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Spectrum and Kinetics of electrons
in curved nanostructures

L I Magarill, A V Chaplik, M V Entin

1. Introduction

Rapid technological progress has recently made possible
various low-dimensional systems of complex geometrical
shape [1, 2], such as scrolls, rings, spirals, goffers, and so on.
This has led to renewed interest in the theoretical study of
curved low-dimensional systems.
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Many works have been devoted to the derivation of the
general Hamiltonian of curved low-dimensional systems. The
electronic states of curved low-dimensional systems have been
studied both theoretically [3—6] and experimentally [7, 8].

The reduction of system dimensionality due to the
constraint of electron motion along one or several co-
ordinates results in transverse quantization of the electronic
states. In a heterogeneous system, the transverse energy levels
begin to depend on the longitudinal coordinate. This
description is adequate provided that the characteristic size
of heterogeneity is large in comparison with the thickness of a
layer or a quantum wire. Such adiabatic quantization may be
applied to curved low-dimensional systems. By these systems
we mean those that locally coincide with the corresponding
plane two-dimensional or rectilinear one-dimensional sys-
tems. The ‘equal-width’ quantizing when the system is
described by the same confining potential at every section, is
a simple (but not the only possible!) situation.

If the electron moved strictly over a surface or along a
curve, it would be possible to describe its motion by an
appropriate transformation of the two-dimensional or one-
dimensional Schrédinger equation for a free particle to the
curvilinear coordinates. Taking the finite thickness of a
surface layer or a quantum wire into account significantly
complicates the effective Hamiltonian. First of all, the
quantization of the transverse states gives rise to large
contributions to the energy, proportional to 1/d?. These
contributions grow as the thickness of d tends to zero, while
the kinetic energy of the longitudinal motion may remain
finite. However, provided that the transverse characteristics
of the confining potential and the states across the surface are
uniform, these contributions are also constant and may be
subtracted out by an energy shift. The presence of a curvature
gives rise to the additional energy contributions that, on the
one hand, remain small in comparison with the quantum
energy, but prove to be comparable to the longitudinal kinetic
energy. The best-known contribution is the geometric
potential independent of the transverse potential character-
istic and the transverse state structure. Since this quantity is
local, it is determined by only local geometric characteristics
of the curved system. The geometric potential has to have the
dimensionality proportional to the second degree of curva-
ture of the system.

If the longitudinal kinetic energy of the electron is small in
comparison with the transverse quantizing intervals, the
geometric potential is mainly determined by the system’s
curvature. Whenever the electron kinetic energy compares
with or exceeds the above intervals, then another factor may
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play a role: the centrifugal displacement of the electron
toward the outer side of a quantum wall contributes to the
energy, proportional to the curvature, the kinetic energy, and
the layer thickness.

The difference between one-dimensional and two-dimen-
sional curved systems lies in the necessity to consider their
transverse geometry — that is, the shapes of the sections.
Since the cross section may undergo a turn along the wire, the
local one-dimensional Hamiltonian of the system has to be
determined both by the local system’s curvature and the axial
wire torsion. Torsion and curvature also influence the spin
degree of freedom, thus contributing extra to spin—orbit (SO)
interaction in curved low-dimensional systems. The subjects
mentioned above constitute the contents of the present
report.

2. The Hamiltonian of a curved surface

The effective Hamiltonian for electrons on a curved surface in
the absence of SO coupling has been derived in Refs [3, 4]. We
will extend the approach utilized in those works to the case of
asymmetric confinement across the surface layer, based on
the Schrodinger equation for an electron with a quadratic
non-degenerate spectrum:

(_§ZA+U®>W:ET. (1)

Hereinafter we assume /i = 1; m is the effective mass.

Let a (g1, ¢2) parametrically determine a surface in a 3D
space. Parameters ¢; and ¢, can be considered as curvilinear
coordinates on the surface. In a finite layer enclosing the
surface, any point is defined as

r(q1,q2,93) = a(q1,q2) + q3n, |q3] <9, (2)

where n = 0;a x 0,a/|01a x 0a| is a unit vector transverse to
the surface, 0; = 0/0q;, and the layer thickness ¢ is assumed to
be small relative to the radius of the surface curvature. The
triad {qi,¢2,¢3} constitutes a coordinates system in a 3D
space.

