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Abstract. Numerical methods whereby exact solutions to the
problem of a few particles interacting with one another and with
several bosonic excitation branches are presented. The dia-
grammatic Monte Carlo method allows the exact calculation
of the Matsubara Green function, and the stochastic optimiza-
tion technique provides an approximation-free analytic conti-
nuation. In this review, results unobtainable by conventional
methods are discussed, including the properties of excited
states in the self-trapping phenomenon, the optical spectra of
polarons in all coupling regimes, the validity range analysis of
the Frenkel and Wannier approximations relevant to the exci-
ton, and the peculiarities of photoemission spectra of a lattice-
coupled hole in a Mott insulator.

1. Introduction

1.1 Basic concepts of the polaron

Historically, the first physical system to reveal strong
coupling between a quasiparticle and its environment was
the polaron — an electron interacting with lattice vibrations
(for acquaintance, see Refs [I, 2]). As an electron moves
through the crystal lattice, it changes its momentum each time
it interacts with lattice excitation quanta (i.e., phonons) — a
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property to which there corresponds a single quantum
number describing the state of a single structureless particle.

As increasingly complex objects were studied, the general
physical significance of the polaron problem became clear.
Depending on what the terms a ‘particle’, ‘medium’, and
‘interaction’ are taken to mean, a wide variety of diverse
physical phenomena are covered by the polaron concept. This
is nicely illustrated with an example of a hole moving in an
antiferromagnet (a problem near-isomorphic to the one of a
phonon polaron): the spin flip due to the motion of the hole is,
in the spin wave approximation, equivalent to the hole
changing its momentum due to the creation and absorption
of spin waves (magnons) [3, 4]. An exciton—polaron con-
sidered in the intraband scattering approximation is another
physical object which can be thought of as a structureless
quasiparticle scattered by bosonic excitations. Intraband
scattering by phonons leaves the wave function of electron —
hole relative motion unchanged and so allows one to consider
an exciton as a structureless single-particle excitation, which is
equivalent to considering an ordinary phonon polaron with a
renormalized coupling constant [5S—7]. As reviewed in Ref. [8],
a large number of rather exotic objects can be treated in terms
of the classical polaron model of [1, 2].

Since L Landau [9], and H Frolich [10] pioneering work on
the structureless particle model, the polaron concept has
grown more sophisticated qualitatively, becoming relevant
to ever more areas of condensed matter physics. A natural
way to generalize the polaron concept was to allow the
quasiparticle to have internal degrees of freedom which,
together with the momentum, can change their quantum
states when the quasiparticle interacts with medium excita-
tions. Examples are the Jahn — Teller polaron whose coupling
with lattice vibrations changes the quantum numbers of a
degenerate electronic state [11], and the pseudo-Jahn— Teller
polaron whose inelastic interaction with phonons can cause
transitions between the quasiparticle’s inner levels with close
energies [12— 14].
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A no less fundamental generalization of the polaron
concept is a system of several interacting particles, each of
which is a polaron. As these interact simultaneously with one
another and with the environment, qualitatively new objects
may form depending on the magnitude and sign of the
coupling constants involved. For example, a ‘bipolaronic’
bound state between two repelling particles may form due to
their effective phonon-mediated interaction [15—17]. On the
other hand, the exciton-producing interaction of an electron
and a hole with the quanta of crystal lattice vibrations
potentially creates a wide variety of fundamentally different
physical situations, including a trapped exciton, a bound pair
formed by a trapped electron and a trapped hole, an electron
weakly bound to a trapped hole, etc. [18, 19]. Impurities
complicate model even further, due to the impurity potential
interference with the polaron’s own potential well induced by
the lattice coupling [20].

1.2 Polaron model formulations

In its general formulation, the problem of a polaronic object
is that of a system involving several particles (for simplicity, a
two-particle system):

Apar
Zsa akak—i— g sh

where @y and Ay are the annihilation operators, while g,(k)
and g, (k) stand for the dispersion laws of the particles which
interact with each other via an instantaneous nonretarded
potential U(p, k,k'):

ﬁa—h - _N_l Zu(pvka k/) a:ﬂ»k h;—k hl’*
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k’ dp+k’ (2)

(N is the number of particles in a system) and whose scattering
is governed by the Hamiltonian
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where 7(44 an, nii,  are the corresponding coupling constants in
creation and annihilation of quanta of one of the various
bosonic elementary excitations in the medium, whose total
number is Q:

Y
:Zzwq,%b;quw (4)
x=1 q

The formulation of the problem is even more complicated if
each of the particles is allowed to have T internal quantum
states:

H bos

i PJT a
ci(k

=22

i=1

tkalk (5)

[e:(k) is the dispersion of a quasiparticle in its internal state /],
transitions between which can be induced by the interaction

par bos—IZZZ/u4 k q

x=1 k,q i,j=
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with some of the bosonic excitation branches.

In various simplified formulations of the problem,
Eqns (1)—(6) govern a huge variety of physical problems.
In the case of attractive potential U(p,k,k’) > 0, formulas
(1) and (2) describe exciton Hamiltonians for an effective
static Coulomb potential with averaged dynamic screening
[21, 22]. For the simplest case of particles coupled
diagonally to just one phonon branch [Q =1, y,, = V>
and y,, =0 in Eqn (3)], Eqns (1)—(4) describe a standard
bipolaron [16, 17] or an exciton—polaron [7, 9, 22],
depending on whether the potential is repulsive
[U(p,k, k') < 0] or attractive [U(p,k,k’) > 0]. Equations
(4)—(6) apply to the simplest possible model of an exciton
interacting with phonons — one in which only the two
(T = 2) lowest states of relative motion are important (a 1D
charge-transfer exciton, for example) — as well as to the
problem of the Jahn—Teller polaron [all the ¢’s in
Hamiltonian (5) are equal] and the pseudo-Jahn-—Teller
polaron. The problem of a hole in an antiferromagnet in
the spin wave approximation is described by Eqns (4)—(6)
with Q=1 and T=1, and if the hole interacts with
phonons, then two bosonic branches should be taken into
account, so that Q = 2 in equations (4) and (6). Finally, the
classical problem of a structureless polaron coupled to a
single phonon branch is covered by the simplest nontrivial
set of the particle

ﬁpar = Z E(k) a]tak p (7)
K
phonon
Hyy = wqblby (8)
q

and interaction

mt Zqu

—b_g) aj_qax + hec. (9)

Hamiltonians.

The essential point here is that, except for the simplest
limiting cases, none of the above problems is amenable to
an analytical solution. Nor, as discussed in detail in the
subsequent  sections, can conventional numerical
approaches (such as variational methods, exact diagonaliza-
tion schemes, or renormalization group techniques) provide
complete and accurate information about the ground and
excited states of a macroscopic system. Section 2 of this
review presents two newly developed methods — the
diagrammatic Monte Carlo (or DMC) method for exactly
calculating Green’s functions [24—32] and the stochastic
optimization (SO) [26] technique — whose combination
allows us to find exact (i.e., approximation-free) numerical
solutions to the problems discussed in this section. The
reader not interested in the methods as such can read
Section 2.1 and then skip to Section 3 for the results
obtained with these approaches. Section 3 analyzes the
results on systems and phenomena, most of which have
never before been treated without employing essential
approximations and whose interpretation, as a conse-
quence, was not entirely flawless. These include self-
trapping, relaxed excited state, the end point of the polaron
spectrum, and hole motion in an antiferromagnet under
conditions of a strong electron—phonon interaction.
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2. Diagrammatic Monte Carlo method
and the stochastic optimization technique for
constructing analytic continuation

