
A joint scientific session of the Physical Sciences Division of
the Russian Academy of Sciences (RAS) and the Joint
Physical Society of the Russian Federation was held on
September 28, 2005 in the Conference Hall of the Lebedev
Physics Institute, RAS under the name ``Nonlinear acoustic
diagnostics.'' The following reports were presented at the
session:

(1) Rudenko O V (Lomonosov Moscow State University)
``Giant nonlinearities in structurally inhomogeneous media
and the fundamentals of nonlinear acoustic diagnostics
methods'';

(2) Zaitsev V Yu, Nazarov V E, Talanov V I (Institute of
Applied Physics, RAS, Nizhny Novgorod) ```Nonclassical'
manifestations of microstructure-induced nonlinearities: new
prospects for acoustic diagnostics'';

(3) Esipov I B, Rybak S A, Serebryanyi A N (Andreev
Acoustics Institute, RAS) ``Nonlinear acoustic diagnostics of
the ocean and rock'';

(4) Preobrazhenskii V L (Research Center for Wave
Studies, Prokhorov Institute of General Physics, RAS,
European Laboratory in Nonlinear Magneto-acoustics
(LEMAC)) ``Parametrically phase-conjugate waves: applica-
tions in nonlinear acoustic imaging and diagnostics.''

An expanded version of the report by Rudenko is
published in the `Physics of our days' section of this issue.
An abridged version of reports 2 ± 4 is given below.
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`Nonclassical' manifestations
of microstructure-induced nonlinearities:
new prospects for acoustic diagnostics

V Yu Zaitsev, V E Nazarov, V I Talanov

1. `Classical' lattice nonlinearity and
microstructure-induced acoustic nonlinearity

In solid-state physics, deviations from linear elasticity are
traditionally attributed to a weak unharmonicity of the
interatomic potential [1]. To describe such nonlinearity, it is
usually sufficient to amend the linear term in Hooke's law by

terms proportional to the square and cube of the deformation
tensor, s � E �e� g �2�e2 � g �3�e3 � . . .�, where s is the elastic
tension, e is the deformation tensor, and E is the elastic
modulus. For simplification, we limit our analysis to long-
itudinal deformations. For homogeneous amorphous materi-
als and monocrystals, the dimensionless quadratic and cubic
nonlinearity coefficients g �2� and g �3� are typically of the order
of unity, whereas the deformations are usually quite small (for
instance, e < 10ÿ5 even for intense acoustic loads and
e < 10ÿ3 for `usual' mechanical loads). Therefore, nonlinear
corrections are usually very small in comparison with the
linear term, but just these corrections are responsible for the
well-known effects of thermal expansion and the dependence
of the velocity of elastic waves on mechanical load and
temperature. Based on such effects, the estimated nonlinear-
ity coefficients are in good agreement with the conventionally
adopted shape of the interatomic potential characterized by
weak unharmonicity [1]. But the discrepancy of 2 to 4 orders
of magnitude between the theoretical estimates of the break-
down threshold loads and the experimental data for the same
potential was already found in the 1920s. The search for the
reasons for this discrepancy has led to the understanding of
the importance of microstructure imperfections and has
significantly contributed to the formation of an important
research field, the physics of dislocations.

Breakdown is an extreme form of materials' nonlinear
behavior. Even though it is extremely sensitive to micro-
structure imperfections, it obviously cannot be used for
diagnostic purposes. The amplitudes of deformations in
the acoustic range are smaller than the breakdown deforma-
tions by several orders of magnitude; however, they already
reveal microdefects by modified nonlinear properties of the
medium. In the 1970s, the changes in metal microstructure
due to accumulated fatigue-caused damage were first
experimentally observed to result in a severalfold higher
acoustic nonlinearity manifesting itself, for instance, in a
significantly larger amplitude of higher harmonics of the
probing acoustic wave [2 ± 4]. Later, it was found that in
contrast to the manifestations of the `classical' power-law
elastic nonlinearities, qualitative modifications of nonlinear
effects may often occur, including functional modifications
in amplitude dependences, the appearance of new nonlinear
dissipative properties, and hysteresis. Data of this kind are
available for many very different media, such as metals with
fatigue- or heat-caused damage, rocks, many man-made
materials (including composites) with crack-like imperfec-
tions, delaminations and inter-granular contacts [2 ± 12],
metal nanocrystals [13], and granular media [14].

From the standpoint of the possible use of nonlinear
acoustic effects in diagnostics, it is especially important that
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the high `structural sensitivity' of the acoustic nonlinearity
(concerning both its quantitative level and qualitative
features) is often observed at the very first stage of damage
of a material when its linear elastic moduli remain practically
unchanged. Traditional linear methods, e.g., based on
registering variations in the velocities of propagation of
elastic waves or the equivalently changing fundamental
frequencies cannot yet produce a definitive result at this
stage of material damage.

2. Why is the variability of the nonlinear
acoustic properties so great?

Due to the diversity of types of microstructural imperfections
and to the broad range of media demonstrating anomalous
acoustic nonlinearity both qualitatively and quantitatively,
themechanisms of its originmay also seem to be quite diverse,
and specific physical models of nonlinear properties should
therefore have predictive force only for rather limited classes
of materials. On the other hand, alternative purely phenom-
enological, experiment-based stress ± strain relations are
more general, but do not allow relating the nonlinear
properties of the medium to its microstructural features.
Therefore, the models needed should reasonably compro-
mise between the above-mentioned extreme cases and be
useful for predictions.

The analysis of copious data by various groups on
microstructure-induced acoustic nonlinearity (disregarding
the exotic interactions of the acoustic mode with the other
nonacoustic strongly nonlinear mode, which is coupled, for
example, with the electron or spin subsystem) allows making
the following fairly general statement. In most cases of
microinhomogeneous media, a strong increase in acoustic
nonlinearity of a material results from the presence of some
structural features with strongly decreased rigidity, the sizes
of these soft imperfections being small on the scale of the
elastic wavelength, and their concentration being also small
(in the sense specified below). Cracks are characteristic
examples of such relatively soft imperfections. Various
known models agree that a crack may be completely closed
by the compressing load that produces a strain in the
surrounding medium approximately equal to the ratio of the
crack opening d to its diameter L. This actually means that a
crack is approximately L=d times softer than the surrounding
medium. The values of the d=L ratio are often quite low,
10ÿ3ÿ10ÿ5. Another characteristic example is intergrain
contacts, which, due to their geometry (small contact area),
are much more compressible than the grain bulk material.
Aggregates of dislocations at grain boundaries in polycrystals
are also significantly more compliant, first and foremost, to
tangential loads, than the surrounding areas consisting of
more homogeneous material.

