photon pairs separated by a time
interval t, may be calculated for a given microscopic model
of the radiating system. When there is only one fluorescent
state, the full two-photon correlator is defined as

p�t� � r1�t�
T1

; �116�

where r1�t� is the probability that the system is found in the
fluorescent state at the expiration of the time t after the
instant it emits a photon. For a molecule with the system of
energy levels depicted in Fig. 19, it is easily found that
r1�t� � kT1 r0�t� for kT1 5 1, and therefore

p�t� � kr0�t� ; �117�

i.e., the two-photon correlator is proportional to the absorp-
tion coefficient; therefore, the fluorescence intensity will be
proportional to the correlator. However, in our case there are
two fluorescent states 1 and 1 0, and, therefore, two types of
fluorescence with intensities I1 and I2. And therefore the
question arises: what probabilities should the expression for
the two-photon correlator comprise?

We assume for definiteness that the fluorescence with
intensities I1 and I2 relates to the states 1 and 1 0, respectively.
Let us assume that the fluorescence with the intensity I2 is
artificially removed from the measured QIT, and only the
fluorescence with the intensity I1 is retained. Then, I � I1 and
we arrive at the following expression

g
�2�
1 �t� � lim

t!1



I1�t� I1�t� t��


I1�t�
�2 � p�t�

p�1� ; �118�

where the two-photon correlator p�t� is defined by formula
(36). If, conversely, only the fluorescence with the intensity I2
is kept in the QIT, then one has

g
�2�
2 �t� � lim

t!1



I2�t� I2�t� t��


I2�t�
�2 � p 0�t�

p 0�1� ; �119�

where

p 0�t� � r1 0 �t�
T1

: �120�

The probabilities r1�t� and r1 0 �t� can be calculated with
the aid of formulas (112), and then the expressions for the
correlators take on the form

p�t� � k

1� g1T1
r0�t� � kr0�t� ; �121�

p 0�t� � k 0

1� g1 0T1
r0 0 �t� � k 0r0 0 �t� ;

i.e., in this case there are two types of two-photon correlators
and, consequently, two absorption coefficients and two
fluorescence types, because

p�t� / I1�t� ; p 0�t� / I2�t� : �122�
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The probabilities r0�t� and r0 0 �t� are found from the system
of equations (113) subject to the initial conditions r0�0� � 1
and r0 0 �0� � 1, respectively.

Formulas (121) define the intensities of two types of
fluorescence. The time dependence of fluorescence intensity
is determined by the time dependence of the probability that a
molecule is found in the ground state with one conformation
or the other.

The numbers of fluorescence photons counted during a
time interval t are expressed as

N1�t� �
� t

0

p�t� dt ; N2�t� �
� t

0

p 0�t� dt ; �123�

while the fluorescence intensities measured in experiment are
calculated from the relationships

I1 � N1�t�
t

; I2 � N2�t�
t

: �124�

These intensities as functions of the photon counting time t
were calculated by formulas (121) in Ref. [103]. For an
acquisition interval of 0.1 s employed in Ref. [12], the
fluorescence intensity fluctuates between the two values I1
and I2 indicated in Fig. 18. The ratio between these two
intensity values is equal to 1=3, i.e., to the ratio 25=75 Ð the
numerator and the denominator in the fraction correspond to
the positions of the two peaks in Fig. 18. The average decay
time of the excited singlet state to the triplet state was found to
be equal to about 0.1 s, and the average time of decay of one
polymer molecule conformation, involving transition to the
other, to about 12 s [103].