2.1 Informative characteristics of the polarons
To gain adequate information on the ground and excited
states of a system, it suffices to calculate the imaginary-time
Green function (GF) in the Matsubara representation and
then to analytically continue it to real frequencies [33, 34]. For
two particles interacting with a boson field [see Eqns (1)—(4)],
an informative quantity is the two-particle GF [29, 30]
G (1) = (vac | dip (2) by (2) By [ vac), (10)
where fig_p(7) = exp(H.) I pexp(— H.), and t > 0. In the
exciton —polaron case, the vacuum state | vac) is one with the
conduction band empty and the valence band full, whereas
for the bipolaron problem this corresponds to a system with
no particles (or no holes). For the simplified problem of a
particle with an internal structure defined by two energy levels
(4)—(6), an informative quantity is the one-particle matrix
GF [27, 30]
Gy, ij(t) = (vac | a; k(1) a;k | vac), i,j=1,2. (11)
For the simplest problem of a structureless polaron [see
Eqns (7)—(9)], matrix (11) reduces to a single-particle GF
Gk(7) = (vac | ax(t) @ | vac). (12)
Important information about the physical response (for
example, the optical absorption) of the polaron system can
also be obtained from the current—current correlation
function (Jg(t) Js), where f and ¢ are Cartesian subscripts.
What the GF Gi(t) means physically becomes clear from
the Lehmann representation [33, 34]:

00

Ly(w)exp(—wr)dw,

Gilt) = [ (13)

Jo

L) = 3" 6(w — £,(K)|(v]a] |vac)|. (14)

Here, {[v)} is the complete set of eigenstates of the total
Hamiltonian H of the system in the sector of a given
momentum k, i.e., H|v(k)) = E,(k)|v(k)). It should be
noted that, for simplicity, Eqns (13), (14) are presented for
the case of one particle at zero temperature; general expres-
sions can be found in the review article [35]. The Lehmann
spectral function Ly (w) has poles (sharp peaks) at frequencies
corresponding to the stable (metastable) states of the particle.
For example, if for a given k there exists a stable state with
energy E(k), the Lehmann function can be presented in the
form

Li(w) = ZM(w — EK)) + ... . (15)

At zero temperature, the lowest state in the sector of a
given momentum k stands out as special in that the GF
asymptotics

Gk(t > max [w;ﬂ) — ZWexp (— Eys (k) 7) (16)

‘projects’ the energy Ey s (k) and Z ®-factor of this state. The
asymptotic behavior of the GFs given by Eqns (10) —(12) or of

those considered in Refs [26, 29] provides even more detailed
information on the lowest state for a given momentum k. For
example, for a particle’s ground state wave function

k):Zi Z 0:(k;qy, - ..

,q,)
i=1 n=0q...q,
X c, K—q.—q, bjh bjl” | vac) , (17)

the important characteristics are the unity-normalized
(>, Z®(n) = 1) partial n-phonon contributions

ZZ"“‘% 2q,)[

i=1 q...

(18)
and the average number of photons

(V) = (Vo ()] 3 | P 00)) = S nz 8 ), (19)
q n=1

both of which can be obtained from the analysis of the
n-phonon GFs [26]

Gk(na‘c;qlw“aqn)
— (vac|b, (1)...b, (v)ay(z) afbl, ...b] |vac),

n
p:k_ij-
=

(20)

Another example is provided by the wave function of relative
motion of the exciton in the lowest state E, (k) for a given
momentum:

k) = Z EuplEs.) altﬂ) hlt_p\ vac) ,
P

P ( (21)

whose amplitudes &y,(g.s.) can be obtained from the
asymptotics of the GF (10):

GIP (v — 00) =

(k)7) (22)

‘ékp (g.s.)|2 exp(ng's
for equal values of the relative momenta, namely, p = p’ [29].

Information about the excited states can be obtained from
the solution of the Fredholm equation Gy(r) = F[Lx(w)]
(13):

Li(w) = F, ' [G(0)] .

(23)
Equation (13) governs quite a general relation between the
imaginary-time GF (or the correlation function) and the
spectral properties of the system. For example, in the case of
a momentum-independent optical matrix element, the coeffi-
cient of light absorption by excitons, Z(w), can also be
obtained [29] by inverting the Fredholm equation for the
liner combination of the GFs given by Eqn (10):

1) = 7' | S 6 o).

pp’

(24)

while the real part of the optical conductivity ags(w) is,
according to Ref. [31], expressed in terms of the current—
current correlation function (J;(1)J5) as

ops(w) == F, (Jp(1) Js). (25)
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In most cases, the GFs (10)—(12) and the correlation
function (Jg(7)Js) cannot be determined analytically, and the
DMC method is the only one applicable to a macroscopic
system (to be discussed in detail in Section 2.2). The attempt
[35, 36] to invert the Fredholm equation (13) by the standard
maximum entropy (ME) technique proved to be an ill-posed
problem and failed to produce satisfactory results because of
sharp peaks and smooth incoherent parts coexisting in typical
quasiparticle spectra (see the work [35] for a review of the ME
technique). In these cases, the recently developed [26]
stochastic optimization (SO) method can be usefully
applied, whose description is given in Section 2.3.

2.2 Diagrammatic Monte Carlo method

The DMC method offers a systematic-error-free algorithm
for calculating GFs (10)—(12) using the Feynman diagram-
matic expansion for the imaginary-time Matsubara Green
function. What follows is a detailed exposition of the
fundamentals of the DMC method as applied to the simplest
problem of calculating GF (12) for a single structureless
polaron (7)—(9); generalizations to more complex cases can
be found in Refs [27—32]. The DMC method is based on the
expansion of the GF in the interaction representation:

Gy (1) = <Vac T, [ak(f)al(())

X exp <—J fl;m(r’) dﬂ)] Vac> , 1>0. (26)
0 con

Here, T is the chronological ordering operator, |vac) is the
no-particle no-phonon vacuum state, and Hj,, is the interac-
tion Hamiltonian as given by Eqn (9). The exponential
symbol implies a Taylor expansion, an operation which
leads to multiple integrals over the internal variables
{t{,75,...}. All operators depending on imaginary time t
are defined in the interaction representation

~

A(t) = exp [r(I-AIpalr + ﬁph)}gexp [— ©(Hpar + ﬁph)] )

The subscript ‘con’ in Eqn (26) is meant to indicate that the
expansion includes only connected diagrams, i.e., only those
expansion terms in which none of the integrals over the
internal imaginary-time variables {t{,7},...} can be repre-
sented by a separate factor.

Using the Wick theorem, a matrix element of the product
of chronological ordering operators is expressed as the sum of
the products of matrix elements of pairs of operators,
reducing expansion (26) to an infinite sum of terms in the
form of multiple integrals in which the number of integrand
variables increases to infinity:

o0
> ¥

m=0,2,4... &,

C( {x{,...,x,})dx| ... dx,

(27)

In this formula, &, numbers various diagrams with
the same order m. The term with m=0 is the GF
(r) of a noninteracting particle. The integrands
DI(C'" I(z ﬂ\l,...,xr’n ) are, for any order, the product of the
Gis Gl (t2—11)=exp | (k) (t2—71)] and D (v — 11) =
exp [— wq(t2 — 11)], T2 > 71, known for the nonmteracting
system of a particle and phonons, times the interaction
vertices V(k,q). For the DMC and other Monte Carlo

methods to be successful, it is desirable that Eqn (27)

[/7§Zii>\ k
0 /

Figure 1. (a) Typical diagram contributing to expansion (27). (b) A second-
order diagram.

comprised all terms of the same sign — which dictates using
the Matsubara representation because in any other represen-
tation the expansion terms vary in sign and sometimes are
complex numbers.