Without specifying the types of imperfections, the features
noted above can be described by a rather simple rheological
model of a microinhomogeneous medium with soft contrast-
ing imperfections [15, 16]. Even a one-dimensional variant of
the model allows drawing some nontrivial conclusions. The
model is based on the evident statement that nonlinearity
(that is, the maximum deviations from Hooke's law) and
increased dissipation are localized in the imperfections due to
their high compressibility and, therefore, due to locally
increased strain and the strain rate. The homogeneous
medium that surrounds imperfections can be viewed here as
a linearly elastic material that obeys Hooke's law, s � E e.

This model of a microinhomogeneous medium is schemati-
cally given in Fig. 1. In this model, the most important
parameters of imperfections are their compliance parameter
(relative to the elastic modulus E of the matrix medium) given
by a small parameter z5 1, the concentration of soft
imperfections n, that is, in the one-dimensional case, the
linear concentration of soft imperfections, or, in the three-
dimensional case, their relative volume. We consider the
imperfection size to be much smaller than the elastic wave
length, and the imperfections are considered to be visco-
elastic and weakly nonlinear when the strain of the imperfec-
tions is measured on their own scale (we note that this local
strain must be distinguished from the mean macroscopic
strain). For each imperfection with the compliance para-
meter z, the equation of state taking the above properties
into account is

s � zE
�
e1 � F �e1�

�� g
de1
dt

: �1�
The parameter g describes the effective viscosity of imperfec-
tions and the function F �e1� describes their nonlinearity. For
instance, F �e1� � ge21 for quadratically nonlinear defects. The
parameter g here characterizes the imperfection nonlinearity
on the scale of its own deformation e1, the magnitude of g
being in the standard range of several units. Using this model
of a microinhomogeneous medium, for a low concentration
of identical defects, we obtain [16] the following relation
between the macroscopic material strain and stress:

s�e� � Eeÿ EnO
�t
ÿ1

e�t� exp �ÿ zO�tÿ t�� dt
� nEOz

�t
ÿ1

exp
�ÿ zO�tÿ t��

� F

�
O
�t
ÿ1

e�t 0� exp �ÿ zO�tÿ t 0�� dt 0� dt : �2�

Here, the notation O � E=g is used, with zO denoting the
relaxation frequency of the defects. In the case of different
defects, averaging over their properties, that is, over the
distribution n�z; g�, must also be included in this equation.
The first term on the right-hand side of (2) comes from the
linear matrix medium, the second term is from the dissipation
and linear reduction of the elastic modulus due to imperfec-
tions, and the third nonlinear term accounts for the combined
effects of nonlinear and relaxational properties of imperfec-
tions. This term demonstrates the essence of the `contrast
structural mechanism' of the nonlinearity increase due to
locally strongly increased strain at the soft defects. This is
especially clear in the quasistatic limit. In this case, for
instance, for the defects characterizes by a power-type
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Figure 1.A rheologicalmodel of amediumwith embedded contrasting soft

defect inclusions at which nonlinearity and dissipation are localized.
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nonlinearity of the nth order, with F �e1� � g�n�e�n�1 , the
macroscopic stress ± strain relation takes the simple form

s � eEeff

ÿ
1� enÿ1g�n�eff

�
;

which is valid for 04n4 1 [15], where

Eeff

E
� 1

1ÿ n� n=z
;

g�n�eff

g�n�
� 1ÿ n� n=z n

�1ÿ n� n=z� n : �3�

These relations imply (see Fig. 2) that the locally increased
deformation at the soft defects (characterized by the com-
pliance parameter z5 1) predominantlymanifests itself in the
growth of the nonlinear terms in the equation of state rather
than in the drop in the linear elastic modulus. For a given
value of the compliance parameter z, there is a range of
imperfection concentrations n < z5 1 where the linear
elastic modulus remains practically unchanged, whereas
the material's nonlinear parameter already grows several-
fold (see Fig. 2). In this range of low concentrations, linear
methods are not sensitive enough to produce a definite
result and the use of nonlinear effects is attractive for early
detection of `weak features,' primarily, the incipient of
cracks in material. Interestingly, the dependence of the
nonlinearity coefficients g�n�eff =g

�n� of different orders on the
concentration of imperfections n has a clear maximum
g�n�eff =g

�n� � ��nÿ 1�=z � nÿ1=nn 4 1.With the higher nonlinear-
ity order, the maximum is reached at the lower imperfection
concentration nopt � z=�nÿ 1�5 1 and themaximum value is
greater. This nonmonotonic nonlinearity growth is caused by
the interplay between the locally increased deformations at
the soft defects and their concentration (volume content). The
analogous phenomenon is known in acoustics of gas ± liquid
mixtures exhibiting strongly increased nonlinearity due to the
structural `contrast mechanism,' whereas pure liquids and
gases are classical weakly nonlinear media [17].

3. Qualitative `nonclassical' features
of the microstructure-induced nonlinearity

In the case of solids, the soft defects that we consider have
some features, in addition to compliance itself, leading to
unusual consequences. For example, microcontact-like and
crack-like imperfections have both relaxational and specific
nonlinear properties. In particular, the Hertz contacts have
the fractional nonlinearity exponent 3/2 with respect to
compression load and at the same time behave as diods,
because they do not `hold' a tensile load [14]. In addition, due
to friction and adhesion, the same imperfections may result in
stress ± strain hysteresis of the material [5 ± 7].

These features combined provide a wide diversity of
`nonclassical' manifestations of structure-induced nonlinear-
ity. For example, even simplified Eqn (2) shows that for the
quite common quadratic elastic nonlinearity F �e1� � ge21 of
the defects, their relaxational properties result in a pro-
nounced frequency dependence of the effective nonlinear
parameters, which is not typical of the classical lattice
nonlinearity. Actually, a traditional intuitive approach,
which accounts for nonlinearity and relaxation via additive
terms, does not work for a microinhomogeneous medium.
The additive approach becomes inapplicable because both
nonlinear and relaxational properties of a microinhomoge-
neousmedium aremainly localized in the same places, the soft
imperfections. Thus, the relaxational `freezing' of the
response of imperfections to acoustic waves with frequencies
greatly exceeding the relaxational frequency zO simulta-
neously weakens their nonlinear response. For example, for
the conventionally studied frequency mixing effect, the
effective values of the quadratic nonlinear parameter may be
considerably lower for the sum harmonics than for the
difference-frequency harmonics.