12.4 On- and off-interval distributions
With the aid of system of equations (113), it is also possible to
find the functions defining the on-interval distribution in
duration. These functions are of the exponential form:

w �1�on �t� �
1

t�1�on

exp

�
ÿ t

t�1�on

�
;

�125�
w �2�on �t� �

1

t�2�on

exp

�
ÿ t

t�2�on

�
;

where

1

t�1�on

� g1T1

1� g1T1 � kT1
k ;

�126�
1

t�2�on

� g1 0T1

1� g1 0T1 � k 0T1
k 0 :

It is evident from these results that the on-interval
distributions with different fluorescence intensity levels I1
and I2 may be described by exponential functions with
different exponents. Had the on-interval distributions with
different fluorescence intensity levels been separately mea-
sured, from the experiment we would have directly found t�1�on

and t�2�on . They now have a simple physical significance: these
times determine the average duration of the on-intervals with
moderate and bright fluorescence. However, van den Bout et
al. [12] measured the total on-interval distribution in dura-
tion:

w �1�on �t� � w �2�on �t� ; �127�

whence it follows that the reciprocal of the average on-
interval duration is a linear function of excitation intensity.
This is in perfect agreement with formulas (126), when
taken into account that kT1 5 1 and k 0T1 5 1. The
dependence of the on-interval duration on the light pump
also testifies to the fact that conformational changes occur
in the triplet state. Were it occurring in the ground state, the
on-interval duration would be independent of the light
pump intensity.

By using the experimentally determined average on-
interval duration and the simplified formula

1

ton
� g1T1k � 1

150
msÿ1 ; �128�

we can estimate the intercombination transition rate g1 for
this polymer. According to Ref. [12], approximately
4000 photons per second are recorded with a PM in the
measurement of single-molecule fluorescence. For a quantum
fluorescence photon detection efficiency of 10ÿ3 and a
quantum yield of fluorescence of about 0.1, we obtain that
k � 4000� 103 � 10 � 4� 107 sÿ1. Substituting this value
into the approximate formula (128) we obtain, for
T1 � 10ÿ9 s, the value of the intercombination transition
probability in the polymer molecule g1 � 1:6� 102 sÿ1, i.e.,
the singlet ± triplet transition is 106 times less probable than
the singlet ± singlet transition.

To summarize the aforesaid, we can draw the following
conclusion. Processing the fluctuating fluorescence data from
Ref. [12] with the aid of the theory of light absorption by
single molecules has allowed us to construct a theoretical
model [103] for the description of electronic excitation energy
transfer in a single polymer molecule to the fluorescent center
of this molecule, and to determine the magnitudes of
relaxation constants involved in this process.

The theoretical model [103] accounts for the following
experimental results of Ref. [12]:

(1) the existence of bursts of moderate and bright
fluorescence on the temporal scale of seconds;

(2) the alternation, on the temporal scale of seconds, of
dark off-intervals with two types of on-intervals with
fluorescence;

(3) the experimentally observed exponential character of
on- and off-interval distributions in duration;

(4) the independence of the average off-interval length toff
on the exciting light intensity, and the linear dependence of
the average on-interval length ton on the reciprocal of the
excitation intensity.

A quantitative agreement between experimental and
calculated data is achieved for the following values of the
relaxation constants of the polymer molecule: a conforma-
tional change rate of 0.1 sÿ1, a triplet state lifetime of 0.1 ±
0.5 s, an intercombination transition probability of 102 sÿ1 for
the transition from the excited singlet state to the triplet state.

The theory elaborated in Ref. [103] makes the following
new predictions:

(1) the existence of two types of on-intervals with different
fluorescence levels I1 and I2, and two types of dark off-
intervals which follow the on-intervals with a dim and bright
fluorescence I1 and I2;

(2) the dependence of the dim± bright fluorescence
intensity ratio I1=I2 on the signal acquisition interval which
was fixed at about 0.1 s in Ref. [12].
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An experimental verification of the above predictions and
of the significance of the triplet state for conformational
changes would substantially advance our understanding of
the energy transfer processes in polymer chains.

13. Blinking fluorescence
of semiconductor nanocrystals

Quantum dots (QDs) in semiconductors are highly attractive
objects on the basis of which efficient lasers can be developed,
because they possess narrow fluorescence lines [24]. That is
why the electro- and photoluminescence of QDs as well as of
semiconductor nanocrystals (NCs) has been much investi-
gated. In the photoluminescence studies of single QDs and
NCs, it turned out that some of them exhibit fluorescence
fluctuating in intensity, i.e., it is blinking. However, not all
QDs or NCs exhibit blinking fluorescence. Among, for
instance, InP quantum dots, blinking fluorescence is encoun-
tered in one dot per million [32]. On the other hand, in CdSe
NCs, the fluorescence blinker is encountered significantly
more frequently [27 ± 31].