The weight computation rules for the diagrammatic terms
of the series D\ (t; {x{,...,x/,}) can be defined in explicit
form for a term of any topology and order. The GFs
Gf(o) (t2 — 71) of a noninteracting particle with the correspond-
ing momentum and times are assigned to the horizontal line
of the proPagator whereas to the GF of noninteracting
phonons Dy’ (72 — 1) (times the product of the correspond-
ing Vertlces V(k',q)V*(k",q)) the arch of the phonon
propagator is put into correspondence (Fig. 1a). For exam-
ple, the weight of the second-order term (Fig. 1b) is given by

Ds(t; {2, 7, q}) = |V(k, @) "D (¢ — 1]) G (x])

xqﬂw—ﬂﬂﬁw—ﬁy (28)

The DMC process constitutes a numerical procedure
based on the Metropolis principle [37, 38], which evaluates
different diagrams by sampling in the space of parameters
(t,m, &, {xn}) and collects statistics on the values of the
external variable 7 in such a way that the result converges to
the exact value of the GF Gx(t). This is akin to using the
Monte Carlo method for calculating the dependence of a
multidimensional integral on an external parameter — with
the crucial difference, however, that the number of integra-
tion variables in expansion (27) is a varying quantity.
Although the sum of series (27) is obtained in a single process
[24], the procedure is simpler to describe if one starts from an
algorithm for calculating the dependence on the external
parameter t for one of the terms in the expansion
D,(f’")(‘r; {xt, X h)-

Starting from a certain initial set of parameters,
{t;{x{, ..., x,,}}, at each step of the process one of the
parameters (r or the internal variable x;) randomly selected
from the others is subjected to the replacement x9!4 — xtev,
which is either accepted or rejected according to the
Metropolis algorithm. After performing a sufficient number
of steps that affect all the parameters {z;{x{,...,x, }}
without exception, the statistics of the outer variable 7 tend
toward the exact dependence of the expansion term in
formula (27) on t. The new value of the parameter
X" — §-1(R), where S~ (R) is the solution of the integral
equation

new

- W(x")dx"=R
in

X

(29)

is generated using the random number R € [0, 1].
The distribution function W(x;) entering this equation is
normalized to unity over the range x/™" < x; < x/™ and,
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while otherwise arbitrary, is subject to two restrictions. First,
it should not lead to new parameters x/°" which violate the
topology of the given expansion term. For example, the
internal time t{ in Fig. 1b must fall in the range
[xmin = 0, x™> = 7]]. Second, the distribution should be
nonzero everywhere in its definition domain consistent with
the topology of the diagram, because to obtain the exact result
the DMC sampling must cover the entire region of allowed
parameters (the ergodicity property). At each step, the

decision on the change x4 — x ¥ is made after calculating
the ratio
c,,,) X/ new o ¢ new
Cm)( { 1 ’ ’ r/n})/ ( =h ) (30)
( {xl xl ""7xm )/W( ! )

with the probability

M, or
Pacc:{l or

M<1,

M>1. (31)

Assuming for simplicity a uniform distribution
W = const = (x> — x™n)~! it can be seen that the
probability of occurrence of any combination of para-
meters in the DMC procedure is proportional to the value
of the function D. In the practical implementation of the
method, the distribution W (x*V) should be as close as
possible to the true one specified by the function
D) (5 {x{,...,xP¥ ..., x/}). In the limiting case, when
the two distributions are the same and the ratio M equals
unity, all the parameter changes are accepted, maximizing the
speed and efficiency of the sampling for parameters which are
most representative in the diagram.

In evaluating diagrams of different orders by sampling,
it is sufficient to use two types of mutually reciprocal

transformations. The first transformation, A, turns the
dldgl’dl’n D) (1; {xl, ...,X,,}) into a higher-order diagram
an$§2)( {xl,...7 x,; q',t',t"}) which possesses an addi-

tional phonon arch and connects certain points t’ and t” by
a phonon propagator with momentum q’. In this case, the
weight ratio

D(émﬁ)(f. {Xl/ o

!, !/ /! "
m+2 Xy 45T, T })

D) (s {x{,. .., x5})

m »'m

is not dimensionless because the expressions Dnjgz dqdz’dt”
and D,; (&n) possess the same dimension. However, in the A
operatlon the values of the parameters of the new phonon
propagator are suggested with probability
W(q',7’,t")dqdz’ dt” [which is determined by the unity-
normalized distribution function W (q’,t’,t”)], and acting as
a dimensionless parameter is the quantity

M_ Di}fiaz)( '{X{,...,Xm; q/atl7r//}) . (32)
t”’>( {xl,...,x,,,})W(q’,r/,f”)
The opposite procedure B employs the inverse ratio M ~! [24,

26].

The above diagram transformations are local in the sense
that they are independent on the structure of the diagram as a
whole, so that neither the rules used nor the transformation
processing time change as the order of the diagram is
increased. The DMC method does not imply any explicit
‘cut off” of the order of the terms in series (27) to account for
finite computer memory. Even when taking summation for

strongly coupled systems, typically with a very large number
of phonon propagators Ny, in the contributing diagrams, the
finite memory effect can be made negligible. Clearly, from the
central limit theorem it follows that the number of phonon
propagators in representative diagrams adheres to a Gaussian
distribution with a maximum at point Ny, and with half-
width of order (N, )1/ [39]. Thus, with a memory reserve at
least twice what is necessary for describing diagrams of order
Noph, system fluctuations will no reach the size of diagrams
that are beyond the reserve.

An extension of the above technique to the case of the
exciton [see Eqns (1), (2)] is given in Ref. [29], and its
application to the pseudo-Jahn—Teller polaron [defined by
Eqns (4)—(6)] is discussed in Ref. [27]. Paper [31] modifies the
method to calculate the current — current correlation function
of polarons, and work [32] treats the case in which interaction
with several bosonic excitation branches takes place. Finally,
further modifications of the method are reviewed in Ref. [30].

2.3 Stochastic optimization technique for constructing
analytic continuation
Inversion of Eqn (13) refers to an ill-posed problem [36]. Due
to scarcity of information about the values of Gg(t) (the
function Gk(t) is known on a discrete set of imaginary times in
the finite range [0, Tmax|), and because of the statistical noise
present in the Monte Carlo data, there is, generally speaking,
no spectral density Ly () > 0 which would reproduce a given
GF Gi(t). On the other hand, there exists an infinite set of
solutions which do reproduce the GF with a certain amount
of deviation, and the problem inevitably arises in respect to
which of them to choose. Another, and the most challenging,
problem is that the function Lyg(w) exhibits ‘sawtooth’
instability when Eqn (13) is solved by any standard
approach, for example, by a direct least square minimization
of the functional

Tmax

D[L(@)] = L 1Gu(x) — Ge(0)| G (¢) di, (33)
which is a measure of solution deviation.

Here, Gi(r) is_the function obtained by applying the
integral operator Gi(t) = F[Lx(w)] (13) to the approximate
spectral density Ly(w). The sawtooth instability distorts the
solution Ly(w) in those regions where the true Lehmann
function is smooth: the Ly (w) fluctuations often have a much
larger amplitude than the value of the true solution Ly ().
The standard ways of suppressing the sawtooth instability
rely on using the functional analysis results obtained in the
early 1960s [40, 41], based on Phillips [42], and Tikhonov [43]
regularization method. This method adds a nonlinear func-
tional to the linear deviation measure (33), the functional
which acts to suppress the large derivatives of the approx-
imate solution Lx(w). Further development of the regulariza-
tion method has led to the maximum entropy (ME) method
currently most popular in mathematical physics, which, in
addition to its fairly clear regularization strategy, enables one
to incorporate a priori available information on the solution
Lk(w)

However, the typical Lehmann function of quasiparticles
in a boson field consists of J-function resonances and a
smooth, sharp-boundary incoherent continuum [26, 44], so
that the large-derivative-damping regularization method fails
to reproduce both the sharp peaks and sharp edges.
Furthermore, any concrete realization of the method relies
on a prespecified discretization of the space of variable w,
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which is a catastrophically poor approximation for this type
of spectral functions (see Ref. [26]). And, finally, using the
likelihood function, which is a solution selection tool in the
ME method, requires that the statistical data noise in the
function Gk(t) have a Gaussian distribution — which may
prove a poor approximation as well [35].