Equation (2) also predicts another nontrivial manifesta-
tion of this contrast soft ± rigid microheterogeneity of the
medium: at moderate static and dynamic strains (e.g.,
e � 10ÿ5, typical of acoustic waves), there is a possibility of
a severalfold change in the acoustic dissipation in micro-
inhomogeneous materials due to the combined action of the
linear relaxational dissipation and the purely elastic non-
linearity F�e1� [18]. It is important that at such strong changes
in the dissipation, the complementary changes in the linear
elasticity may still be very small, about 1%. Indeed, almost all
dissipation in microinhomogeneous media is localized at soft
defects such as cracks, which only weakly affect the macro-
scopic elastic modulus at small concentration. Therefore,
even the complete closing of the cracks under compressing
loadmay change thematerial elasticity merely insignificantly,
whereas the relative change of dissipation may be arbitrarily
large (from a finite value down to nearly zero). In a
homogeneous medium, when the Kelvin ±Voight or similar
classical rheological visco-elastic models are applicable, such
a drastic difference in variations of elasticity and dissipation is
impossible.

The lack of space does not allow us to discuss these and
other interesting consequences of the rheological model in
more detail [15, 16]. We note that its implications are
supported by the direct analysis of nonlinear and thermo-
elastic effects at Hertzian microcontacts in cracks [11, 12].
First, this analysis predicts a highly increased level of
thermoelastic losses, up to 4 ± 6 orders of magnitude larger
than the estimates of the thermoelastic contribution to
dissipation conventionally discussed in geophysics. Second,
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Figure 2. Complementary relative changes in the elastic modulus Eeff=E
and in the quadratic nonlinearity parameter g�2�eff =g

�2� for a microinhomo-

geneous medium containing defects with the relative compliance para-

meter z � 10ÿ4, which is typical of cracks.
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it explains the high sensitivity of these losses to quitemoderate
average deformation of the medium. Indeed, the internal
dissipating contacts may be considerably disturbed at typical
acoustic strains e � 10ÿ7 ± 10ÿ5, which are much smaller than
the mean strains e � 10ÿ4 ± 10ÿ3 required for the complete
closing/opening of cracks.

4. Experimental examples

One of the first impressive demonstrations of the high
sensitivity of acoustic nonlinearity to microstructural imper-
fections was the application of this phenomenon to quality
control of the adhesion bonding of the thermal-insulation tiles
for the Soviet space shuttle `Buran.' Themethod exploited the
enhanced level of the second harmonic at the local vibrational
excitation of the debonded area [19]. The standard ultrasonic
defectoscopy cannot be applied there because of the too high
absorption of ultrasound by the tile material.

In many cases, however, the modulation of a probe wave
by another independently generated perturbation (including

impact perturbations) is more convenient than the registra-
tion of higher harmonics. An example of using the modula-
tion spectra to detect a single crack of several millimeters in
size in a railroad wheel axle is given in Fig. 3. The probe
ultrasonic wave was modulated by the impact-generated
oscillations at eigenfrequencies of the samples.

Unlike the absorption in homogeneousmedia, the absorp-
tion in microinhomogeneous media is pronouncedly ampli-
tude-dependent. Together with the conventional modulation
technique, this amplitude-dependent dissipation allows using
the effect of amplitude modulation transfer from a carrier
wave (`pump') to another initially nonmodulated probe wave
for the purposes of diagnostics. This acoustic effect is a direct
analog of the so-called Luxemburg ±Gorky effect of cross-
modulation of radio waves in ionosphere. Figure 4 shows an
example of using the acoustical cross-modulation technique
to monitor structural rearrangements in a grainy medium
subjected to weak artificial 'seismic events' in laboratory
conditions [21]. In the experiment, the amplitude modulation
(30 Hz) was transferred from the carrier `pump' wave (7 kHz)
to a probe wave (10 kHz).

Successful field observations of the probe seismic wave
modulation under the action of another deformation field [22,
23] and seismic-wave self-action [24] at amplitudes that are
typical of the existing seismic sources [22 ± 25] suggest that the
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nonlinear technique can be useful not only in nondestructive
testing but also in seismic monitoring (at least at seismic-
engineering scales of several hundred meters). Figure 5
presents an example of the seismic wave phase shift as a
function of the excitation amplitude for the propagation
distance 120 m in sandy sediments [24]. Another example of
a field seismic experiment [23] is given in Fig. 6. Here, a
seismic wave from a powerful down-hole source [25] exhibits
amplitude and phase modulation by the field of tidal
deformations.

Other examples of `nonclassical' manifestations of micro-
structure-induced nonlinearity include a time-reversible effect
of slow thermoelastic dynamics recently found to occur for
cracks, combined slow and `instant' nonlinear effects, the use
of nonlinear acoustics for evaluation of the distribution of
contact forces in granular media in the previously inaccessible
range of very weak forces much below the average value, and
other effects [11, 12, 14, 21, 26]. We limit ourselves here to an
example (Fig. 7) of the logarithmic-in-time, reversible, and

velocity-symmetric slow thermoelastic dynamics observed for
a single crack [12, 26].

The results given here and similar data by other authors
suggest a wide diversity of applications of nonlinear acoustic
effects in material science, nondestructive testing, and seismic
monitoring, which explains the worldwide growing attention
to these studies.

In conclusion, we note that this brief review of the
research conducted at the Institute of Applied Physics, RAS
was to a large extent motivated by the pioneering works on
nonlinear acoustics done since the 1960s ± 1970s under the
direction of V A Zverev and L A Ostrovskii.

The results presented were obtained with the partial
support of the Russian Foundation for Basic Research
(grants No. 05-05-64941 and 05-02-17355), the Ministry of
Industry and Science, the program ``Coherent acoustic fields
and signals'' of the Physics Division of RAS (grant No.
NSh Ð 1641.2003.02), and the joint program of the Russian
Academy of Sciences and Centre National de la Recherche
Scientifique, France (project PECOÐNEI No. 16366).
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Nonlinear acoustic diagnostics
of the ocean and rock

I B Esipov, S A Rybak, A N Serebryanyi

1. Introduction

In the 1940s and 1950s, Russian studies on nonlinear
acoustics were stimulated by the pioneering work of
N N Andreev. His article `On some second-order values in
acoustics' was published in the first volume of Akusticheskii
Zhurnal issued in 1955 [1]. In the 1960s, it was followed by the
technological and medical applications of powerful ultra-
sound introduced by L D Rosenberg [2]. It was then that
LMBrekhovskikh formulated the problem of the interaction
between acoustic and oceanic waves [3]. Many Russian
research groups worked in these areas. Recently, experts in
propagation and interactions of nonlinear waves have started
to address waves in granular media and continental shelf
internal waves because both are essentially nonlinear. In
granular media, the nonlinearity parameter is 3 ± 4 orders of
magnitude greater than that in homogeneous media, and the
`giant nonlinearity' term has been coined [4, 5]. Due to the
high amplitudes and slow velocities, internal waves undergo
essential nonlinear transformations.

