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A generalized adiabatic principle
for electron dynamics in curved
nanostructures

V V Belov, S Yu Dobrokhotov, V P Maslov,
T Ya Tudorovskii

1. Introduction

Progress in nanotechnology has made possible the produc-
tion of extended thin quasi-one-dimensional and quasi-two-
dimensional structures of complex geometries, namely,
nanotubes and nanofilms. In our model, these structures are
the areas of the thin bent `twisted-edge' cylinder type or of the
thin curved film type. Beyond these areas, the wave function
C�r; t� of a quantum particle either drops exponentially (a
soft wall model) or equals zero (a hard wall model). As in
Refs [1, 2], we assume that the electron (three-dimensional)
quantum dynamics in nanostructures in a magnetic field is
given by the so-called Rashba Hamiltonian

cH � bP 2

2m
� vint�r� � vext�r; t� ÿ e�h

2mc
hr ;H i � cHso : �1�

Here, r is the radius vector of a point in three-dimensional
space; bP � ÿi�hHÿ �e=c�A�r; t�; e is the electron charge; m
is the effective mass of a quasiparticle; vint�r� is the
confinement potential; vext, A are the external field
potentials; H�t� � rot A�r; t� defines a homogeneous mag-
netic field; r�fs1; s2; s3g are the Pauli matrices, andbHso � ahr; �Hvint; bP �i is the operator for the interaction of
the electron spin with the crystal electric field, with a
constant being dependent on the given crystal type [3]. In
the case of vint�r� � 0 and a zero wave function at the tube or
film boundaries, we get `empty structure' models. d and l0

stand for the characteristic thickness and linear dimensions
(e.g., tube length), respectively, of a tube or a film. In
extended thin nanostructures, the scale difference may be
conveniently characterized by a small `adiabatic' parameter
m � d=l0 5 1. We restrict ourselves to the case of a weak
enough magnetic field, thus considering the Larmor fre-
quency oH � ejHj=�mc� � �h=�mdl0�, and magnetic length
lH �

������
dl0

p
.

The SchroÈ dinger nonstationary equation for electron
quantum states C�r; t� (including stationary ones) acquires
the form

i�hCt � cHC : �2�

We limit our consideration to a quantum particle (electron) in
such tubes and films with slowly changing geometric char-
acteristics, whose small segments with linear scales of order
close to their thicknesses dmay be quite accurately considered
a right cylinder and a flat layer, respectively. It is clear that the
effective electron dynamics in such structures have to be one-
or two-dimensional and be represented by the equation with
the effective Hamiltonian L̂ n for the wave function cn on the
tube axis or the film surface:

i�hcn
t � L̂ ncn ; �3�

where n is the number of a `dimensional quantization
subband'. To go over from Eqn (2) to Eqn (3), we use the
procedure in which the function C for the lower subbands
with n5 mÿ1 is retrieved for cn by the action of `intertwining'
operator on cn (see Section 3.1). In stationary problems, the
derivative i�hq=qt is substituted by the energy E.

Different characteristic dimensions and the presence of
free carriers make possible the consideration of nanostruc-
tures as quantum waveguides or confined quantum systems
[6 ± 15]. Similar problems related to waveguides emerge in
electrodynamics, acoustics, the theory of elasticity, marine
physics, and so forth. Confinement elimination leading to
lower system dimensionality is usually done by applying the
adiabatic approximation equivalent to asymptotic partition-
ing of oscillations into longitudinal and transverse modes.
For the Helmholtz equation, this partitioning was done in
Ref. [16]. In that work, equation (3) for a longitudinal mode
was given and it was shown that single-mode bound-state
resonators may be made by varying the waveguide curvature
[17]. Analogous equations for quantum-mechanical pro-
blems have been subsequently deduced in Refs [1, 2, 7 ±
15]. It should be emphasized that the waveguide problems
are similar to those of molecular physics, with the role of
confinement potential being played by the Coulomb
potential with `frozen' coordinates of heavy nuclei. In
mathematical literature, equations emerging in problems
with different scales are called the operator-valued symbol
equations [19].