The recently developed stochastic optimization (SO) [26]
method gets around the basic difficulties one encounters in
the ME method. The SO idea is first to employ a stochastic
procedure to generate a large enough set of M statistically
independent, nonregularized particular solutions
{L(w)},s =1,..., M whose deviation measures D* are less
than a certain limiting measure D, determined by the
statistical data noise in the function Gk(t). Using the linear
property of relations (13), (33), the final solution is then
determined as the average of

M
Ly(w)=M"" Zzﬁ(w)' (34)

The particular solution L~l§(a)) is parameterized as the sum

K
Li(®) = 1py () (35)
t=1
of rectangles {P,} = {h;, w;, ¢,} with
wy w;
hyy w€|lci,——,¢,+—=1,
tpy(@) =4 [ 2 2} (36)

0, in the opposite case,

defined by continuous parameters such as the height 4, > 0,
the width w, > 0, and the center ¢,. The configuration

c={{P}, t=1,..,K}, (37)
under the condition
K
> how =1, (38)
=1

defines the function Gy (1) in analytic form for any value of t:
1, =0,
~C _ K )
G (7) = § e S hoexp(—¢t) sinh(%) , T#0.

t=1

(39)

It should be noted that the specific form of parametrization is
of no fundamental importance. What is essential is that the
parameters specifying the terms in sum (35) be continuous
and that expression (39) have a simple analytical form, which
is important for rapidly finding a particular solution. In the
procedure for finding a particular solution, a certain initial
configuration C™* (37) selected by a random number
generator is subjected to a sequence of random changes until
solution deviation (33) becomes less than D,. Because the
number of rectangles K is being changed in the course of the
optimization, any spectral function can be reproduced to any
prespecified precision by a particular solution.

Whereas each particular solution Lj(w) contains saw-
tooth noise in the region of the smooth incoherent con-
tinuum, the stochastic nature of the procedure looking for
an individual solution does indeed result in that the sawtooth
noise in sum (34) is averaged without the suppression of large

derivatives. Thus, the smooth portion of the spectrum is not
distorted by the sawtooth noise, nor are the sharp peaks and
edges smeared due to the absence of regularization smoothing
in the SO procedure. Because of the continuous parametriza-
tion, any prespecified fragmentation is sure not to occur in a
frequency space. Finally, because the final solution is
searched as an average of a large number of representative
solutions, the Hilbert space of probable solutions is subject to
direct sampling, without any assumptions on the form of the
likelihood function. Given that such a simple method resolves
the traditional difficulties of its classical predecessors, it is
puzzling, of course, why it was not developed years ago. The
explanation lies in the fact that it is only with the power of
modern computers that not just one, as in classical methods,
but — as is necessary for implementing the SO method —
hundreds and thousands of solutions can now be generated
within a reasonable execution time.

Recent successful applications of the SO method have
been the reconstruction of the Lehmann functions of
Frolich’s polaron [26], and the recovery of that for a
phonon-coupled hole in the t—J model [32] and of the
Rashba—Pekar exciton—polaron [44]. In the last case, the
reliable restoration of J-function peaks inaccessible by
regularization methods was especially important because of
the presence of several sharp peaks in the Lehmann function.
The application of the method to calculating optical con-
ductivity is considered in Ref. [31]. Moreover, the SO method
has proved useful not only for the study of excited states but
also for the characterization of the ground state in the case
when the DMC method fails to provide satisfactory data for
the asymptotically large imaginary time in the GF in
Eqns (13)—(16). For example, the sign fluctuations in the
expansion terms entering Eqn (27) in the problem of a hole in
the r—J model prevent calculating the GF for asymptotically
large imaginary times, and the GF values can only be
obtained for small 7 [28]. However, the SO method was
capable of providing the energy and Z-factor values even in
this case [28]. One recent application of the SO method was to
construct analytic continuation in the problem of a phonon-
coupled spin system [45].

3. Some aspects of the exciton—polaron problem

This section deals with the major aspects of exciton—polaron
physics, which had been understood incompletely or even
incorrectly before the recent advent of the DMC and SO
methods. In particular, Section 3.2 discusses the polaron self-
trapping phenomenon, and Section 3.3 examines the rather
old, but still controversial concept of a relaxed excited state
(RES). Polaron properties near the end point of the spectrum
and the formation conditions of a 3D charge-transfer exciton
are covered in detail in Section 3.4 and Section 3.5,
respectively. A detailed discussion of angle-resolved photo-
emission spectra of high-temperature superconductors is
given in Section 3.6. Finally, Section 3.7 briefly lists problems
where difficulties of a fundamental nature can be readily
resolved by using the DMC and SO methods. Section 3.1
which now follows addresses the existing difficulties and
related ‘blank spots’ in the problem of polarons.

3.1 Theoretical challenges

A stumbling block for theoretical methods, the exciton—
polaron problem (1)—(4), has as yet evaded exact solution.
Moreover, except for certain limiting cases, no analytical
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solutions are even available for relatively simpler problems
concerning the behavior of an exciton in a rigid lattice [see
Eqns (1), (2)] and a single structureless polaron [see Eqns (7) —
)8

For example, for the exciton problem (1), (2), the only
cases to have been solved analytically are the small-radius
Frenkel [46] and large-radius Wannier [47] regimes — with no
knowledge however, even here, as to the applicability limits of
the approximations used. All other known analytical
approaches use the random phase approximation (RPA) to
solve the equations of motion [21, 22]. Even though these
methods can highlight some qualitative features of the
intermediate-radius regime, their quantitative value is elimi-
nated by noncontrollable errors introduced by RPA. The
most credibility should be given to the numerical approaches
that employ the time-dependent density functional theory
(see the review [48]) and the solution of the Bethe—Salpeter
equation [49—51]. Following the density functional theory,
the true four-pole GF is replaced by an effective two-pole one
[48], leaving the self-consistent solution of the Bethe—
Salpeter equation as the only classical method capable of
calculating the two-particle exciton GF (10). However,
solving a self-consistent equation implies using a prespecified
mesh in momentum or direct coordinate space — a require-
ment which introduces a systematic error and is a bottleneck
of the method. Even today, the numerical solution of the
Bethe —Salpeter equation is unable to correctly reproduce the
Wannier regime [50]. It follows then that the DMC method,
which does not involve the finite discretization of reciprocal
space [29], is the only method capable of accurately establish-
ing the usability conditions for the Frenkel and Wannier
approximations in a macroscopic system (see Section 3.5).

A similar situation takes place in the simplest case of a
structureless polaron, for which analytical solutions are
known only in the weak coupling (perturbation theory) and
strong coupling (adiabatic approximation) limits. A closer
look at the theoretical results obtained for these extremes
leads to the conclusion that even in these cases reliable results
are available only for the ground state; excited states have so
far resisted study, whether treated perturbatively or in the
adiabatic approximation. In determining the ground-state
parameters of a polaron in the adiabatic approximation, the
lattice deformation is assumed to be static and the electronic
quantum state is determined variationally. Thus, minimizing
the total energy E(¢) = (Y + e’ | H |y + ap’) yields the
wave function y; and the ground-state energy E (¢ — 0). The
ground state in the strong coupling approximation can be
treated adiabatically because it is much lower in energy than
any other state, which differs by just one lattice vibrational
quantum. However, neither the variational principle nor the
adiabatic approximation are applicable to excited states,
especially to those forming a degenerate continuum. Further-
more, the variational approach is even in doubt in the case of
anondegenerate excited level. The energy of an excited state is
generally obtained by minimizing the energy for the electron
wave function which is taken to be orthogonal to that of the
ground state, while otherwise quite arbitrary in form [15].
However, the variation error e’ in the ground-state wave
function is proportional to ¢, compared to the small error ~ ¢
in the energy. Hence, one has absolutely no control over the
error in the excited-state wave function being orthogonalized
to its ground-state counterpart.

As an example of a long-standing misconception due to
unjustifiably applying the variational method to excited

states, the concept of a relaxed excited state (RES) will be
discussed in Section 3.3. By this concept, which became a
subject of close scrutiny [8, 52— 55] after its introduction by
Pekar [15] many years ago, is meant a quasistable state in
which lattice deformation has adapted itself to the excited
electronic wave function. However, the DMC and SO
calculations of the Lehmann function [26, 56] and optical
conductivity [31] showed that in the strong coupling limit
RES is not observed due to multiphonon decay processes. It
should be noted, finally, that even in the weak coupling limit
the perturbation theory may not be applicable to excited
states. For example, the perturbation-theory-produced Leh-
mann function of the Froélich polaron

Lico(@) = a[ro (@ — )] 0(w — o) (40)
diverges at the phonon energy wpn, implying that even in this
limit an exact method is required [26].