The fluorescence flicker signifies that the temporal on-
intervals, during which the fluorescence exhibits appreciable
intensity, alternate with off-intervals, when the fluorescence is
completely absent or low in intensity. The flicker is rather
simply explained in the case of a single moleculeÐ even for so
complex a molecule as a polymer. However, in an NC there
aremany absorbers and emitters.Why does their fluorescence
flicker and what is the character of the on- and off-
distributions in QDs and semiconductor nanocrystals?

The question of why the fluorescence of a single CdSe QD
with a ZnS shell flickers was first posed nine years ago [23]. At
the same time, the problem of blinking QD fluorescence was
theoretically explained on the basis of the model involving the
Auger ionization of the QD with subsequent neutralization
[107]. Although this model provided an explanation for the
fluorescence flicker of such a polyatomic object as a QD, it
predicted an exponential distribution in duration of the time
intervals with and without fluorescence (of the on- and off-
intervals). It is precisely this kind of on- and off-interval
distributions that is commonly observed in the fluorescence of
single molecules.

However, even in the first investigations of the blinking
fluorescence of QDs and nanocrystals [23, 27] it was noted
that the on- and off-interval distributions proved to be
manifestly nonexponential. That is why the off-interval
distribution measured by Kuno et al. [28] five years ago in
the fluorescence of CdSe NCs, which obeys the tÿ1:6 power
law, came to be an evident challenge to the theory. Sub-
sequent research showed that the power character of the off-
interval distribution is inherent not only in CdSe NCs, but in
CdTe [31] and CdS [34] nanocrystals as well. Porous silicon
NCs were also found to exhibit blinking fluorescence with a
1=t 2:2 power distribution law for the on-intervals, and 1=t 1:3

for the off-intervals [108, 109].
The most surprising fact was that the on-interval

distribution measured in Refs [29, 31] for CdSe NCs was
also described by a law close to tÿ1:6, like the off-interval
distribution. This suggested an idea to the authors of
Ref. [29] that there exists some universal cause for the
manifestation of the power law with this exponent in the
on- and off-interval distribution functions. More recently
[110, 111], the author of the present review came up with a
simple physical model within the framework of which it is

possible to provide a reasonable explanation for the power-
law statistics of the on-interval distribution measured for
CdSe NCs in Refs [29, 31].

13.1 Model for blinking fluorescence
The presently adopted model of the blinking fluorescence of a
single CdSe NC wrapped up in the wide-gap ZnS semicon-
ductor is based on the ionization and subsequent neutraliza-
tion of such an NC as a result of jumps occurring throughout
the period of continuous laser irradiation of the NC.
According to this model, free electron ± hole (EH) pairs,
which lose energy and transform into excitons, are con-
stantly produced in the NC under the action of laser light.
Since the Bohr radius of a free exciton, which is equal to
several nanometers, is comparable to or exceeds the NC
dimension, the wave function of this exciton fills the entire
NC [25]. In the presence of at least two excitons in the NC
there occurs Auger ionization of the NC, whereby the energy
of one vanishing exciton is spent on electron (hole) injection
into the shell material, where the electron (hole) falls into a
trap. In the ionized state, the NC cannot radiate and the glow
dies out. The existence of a positive charge in an NC, which
was a multiple of one or two electron charges, was experi-
mentally discovered [112, 113]. Some time later, the electron
leaves the trap to find itself in the NC again. The nanocrystal
becomes neutral, and the fluorescence is restored.

The power off-interval distribution law prompts us that
there exists a broad distribution of relaxation times of the
above traps, i.e., of the relaxation rates gk � 1=tk, where k is
the trap number. As shown below, it is really possible to
obtain the power off-interval distribution at a proper choice
of the trap distribution over the electron relaxation rates.
Accounting for power on-interval statistics encounters
greater difficulties. The simple and natural assumption that
the electron capture rates, whenAuger ionization is created in
various traps, will be differed is evidently inadequate to
explain the powerlike statistics of on-intervals. Qualitatively
discussed in Ref. [29] as the possible reason for the power-law
on-interval statistics is the thermal vibrational modulation of
the barrier that separates the NC and the trap.