The longitudinal-state wave functions cn can be: (1) de-
localized and significantly changing on the scale of order l0;
(2) delocalized and rapidly oscillating, i.e., changing on the
scale of lk5 l0, and (3) asymptotically localized in the small
sections with scales5 l0. We characterize the rate of the wave
function change by a `quasiclassical' parameter h�lk=l0,
where lk�max jqcn=qxjÿ1 is the wavelength characteristic
of cn. The final expressions forC are significantly dependent
on the relationships among lk; d, and l0 or, equivalently, on
the relationship between the parameters m and h.

962 Conferences and symposia Physics ±Uspekhi 48 (9)



In this report, we introduce the effective equations for
`dimensional quantizing subbands' (3), which are accurately
derived and can be utilized to describe all the above-
mentioned longitudinal states. The class of these states proves
to be considerably wider than that described in Refs [7 ± 11].
Bound states and traps due to the variable tube thickness, the
spin effect on the classical one-dimensional dynamics in the
tubes placed in a magnetic field (see Section 4), the possibility
of spin flipping in curved tubes, and so forth are derived from
the equations given.

We limit our consideration to nanotubes. The authors'
results on nanofilms and optical planar waveguides can be
found in Refs [15, 17]. The works [18, 19] are also devoted to
nanofilms.

2. The effective Hamiltonian for a dimensional
quantizing subzone of a nanotube

2.1 Hamiltonian for a m-th subband of a bent tube
Let us define a suitable coordinate system in the vicinity of the
tube axis. We will assume that the tube axis is a curve g given
by the equation r � R�x�, r 2RR3, x 2RR, where R�x� is a
smooth vector function, x is a natural parameter in the curve
g, i.e., the tube length measured from a fixed point x�,
jqxR�x�j � 1, and qx � q=qx. If the axis curvature
k�x� � jq2xRj 6� 0, the Frenet trihedron is defined as�
qxR; n � q2xR=jq2xRj; b � �qxR; n�

	
and the axis twisting

K�x� is governed by the equation qxn � ÿKbÿ kqxR,
qxb � Kn. Rotating n�x�, b�x� through the angle
y�x� � � xx� K�x� dx, we get the vectors n1�x�, n2�x�. Then, the
curvilinear coordinates �x; y1; y2� introduced by the relation-
ship r � R�x� � y�x; y1; y2�, y�x; y1; y2� � y1n1�x� � y2n2�x�
will be orthogonal in the vicinity of the tube axis.

In this report, closed tubes and tubes with ends satisfying
the Born ±Karman periodicity condition for the function C
are called periodic tubes. The tube period is represented by l0.
In passage through l0, the vectors n1�x�, n2�x� go over into
P�y0� n1�x�, P�y0�n2�x�, where P�y0� is the rotation matrix
through the angle y0�

� x��l0
x� K�x� dx. The coordinates

�x; y1; y2� are therefore not global Ð that is, the same point
in a three-dimensional space corresponds to coordinatesÿ
x� nl0; P�ÿny0� y

�
, n � 0;�1;�2; . . . , where y � fy1; y2gT

is a two-component vector column, and the periodicity
condition takes the formC�x; y� � C

ÿ
x� l0;P�ÿy0� y

�
.

To simplify expressions, we limit our further considera-
tion to a class of model potentials represented by the formula
vint � vint�x �;D�x�ÿ1P�F�ÿ1y�, where D�x� > 0,
vint�x �; y1; y2� is a smooth function, P�F� is the rotation
matrix through the angle F�x� of `inner' twisting, and x � is
some fixed point on the tube axis.

To apply the adiabatic approximation, the `prompt
transverse' functions should be defined. They are repre-
sented by the formula exp�ihy;A�R�i�w n

j , j � 1; . . . ; r, where
w n
j are the problem eigenfunctions normalized to unity with

respect to y:�
ÿ �h2

2m

�
q2

qy21
� q2

qy22

�
� vint�x; y�

�
w n
j � e n?�x�w n

j : �4�

The appearance of a number j of functions w n
j is related to the

possible degeneracy of en?�x�; we will assume that the
degeneracy order r does not depend on the longitudinal
coordinate x. The functions w n

j �x; y� and e n?�x� are expressed

through w n
j �x �; y�, e?�x ��:

w n
j �x; y� � Dÿ1�x�w n

j

ÿ
x �;Dÿ1�x�Pÿ1�x� y�

� exp
�
ibj�xÿ x ��� ;

e n?�x� �
e n?�x ��D2�x ��

D2�x� :