In this report, the results of experimental observations of
new nonlinear wave processes in the ocean and granular rocks
are given.

2. Granular media

Acoustic waves are known to propagate in granular and in
solid media differently. The mechanical properties of gran-
ular media are largely determined by the inter-granular
contacts. This property allows assigning granular media to a
broad class of media with nonlinear structural elasticity.
Whereas the nonlinear acoustic properties of monocrystals,
homogeneous fluids, and other solid media are determined by
themolecular nature of their strain, the properties of granular
media are determined by their structure. In this sense, the
properties of granular media are seen at the mesoscale, that is,
the scale of the granules [4]. This results in considerable
qualitative and quantitative differences, including differ-
ences in the equations of state for the media. For a solid
medium, the relative strainD is assumed to be proportional to

the stress applied, D � P, but the relation for the spherical
granule is D � P 2=3 [6]. In granular media, the velocity of
acoustic waves is therefore c � �qP=qr�1=2 � P 1=6, which is a
nonlinear function of the stress P applied. In agreement with
this, the nonlinearity parameter a � r0qc

2=qP � Pÿ5=6 is
also dependent on the stress applied. (Here, r is the medium
density and r0 is its value at equilibrium.) The nonlinear
properties of granular media prove noticeable even at quite
moderate strain. In rocks, for instance, nonlinear distortions
are already observed at a strain equal to D � 10ÿ9 [4]. This
strain range is typical even for quite moderate acoustic
perturbations.

The behavior of granular media is currently being studied
at the single-granule level [7 ± 11]. Under low stress, the
stress ± strain relations are noticed to measurably deviate
from regular relations. As a rule, the latter work only
asymptotically under high enough stress, when the granular
medium may be considered well-packed. Such media usually
respond to repeated stress with stress ± strain hysteresis. This
property of granular media leads to a nonlinear distortion of
acoustic waves with the second harmonic proportional to the
squared signal amplitude and possibly exceeding the third
harmonic. Oscillations of a single granule in a constant
acoustic field are shown to slowly fluctuate [7].

We discuss the results of the experimental analysis of slow
fluctuations of the nonlinear oscillations of the granule in a
medium where the acoustic field is propagating. One-two
Granite bits of the size 1 to 2 cm served as the granular
medium in our experiments. The sound was produced by a
piezoceramic plate and the detection was done by acceler-
ometers mounted among the granules. The experimental
setup is detailed in [12]. We note that the accelerometers
were of the size scale of the granules.

The detected signal versus the intensity of sound produced
is plotted in Fig. 1. In this and subsequent experiments, the
frequency of the produced sound was 5.6 kHz. The signal was
detected by two accelerometers positioned equidistantly from
the sound source and separately from each other. The
common character of response measured by both detectors
can be seen. A linear relation between the sound intensity and
the signal holds only on average, for a large range of signal
amplitude variations. The response is different for the
different detectors, pointing to the independent propagation
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Figure 1. Signals detected in the granular medium versus sound intensity.
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of the signal from the source to each detector. The maximum
signal received corresponds to the source piezoceramic plate
vibration with the acceleration 0.6 m cÿ2 and the amplitude
equal to a mere 5 A

�
. These parameters correspond to a

ÿ10 dB sound level. The detected level of the granules'
oscillations proved to be approximately 10dB lower. The
nonmonotonic response of single granules to the stress
applied to the medium is considered the result of percolate
development of bonding of granules involved in transduction
of the elastic signal from the source to the detector [13]. Such a
percolate chain of inter-granule contacts is very sensitive to
the stress parameters. A rise in stress leads to the chain
restructuring and results in changes to its effective elasticity.

The results of themeasurements of the acoustic field in the
medium over time is given below. The signal at one of the
detectors is given in Fig. 2 as a function of time, together with
levels of the harmonics of the signal. First of all, we note that a
subharmonic has appeared in the signal. The fluctuations of
harmonics of the signals from both detectors are similar. The
signal with the carrier frequency 5.6 kHz randomly changes
by more than 5 ± 6 dB. At the same time, the harmonics
fluctuate much stronger, indicating the giant fluctuations of
acoustic signals in granular media. The subharmonics
fluctuates most intensely, as much as several tenfold.

The frequency spectra of the fluctuations of the signal
harmonics are given in Fig. 3. The measurements were
averaged over 32 realizations. The spectral analysis shows
that random oscillations of low frequencies are the strongest
fluctuations. Their frequencies are in the range
f � 10ÿ5ÿ10ÿ1 Hz and monotonically drop with the fre-
quency as S � f � � A f ÿn. The exponent n proves to be
different for different harmonics. It varies from n � 2 for the
fundamental frequency 5.6 kHz to n � 1:3 for the subharmo-
nics and always remains greater than one. Interestingly, at
low frequencies, the exponent for the relation describing the
spectrum of fluctuation frequencies happened to be near the
values n � 1:7ÿ2:2 measured in an experiment involving
passing an acoustic signal through a medium composed of
identical glass beads [7]. This points to a commonmechanism
of the low-frequency modulation of sound passing through
media composed of granules of different shapes and sizes. The
spectrum of fluctuations of the sound recorded must

obviously reach a maximum or at least saturation at low
frequencies when n > 1, because the intensity of fluctuations
must remain finite. Our several-day-long experiments could
not confirm this statement.

The experimental data involving registration of acoustic
waves in granular media by granule-sized detectors point to
the statistical nature of the process. In these conditions, a
detector has a limited number of contacts with the adjacent
granules and can be regarded as one of the elements of the
medium. Even low constant amplitudes of sound in amedium
result in great acoustic field fluctuations and in harmonics
and subharmonics produced in it. The nonmonotonic
dependence of the field in the medium on the sound
amplitude points to a considerable role played by the inter-
granular contacts in the formation of the acoustic field in a
granular medium. In this case, acoustic perturbations are
transmitted between granules via contacts only, which occupy
a very small part of the granules and cannot therefore stabilize
the medium. Thus, a granular medium may be considered to
be in a metastable state and even a low-amplitude acoustic
field may change the structure of its contacts. Such contacts
form a structure of chains transmitting signals from the
source to a detector. The density of such elastic chains is
determined by the granule sizes and the number of inter-
granular contacts. Acoustic oscillations shift inter-granular
contacts slightly, possibly radically changing the structure of
elastic chains and, therefore, the effective elastic properties of
the medium. The acoustic impedance of the medium then also
changes. During the contraction of a medium, the number of
inter-granular contacts grows, resulting in a higher density of
the elastic chains that transmit acoustic perturbations. The
elastic properties of the medium then tend to saturation.