In an NC with a power statistics, evidently the excitons or
EH pairs which participate in Auger ionization should differ
from each other in the rate with which their electrons escape
from the NC. This difference is described by the subscript j
which indicates the Auger ionization rate Gj � 1=tAj of a
given exciton. Furthermore, we are forced to assume that the
rates Gj may differ by several orders of magnitude for
different excitons or EH pairs. This assumption is impossible
to comprehend if one relies on the conventional notion of an
exciton as a bound EH pair whose wave function is
delocalized throughout the NC.

Efros et al. [25] calculated the energy levels and wave
functions of excitons in an NC. The s- and p-state eigenfunc-
tions of a spherical potential well were taken for the wave
function of an electron and a hole; the NC atoms were
assumed to form a perfect crystal. Two of five exciton states
are optically passive. It is precisely this model of fluorescent
excitons that underlies the Efros ±Rosen model which
predicts the exponential on-interval statistics.

The Efros ±Rosen model [107] operates with the exciton
wave function delocalized over the entire NC, and the states
of no other type emerge in this model. However, the NC has a
boundary, and therefore the NC atoms located at the
boundary interact with the shell atoms and with each other
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differently, which should give rise to surface energy levels in
the NC. To these levels there corresponds an EH-pair wave
function localized in the NC subsurface layer. The energy of
these localized EH pairs is located above the NC-delocalized
exciton band, and therefore these states most likely do not
take an active part in luminescence. However, they can play a
role of paramount importance in Auger ionization, i.e., affect
the on-interval distribution. If the NC is represented by a
sphere, thewave function of the surface states will be localized
in a narrow spherical layer adjacent to the NC boundary on
the inside. Since the atoms of two different semiconductors
are contiguous at their interface, there also exists a nonide-
ality of the electronic system of the atoms along the surface of
the above spherical layer. Consequently, the atoms of the
layer, described by different angles y and j of the spherical
coordinate systemwith the origin at the center of theNC,may
also differ from each other due to their local environment.
That is why the collective state of the spherical layer will break
up into several states localized at different points in the layer.
The electron ± hole pairs localized in subsurface layers with
different radii and at different points of these layers will be
numbered by a subscript j, and the rate of Auger ionization
with the participation of such a localized EH pair will be
denoted by Gj.

The above-considered NCmodel may be described by the
following system of balance equations

_Pj � ÿ
�

1

T1
� Gj

�
Pj � LP0 ;

_P0 � Pj

T1
ÿ LP0 �

X
k

gkPj k ; �129�

_Pjk � ÿgkPj k � GjkPj :

Here, P0 is the probability of finding an EH pair in an NC,
Pj is the probability of finding, in addition to this pair, the jth
electron which will subsequently find itself in some trap, and
Pjk is the probability of finding an electron in the kth trap
upon EH decay via the jth channel, along with the NC devoid
of EH pairs. Clearly, Gjk is the probability of the jth EH-pair
decay with its electron making its way into the kth trap, and
gk is the electron escape probability for the kth trap. It is also
evident that P0 and Pj describe the states of a neutral NC in
the presence of fluorescence, i.e., the probability that the NC
is in the on-state, while Pjk describe the ionized NC states in
the absence of fluorescence, i.e., the probability that the NC is
in the off-state.