For a nonperiodic tube, w n
j �x �; y� and bj are chosen in

ambiguous manner; bj may be set equal to zero. For a
periodic tube, it is appropriate to choose such a bj that
w n
j �x� l0, P�ÿy0� y� � w n

j �x; y�. Then, the effective quan-
tummatrix Hamiltonian that is one-dimensional with respect
to x will be defined as

L̂ n � p̂2

2m
� vext�x� � e n?�x� ÿ

�h2k2�x�
8m

� e

c

�x
0

�
qxR�x 0�; qA�R�x

0�; t�
qt

�
dx 0

� �hB
 E2
p̂

m
� L̂y 
 E2 ÿ e�h

2mc
Er 
 hr ;H i� L̂sy; �5�

where p̂ � ÿi�hq=qx, and

L̂y � L
�

�h

m
�qxF� p̂ÿ e

2mc
hqxR;H i

�
ÿ e

mc
hY?;H i p̂

�
�
Y;Hvext � e

c

qA�R; t�
qt

� kn
p̂2

2m

�
;

L̂sy � a
ÿ
M 0 
 hr ; qxRi �M 1 
 hr ; n1i p̂

�M 2 
 hr ; n2i p̂
�
:

The following designations were introduced above: En is a
unit n� nmatrix;B is a diagonal r� rmatrix having elements
Bj j 0 � bjdj j 0 ; L�x� is an r� r momentum matrix having
elements Lj j 0 �hw n

j ; l̂w
n
j 0 iy, l̂ �ÿi�h�y1q=qy2 ÿ y2q=qy1�;

Mk�x� are the r� rmatrices (k � 0, 1, 2) such that

�M 0�j j 0 � ÿi�h
D
w n
j ;
ÿ�q1vint� q2 ÿ �q2vint� q1�w n

j 0

E
y
;

�M 1�j j 0 �


w n
j ; �q2vint�w n

j 0
�
y
;

�M 2�j j 0 � ÿ


w n
j ; �q1vint�w n

j 0
�
y

;

qi � q=qyi; 
 denotes the tensor product of matrices;
Y�x� � Y1n1 � Y2n2 and Y?�x� � Y2n1 ÿ Y1n2 are the
three-dimensional `vectors' with components that are
`dipole' 2� 2 matrices �Yi�j j 0 �x� �



w n
j ; yi w

n
j 0
�
y
, i � 1; 2,

and, finally, h:; :iy designates integrating over y variables.
For the lk4 d case, formula (5) type Hamiltonian had

been obtained in Refs [1, 2]. The `geometric potential'
ÿ�h2k�x�2=�8m� originally introduced in Ref. [16] should be
taken into consideration in the long-wave limit (lk � l0).
Namely this potential generates bound states in an empty
waveguide [16] by producing effective attraction to the
maximum curvature points on an axis.

If the function cn is the effective solution of equation (3),
the function cn is retrieved according to the relationship

Cn�x; y; t� � G�x; y�ÿ1=4ÿwn
0 �x; y; t� � ŵ n

1

�
� exp

�
ie

�hc

�x
x�



qxR;A�R�

�
dx

�
cn�x; t� ;
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where G�x; y� � �1ÿ khy; ni�2, and

wn
0 � exp

�
i


y;A�R���

� w n
1 �x; y� 0 � � � w n

n�1�x; y� 0

0 w n
1 �x; y� � � � 0 wn

n�1�x; y�
���� �������� ����;

�6�

with ŵ n
1 � wn

0 �x; p̂; y; t� being the corrective differential opera-
tor whose explicit definition is not important for further
consideration.

2.2 Geometric phases and boundary conditions
In an open tube, it is natural to consider the problems of wave
packet scattering and evolution for equations (3). In a
periodic tube, the condition for C is followed by the Bloch
condition for a vector function cn:

cn�x� l0; t� � exp

�
ie

�hc

�l0
0



qxR;A�R�

�
dx

�
cn�x; t� :

The phase for a closed tube is given by

e

�hc

�l0
0



qxR;A�R�

�
dx � 2pF

F0
;

where F is the magnetic flux through the area enclosed by the
tube axis:

F �
�l0
0



qxR;A�R�

�
dx ;

and F0 � 2p�hc=e is a magnetic flux quantum. This equality is
an Aharonov ±Bohm effectmanifestation [20].