A possible mechanism of slow changes in the structure of
contacts discussed in [7] is the thermal strain at the contact
points of granules where acoustic energy is concentrated. The
stable frequency response over the range 10ÿ6ÿ10ÿ1 Hz may
be due to the fractal structure of the elastic chains transmit-
ting signals from the source to the detector.

To induce the subharmonics of an acoustic signal, quite
intense acoustic fields are required. This phenomenon is
usually observed during phase transitions. For a granular
mediumwith elasticity determined by inter-granular contacts,
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the threshold amplitude for the phase transition is the specific
gravity g. This value determines when a consolidated medium
becomes nonconsolidated. The subharmonics appearing even
at quite low signal amplitudes of 0.5 m cÿ2 point to the
localization of the elastic energy of acoustic oscillations at
separate granules of a granular medium.

Thus, the data obtained point to the complex character of
the propagation of acoustic signals in granular media. The
analysis of an acoustic field on the scale of a single granule has
revealed the statistical nature of the process and its strong
nonlinearity even at moderate amplitudes of the signal. The
obtained experimental data allow developing a model for
slow fluctuations of the acoustic field in granular media.

The acoustic diagnostics of granular media also have
other features. The granular and other heterogeneous media
belong to the class of acoustically dispersed nonlinear media.
The combination of the nonlinearity and the dispersion
allows obtaining soliton solutions for acoustic waves in such
media. In particular, we derived the following equations for
waves with resonance dispersion (RDE):�

q2

qt 2
� o2

0

��
DUÿ 1

c2
q2

qt 2
U� aD�U 2� � GD

q
qt

U

�
ÿ s 2 q2

qt 2
U � 0 ;

where a is the media nonlinearity, G is the dissipation, and s 2

is the dispersion, which is proportional to the concentration
of the oscillators in the medium [14, 15]. The solutions of this
equation shown in Fig. 4 are specially shaped solitary solitons
with vertical fronts. These solutions are quite sensitive to
changes to the parameters of the medium such as dispersion,
nonlinearity, and absorbance. Thus, following the shapes of
such wave perturbations allows monitoring the state of media
with resonance dispersion.

3. Nonlinear acoustic processes in the ocean

We consider the capabilities of acoustic diagnostics of the
ocean with the observations of internal waves taken as an
example. Internal gravitational waves are frequent in the
ocean and in the atmosphere. They exist because of the
vertically stable stratification of the density of the medium.
Any perturbation of such a medium leads to waves in it
because the particles of the vertical column shifted from the
equilibrium tend to return to their initial position under the
action of the Archimedean force. A number of natural
phenomena can produce this `first push.' The most effective
sources include tides, atmospheric perturbations, and ocean
currents. The numerous sources of internal waves are so
effective that, according to the well-known oceanologist
W Munk, ``no researcher of internal waves has yet reported
calm at the depths of the ocean'' [16]. Thus, internal waves are

ubiquitous in the ocean; they create vertical water movements
and facilitate the internal mixing necessary for life in the
ocean. The characteristic parameters of internal waves are as
follows: the periods vary from several days to several minutes
and the wave speeds vary from several decimeters to several
meters per second. The distribution of frequencies of the
ocean internal waves drops proportionally to the frequency
squared and has two peaks corresponding to long and short
waves. The peak at long waves is from inertial and tidal
waves, and the peak at short waves corresponds to the
buoyancy frequency [17, 18]. The internal waves may be as
high as several meters. In some regions of the ocean, giant
internal waves higher than 100 m have been registered [19 ±
22]. The internal waves come in series in space and time and
propagate in a specific direction. In addition, solitary waves
are observed. Internal-wave solitons are a widespread
phenomena. Internal waves are typical for both the deep sea
and the shelf. The shelf is where the internal waves are
produced and simultaneously broken down with the energy
of long waves transferred to short waves and further into
turbulence. Here, the nonlinearity of the internal waves is seen
most clearly [23, 24].

In recent years, we have analyzed internal waves of the Sea
of Japan shelf by a multi-beam pulse sonar. We used the
Acoustic Doppler Current Profiler (ADCP) Rio Grande
600 kHz from RD Instruments. Besides measuring a vertical
and two horizontal components of the current, this instru-
ment provides the data on reflection of the signal and locates
the water density jump interfaces (pycnoclines) along which
the propagating internal waves are seen. For the measure-
ments, a small research boat was anchored for 24 hours or
tacking at sea.

The research conducted has revealed the general picture of
the internal wave dynamics and allowed more accurate
measurements of their main parameters. During the measure-
ments, a number of nonlinear effects fundamental for internal
waves were confirmed. These effects were previously inde-
pendently observed at other continental shelves by contact
methods. Such effects include, first of all, the `vertical' and the
`horizontal' asymmetry of the internal waves profile and the
`effect of changing the polarity of internal waves.'

The vertical asymmetry of crests and troughs. Intense
internal waves propagating at a pycnocline (a layer with a
density jump) that is closer to the bottom than to the sea
surface have a characteristic profile with smooth feet and
sharp crests and are therefore waves of elevation. In the case
where the internal waves propagate at the thermocline that is
closer to the surface than to the bottom, the wave profiles are
characterized by smooth crests and sharp troughs and are
therefore waves of depression. We often saw waves of
elevation and waves of depression. Given in Fig. 5a is the
record of a backscattered signal reflected from the deep water
that was recorded in October of 2003 during passage through
the Peter the Great Gulf in the Sea of Japan in the direction
transverse to the coastline. Seen at the cross section obtained
is the area of the subsurface pycnocline from the range 15 ±
25 m, over which the solitary 5 ± 10 m high waves of
depression propagate. The internal waves propagate in the
direction of the coast toward more shallow water. Given in
Fig. 5b is the similar record taken in September of 2005 at the
inner shelf when the density jumpwas near the bottom. In this
case, a series of the internal waves of elevation with rank-
ordered amplitudes up to 7 m propagates along the pycno-
cline toward the coast.

xÿ ct
b

xÿ ct
a

Figure. 4. A soliton of the wave equation with resonance dispersion:

(a) medium without damping, (b) medium with damping.
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The properties of vertically asymmetric internal waves at
the shelf are close to those of solitons [24], and we can say that
soliton-like waves of different polarities propagate at the
shelf. This feature of internal waves at shelves results in an
interesting phenomenon that we call the `effect of changing

the polarity of internal waves.' During the summer, the
pycnocline at the near-coast part of the shelf is usually near
the sea bottom, while at the deep sea part of the shelf, it is
closer to the sea surface. Because soliton-like internal waves
form at the shelf mainly from long tidal waves coming from
the open sea and propagate toward the coast, they must
switch from the near-surface pycnocline to the near-bottom
pycnocline. At this point, the negative solitons (with negative
nonlinearity) switch to the zone with the positive nonlinear-
ity, and the waves of depression break down and become
waves of elevation (Fig. 5c). At this point, the pycnocline is in
mid-depth, and we call it the `overturning point.' The first
experimental proof of this effect came from observations at
the Sea of Japan shelf [25, 23, 27] and was later confirmed by
results from the Mediterranean Sea [26]. Recently, the best
experiment under natural conditions was conducted in the
South China Sea [28]. A high-frequency multi-beam acoustic
sonar was used there as well. The transformation of the
negative solitons of the internal waves at the switching point
was numerically modeled [29]. The results of a special
experiment studying the effect of changing the polarity of
internal waves recently conducted by us at the Sea of Japan
shelf are being prepared for publication.

The horizontal asymmetry of internal waves. The vertical
asymmetry of internal waves discussed above is the main
indicator of their nonlinearity. However, many intense
internal waves are not only vertically but also horizontally
asymmetric due to different inclinations of the front and the
back slopes of the internal wave. This difference is a feature
of a nonstationary wave, that is, a wave that is being
destroyed. We repeatedly saw the horizontal asymmetry of
internal waves during the measurements by the contact
volume temperature sensors. The profiles of two internal
waves of elevation propagating toward the coast are shown
in Fig. 6. The recording in Fig. 6a was taken on October 1,
1982 at a sea depth of 30 m by the line temperature sensors
and in Fig. 6b is the ADCP recording done on September 17,
2004 at a sea depth of 43 m. Both waves are about 10 m high,
but their front slopes are considerably steeper than the back
slopes. The recording from the contact volume temperature
sensors is shown for two sensors situated at different
distances from the coast: as the wave approaches the coast,
it becomes steeper. The horizontal symmetry is very common
for both elevation and depression intense internal waves at
the shelves [30].
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4. Conclusion

The considered examples of the acoustic diagnostics of
nonlinear waves demonstrate new physical phenomena in
granular rocks and the ocean. The metastable state of the
granular media is an important condition for studies of
acoustic effects on percolation in rocks. The nonlinear
interaction of internal waves determines the transformation
of the tidal energy into oceanic turbulence. The acoustic
diagnostics prove to be effective for studying the dynamics
of processes at the continental shelf.
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Parametrically phase-conjugate waves:
applications in nonlinear acoustic imaging
and diagnostics

V L Preobrazhenskii

1. Introduction

Wave phase conjugation (WPC) is typically understood as a
wave process whose time development is the reverse of an
arbitrarily specified incident wave. The interest in acoustic
WPC stems from the ability of phase-conjugate waves
(PCWs) to automatically focus onto objects that scatter the
incident wave and to compensate the phase distortions of
wave propagation in heterogeneous refractive media. Various
applications of these properties for ultrasonic diagnostics,
therapy, surgery, nondestructive evaluation, and underwater
communications have recently been intensely discussed.

Comprehensive research of physical principles and
mechanisms underlying the ultrasonic WPC began more
than 20 years ago and was stimulated considerably by the
results in the nonlinear optics for WPC of light. Since the
early 1980s, the mainstream objective of several years of
research has been to find adequate approaches to the
problem of generation of ultrasonic PCWs in various
condensed media. The systematized results of this research
are reviewed in [1, 2].

The most promising techniques of acoustic PCWs,
including phase conjugation of ultrasonic waves in parame-
trically active solid media such as piezoelectrics and mag-
netics [3 ± 6] and time reversal of the acoustic signals in
receiving and transmitting multichannel electronics [7, 8],
appeared in the late 1980s ± early 1990s. WPC techniques
based on time reversal in waveguides and cavities with
multiple reflection are being intensely developed [9, 10]. The
supercritical parametric phase conjugation of magnetoelastic
waves in magnetostrictive ceramics [2, 4, 11] is an effective
way to produce PCWs with frequencies from several mega-
hertz to several dozen megahertz for applications in medicine
and defectoscopy. The fairly strong coupling between elastic
and magnetic subsystems of spinel ferrite-based ceramics
allows an effective modulation of the speed of sound by a
high-frequency magnetic field. The modulation depth may
then considerably exceed the threshold of parametric instabil-
ity for the longwave phonons at room temperature. Under the
conditions of supercritical pumping, a parametrically active
element works as a source of stimulated phase-conjugate
phonon pairs providing the giant (over 80 dB) amplification
of the PCW compared with the incident wave. The ceramic
technology allows manufacturing active elements of a wide
variety of shapes and sizes according to the requirements of
specific applications.

A numerically modeled animation of supercritical ampli-
fication in an active medium taken from [12] is available in
Supplement 1 to the on-line version of this report.

The possible uses of magnetoacoustic PCW methods to
autofocus ultrasound in liquid and solid matter and to auto-
target ultrasonic beams to sound-scattering objects in liquids
have been demonstrated in a set of experiments (reviewed
in [2]). A stroboscopic visualization of autotargeting of
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ultrasound to air bubbles rising in water [13] is given in
Supplement 2 to the on-line version of this report. The use
of parametric WPC to compensate the phase aberrations in
linear ultrasonic imaging is shown in [14, 15].

The combination of phase conjugation with giant con-
jugate-to-incident wave amplification is especially interesting
for research and applications of WPC in nonlinear acoustics.
Whereas the experimental and applied research on linear
acoustic PCWs have been actively developing since the late
1980s (see [2, 16]), the nonlinear acoustics of PCWs became a
promising field of acoustics a relatively short time ago. The
nonlinear acoustics was pioneered in works [17, 18], where
nonlinear distortions of wave profiles of parametrically
PCWs and retrofocusing of reversed waves in homogeneous
nonlinear media were studied experimentally and theoreti-
cally. Some results of research on the properties of nonlinear
ultrasonic PCW beams and some potential uses of these
properties for acoustic imaging are reviewed in [19].