The problem is to derive the effective Hamiltonian for an
electron motion across the surface. The bottom of the well,
g3 = 0, is assumed to form an equipotential surface, and the
potential depends only on ¢;. We also assume that the
characteristic geometric lengths of the g3 = 0 surface, in
particular, curvature radii, exceed the width of the surface
well. Such a potential well is locally plane, therefore the
electron states may be described in the adiabatic approxima-
tion. According to this approximation, the wave function ¥
may be represented as a series expansion of functions ¢,,(¢3)
relating to the transverse motion in the well:

VY= % ;l//n(qqu) ¢n(q3) )

("%w)qs — B ()
21’}’1 n n¥n»

where E, is the transverse state energy, and the function

det(Gy;)/det (g;;) is determined by the ratio of determi-
nants of the three-dimensional and surface metric tensors, G;;
and g;;, respectively. Using the adiabatization procedure, we
find the effective Hamiltonian of electrons in an n-th

subband:
N T ! )
H:—% Do+ Ve (q1,q2) + He, He= “om (93),n D1,
(4)
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(q3)nn = <¢n|q3|¢n>’ ﬁ = _(thil)’ and hij = hjf = _aiaajn
are the coefficients of the second fundamental form; the
appearance of braces mean that the operator product is
symmetrized.

The D, operator stands for the purely surface part of the
Laplacian. In other words, —Dy/2m is the longitudinal part of
the kinetic energy. When passing to the classical limit with
respect to longitudinal motion, this Hamiltonian gives rise to
particle motion along the geodetic lines.

The geometric potential ¥, can be expressed through the
principal surface curvatures x; ; [4]:

? 2
(%1 — %2) .

(7)

Velqr,42) = —i [(Trp)* —4detp] = _%

As seen from formula (7), V; does not depend on the structure
of the confinement potential. The geometric potential
contains the Planck constant, and in the classical approxima-
tion it becomes zero.

The quantity A, is related to the centrifugal force: an
electron moving along a curved surface displaces toward the
outer side of a potential well; in an asymmetric potential well,
its potential energy changes proportionally to the centrifugal
force. In the simplest cases of a sphere and round cylinder we
get

a (q3)ml 12

H,=— R 1- (sphere), (8)
4 (q3)mz 72 :

HC = — W [Z (Cyllnder) s (9)

wherel, . are the operators of the angular momentum and its
projection onto the cylinder axis.

Thus, H, accounts for the effective mass renormalization
of the relative order J/R, where J is the mean value of the
transverse coordinate, i.e., the effective layer thickness;
naturally, only the azimuth mass component is renormalized
for a cylinder.

3. The Hamiltonian for a curved quantum wire

Let us consider the motion of electrons having a quadratic
and isotropic spectrum within curved and/or twisted quan-
tum wire. Neglecting its thickness, such wire is defined by the
equation

r=a(g). (10)
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Here, g3 is the arc length along this curve. To consider the
wire’s shape, however, this one-dimensional description is not
enough. Taking the thickness finiteness into account, equa-
tion (10) gives only some center line inside the wire, going
along it.

The system in question can be regarded as a homogeneous
and initially straight wire with an arbitrary section shape,
which was twisted and/or bent along the wire axis arbitrarily
with respect to ¢3. Mathematically, the wire can be given as a
locus formed by a planar figure moving along a curve,
provided that:

(1) the figure plane remains normal to the curve at their
intersection points;

(2) the curve crosses the figure at the same point of the
figure.

In general, we constrain the electron motion across the
wire by an arbitrary and not necessarily hard potential U(r).
The potential adequate for our premises has to be equally
dependent on local coordinates transverse to the curve in
any section, correct to the rotation of the coordinate system
around the tangent to the curve. Let us choose a (curvi-
linear) coordinate system where the potential does not
depend upon ¢3;. We introduce a moving 3-hedron of the
curve comprising a tangent t(¢3) =0s;a, a normal
n(gs) = 0st/|0st|, and a binormal b(g;) =t x n, as well as
their related vectors

n; =ncos¢ —bsin¢g, n, =nsin¢ +bcos¢. (11)
Here, ¢(g3) is the angle of rotation of a cross section around t.
We define the new coordinates by the relationship

r(q) = a(gs) + qim + qom;. (12)

In ¢; coordinates, the transverse potential takes the form
U=U(qy), whereq, = (41,¢>).