3. The generalized adiabatic principle

3.1 The `operator' separation of variables
Here are the basic ideas of the `generalized adiabatic
principle' resulting in Eqns (3) and (5). The wave functions
C � Cn�x; y; t� for the lower subbands of transverse quantiz-
ing are given as the result of an action of x; p̂ � ÿi�hq=qx, t,
y-dependent `intertwining' operator ŵ n � � wn�x; p̂; y; t� on
a function cn�x; t� independent of y:

Cn�x; y; t� � wn�x; p̂; y; t�cn�x; t� : �7�

Since the operators x and p̂ do not commute, an agreement
should be made about the order of their actions. For the sake
of definiteness, we will assume that the operator p̂ acts first,
and the operator x acts second (see Refs [22, 23]). In addition
to formula (7), cn is required to satisfy equation (3). As in
eigenfunction and eigenvalue problems, the operators ŵ n and
L̂n are defined simultaneously. Calculating the operator L̂n

generalizes the Peierls substitution and dispersion relation
quantization (cf. Ref. [24]). Considering the possible degen-
eracy of e n?�x� in problem (4), cn�x; t� should be viewed as a
2r-dimensional vector function, and ŵn should be viewed as a
2� 2r-matrix function of the operators p̂ and x.

The representation of Cn according to formula (7) is a
natural generalization of the Born ±Oppenheimer method in
which the function wn does not depend on p̂, and expressions
[21] for WKB (Wentzel ±Kramers ±Brillouin) functions cn,

including the turning point and focusing situations. Formula
(7) realizes the quantum averaging idea [23 ± 26] that some
block of the diagonalizing operator Û is asymptotically
(m-wise) represented in the form Û � exp�iŜ � �Pn j ŵ nih ŵ nj,
hâ j b̂ i � � � dy �â�b̂ �, and hŵ njŵ n 0 i � dnn 0 . After the `twist-
ing', equation (2) takes the form

Ûÿ1
�
ÿ i�h

q
qt
� Ĥ

�
Û �

X
n

jŵ ni
�
ÿ i�h

q
qt
� L̂ n

�
h ŵ nj � 0 :

For the functionCn � ŵ ncn, we arrive at the equation�
ÿ i�h

q
qt
� Ĥ

�
Cn � jŵ ni

�
ÿ i�h

q
qt
� L̂ n

�
cn � 0

equivalent to Eqn (3).
Representation of ŵ n as a function of x and p̂ operators is

fundamental. In mathematical literature, a function of x, p̂ is
called a pseudo-differential operator whose master function is
called a symbol. A passage from operators ŵ n and L̂ n to
symbols wn and Ln allows us not to be concerned whether
operators x and p̂ commute. Symbols wn and Ln cannot
usually be exactly computed, and one can only calculate the
coefficients of the asymptotic expansion of wn and Ln into a
series in the adiabatic parameter m:

wn � wn
0 �x; p; y� � wn

1 �x; p; y� � wn
2 �x; p; y� � . . . ; wn

j � m j ;

Ln � Ln
0�x; p� � Ln

1�x; p� � Ln
2�x; p� � . . . ;Ln

j �
m j�h2

md 2 :

General expressions for wnk and Ln
k are given in Ref. [15],

including the case of a degenerate effective Hamiltonian. To
produce them, some basic concepts and formulae of operator
algebra [22] known to junior or senior students majoring in
physics and mathematics are needed. On the other hand,
deriving the `twisting' operator in quantum averaging is a
quite complex problem. A realization of the adiabatic
approximation as in Eqns (7) and (3) is therefore thought to
be its most pragmatic and simple form.

In many problems, wn
j and L n

j are power series in p,
therefore, ŵ n and L̂ n are the differential operators. The
function wn

0 does not usually depend on momentum, and in
this case ŵ n

0 is a regular function of variables x, y. But, as a
rule, wn

1 depends on p, thus restricting the possibility of using
the adiabatic approximation (see Section 3.3).