From simple physical considerations it follows that the
probabilities of an NC residence in the on- and off-states
should tend to zero as the duration of residence tends to
infinity. Therefore, they cannot be determined from the
system of equations (129), because it follows from Eqns (129)
that the probabilities satisfying this system of equation are
related by a conservation law

P0 � Pj �
X
k

Pj k � 1 :

System (129) governs the dynamics of the QD ionization ±
neutralization reversible process and permits the calculation
of, for instance, the fluorescence AF g �2��t�. The equations for
P on
j � Pj � P0 andP

off
k �

P
j Pj k can easily be foundwith the

aid of the system of equations (129) in the following way.
On-states. To derive the equations for the on-state

distribution function requires discarding in Eqns (129) the

term which describes the off-to-on state transition, i.e., the
term

P
k gkPj k. Then, the first two equations, which contain

the fluorescent state populations, decouple from the rest and
the on-state distribution function can be found from these
two equations

_Pj � ÿ
�

1

T1
� Gj

�
Pj � LP0 ;

�130�
_P0 � Pj

T1
ÿ LP0 :

Clearly, Pon
j � P0 � Pj is the probability of residence in

the on-state with the possibility that this state decays via the
jth channel. Since LT1 5 1, we may put _Pj � 0 in the case
when only the slow dynamics is of interest. In this approxima-
tion, we find from the first equation of system (130) that

Pj � LT1

1� GjT1
P0 : �131�

We add up the equations of system (130) to obtain

_P on
j � ÿLj P

on
j ; �132�

where Lj is the rate of on-state decay via the jth channel, and

Lj � L
GjT1

1� GjT1 � LT1
: �133�

By summation over allNA NC ionization channels, we arrive
at the following expression for the on-interval distribution
function

won�t� � 1

NA

XNA

j� 1

Lj exp �ÿLjt� : �134�

The experimental data of Refs [29, 31] testify to the fact that
EH pairs with different ionization times ranging by three
orders of magnitude may exist in a CdSe NC.

Off-states. Derivation of the equations for the off-state
distribution function requires neglecting in system of equa-
tions (129) the term which describes the on-to-off state
transition, i.e., the term GjkPj. Then, the third equation of
system (129) is independent of the first two, and the off-state
distribution function can be found from the equation

_Pjk � ÿgkPj k : �135�
By solving this equation we find the expression for the

probability Poff
k �

PNA

j� 1 Pjk that the system is revealed itself
in the ionized state as a consequence of an electron arriving at
the kth trap, and the expression for the function describing
the off-interval distribution in duration:

w off
k � gk exp �ÿgkt� : �136�

The distribution function for the off-intervals of the entire
NC, provided that an electron is in some trap, assumes the
form

woff�t� � 1

Nt

XNt

k� 1

gk exp �ÿgkt� ; �137�

where Nt is the total number of traps in the ionization of the
NC. The experimental results of Refs [29, 30] testify that traps
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with ionization times differing by three ± five orders of
magnitude may exist in a CdSe NC.

13.2 Physical on-interval model
By moving from summation to integration in formula (134),
we obtain the following expression

won�t� �
� j2

j1

L� j � exp �ÿL� j �t�Non� j � d j : �138�

Here, Non describes the distribution of the probabilities of
observing light-excited localized excitons in an NC. Since the
distribution of the rates Lj spans several orders of magnitude,
the rate is expediently taken in the form

L� j � � L010
ÿj : �139�

The variable j may be expressed in terms of the spherical
layer radius r:

j � j1 � a�r0 ÿ r� ; j2 � j1 � ar0 ; L0 � Lmax10
j1 : �140�

Upon this change, expression (138) assumes the form

won�t� �
� r0

0

L�r� exp ÿÿL�r�t�Non�r� dr

�
� 1

0

L�x� exp ÿÿL�x�t�Non�x� dx ; �141�

where x � r=r0 is the dimensionless radius, and

L�x� � Lmin

�
Lmax

Lmin

�x

; �142�

Lmin � L010
ÿj2 ; Lmax � L010

ÿj1 :