We consider the wire thickness to be small relative to its
radius of curvature. In addition, we will regard the product of
the wire’s internal torsion w = 03¢ and of thickness to be
small as well. These parameters define the adiabatic condi-
tions of the electron motion in the wire: when moving along
the wire electrons retain the number of the transverse
quantization subband.

We expand the wave function

1
®(q) —W;qﬁn(qﬁ%(%) (13)

in terms of the transverse states ¢,(q, ) in the wire, which
satisfy the equation

A2
p _
(ﬁ"— U) lpn - En‘//na (14)

where E, is the energy of a transverse state in the wire.

Consider a nondegenerate spectrum of the transverse
states. We search for the states resulting from some
transverse state n, all other y,, with n’ #n being small
relative to y,,. In doing so, we arrive at

[ﬁ _#(g)

2m 8m
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Here, f, = (l;z)nn, { =14 w, and 7is a geometric torsion of
the curve.

The second term in square brackets in equation (15) is the
well-known [3, 4] geometric potential brought about exclu-
sively by a wire curvature and independent of its internal
structure. The third term in square brackets is determined by
inner and geometric torsion of a wire. It depends, via the
matrix element (/2), , on the shape of the transverse potential
and on the transverse wave functions. Finally, the fourth term
comprises the diagonal matrix element (q, ),, of the trans-
verse coordinate. For potentials U(q,) symmetric with
respect to rotations around the axis 3 through angles 21t/ N,
N =2,3..., which also include potentials axially symmetric
about this axis, the matrix elements (q,),, =0 at all n. In
particular, the parabolic potentials, as well as quantum wires
of the square cross-section with rigid walls, possess such
symmetry.

In the more general case of a quantum wire with an
asymmetric potential, the fourth term in the left part of
Eqn (15) remains. It is of centrifugal origin: an electron
moving along a curved wire is being pressed to the outer side
of the bent wire by a centrifugal force, and thus its potential
energy in the asymmetric well potential changes, too. This
contribution depending on the electron longitudinal momen-
tum is a small addition to its kinetic energy and corresponds
to the mass re-normalization.

For a round spiral of radius R, pitch D, and centrally
symmetric cross-section without internal torsion (w = 0), the
effective Hamiltonian takes the form (the energy is measured
from the bottom of the n-th subband)

PN

= 16
2m 8m  2m’ (16)
where x = 4n°R/(4n*R? 4 D?),and || = 2nD/(4n’*R? 4 D?);
for the lower subband in the wire of rectangular section one
has f = n%/6 — 1.

4. Spin - orbit interaction

4.1 Two-dimensional case (curved quantum well)
In the ¢,3 coordinates introduced above, the initial SO
coupling operator is given by

A 5

Heo = laﬁ (B:3U) " (o’(@ir)) 05, (17)
where ¢” is the Levi-Civita symbol, ¢! =¢2 =0,
¢? = —¢*' =1, and « is an SO coupling constant in the bulk
material.

We will derive the effective two-dimensional SO Hamilto-
nian using the smallness of the parameter J/R. The rather
cumbersome computations result in the following conclusion.
The SO coupling operator comprises two contributions that
are proportional to the transverse 7, and the longitudinal L,
kinetic energies of a particle in a given subband, respectively.
The first contribution comes from the across-layer gradient of
the layer-tangential electron velocities, whereas the second
one is a consequence of the centripetal force turning the
particle along the curved surface (in moving coordinate
system, this force contributes to the effective magnetic field).
When the wavelength of longitudinal motion is small relative
to the radius of curvature, the surface may be considered
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locally plane. In this case, as follows from formula (17):

Hy, = —20:[Tn(axﬁyxy — OyPyy)
1

—5— (e i+ %0;) (0 Py — 0,px)]-

o (18)

An illustrative example is the result for the spectrum of
electrons on a cylindrical surface of radius R:

1 2, .2 Loafl 2
Enp. j. _W{k +J; +Z_§<Z+ 3. —ta

i\/j_}{lJr&tn &(jz2+i)r+&2k2(j}+i>2 } (19)

Here, & = 20/ R%, t, = 2mR>T,, and k = p.R; p. and, are the
momentum along the cylinder axis and the angular momen-
tum about the cylinder axis, respectively.