If analytical methods are, with all the above restrictions,
applicable to weak and strong coupling regimes, their
intermediate coupling results are generally questionable. For
example, comparison with the exact result [26] showed that
the intermediate coupling theory of Lee, Low, Pines [57] is
valid only for weak coupling. On the other hand, it is the
intermediate regime found most often in nature, which is of
most interest. Adding to this interest is the self-trapping
phenomenon specific to this regime, in which, speaking in
general terms, a slight change in the parameters of the system
causes a strong change in the properties of a particle [9]. For a
certain critical value 7. of the coupling constant, a trapped
state residing within a strongly deformed region of the lattice
has the same energy as a delocalized state in a weakly
deformed lattice. Clearly, the delocalized state is lower in
energy in the weak coupling case, but above the critical
coupling constant 7y, the relative position of the states is
reversed [19, 58]. In other words, a strict quantum-mechan-
ical definition of the self-trapping phenomenon implies the
crossing and hybridization of stable (or metastable) polaronic
states characterized by very different lattice deformations. On
the other hand, a quite general theory exists, thanks to
Rashba and Toyozawa, in which rigorous criteria for the
occurrence of the self-trapping phenomenon are formulated
[19, 58], based on the adiabatic analysis of the system’s
ground state. In this theory, the self-trapping shows itself if
the adiabatic potential of the ground state has a barrier which
separates the global minimum from a higher-lying local one.
It should be noted that in this adiabatic formulation the
complex multiparticle physics of interaction between the
ground and excited states is projected on the properties of
just one lower sheet of the adiabatic potential, whereas self-
trapping is crucially related to excited states. Thus, methods
for studying this phenomenon should use no approximations
when obtaining results for the excited states.

Among the rather limited number of numerical
approaches capable of dealing with excited polaron states
may be mentioned the traditional method of exact diagona-
lization [59 — 62], well suited for small, usually 1D, lattices (up
to 20 sites [60]) with a ‘truncated’ phonon basis. However,
results obtained on finite clusters are only approximate ones
as far as a macroscopic system is concerned, and the resulting
energy values are not variational in the thermodynamic limit
[63]. Special among various versions of the exact diagonaliza-
tion method is a rather efficient variational method of exact
translation [63—-67], in which the diagonalization process
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employing the variational basis is performed in the sector of
the given momentum, thus validating the results in the
thermodynamics limit. However, because the basis in the
momentum space is determined as a Bloch combination of
variational functions in the direct space, the method runs into
difficulties when dealing with long-range interactions and
with dispersive (especially acoustic) phonons, because of the
catastrophic increase of the variational basis. Besides, the
method is valid only for small enough values of the adiabatic
parameter, t/hwpy <5, and, to add to the problem, has
sufficient accuracy only for a few of the lowest discrete states
[67]. As a consequence, even for the simplest models with
short-range interaction and dispersionless phonons, conti-
nuum states are beyond this method. The only approach
which permits calculation of incoherent continuum states in
some cases is the recently developed cluster perturbation
theory, in which exact diagonalization within a cluster is
complemented by perturbatively accounting for intercluster
transitions [68, 69]. However, the application of this method
to the calculation of the spectral function is limited to 1D (or,
for some special conditions, 2D) systems with short-range
interaction.

Many of the difficulties described in this section are easily
overcome by the DMC and SO methods, with which
problems (1)—(4) are treated in the most general form and
without any approximations. Below, some of the results
obtained by these methods are presented.

3.2 Self-trapping

The self-trapping phenomenon, by definition, shows itself as
the energy resonance between two polaronic states bound up
with different lattice distortions. The first rigorous definition
of this phenomenon, which was given within the adiabatic
approximation framework, relies on the analysis of the local
stability of a delocalized state with zero lattice distortion,
A =0, against the energy gain due to a finite distortion
A" # 0. In other words, self-trapping occurs when there is an
adiabatic potential barrier between an absolutely delocalized
state with 4 = 0 and a trapped state with nonzero deforma-
tion A’ # 0. One of these states is stable, while the other
metastable. The criterion for the existence of the potential
barrier is determined by the stability index

s=d-=2(1+1), (41)
where d is the dimension of the system. The / index stands for
the degree of force range: lim, .o ¥ (¢q) ~ ¢/, where /(R), the
kernel of the interaction U(R,)=y/(R, — R,/) v(R,), relates
the potential U(R,,) acting on the particle to the generalized
lattice distortion v(R,/) [19]. The barrier exists if s > 0 and
does not exist if the inequality goes the other way. Hence,
according to adiabatic theory, two states with different 4 can
coexist for s > 0. The ground-state lattice deformation
undergoes a sudden change at the critical value of the
coupling constant, when the energy levels cross. However,
the first-order (in the coupling constant) transition is an
artefact of the adiabatic theory because the nonzero matrix
element of a nonadiabatic interaction actually causes hybri-
dizative mixing of these states. Thus, the self-trapping
phenomenon is a crossover rather than a sharp transition,
and all properties of the polaron are analytical with respect to
the coupling constant (for a rigorous proof, see Ref. [70]).
This analyticity makes the definition of self-trapping rather
vague because trapped and delocalized states always mix with

one another. For example, we cannot even claim a separate
class for a boundary case in the adiabatic theory at s =0,
where two states never coexist, but a sharp transition between
them does occur at a certain critical point. Furthermore, even
in the case s < 0, for which adiabatic theory rules out the
existence of a potential barrier, states with different lattice
deformations can still resonate with one another. Criterion
(41) only rejects the coexistence of 4 = 0 and 4’ # 0 states,
not of two different states with nonzero deformations
(4’ # A). Finally, the separation of states into trapped ones
and delocalized ones may not be valid in a strict sense because
at the self-trapping point more than two states can mix,
provided they all fall within the energy scale of the non-
adiabatic matrix element.

However, even though adiabatic theory lacks rigor in
defining self-trapping phenomenon, it provides considerable
insight into the process. In the weak coupling limit, the lowest
state is bound up with a weakly deformed lattice, whereas the
upper state(s) are coupled strongly to the lattice. On the other
hand, in the strong coupling regime, when the states have
already interacted and exchanged with one another at the
critical coupling constant y,,, the opposite situation prevails
for the properties of these states, with the lowest state trapped
and the upper state(s) delocalized. However, simple as this
intuitive picture is, it has not yet been explicitly demonstrated.
Extensive numerical work on the subject (see the book [19]
and references cited therein) is mostly concerned with ground
state properties, and results on excited resonances are always
compromised by uncontrollable approximations.

The first explicit, approximation-free demonstration of
the above intuitive picture was put on by the DMC and SO
methods in Ref. [44], which studied dependence on the
coupling constant of the physical properties of the ground
and excited states of a 3D Rashba—Pekar exciton—polaron
[71, 72], a system with a short-range (/= 0) couple to
dispersionless phonons (wp, = 1). In this case, the stability
index is s = 1, enabling one to observe the classical features of
the adiabatic self-trapping scenario. The ground state proper-
ties calculated in Ref. [44] are fully consistent with the
adiabatic picture. In the neighborhood of the critical
coupling constant, the average number of phonons (N) in
the polaron cloud shows a sudden, orders-of-magnitude
change, as does the effective mass. Furthermore, Ref. [44]
demonstrated the nature of the quantum resonance between
two states. The distribution (18) over phonons in the polaron
cloud, Z®*= (), has a maximum at n =0 in the weak
coupling regime (which corresponds to a weak lattice
deformation), and a maximum for n> 1 under strong
coupling (significant lattice deformation). Near criticality,
however, two very distinct peaks —atn = 0 and forn > 1 —
are found, which can be interpreted as a quantum mixture of
states with very different deformations.