Let us consider an NC as a sphere of radius r0, and the
variable r as the radial variable of an atom in the spherical
layer of the NC. Then, it follows from formula (142) that the
electrons located at the periphery of the NC possess the
highest Auger ionization rate. Figure 20a depicts the distribu-
tion function Non�x� � 3x 2 (curve 3). It corresponds to the
case where localized EH pairs, which are responsible for the
Auger ionization, are evenly distributed over the NC. Also
shown are two functions Non corresponding to the distribu-
tion of ionizable EH pairs primarily in the subsurface
spherical layer of the NC (curves 1 and 2). In Fig. 20b, solid
lines 1, 2, and 3 represent the results of calculations by
formulas (141) and (142) with functions 1, 2, and 3 plotted
in Fig. 20a. It is easily seen that the calculated functions
descend by the 1=t 1�m law with m � 0:7, 0.5, and 0.2 for
curves 1, 2, and 3, respectively. If we take the function
Non�x� � 3x 2, the on-interval distribution function will
decrease with an exponent ofÿ1:2 throughout a time interval
spanning eight orders of magnitude. However, for a stronger
localization of the ionizable excitons near the surface we
obtain the laws 1=t 1:7 and 1=t 1:5. The higher the degree of
exciton localization, the steeper the decrease in the on-interval
distribution function. Calculations indicate that the distribu-
tion function Non�x� / L�x�m substituted into formula (141)
yields the distribution functionwon�t� / tÿ�1�m� throughout a
time interval spanning n orders of magnitude provided that

log
Lmax

Lmin
� j2 ÿ j1 > n : �143�

Condition (143) signifies that the time interval between
the shortest �1=Lmax� and longest �1=Lmin� ionization times
exceeds the time interval used in experiment. Solid curve 1 and
the dashed curve in Fig. 20b pertain to the same distribution
function described by curve 1 in Fig. 20a. The dashed curve in
Fig. 20b, which was calculated by formulas (141) and (142)
with violation of condition (143), demonstrates what results
from the violation of condition (143).

Figure 21 displays the experimental on-interval distribu-
tion data for the fluorescence of a CdSe NC with a ZnS shell
[31] and the calculated results [110, 111]. In the calculation,
use was made of a probability density similar to that depicted
in Fig. 20a with differentN�x� function build-up rates. From
Fig. 21 it follows that the on-interval distribution is close to
the tÿ1:6 power law and yet essentially dependent on the
excitation intensity and the temperature. It also follows from
Fig. 21 that a satisfactory agreement with experiment is
possible to achieve by assuming that the probability of
finding localized excitons participating in ionization process
is higher at the periphery of the NC than at its center.

The temperature dependence of the on-interval distribu-
tion is most likely an indication that the Auger ionization
mechanism is not the only one. Nirmal et al. [23] and Kuno et
al. [28] have advanced arguments for thermal ionization. In a
real NC, both mechanisms are supposedly involved. A
consideration of the kinetic equations for an NC with the
inclusion of the thermal ionization mechanism also leads to
formulas (134) and (137), but the ionization constant Lj will
depend on the temperature in this case.

13.3 Off-interval model
InCdSe [24, 27 ± 29, 31], CdTe [31], andCdS [34]NCs, the off-
interval statistics were investigated more extensively than the
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Figure 20.Three distribution functionsNon�x� (a) and their corresponding
on-interval distribution functions (b) calculated by formulas (141) and

(142) for Lmax � 107 sÿ1, Lmin � 10ÿ5 sÿ1 (solid curves 1 ± 3) and

Lmax � 104 sÿ1, Lmin � 10ÿ3 sÿ1 (dashed line) [106].
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on-interval statistics. The off-interval distribution was found
to obey the 1=t 1�m law, with m ranging from 0.5 to 0.7. The
validity range of this power-law statistics amounts to five
orders of magnitude on the time scale. It was also verified that
the physical factors responsible for the bend of the curves in
Fig. 21 do not change the off-interval distribution power law.
Let us find under what physical conditions the power-law off-
interval statistics may manifest themselves.