4.2 A one-dimensional case

(a bent and twisted quantum wire)

In g coordinates (see Section 3), we have
Hio = o 72 30 U)

o; = (o). (20)

1 1

Gt s

Let us expand this formula in terms of powers of ¢; > and
average it over the functions of the transverse motion in the
n-th subband. In general, the averaged SO Hamiltonian is
linear with respect to the longitudinal momentum and
includes both the contribution proportional to the wire
curvature and the contribution proportional to the wire
torsion. The contribution due to torsion reduces to zero if
U(q, ) has a symmetry center. So, we get the dispersion law
for a round wire spiraled with radius R and constant pitch D:

Sr::: - gl(r}Zi)n
= Ll Jamo ) + dmaEn) e+ 2 |, (21)
— 2}’}’1 P ]7 ALy HLp) % R )
where gf:i)n is the constant n-th subband shift dependent on the

spiral curvature and torsion.

5. Possible applications

Consider a bent quantum wire (the same is obviously true for
a quantum well in the shape of a cylindrical surface). Let it
look like two straight lines matched with a circular arc (‘open
book’) (Fig. 1). The geometric potential of such a structure is
represented by a rectangular well 1/8mR? deep and RO wide,

where R is the radius of circle, and 6 is the angle between the
straight lines (0 < m). This well has one and only one bound
state. At m = 0.07my (GaAs), R =100 A, and 0 =&, the
binding energy W, is about 4 K; for 0 =n/2, one finds
Wy =~ 3 K. Since the geometric potential is also a well for
holes, one can expect exciton condensation in the vicinity of
the wire bend. In this case, we deal with bosons whose
spectrum, in addition to the continuous part of positive
energy, possesses one negative level. When the exciton
concentration exceeds some temperature-dependent critical
value, the particles begin accumulating in the bound state.
For the above parameters, the critical exciton concentration
is of the order of 10° ecm~! at T=1 K.

For a curved wire with a single point of maximal
curvature, ¢z = ¢qo (parabola, hyperbola), provided that
a* < R, where a* is the effective exciton radius, the potential
may be considered quadratic with respect to small displace-
ments (g3 — ¢o)°. Since Ve oc 1/m, then the internal motion
within an exciton and the motion of its center of gravity can
be resolved, when the masses of the electron and the hole are
equal, m. = my. In this hypothetical case, the probability P of
exciton formation depends on the quantum number N of the
oscillator describing the mass center motion:

(2N)!

T N=0,1,2,....
22N(N1)

Py , Pavy1 =0, (22)

Thus, the exciton absorption (and luminescence) line
acquires a kind of fine structure on a scale of order 1/mR>.
When the masses are unequal, m. # my, the separation of the
degrees of freedom is not possible and the spectrum gets more
complex, although its fine structure is still retained (in the case
of a straight wire or a flat quantum well, a single line
corresponding to a zero value of the total exciton momentum
would be present).

Next, consider a so-called IT element (Fig. 2). Two identical
potential wells correspond to it, being a apart. The resonance
level splitting gives a two-level system, all characteristic
parameters of which are regulated during its manufacture (a
mechanical g-bit). A meander type I1-element chain (Fig. 3) is
a combination of g-bits; communication among them may
take place by, for example, the exchange of phonons of a
surface acoustic wave (SAW) of an appropriate frequency. By
applying mechanical force to the substrate whereupon the
wire is placed one can deform the particular meander links,
resulting in shifts of the energy levels in wells and making
possible the tuning of the chain elements in or out of
resonance with the SAW. The building of three-dimensional
structures of mechanical g-bits is obviously possible as well.

Ey~07?

Figure 1. A single quantum well in a bent wire.

| 35Eo

Figure 2. A two-level system in a IT element.
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Figure 3. A g-bit chain (a meander).
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Figure 4. A mechanical electron interferometer.

Yet another variant of the connection between mechan-
ical and electronic degrees of freedom is illustrated in Fig. 4.
This is a mechanical electron interferometer. By bending one
of its arms we create a geometric potential in it, resulting in
the phase shift of the wave function of electrons passing
through the bent arm. For kg R > 1, the phase shift A@ may
be estimated as A® ~ 0/8kg R, where 0 is the bending angle,
and kg is the Fermi electron wavenumber. In the opposite
limiting case, when krR < 1, the result is quite simple:
Ad =06/2.