In the vicinity of the critical point (y, ~ 18), the polaron
Lehmann function has several stable states (Fig. 2) below the
energy threshold of the incoherent continuum, Egg + wph,
above which excitation is unstable due to transitions to the
ground state (with energy E, ) with the emission of a phonon
of energy wp, = 1. The way the energies of the ground state
and stable excited states depend on the coupling constant is
akin to the crossing pattern of a number of interacting levels,
being consistent with what adiabatic theory predicts (Fig. 3).
The only — but very important — qualitative difference
resides in that not two but at least three states are involved
in the hybridization process. The most important result of
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Figure 2. Lehmann function Zy—g)(E) for critical coupling y = y, (top),
and for y >y, (bottom). Energy is measured from the polaron ground-
state level Eg ..
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Figure 3. Coupling constant dependence of the ground state (open circles)
and stable states (squares, diamonds, and triangles). Dashed line depicts
the incoherent continuum threshold.

Ref. [44] is a direct demonstration of the fact that below
critical coupling constant an excited state is one with a large
effective mass. In accordance with the adiabatic picture, in the
weak coupling regime the lowest state with zero momentum
has a small effective mass m* on the order of the bare mass m,
while the effective mass of an excited trapped state is large,
m* > m. It follows then that the ground state with low
effective mass will, at a certain momentum, reach the energy
of the flat band of the excited state. Following this, increasing
the momentum makes these states interchange. Figure 4
demonstrates the change in the ground state properties with
increasing momentum: at the intersection of the flat branch of
the excited state, the average number of phonons in a polaron
cloud sharply increases, and the dispersion becomes flat.
Above the self-trapping point the situation is reversed,
i.e., the ground state has a large effective mass, and an excited

0 05 10 1.5 20 25 30 35 40 k

Figure 4. Wave vector dependence of energy (top) and average number of
phonons (bottom) in a polaron cloud for y < 7. (full circles connected by
solid lines). The dashed line displays the effective mass approximation
E® = E, o +K*/2m" for Eys = —3.7946 and m* = 2.258. These values
were obtained by the DMC method for the given coupling constant y. The
dotted line portrays the parabolic law fitted to the last four points of the
curve with parameters E; = —3.5273 and mj = 195. The open square is
the energy of the first excited state at zero momentum, as derived from the
spectral analysis for the given coupling constant.

state a small one. The special features of this case are
described in the work [32] on the self-trapping of a hole in a
2D t—J model with strong short-range interaction with
dispersionless optical phonons (see Section 3.6 for more
details). It should be noted that although the stability index
of this system is not positive, s = 0, the model most clearly
demonstrated all those features of the self-trapping crossover,
which were predicted in the adiabatic approximation. How-
ever, the hole in the 7—J model interacts not only with optical
phonons but also with acoustic magnons, thus invalidating
the necessary conditions of criterion (41).

The self-trapping phenomenon has also been observed in
a 1D system [27, 73] with quasidegenerate states (4)—(6) and a
short-range interaction (/ = 0). In a 1D system, the stability
index s is always smaller than zero, making self-trapping
impossible in view of criterion (41). The results of Refs [27,
73], however, are not at odds with criterion (41) because this
criterion was obtained for a single nondegenerate state.
Besides, it takes special conditions for states with different
lattice deformations to resonate in the model constructed in
Refs [27, 73]. A sharp transition with respect to the coupling
constant y,; of the nondiagonal interaction (6) occurs only in
the presence of a strong diagonal interaction at one of the
levels. This self-trapping mechanism directly follows from the
balance of diagonal and nondiagonal interactions operative
in a quasidegenerate system and, based on the qualitative
analysis in Ref. [74], can be realized in a molecular system as
well.

Self-trapping has not been observed for the 3D Frolich
polaron interacting with dispersionless optical phonons [26,
56]. In this case, all physical properties of the ground state
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were smooth with respect to the coupling constant, and no
additional resonances were found below the energy
E, . + wpp of the incoherent continuum. This result agrees
with the adiabatic theory, however, because for a system with
long-range polarization interaction (/ = 1) the stability index
is less than zero: s = —1.

In conclusion, DMC and SO results on self-trapping have
for the first time revealed the key features of this phenomenon
without utilizing any approximations. It was shown that this
phenomenon is related to the quantum resonance between
states with different lattice deformations, one of them being
coupled weakly, and the other strongly, to the lattice. Exact
numerical methods have shown that while stability index (41)
is adequate for describing the properties of a structureless
polaron, it must be used with caution whenever a complica-
tion is introduced into the problem.

3.3 The relaxed excited state concept

Prior to the advent of the exact DMC and SO methods [31],
the optical conductivity (OC) () of the Frolich polaron was
the subject of heated theoretical controversy, even in the
strong coupling regime. The adiabatic variational treatment
of the strongly coupled polaron [15] predicts the so-called
relaxed excited state (RES), namely, a quasistable state in
which the lattice has adapted itself to the electronic wave
function of an excited state. For this state to show up as a
sharp peak in the OC spectra, its decay rate must be
sufficiently small — otherwise the very concept of a
quasistable state becomes meaningless. In Ref. [53], a one-
phonon approximation estimate for the RES decay rate was
obtained, on the basis of which the OC spectrum was
predicted to have a sharp peak in the strong coupling regime
— a prediction which was confirmed in Ref. [54] by expanding
the impedance Z(w) within the Feynman-—Hellwarth—
Iddings —Platzman (FHIP) [75] approach. The validity of
the one-phonon approximation [53] in the strong coupling
regime is quite doubtful, however, and expanding the inverse
impedance 1/Z(w) in the same FHIP framework [75] revealed
no sharp peak in OC. A check therefore had to be carried out
on whether or not the RES is an artefact of the impedance-
expansion-based method of calculating the optical conduc-
tivity o(w):

(w) ~ (Zo(w) + Zi(@) +...) ",

(42)
because in this approach even the lowest-order approxima-
tions show a resonance structure in OC.

An exact computation of the Lehmann function of the
Frolich polaron in Ref. [26] threw into doubt the concept of
the RES. As predicted by the adiabatic theory [55], in the
strong coupling limit the RES energy relative to the polaron
ground state is proportional to the square of the dimension-
less coupling constant of the polarization interaction, o ~ 7.
However, no such peak has been observed in the strong
coupling regime [26]. Instead, rather broad peaks have been
examined against the incoherent background, whose energies
depended weakly on o (Fig. 5). An exact calculation [31] did
not reveal the presence of RESs in OC spectra in the strong
coupling regime, either. The applicability of the RES concept
was investigated by comparing the exact DMC and SO
optical conductivity spectra with the approximate predic-
tions of Ref. [54] based on impedance expansion (42). In the
approximate solution, RES appears for o > 5 as a broad
peak, which gets narrower as the coupling constant is
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Figure 5. Evolution of spectral density as a function of o in the transition
region from intermediate to strong coupling. The polaron ground-state
peak is shown only for o = 8 because at smaller coupling constants it
highly exceeds the vertical scale used. Energy is measured from the polaron
ground state.
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Figure 6. Optical conductivity in the intermediate coupling regime (open
circles) as compared with the results of Ref. [54] (solid line). Arrows
indicate absorption spectrum anomalies arising on two- and three-phonon
thresholds.
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Figure 7. Optical conductivity in the strong coupling regime (open circles)
as compared with the results of Ref. [54] (solid lines).

increased further. The exact OC computation supports the
appearance of a broad peak for o > 5 at exactly the energy
values predicted in Ref. [54]. Moreover, the peak starts
narrowing as the coupling constant is increased within the
range 5 < o < 6 (Fig. 6). As the coupling strength increases
further, however, the optical conductivity peak starts to
become much broader instead of narrower (Fig. 7). It should
be stressed that the peak broadening obtained with the DMC
and SO techniques is not an artefact of the numerical analytic
continuation because even such fine details as two- and three-
phonon absorption thresholds are resolved in the OC spectra
(see Fig. 6). It can therefore be concluded that, for all its
physical appeal and despite its arising so naturally from the
variational approach in the strong coupling limit, the concept
of RES cannot be employed in interpreting the optical spectra
of the Frolich polarons, especially in the case of strong
electron—phonon interaction.