Clearly, formula (137) for the off-interval distribution
function can be brought to the form

woff�t� �
� k2

k1

g�k� exp ÿÿg�k�t� n�k� dk ; �144�

where n�k� is the function of the density of states integrally
normalized to unity. We will find the form of the functions
g�k� and n�k�which are responsible for the power distribution
law.We assume that the traps are located in the shell material.
Since g�k� is the kth-trap neutralization rate, whichmay range
by several orders of magnitude according to experimental
data, we will take this function in the form g�k� �
g0 exp �ÿl� � g010

ÿk, i.e., accept the tunnel neutralization
mechanism. The lower l is, the higher the transmittance of the
potential barrier which separates the trap and the QD.
Clearly, gmax � g010

ÿk1 and gmin � g010
ÿk2 . These formulas

suggest that the traps located near the NC surface possess the
highest electron escape rate. It is also evident that themajority
of traps are resided in the part of the shell adjacent to the NC
boundary, i.e., the closer to the NC boundary, the greater the
number of traps. Considering the aforesaid about the
dependence of the trap deactivation rate on how close the
trap is to the NC boundary, the last statement relating to the
number of traps can be mathematically written down as

n�k� � Am gm�k� ; �145�
where Am is the normalization factor. Numerical calculation
shows that the integration of expression (144) with this
probability density yields a power-form distribution

woff�t� / tÿ�1�m� �146�
provided uniquely that the interval �1=gmax; 1=gmin� exceeds
the time interval in which the off-interval distribution
function is investigated.

14. Conclusions

The end of the past century and the beginning of this century
saw a rapid development of nanotechnologies, which will
inevitably bring about an intensive advancement of the
physics of ultrafine particles in the near future. In this case,
no realm of solid-state physics will be untouched. Even now
there is a wealth of papers concerned with the study of
dielectric, semiconductor, and metal nanoparticles. Specific
features are immanent in nanoparticle physics because
nanoparticles exhibit new properties which are not inherent
in bulk materials, and this opens up new vistas for
technologies. It is well know, for instance, that a macro-
scopic metal sample does not fluoresce; moreover, it is a
`quencher' of the fluorescence of organicmolecules located on
its surface. However, when the macroscopic metal sample is
reduced to a nano-sized one, fluorescence must occur,
because a single metal atom fluoresces. The question of
what the number of metal atoms is whereby a nanoparticle
acquires or loses metal properties is among those that still
remain open. It is evident that a small number of interacting
atoms or molecules may be treated as a quasimolecule
irrespective of whether these atoms, when combined in a
macroscopic sample, make up a metal, a semiconductor, or a
dielectric. That is why the physics of nanoparticles may be
termed nanophysics. Nanophysics is significantly different
from the physics of macroscopic objects by the nature of the
problems under discussion. In the present review, this has
been shown and discussed at length by the example of the
fluorescence of single molecules and semiconductor nano-
crystals.

In nanophysics, specific problems also arise in the
comparison of theory and experiment. The interrelation of
theory and experiment in nanophysics, which is schematically
diagrammed in Fig. 1, has been comprehensively discussed in
this review. However, not only do the new problems make
their appearance in nanophysics, but also new possibilities for
gathering physical information open up. This has been
demonstrated in our review, in which the key words are a
single nanoparticle and fluorescence fluctuations. Hopefully, I
have managed to show that fluctuating fluorescence can serve
as a radically new information source for the construction of
physical models both for complex molecules like a polymer
molecule and for semiconductor nanocrystals.

Not all experimental results that deserve discussion have
been considered in the present review Ð far from it. I have
enlarged on only those experimental results which could be
theoretically processed. That is why I discussed only the
papers in which the physical information was gained with the
aid of fluorescence photons, for the theory of single
nanoparticle fluorescence has already been adequately
developed. Left beyond the scope of the review was actually
the entire nanomicroscopy which makes use of scanning
tunnel microscopes, atomic-force microscopes, and scanning
near-field microscopes in its investigations. The number of
papers in this area is enormous and is increasing in an
avalanche-like manner. However, their inherent feature is
the prevalence of qualitative discussions of experimental
results and a nearly complete absence of theory. This is the
reason why this body of papers remained outside the scope
of the present review.

This work was supported by the Russian Foundation for
Basic Research (grant No. 04-02-17024).
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Figure 21. On-interval distribution in a CdSe NC with a ZnS shell under

different physical conditions [31]. The solid curves correspond to the

calculation by formula (143) withLmin � 10ÿ2 sÿ1 andLmax � 103 sÿ1, and
different functions Non�x�.
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