3.2 Energy renormalization and quasiclassical asymptotics
The operator (5) spectrum strongly depends on the pattern of
the effective potential change, i.e., on the effective force
applied to a particle in the direction of a tube axis.

As an example, consider a tube in the absence of an
external field. Then, the effective `longitudinal' potential (an
analog of the Morse potential in molecular physics) is mainly
determined by `fluctuations' in the cross section dimensions
and, as a consequence, by the `prompt' transverse energy
en?�x�. Let us consider the following cases with a periodic tube:
(1) en? � en?�x0� � const, and (2) en?�x� has a single point of
minimum x0 over the period. In case (1), the operator (5)
spectrum is taken asE nn � en? � ennk . The part of the spectrum
where ennk 5 en? may be significantly influenced by the axis
curvature (bound states [9, 16] may be organized) and by
spin-related terms [2]. In case (2), the point x0 of the
minimum produces a spectral series of asymptotically
localized eigenfunctions (`trapped' states analogous to the
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lower states of nuclei in molecular physics) and eigenvalues
E nn � en?�x0� � ennk , with geometric potential practically not
playing a role and possibly considered by the perturbation
theory. The longitudinal wavelength lk is related to ennk
through the estimate ennk � �h2=�2ml2k�.

Depending on the relation between ennk and en?�x0�, the
following classification of operator (5) eigenvalues is worth
proposing:

(a) long-wave states with

lk � l0 ; ennk �
d 2

l 20
en?�x0� ; h � 1 ;

(b) medium-wave states with

lk �
������
dl0

p
; ennk �

d

l0
en?�x0� ; h � ���

m
p

;

(c) short-wave states with

lk � d ; ennk � en?�x0� ; h � m ;

(d) ultra-short-wave states with

lk � d 3=2

l
1=2
0

; ennk �
l0
d
en?�x0� ; h � m 3=2 :

Given the longitudinal wavelength

lk � d 2

l0
; ennk �

l 20
d 2

en?�x0� ; h � m 2 ;

the adiabatic approximation is no longer valid. A similar
classification for an abstract problem was made in Ref. [27].
In case (a), equation (3) should be solved exactly; in cases (b)
through (d), the quasiclassical approximation may be used,
with spin possibly influencing classical dynamics in case (b);
finally, in case (d), the quasiclassical approximation coincides
with the Born approximation (see examples in Section 4).

3.3 On the accuracy of equation derivation
in dimensional quantizing subbands
Using the asymptotic procedure [15], operator (5) can be
obtained with any given accuracy. Its derivation, however,
faces some technical difficulties. In the case where Ĥ is not
time-dependent, the operator L̂n is reasonably built with such
a degree of accuracy that its spectrum E nn is an approxima-
tion to the spectrum enn of the operator Ĥ. To do this, the
condition jE nn ÿ ennj5 jE nn ÿ E n�n�1�j must be satisfied.
Three terms of the operator L̂n expansion are usually
sufficient. To find the excited eigenfunctions of operator (5),
two first terms are enough.

In the case (d) (see Section 3.2), a characteristic period of
transverse oscillations md 2=�h becomes comparable with the
time mlkl0=�h that it takes a particle to pass through a tube,
therefore the instantaneous partition of oscillations into
longitudinal and transverse ones does not make sense and
the adiabatic approximation no longer works. In formula (7),
the result of operator ŵn1 action on function cn cannot be
considered a `correction' because ŵ n

1c
n � 1. The part of the

operator L̂n spectrum, corresponding to those states, does not
approximate any eigenvalues of Ĥ. This situation can some-
times be analyzed by using the complex WKB method [28].
The accuracy of asymptotics dependent on the relationship
between m and h parameters was analyzed in Refs [14, 15].