In conclusion, consider an example of a 2D-electron
system on a surface with two significantly different principal
curvatures. Here, we are dealing with a bent nanotube (NT).
Introducing the NT axial arc length s and azimuth angle ¢ in
its sectional plane as a coordinate system, we get the

Hamiltonian
N 1 [1 @ /h 0 10/10
=l (o 50) 35 (i )
1 |1 cos ¢ 2 acos @
|7 h=1 . 23
8m L{ R(s)+acos<p] 1 + R(s) (23)

Here, a is the NT radius, and R(s) is the radius of curvature of
its axis at a point s.

The NT bend removes the energy level degeneracy with
respect to the sign of the azimuth quantum number M. The
situation is analogous to A-doubling in a spectrum of
diatomic molecules: the splitting of the + M states is achieved
in the 2M-th order of the perturbation theory. The small
parameter is the ratio @/ R. Approximating a bent NT by an
arc of torus measuring L in length, we get for M = +1:

1

|Esi,n— E_1,0| = YMRE

3 3
(Q?ia‘“rz 0@ —%), (24)

where Qp =kn/L, k=1,2,.... The line of an intra- or
interband optical transition, in which subband with |[M | =1
participates, splits accordingly.

The second consequence of the NT bend is a change in its
ballistic conductance, for the bend area acts as an electron
scatterer. More exactly, the transmission factor of a bent NT
differs from unity even in the absence of impurities or defects.
Consider the NT asymptotically straight — that is, R(s) — oo
as s — +o0, and, besides that, dR/ ds < 1, so that the bend is
smooth enough. This enables an adiabatic approximation to
be applied, with ¢ being the fast variable, and s the slow one.
The wave function is sought for as the expansion
> ci(s) xi(,s), where y; are the instantaneous eigenfunc-
tions of the Hamiltonian (23), in which s is considered a
parameter. The interesting peculiarity of this problem is the
dependence of the coefficient of the slow part of the NT
Hamiltonian (with d/ds derivatives) on the fast variable: &
depends on ¢. Therefore, even in the zero-th adiabatic
approximation (y,;/0s = d°y,/0s> = 0), the set of equations
for the slow amplitudes ¢;(s) is not uncoupled as usually takes
place in other adiabatic problems. In this case, the effective
mass actually becomes a matrix (dependent on s, of course):

1 1\ &%
=) /. <a >i./ e + €i(s) ci(s) = Eci(s) ,

1 1 x7—2 N
<"_1>z-,- = J/c,- h=(,s) z;do,

where ¢;(s) are the instantaneous terms. Thus, the bend brings
about not only electron wave reflection, but also intersub-
band transitions, while the energy is conserved.

In an ideal straight NT, the transmission factor equals
unity at any energy value exceeding the subband bottom level,
and the dependence of the longitudinal conductance on the
Fermi level G(EF) is given by the well-known step function
with discontinuities at the subband edge points, E = BM?,
where B = 1/2ma? is a rotational quantum.

The analysis of equations (25) leads us to the following
conclusions. For Er < B, when only the subband M =0 is
populated, the transmission factor is T(E) = E/(E+ C), C
being dependent on the bend shape and not on the particle
energy. Thus, at small Er the conductance G(EF) is ‘turned
on’ linearly. The following steps in G(Ef) are smeared as
v Er — BM?, (|]M] = 1,2,...), corresponding to passing over
the potential wall at small energy excess (a slow particle in a
finite state). This contribution comes from the intersubband
transitions and is a principle one in the threshold range
0 < Er — BM? < aB/R.

This report is based on our publications [9—13].

The work has been supported by RFBR grant No. 05-
02-16939, the Support Program for Scientific Schools
NSh-593.2003.2, as well as by the RAS and the RF Ministry
of Science and Technology programs.
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Heterogeneous electronic states
in carbon nanostructures

with different dimensionalities
and curvatures of the constituent
graphene layers

A I Romanenko, A V Okotrub, V L Kuznetsov,
A S Kotosonov, A N Obraztsov

1. Introduction

Production of skeleton carbon nanostructures is always
accompanied by curving the constituent graphene layers.
New properties result that are not characteristic of the
graphite composed of the plane graphene layers. The most
brightest display of graphene layer-curvature is the existence
of a superconducting state in the bundles of single-layer
carbon nanotubes 10 A in diameter (with the radius of
curvature r = 5 A) at the temperature T, ~ 1 K [1], and the
presence of superconductivity in nanotubes 4 A in diameter
(r=2A) at T, =16 K [2], whereas no superconducting
transition is observed in graphite. None the less, Y Kopelevich
et al. [3] stated that superconductivity in an ideal graphite
must show itself and that in real graphite samples super-
conductivity was not observed due to omnipresent defects. It
is our belief that superconducting state in skeleton carbon
nanostructures is related to curvatures of graphene layers
forming them.