3.4 The end point of the polaron spectrum

The end point of the polaron spectrum refers to the
momentum k. for which the stable ground state of the
polaron vanishes. This occurs when the energy of the polaron
becomes greater than the threshold energy for the emission of
a real phonon — that is, greater than the energy of an optical
phonon. In accordance with the general theory [33, 76], in the
vicinity of the end point of its spectrum a polaron can be
considered as a weakly bound state of a phonon which carries
all the momentum of the state, and an electron with near-zero
momentum.

This easy-to-understand physics was illustrated in
Refs [25, 26] by calculating the dispersion and structure of
the Frolich polaron’s phonon cloud for momentum k'’ of
absolute magnitude slightly less than that of the limit point k..

The computations showed that the partial weight distribution
of n-phonon states Z*')(n), determined by Eqn (18), has a
sharp peak at n = 1 and that the very distinct peak of the one-
phonon distribution function

F(q)
o0 n

:Zf’lilz Z |9(kl;ql7"'7qj:q7"'7qn)|2
n=1 J= A e - A

(43)
coincides with the polaron momentum.

3.5 The exciton

The applicability limits of the Wannier and Frenkel exciton
models were investigated in Ref. [29] using the DM C method.
The one-particle electron—hole spectrum of the 3D system
was taken to consist of a conduction band and a valence band,
both of width E, and both symmetric, which are separated by
a zero-momentum gap of width E,. For large (more than 30)
values of the ratio W = E_/E,, the exciton binding energy
(21) for zero momentum (k = 0) agrees well with the results
for the Wannier limit (Fig. 8), and the probability density
| €k—0,p(g-s.) |* for the wave function of the relative electron —
hole motion corresponds to the hydrogen-like case (Fig. 9a).
The unexpected result is that the valence and conduction
bands must be very wide (W > 20) for the Wannier approx-
imation to be adequate. For lower values of W, both the
binding energy E (Fig. 8) and the wave function of relative
motion (Fig. 9b) differ considerably from their large-radius
approximation results. Furthermore — and this is the most
interesting result of the validity analysis of the small-radius
approximation — it turned out that a strongly trapped wave
function does not at all ensure that the Frenkel model
correctly accounts for the energy of the exciton. For
1 < W< 10, even though the wave function already has a
dominant single-site component, the exciton binding energy
differs radically from what the Frenkel model predicts it to be.
In addition, for E./E, = 0.4, when the wave function is
already almost completely trapped (Fig. 9c), the binding
energy is half of its small-radius approximation value (see
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Figure 8. Exciton binding energy versus the relative width W = E./E, of
the valence and conduction bands. The dashed line is the Wannier
approximation; the solid line depicts the cubic spline with derivatives
determined by the Wannier limit and perturbation theory at the right and
left ends, respectively. The inset shows the initial portion of the plot.
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Figure 9. Wave function of internal motion in a direct space: (a) Wannier
regime (W = 60); (b) intermediate radius regime (W = 10), and (c) Frenkel
regime (W = 0.4). The wave function in the Wannier regime is spherically
symmetric, whereas in the intermediate and Frenkel regimes it is governed
by the lattice, which makes the number C of the coordination sphere the
natural choice for the abscissa in two last regimes. The solid line in figure
(a) represents the Wannier model result and serves to join data points
elsewhere.

inset to Fig. 8). The deviation of the binding energy E from
the Frenkel approximation result Er is well described by the
empirical formula £ ~ Er — W in a wide range of W < 0.4,
implying that this deviation is determined by the kinetic
energies of electron and hole delocalization. And finally, the
conclusion can be drawn that in practically most cases the
Frenkel and Wannier approximations are quite restricted in
their applicability.

As regards another major result, the authors of Ref. [29]
calculated conditions for the formation of a charge-transfer
exciton in a 3D system — something which has long been a
subject of discussion in the field of compounds with unstable
valence [77]. In Refs [78, 79], the unusual properties of
fluctuating valence compounds were explained by the
excitonic instability of the optically forbidden monopole
charge-transfer exciton. Although the excitonic instability
model has provided a quantitative explanation for phonon
spectra [80, 81], optical properties [82, 83], and peculiarities in
neutron magnetic scattering [84], its underlying charge-
transfer exciton idea came under severe criticism in Ref. [85].
To investigate the exciton structure in fluctuating valence
compounds, the conduction and valence band dispersions
were taken in the form typical for these materials, namely, asa
nearly flat valence band separated by an indirect gap from a
broad conduction band with a maximum at zero momentum
and a minimum at the Brillouin zone boundary. A computa-
tion [29] for such a band structure confirmed that the
monopole exciton is indeed related to charge transfer
because its was found that the wave function of internal
motion has almost a zero single-site component and a charge
density maximum at the nearest-neighbor sites.

3.6 A phonon-coupled hole in the 7—J model

The special interest in the mysterious properties of high-
temperature superconductors have drawn attention to the
thorough study of the problem of a single hole in a Mott
insulator. The literature abounds in studies concerning the

limiting case of the strong Hubbard repulsion, i.e., the so-
called 1—J model [4] with

—~ n; n;
H, ;= —[%CIXCjS+J%; (S’SI_ 47) .

Here, c;j, is a fermion annihilation operator (projected so as to
eliminate double occupation), n; < 2 is the occupation
number, S; is the spin-1/2 operator, J is the exchange
integral, and (ij) defines the nearest neighbors in a 2D
lattice. A variety of theoretical approaches have been
developed and used (see reviews [4, 86] and recent studies in
Refs [28, 87]) to reveal the major properties of the Lehmann
function. In the low-energy part of the spectrum, the hole
Lehmann function has a peak, sharp for all momenta and
dispersive with a band width W, ~ J. The more sophisti-
cated 1 — t' — " — J model includes more distant neighbor
hopping, thereby changing the dispersion of the quasiparticle
resonance [88 —94]. However, the quasiparticle peak remains
sharp and well-defined for all momenta [96], provided the
appropriate model parameters are taken for real, weakly
doped high-temperature superconductors under study [89,
95].

Despite this coherent theoretical picture, however, the
angle-resolved photoemission spectroscopy (ARPES), a
technique capable of measuring the hole Lehmann function
[93-95], revealed many mysterious contradictions. On the
one hand, the experimentally examined dispersion of the
lower peak of the Lehmann function is well described by the
t—1t" —t" —J model [88—94]. On the other hand, in clear
contradiction to theory, the sharp quasiparticle resonance is
never seen in experiments, and instead a broad peak is
observed, whose width, 0.1-0.5 eV (= t), often exceeds the
band width. It should be noted that this width has nothing to
do with sample imperfections because doping introduces
more disorder, and the line width, on the contrary, decreases.

In recent years, numerous experimental data have
stimulated renewed interest in electron —phonon interaction
effects occurring in high-temperature superconductors.
Among the high-impact experimental findings are spectral
line broadening and phonon-energy renormalization [100],
both explained in terms of interaction with holes [97 —99], and
the effect of isotopic substitution on the superconducting
transition temperature in weakly doped cuprates and on
superfluid density in optimally doped materials [101].
Particularly convincing were the experiments that demon-
strated the effect of isotopic substitution on optical con-
ductivity spectra [102] and angle-resolved photoemission
[103].