4. Some properties of circular cross-section tubes

Let us select vint � mO2�x��y21 � y22�=2 as a confinement
potential. Then, en?�x� � O�x��n� 1�, the problem (4) degree
of degeneracy is n� 1, and the matrix Hamiltonian L̂n has the
2�n� 1� � 2�n� 1� dimensionality. For wn

j , we will select the
eigenfunctions of the momentum operator

l̂ � ÿi�h
�
y1

q
qy2
ÿ y2

q
qy1

�
� ÿi�h q

qj
;

which may be expressed as exp�ilj� u jl j k�r�, where
l � 0;�1; . . .; k � 0; 1; . . .; y1 � r cosj, and y2 � r sinj. On
the basis fwn

j g, the Hamiltonian L̂ n is a diagonal block matrix
with L̂nl 2� 2 blocks corresponding to the momentum
projections onto the tube axis, which are equal to l:

L̂ nl � ÿ �h2

2m

q2

qx2
� �hO�x� �n� 1� ÿ �h2k2

8m

ÿ �he

2mc
hqxR;H i lÿ �h

2



r ; a l�x�� : �8�

Here, a l�x� � e�mc�ÿ1Hÿ 2amlO�x�2qxR, and k�x� is the
tube axis curvature at the point x. Thus, the vector cn�x; t�
is composed of two-component vector functions cnl�x; t�
satisfying the equations i�hcnl

t � L̂ nlcnl. Below are some
precise and some asymptotic solutions of this equation.

4.1 Explicitly solved model of a helical tube
Let us consider a helical tube of a cylindrically symmetric
cross-section and the axis

R�x� �
�
r1 sin

x

r
; ÿr1 cos

x

r
; r2

x

r

�
; r �

����������������
r21 � r22

q
:

Its axial curvature is defined as k�x� � r1=r
2 � const, and the

axial twisting is K�x� � r2=r
2 � const.

In the case of the constant tube cross-section
O�x� � O � const, and the magnetic field parallel to the
helical axis, H � �0; 0;H�, the Hamiltonian (8) is unitary
equivalent to the operator with the constant coefficients:

Uÿ1L̂ nlU � ÿ �h2

2m

q2

qx2
ÿ �h

2mr

�
1 0
0 ÿ1

��
ÿ i�h

q
qx

�
� �hO�n� 1� ÿ lr2

2r
�hoH � �h2r22

8mr4

ÿ �hoH

2

�
1 0
0 ÿ1

�
� amO2 �hl

r

�
r2 r1
r1 ÿr2

�
;

U�x� �
exp

�
ÿ ix

2r

�
0

0 exp

�
ix

2r

�
0BB@

1CCA ;

whereoH � eH=�mc� is the Larmor frequency. The spectrum
of the operator L̂ nl (8) in an infinite helical tube is therefore
continuous and is given by

E nl�q� � q2

2m
� �hO�n� 1� ÿ r2oHl

2r
� �h2r22
8mr4

ÿ s"#
�h

mr

����������������������������������������������������������������������������������������
q�moHr

2
ÿ am2O2lr2

�2

� �am2O2lr1
�2s
;

where s"# � �1.
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Let wave function Cn�x; y� be periodical with the period
equal toN turns. This condition results in the Bloch condition
for a function cnl with the quasimomentum I=�2p�hrN �,
I � ÿIAB � I lB, where

IAB � e

c

�2prN
0



qxR;A�R�

�
dx � e

c
NF ;

I lB � �hl

�2prN
0

K dx :

Thus, the periodicity condition is written down as

N

�
2prq ln

�h
ÿ pÿ 2prKl� 2pF

F0

�
� 2pn :

From this it follows that under the given Bloch conditions, the
operator L̂ nl spectrum is discrete: E nln � E nl�q ln�, where the
notation was used:

q ln � �h

r

�
n

N
� lr2

r
� 1

2

�
ÿ F
rF0

;

and F � pr21H is the magnetic flux through the helix
projection area. The term IAB is a manifestation of the
Aharonov ±Bohm effect, and I lB are the Berry phases. Note
that IB � 0 when l � 0. It follows from Ref. [14] that in the
case of an undegenerate term IB � 0 for any cross-section of a
tube. At r2 � 0, E nln determine the spectrum of a closed
toroidal tube.

In Sections 4.2 ± 4.6, we will consider situations where the
quasiclassical approximation may be applied to equation (3).