As in optics, WPC in acoustics is a manifestation of the
wave-field invariance under time reversal. Under strongly
nonlinear conditions, the reversibility of wave processes is
usually not ensured, resulting in the specific features of
WPC in nonlinear acoustics. In this report, we discuss the
physical mechanisms of retrofocusing of ultrasonic PCW
beams in nonlinear and heterogeneous acoustic media. The
results of the research on retrofocusing under the conditions
of giant parametric amplification of PCWs and the phase
conjugation of selected harmonics of the incident nonlinear
wave are presented [20 ± 23]. The applications of the effects
of nonlinear retrofocusing are exemplified by compensation
of the phase aberrations in nonlinear acoustic imaging [24,
25]. The potential applications of WPC-based autoconfocal
systems for ultrasonic diagnostics of nonlinear inclusions
are discussed. We consider the physical principles of the
ultrasonic velocimetry based on the interaction of PCWs in
the presence of moving scatterers [27]. We give examples of
ultrasonic WPC used for the diagnostics of flows in liquid
[27, 28].

2. Nonlinearly propagating ultrasonic PCW
beams and time reversal

As noted above, the specificity of the WPC problem in
nonlinear acoustics is that the propagation of the incident
and the phase-conjugate waves is no longer a reversible
process. The medium nonlinearity does not by itself violate
the field invariance under time reversal, but may result in a
considerable acceleration of irreversible dissipative processes.
An example of this situation typical for acoustics is the shock
distortions of the wave profile formed during the cascade
generation of harmonics in a nonlinear medium [18, 29]. The
amplification during the generation of the PCW emitted into
a nonlinear medium is obviously dependent on the violation
of the reversability of the wave process. Finally, the
bandwidth of real acoustic WPC systems is usually consider-
ably limited, resulting in a trimmed reproduction of the
spectrum of nonlinear waves. Nevertheless, the first experi-
mental and theoretical research data on nonlinear acoustic
PCWs [18, 24, 25] have shown that in dispersion-free non-
linear acoustic systems, contrary to nonlinear optics, a partial
violation of the field invariance under time reversal does not
hinder observation and the use of the effects such as PCW
autofocusing and the compensation of phase aberrations
caused by inhomogeneous refraction.

3. Retrofocusing of nonlinear PCW beams
in a heterogeneous medium

Typical results of the observed retrofocusing of a nonlinear
PCW after passage through an aberrating layer are given in
Fig. 1 [20]. Figure 1a shows the focal distribution of the sound
amplitude broken by the aberrating layer. Figure 1b demon-
strates how the focal acoustic field distribution is restored by
the parametric PCW. The focal amplitude distribution of
selected harmonics of the nonlinear PCW after passage
through the aberrating layer is shown in Fig. 3c. As shown
in [24, 30], the presented experimental results are due to the
spatial and temporal synchronization of the harmonic's
phases during their cascade generation in a dispersion-free
medium. The harmonic phase synchronization concept was
further developed when the selective phase conjugation of
separate harmonics of nonlinear waves was studied [22, 23,
25]. These theoretical and experimental studies showed that
nonlinear wave spectrum trimming by the narrow-band phase
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conjugation of the second harmonic of the incident wave does
not hinder the retrofocusing of finite-amplitude PCWs in a
heterogeneous nonlinear medium.

4. Principles of nonlinear WPC-based acoustic
imaging and diagnostics

The studies of nonlinear WPC phenomena are stimulated by
a current trend to use nonlinear acoustic techniques not
only for natural applications of high-intensity ultrasound
such as lithotripsy, hyperthermia, and ultrasonic technology
but also in traditional fields of linear acoustics such as
ultrasonic diagnostics and nondestructive evaluation. `Har-
monic imaging' is a rapidly developing field of modern
acoustic imaging. It is based on the analysis of harmonics
generated by waves of finite amplitudes in the acoustic
media in question. The techniques of harmonic imaging
can be divided into two main groups. In the first group, the
nonlinearity of the medium analyzed is used to form the
incident acoustic beam. It should be noted that almost
30 years ago, the second harmonic was proposed to be
used for the higher resolution of the acoustic microscope [31].
The number of applications of harmonic imaging for
ultrasonic diagnostics is currently growing [32 ± 34]. When
focussed ultrasonic beams propagate in a nonlinear med-
ium, the focal distribution of the second and higher
harmonics of the nonlinear wave is narrower than that of
the fundamental harmonics and its side lobes are lower.
Besides, the generation of harmonics during wave passage
through a thick medium reduces the noise originating from
the refractions of the incident wave at the boundaries of the
area in question. Taken together, all of the above allows
considerably increasing the resolution of ultrasonic diag-
nostic equipment.

In the second group of harmonic imaging methods, the
nonlinear response to acoustic treatment is used to obtain
information about the nonlinear parameters of the medium
in question and the variations of these parameters due to
general or local structural changes (see [35 ± 39]). Micro-
cracks in a solid matter lead to the so-called contact
nonlinearity, which in turn results in the anomalously
amplified nonlinear acoustic response and in the more
effective interactions of waves of different frequencies [36,
37]. The special nonlinear properties of solid media are used
for the nondestructive evaluation of the materials. The
possibilities of diagnostics using changes in nonlinear
acoustic properties of biological tissues concurrent with the
pathological changes in them are being discussed [40].

The possibility of the giant amplification of PCWs in the
supercritical parametric mode permitted the natural expan-
sion of the WPC technique to nonlinear acoustic imaging.
The WPC technique has been combined with harmonic
imaging in [24, 25]. The use of parametric PCWs for the
compensation of the phase aberrations of an acoustic
microscope that uses the second harmonic of the conjugate
wave to view the object is shown in Fig. 2. The introduction of
the aberrating layer to the confocal transmission microscope
completely destroyed the image, whereas the use of WPC
allowed not only restoring the image produced by the
fundamental frequency of the incident beam but also
obtaining a higher-resolution image produced by the second
harmonic. Given in Fig. 3 are the images obtained by an
acoustic microscope in which the second harmonic of the
incident beam was selectively phase-conjugated [25]. The
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f0 � 10MHz

10 MHz
(KS)

10 MHz
(OVF)

20 MHz
(KS)

20 MHz
(OVF)

f0 � 10MHz

b c d e

Figure 2.Acoustic images of an object restored by the phase conjugation of

the fundamental harmonic of the incident wave: (a) the experimental setup

(O is the object, 1 Ð sound transceiver, 2 Ð magnetoacoustic PCW

amplifier, 3 Ð aberrating layer; (b, d) confocal microscope (CM) images

produced by the fundamental and the second harmonics of the incident

wave; (c, e) restored images produced by WPC [25].

a b c d

5 MHz
(¬³)

f0 � 5MHz

10 MHz
(OVF)

20 MHz
(OVF)

Figure 3. Acoustic confocal images produced by the fundamental

harmonic at 5 MHz without (a) and with (b) an aberrating layer.