The authors of Ref. [32] applied the DMC method to
studying the hole Lehmann function in the —J model in all
coupling regimes with dispersionless phonons of frequency Q.
Previous to the work cited, this problem had been treated only
in the noncrossing approximation (NCA) [105]. However, in
the case of the electron—phonon interaction this approxima-
tion is inadequate either for a strong or for an intermediate
coupling regime. Reference [32] demonstrated this fact for the
Holstein polaron model by using the DMC method which
allows the diagrams to be summed exactly both in and
without the NCA approximation. Exact and NCA results
for energy and the Z-factor agree well at small values of the
dimensionless coupling constant g = y?/(8tQ), g < 0.2, but
show qualitative differences at large values. For example, at
Q/t = 0.1 the exact result undergoes crossover into the strong

(44)
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coupling regime for g > g§; ~ 0.6, whereas with the NCA
result this crossover does not occur even at g = 60. This
means that allowing for the mutual crossing of phonon
propagators is crucial for correctly treating the strong
coupling regime.

In the standard spin-wave approximation for the t—J
model [3, 104], a dispersionless hole ¢y = const travels in the
bath of magnons and is scattered by them. The magnon
dispersion wy and the interaction vertex My 4 are taken in
standard form [86, 104], whereas the value of the exchange
constant J = 0.3¢ is dictated by the experimental data. If
coupled to dispersionless phonons (with experimental fre-
quency Q = 0.1¢), the hole is also scattered by the lattice
vibrations, reducing the problem to one of a polaron
interacting with several bosonic fields [see Eqns (3), (4)]. A
Feynman expansion using the DMC method takes into
account the mutual crossing of phonon propagators, while
neglecting, due to the sign problem, the crossing of their
magnon counterparts. NCA approximation does apply to a
hole interacting with a magnetic system because spin S = 1/2
cannot flip more than once and because the number of
magnons around the hole cannot increase beyond the
saturation value. On the other hand, the mutual crossing of
phonon diagrams contributes importantly, as is shown by the
example of the Holstein polaron.

Figure 10 presents Lehmann functions for the ground-
state momentum k = (n/2,7/2) in the regimes of weak,
intermediate, and strong coupling to phonons. The way in
which the peak energies (Fig. 11a) and the ground-state factor
Z¥=(w/2.%/2) (Fig. 11c) vary with the coupling constant is very
much akin to what is happening in the self-trapping
phenomenon [44, 58]. States cross and hybridize at coupling
constants in a narrow range close to the critical value
gs;~0.19, and the ground-state resonance factor
Zk=(/27/2) decreases rapidly in this range. The point to
note here is that the NCA result is quite different from that
when the phonon-—phonon vertex part is fully taken into
account (Figs 11b and 11c). According to the general picture
of self-trapping phenomenon, it is expected that above the
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0 | | | | |
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w
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Figure 10. Hole Lehmann function for k = (n/2,7/2): (a) g = 0; (b—d)
low-energy parts: (b) g =0.1445, y=0.34; (¢c) g=0.2, y =04, and
(d) g =0.231125,7 = 0.43.
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Figure 11. Variation with coupling constant of (a) the lowest resonance
energies of the Lehmann function; (b) the energy, and (c) the
Z*=(t/27/2)_factor of the lower peak in the exact DMC (open circles) and
DMC-NCA (triangles) calculations.

critical coupling, g > g7 ;, the lowest state will be dispersion-
less, and that the excited state will possess a low effective
mass. That this is indeed the case is demonstrated in Fig. 12,
where the momentum dependence of the Lehmann function
well above the critical coupling is portrayed. What is
surprising is that the upper broad resonance has exactly the
dispersion of the pure z—J model (Fig. 13). The momentum

—C a
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10 k:(TE/27T[/2)
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0.4 I c
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Figure 12. Hole Lehmann function at g = 0.231125: (a) the entire energy
range atk = (n/2,n/2); (b — d) the low-energy part at various momenta.
Slanted arrows indicate broad peaks which are interpreted as coherent (C)
and incoherent (I) parts in ARPE spectra. Vertical arrows indicate the
position of a true quasiparticle, namely, a dispersionless ground-state
resonance which is invisible at the vertical scale shown.
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Figure 13. Resonance energy dispersion at J/7 = 0.3. Circles (the broad
resonance) and squares (the lower polaron resonance) are shown full for
g =0.231125, and open for g =0.2. The lines are plotted using the
dispersion relation (45) for a hole in a pure 1 —J model at J/t=0.3
(Wyji=03 = 0.6), with énin = —2.396 (émin = —2.52) shown by a dashed
(solid) line.

dependence is given by the relationship
[cos ky + cos k, |
5

[cos(ky + ky) + cos(ky — k},)]2
v . b

& = Emin + WJ/:{

(45)

which describes the dispersion of a pure 1—J model over a
wide range of exchange constants [106]. This property is
general for the strong coupling regime (see Fig. 13).

The strong coupling behavior of the Lehmann function is
identical to what is observed in the ARPE spectra of undoped
superconductors. First, the Lehmann function consists of a
broad peak and a high-energy incoherent continuum (see
Fig. 12). Second, the dispersion of the broad peak reproduces
that of the sharp resonance in the pure t—J model (see
Fig. 13). The lowest dispersionless peak has a low weight in
the strong coupling approximation and is not observed in
experiments. On the other hand, in accordance with experi-
ment, the momentum dependence of the spectral weight Z ®’
of the broad resonance exactly reproduces the dispersion of
the Z®-factor of the narrow resonance in the pure r—J
model. The reason is that when the phonon frequency Q is less
than the exchange coupling constant J, then under strong
coupling conditions the entire weight of the sharp resonance
in the 7—J model goes over to a broad dispersive peak.

The explanation in Ref. [32] of the ARPE spectra of
weakly doped superconductors unambiguously suggests that
the chemical potential has no relation to the broad dispersive
resonances observed in these spectra and is instead pinned to
an invisible small-Z quasiparticle pole. In a semiconductor,
the position of the chemical potential is poorly defined and
depends on pinning by defect states. However, even for a
small finite doping its position is determined by the valence
band top. Despite the obvious nature of this statement,
however, the chemical potential in a weak doping regime is
quite away from the band top of the resonance observed in the
ARPE spectra [107]. This contradiction, according to the
results of Refs [32, 107], is due to the fact that the broad
ARPES resonance observed in weakly doped superconduc-

tors is not a quasiparticle but a set of Franck—Condon
phonon excitations.

Comparison of two critical coupling values — one,
g ;~0.19, for a hole in the r—J model to make the
transition to the strong coupling regime, and the other,
gh ~ 0.6, for the Holstein model with the same parameter
values — leads to the conclusion that interaction with spins
speeds up the transition of a hole to the self-trapped state.
This is due to the fact that the magnons (which are emitted
each time the hole makes a hop) narrow the coherent band by
the factor J/z, whereas the effective hole—phonon coupling
constant is not renormalized by the small Z® -factor of the
t—J model [99]. The point to note here is that the transition to
strong coupling regime in the 7—J model occurs at such small
coupling constants that a hole can be self-trapped in an
undoped cuprate. For example, the coupling strength
estimated from the energy renormalization and spectral line
broadening of the phonons is found to be above the critical
coupling for the transition to the self-trapped state.

3.7 Where next?

Because the DMC method is easily extended [30] to the
general exciton —polaron problem (1)—(4), it is the exciton —
polaron which is a natural candidate for further study.
Depending on how strongly the hole and the electron interact
with phonons, a host of striking effects can be obtained, for
whose study none of the conventional methods is suitable
[19]. The influence of the scattering potential of an impurity
on these processes can also be treated by the DMC and SO
methods because including impurity scattering reduces to
trivially adding the scattering potential vertices to the
exciton —polaron GF expansion [34].

The DMC method has recently been generalized to the
problem of a bipolaron with a single-site Coulomb repulsion
and a short-range Holstein electron—phonon interaction
[108]. When expanding a GF in momentum space one faces
the problem of sign, due to repulsion, but the authors of
Ref. [108] overcame this problem in an elegant way by
transferring to direct space, where repulsion is diagonal and
the sign problem therefore does not arise. This approach can
also be adapted to the case where the repulsion and electron —
phonon interaction potentials are longer in range.

There is, finally, a large list of acoustic polaron problems,
dating back more than forty years [109], which, unless
approximated, cannot be solved by any traditional methods
and are therefore natural subjects for the application of the
DMC technique.
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