In addition, the crystal structures of nanocrystallites, for
instance, nano-onions, not only have curved surfaces but also
have one-dimensional fibres of various lengths and curva-
tures [4]. This results in reduced dimensionalities of motion of
charge carriers in such structures.

This report is concerned with experimental determination
of the electron—electron interaction constant A. in carbon
nanostructures based on curved graphene layers, and with the
peculiarities of motion of charge carriers in systems composed
of curved surfaces and one-dimensional fibres.

2. Methods of investigation

The general method of studying the electron—electron
interaction constant has been a combined analysis of the
quantum corrections to the electrical conduction, magnetic
conductance and magnetic susceptibility of the investigated
samples. All graphene-layer-based skeleton nanostructures
usually possess structural defects resulting in charge carrier
diffusion at low temperatures. The quantum corrections to
kinetic and thermodynamic quantities due to quantum
interference are therefore observed in them at a low enough

temperature. For single-particle processes (localization
effects, LEs [5, 6]), this is the interference of wave functions
of an electron proceeding along the closed trajectories in
opposite directions (for path lengths / smaller than the phase
interruption length L,(T') = (Dr(/,)l/z, where D is the diffu-
sion coefficient, and 7, is the phase interruption time). As a
consequence, the full conductance decrease: when the
temperature decreases, L,(7) grows and the conductance
goes down.

In a magnetic field, the additional phase shift of various
signs are added, depending on the direction round of closed
trajectory. The interference is therefore suppressed provided
that Lp = (hc/ZeB)l/2 < L, resulting in a negative magne-
toresistance (NMR) — that is, the conductance increases in a
magnetic field. Electron —electron interaction effects (IE) [7]
also produce quantum corrections. In this case, at a repeat
interaction of two electrons at distances less than the
interference length Liy = (Dhi/kgT )1/ 2 (Lint is the distance
through which information about the electron phase change
in the course of previous interaction have not yet lost), the
repeat interaction will depend on their previous one. The
effective density of states vg on the Fermi surface therefore
proves to be renormalized. The interaction effects contribute
not only to electrical conduction, but also to the thermo-
dynamic quantities dependent on vg, namely, the magnetic
susceptibility y, and the heat capacity. Contrary to correc-
tions to electrical conduction and magnetoresistance, the
corrections to thermodynamic quantities are due to EC
effects only.

To determine the effective dimensionality of motion of
the charge carriers, we have used combined analysis of
temperature dependences of electrical conduction and mag-
netoresistance in the conditions of variable range hopping
conduction.

3. Arc-produced multiwall carbon nanotubes

A distinguishing feature of multiwall carbon nanotubes
(MWNTs) that were produced at the Institute of Inorganic
Chemistry, SB RAS [8, 9] with an electric-arc technology is
the presence of nanotube bundles preferentially oriented in a
plane perpendicular to the electric arc axis, therefore the
MWNT-based bulk samples possess an anisotropy of elec-
trical conductivity: o)/g, ~ 100 [8, 9], where g is the
electrical conductivity in the plane of the preferred orienta-
tion of nanotube bundles, and ¢, is the electrical conductivity
in the direction normal to this plane. The mean diameter of a
single nanotube is d ~ 140 A. According to the electron
paramagnetic resonance data, our samples contain less than
107%% of paramagnetic impurities, thus excluding the
impurity contribution to the susceptibility observed. Bromi-
nation of MWNTs in bromine vapors at room temperature [9]
produces a sample of CBrggs chemical composition and
results in a conductivity increase due to the higher concentra-
tion of hole (p-type) charge carriers. The corrections to
orbital susceptibility dy,, in the Cooper channel were
theoretically predicted [7] to be the main contributors to
quantum corrections to magnetic susceptibility (7, B) in
the magnetic fields below B, = (nkp T/g,uB)'/2 (B.=98T
at T = 4.2 K). These corrections are determined by the value
and sign of the electron—electron interaction constant A, and
are proportional to the diamagnetic susceptibility y.. of
electrons. Since the diamagnetic susceptibility of graphites
and multiwall carbon nanotubes is greater than that of any
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