4.2 Spin dynamics for a short-wave mode
Let us consider a tube of variable thickness withO�x� 6� const
and the nonstationary equation i�hcnl

t � L̂nlcnl. We will
analyze the evolution of wave packets cnl�x; t� given by the
condition cnl�x; 0� � exp�iS n

0 �x�=�h�A nl
0 �x�, where A nl is a

two-dimensional vector, in a `short-wave' mode [14]. In this
case, the functions cnl are quasiclassical and are retrieved
through:

(1) the trajectories x � X�x0; t� of the Newton equation

m�x � ÿ�hO 0�x��n� 1�; xjt�0 � x0 ;

m _xjt�0 �
qS n

0

qx
�x0� ;

(2) the solutions A nl�x0; t� of the A nl-spinor equation

dA nl

dt
ÿ i

2



r ; al

ÿ
x�t���A nl � 0 ; A nljt�0 � A nl

0 �x0� : �9�

If for t < t � the Jacobian J nl�x0; t� � jqX=qx0j 6� 0, then

cnl�x; t� � exp

�
iS n
ÿ
x0�x; t�; t

�
�h

� i#
ÿ
x0�x; t�; t

��
� A nl

ÿ
x0�x; t�; t

������������������������������
J nl
ÿ
x0�x; t�; t

�q ;

where

S n�x0; t� � S n
0 �x0� �

�t
0

�
m

2
_X �x0; t�2

ÿ �hO
ÿ
X�x0; t�

��n� 1�
�
dt ;

#�x0; t� � l

2

�t
0



qxR

ÿ
X�x0; t�

�
;H
�
dt ;

x0�x; t� is the solution to the equation X �x0; t� � x in x0. For
t > t �, after focal points appear (for instance, at the points of
the narrowing of the tube and near its end), the asymptotics
are determined by the canonical operator [29].

4.3 Spectral asymptotics in a short-wave mode
In a variable thickness tube, let the functions Cn satisfy the
periodicity condition at every spiral turn and let the frequency
O�x�with the same period have a singleminimumpoint x0 per
turn. Then, functions with energies E nln < max en?�x� are
localized in a classically accessible region; functions with
energies E nln > max en?�x� are delocalized and specify `ballis-
tic' states [30].

Localized states may be sorted into two groups:
(1) lower states corresponding to the oscillatory approx-

imation [Born ±Oppenheimer approximation for equation
(2)] and having the spectrum

E nnl � �hO�x0��n� 1� � �h

�������������������������������
�hO 00�x0��n� 1�

m

r �
n� 1

2

�
ÿ mr1

2r
H2l sin

�
x0
r

�
ÿ mr2

2r
H3l

� �hs"#

���� ec Hÿ 2amlO 2�x0� qxR�x0�
���� ;

where s"# � �1 corresponds to spins directed along the
vector �e=c�Hÿ 2amlO�x0�2qxR�x0�;

(2) excited states corresponding to rapidly oscillating
WKB-solutions having the spectrum

E nln
s � E nn

0 ÿ �honln
H ÿ �honln

s �O�m2� ;

where E nn
0 is found from the Bohr ±Zommerfeld quantization

condition

1

p

�x2
x1

P dx � �h

�
n� 1

2

�
; P �

��������������������������������������������������
2m
ÿ
E nn
0 ÿ �hO�x��n� 1��q

:

Here, x1 < x2 are the solutions to the equation P � 0, with

onnl
H � el�2mcT�ÿ1

�T
0



qxR �X�x0; t��;H

�
dt

� el�mcT�ÿ1
�x2
x1



qxR;H

�
mPÿ1 dx ;

T � 2

�x2
x1

mPÿ1 dx

being the period of a closed trajectory at the energy level E nn
0 ,

onnl
s are the Floquet indices of the monodromy matrix of

system (9) [that are real due to the


r ; al�x�t��� matrix self-

conjugacy and are such that ÿp=T < onnl
s 4 p=T ]. For

localized states, the phases are IAB � 0, I lB � 0.
The spectrum of ballistic states takes the form

E � E nn
0 ÿ �honnl

H ÿ �honnl
s � �ho l

B �O�m 2� ;

where E nn
0 is determined by the condition�2prN

0

P dx � 2p�hnÿ IAB ;

onnl
H � el�cT�ÿ1

�2prN
0



qxR;H

�Pÿ1 dx ;
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T �
�2prN
0

mPÿ1 dx ;

onnl
s are the Floquet indices of the system (9), and o l

B �
��hT �ÿ1I lB.