(c, d) Images produced by the phase conjugation of the second harmonic

of the incident wave with an aberrating layer at the frequencies 10 MHz

and 20 MHz [25].
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images are produced with and without an aberrating layer by
the fundamental harmonic of the incident wave and by the
fundamental and the second harmonics of the conjugate
wave. The use of selective phase conjugation of the separate
harmonic of the incident wave allows not only compensating
the phase aberrations but also considerably increasing the
frequency of analysis in the lower order of nonlinearity. The
selective phase conjugation of harmonics also permits
autofocusing ultrasound onto localized strongly nonlinear
objects, which may be used for diagnostic purposes.

The PCW principle can automatically ensure that the
acoustic systems are confocal. That, together with the
feasibility of compensating for the phase aberrations, is
useful for the nonlinear diagnostics of inclusions that are
difficult to detect by linear acoustic imaging techniques. A
feature of the second harmonic generation in confocal
systems, caused by a phase jump of nonlinear sources in the
focal plane, allows locally diagnosing the distribution of the
nonlinear parameter by the second harmonic of the incident
wave [41, 42]. The possibility of obtaining the image of a local
inclusion produced by the second harmonic of the focussed
PCW is considered in [26]. The geometry of the system and the
calculated ration between the amplitude of the second
harmonic registered by the sound transceiver and the
position of the inclusion in the focal area are given in Fig. 4.
Even small inclusions are predicted to generate a second
harmonic exceeding the noise as much as the nonlinear
parameters of the inclusion exceed those of the acoustic
medium surrounding it.

5. Applications of WPC for velocity
measurements and diagnostics of flows

The possible application of ultrasonic WPC that are targets
themselves to a scatterer for measuring the scatterer velocity
is demonstrated in [27, 43]. When PCWs of similar frequen-
cies collided near a scatterer in experiments [44, 45], they
produced ultrasound of a low difference frequency, with its
phase being anomalously sensitive to the displacements of the
scatterer. The movement of the scatterer was accompanied by
a Doppler frequency shift of the low-frequency wave. Unlike
the regular Doppler shift, which is proportional to the carrier
frequency, the registered shift was proportional to the
doubled frequency of one of the high-frequency waves
propagating toward the receiver of the low-frequency sound.
The effect is due to phase additions of the conjugate waves
when the difference frequency sound wave is produced. A
possible application of this effect for measuring the scatterer
velocities ranging widely from 0.05 mm sÿ1 to 300 mm sÿ1 at
the difference frequency of 1MHz is demonstrated in [27, 43].
Here, the registered Doppler shift exceeded the regular values
of the Doppler shift by an order of magnitude at the given
frequency and the velocity of the scatterer.

The PCW principle assumes that the phase of the wave at
the source is restored irrespective of the phase shifts in the
forward and the reverse directions. The phase is restored in
both homogeneous and heterogeneous refractive media.
Flows in the medium disturb the wave invariance under time
reversal and thus result in a phase shift of the conjugate wave
at the transceiver. A phenomenon of this nature observed
earlier was the wave front distortions that accumulated
during the repeated passage of conjugate waves through a
vortex in a fluid [46]. In [27, 28], a beam passing through a
flow was scanned, and the PCW phase shifts were analyzed in
order to obtain the images of the velocity distribution of the
water flows of various geometries. The authors of [28]
analyzed not only the phases of the fundamental harmonic
of PCWs but also the phases of the second harmonic and of
the low difference frequency signals produced by the interac-
tion of the phase-conjugate waves of close frequencies. The
experimental setup and the visualized water flow from [28] are
given in Fig. 5. In this experiment, a low-frequency wave was
generated by the interaction of the 20 MHz second harmonic
of the conjugate wave with an additional 19MHz pulse in the
same direction, and the phase of the low-frequency wave was
analyzed to produce the image. The use of the second
harmonic doubled the registered phase shift, and the acoustic
frequency subtraction increased the signal/noise ratio for
digital processing of the registered signals by more than an
order of magnitude.

6. Conclusion

The results presented here show the effectiveness of the
supercritical ultrasonic WPC technique for applications in
nonlinear acoustics. In heterogeneous refractive media, the
waves are no longer reversible due to the conjugate wave
amplification and WPC spectrum trimming. The experimen-
tal and theoretical demonstrations of the refocusing of
ultrasound in such media are paving the way for the
development of new techniques in acoustic imaging and
diagnostics. The physical principles of these techniques are
to some extent exemplified by harmonic imaging, nonlinear
ultrasonic velocity measuring, and the diagnostics of flows. It
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Figure 4. Acoustic imaging of inclusions using the second harmonic of a

PCW: (a) the geometry of the experiment (1 Ð transceiver, 2 Ð PCW

amplifier, b and b0 are the nonlinear parameters of the inclusion and the

surrounding optical medium, respectively); (b) the response of the second

harmonic, given as signal/noise ratio, to a change in position of a spherical

inclusion 3 mm in diameter relative to the focus (the experimental

parameters are o=2p � 10 MHz, �bÿ b0�=b0 � 0:1, s � 30 mm, and the

transceiver aperture is 15 mm) [26].
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would not be an overestimation to say that nonlinear WPC
acoustics has recently become one of the hottest fields in
physical acoustics and ultrasonics. The fundamental contri-
bution to this field and to WPC acoustics in general made by
the Russian Academy of Sciences is remarkable.

In conclusion, the author thanks F V Bunkin for the
initiation and for his constant support in the work on WPC
acoustics and the colleagues from the the Joint Russian ±
French European Laboratory of Nonlinear Magnetoacous-
tics (LEMAC) for their fruitful collaboration.

The publication is prepared in the framework of the
fundamental research program of RAS, Coherent acoustic
fields and signals and the international programs
ECONET 08-154YE and INTERREG-IIIa-58, and with
support from the Russian Foundation for Basic Research
(Grant No. 05-02-19640-NTsNIL_a), Ecole Centrale de
Lille, and the French Embassy in Moscow.
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Figure 5. The PCW diagnostics of water flows: (a) the experimental setup (T1 and T2 are the ultrasound source and detector, respectively, C is the PCW

amplifier, M is the deflecting plate); (b) an acoustic image of the velocity distribution in a flow [28].
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