4.4 Spin-orbit splitting and the perturbation theory
Let H � 0, a5 �mO�ÿ1. Then, the correction onnl

s may be
calculated with perturbation theory [2]. Indeed, the mono-
dromy matrix of equation (9) is given by

M�E�2aml

�T
0

O
ÿ
X�x0; t�

�2

r ; qxR

ÿ
X�x0; t�

��
dt�O�a2�

and the Floquet indices with an accuracy of O�a2� are the
eigenvalues of the matrix

2amlTÿ1
�T
0

O
ÿ
X �x0; t�

�2

r ; qxR

ÿ
X�x0; t�

��
dt

� 2amlTÿ1
�2prN
0

O�x�
r ; qxR�x��mPÿ1 dx :
It should be emphasized that the perturbation theory is valid
only at a5 �mO�ÿ1.

4.5 The impact of spin on the classical dynamics of
weakly excited states, depending on the direction of H
Let jal�x�j 6� 0 (terms are not overlapping) and
O�x� � O � const. Then, the set of equations i�hcnl

t � L̂ nlcnl

has the fast-oscillating WKB-solutions which are retrieved
through the trajectories of two classical systems m�x � ÿHv l"#
[14], where

v l
"# � ÿ

e�h

�2mc�


qxR;H

�
lÿ s"#

2
�h
��a l�x��� ;

��a l�x��� � ����������������������������������������������������������������������������
o2

H � �2amO2l �2 ÿ 2
e

c
alO2



qxR;H

�r
:

The v l
"# extrema are found from the conditionÿjal�x�j ÿ s"#amO2

�
qx

�
ÿ 1

2



qxR;H

�
l

�
� 0 :

The v l"# minima correspond to `traps'. For the s# direction,
the minima and maxima of the potential v l"# correspond to
minima and maxima of ÿ�1=2�hqxR;Hi l, i.e., the phase
portrait of a spin particle qualitatively coincides with that of
an analogous zero-spin particle. For the direction s", a similar
situation takes place when amO2 < ja l�x ��j, where x �

corresponds to the points of minimum and maximum of
ÿ�1=2�hqxR;Hil. For the direction s#, the potential max-
imum grows by ��h=2�ja l�x ��j in comparison with that for a
spin-zero particle, and for s" it drops by the same value. An
interesting possibility of separation of spin particles having a
given momentum projection l results: in the energy range

�hO�n� 1� ÿ �he

2mc



qxR�x ��;H

�
lÿ �h

2

��a l�x ����
< E < �hO�n� 1� ÿ �he

2mc



qxR�x ��;H

�
l� �h

2

��a l�x ���� ;
a particle with spin s" will pass through the tube, whereas a
particle with spin s# will be deflected from it.

If amO2 > ja l�x ��j, then for the direction s" in the center
of a `magnetic' trap (the point of a minimum of
ÿ�1=2�hqxR;Hi l ) a barrier appears and the trap breaks up
into two traps; at the points of the maximum of
ÿ�1=2�hqxR;H il, additional points of the minimum appear.

4.6 Spin flip
Let us consider the case e=�mc�H � 2amlO2qxR�x ��. Then,x �
is a point of minimum ofÿ�1=2�hqxR;H i l, and ja l�x ��j � 0.
In this case, the term overlapping occurs at points x �,
corresponding to spin flip.

As an example, take a circular arc-shaped axis
R�x� � r�cos�x=r�; sin�x=r�; 0� and the field e=�mc�H �
2amlO2�ÿ1; 0; 0�. Then the potential is given by

v l
"# � ÿ�h jl joH sin

�
x

r

�
ÿ s"#�hoH

���� sin� p
4
ÿ x

2r

����� ;
and x � � pr=2, with the principal term of the WKB-solution
of Eqn (3) determined by the equations m�x � ÿ�v l��0, where

v l
� � ÿ�hjl joH sin

�
x

r

�
� �hoH sin

�
p
4
ÿ x

2r

�

[31, 32]. The potential v l� does not coincide with the potential
v l
"#.
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