
Abstract. Propagation and reflection of electromagnetic waves
in time-varying dielectric media are studied using analytic solu-
tions of the relevant Maxwell equations. Exactly solvable mod-
els that do not involve any requirements of small or slow changes
in the medium reveal strong nonstationarity-induced dispersion
effects due to a finite relaxation time of the dielectric para-
meters. The generalized time-dependent Fresnel and Snell laws
visualizing the dependence of reflection coefficients on the
dynamics of reflecting media are presented. The drastic distor-
tion of EM fields interacting with rapidly ionizing plasmas is
examined. The coupled spatiotemporal reshaping of wave fields
in heterogeneous time-varyingmedia is considered for transmis-
sion lines, heterogeneous dielectrics, and flash ionization in
microwave cavities. The efficiency of the time-domain ap-
proach in treating these problems is demonstrated.

1. Introduction. Unharmonic alternating
electromagnetic fields

This review is devoted to the physical fundamentals and
mathematical basis of optics of media with time-varying
electromagnetic properties. These problems are currently
attracting growing attention in optoelectronics, microwave
physics, and the dynamics of laboratory and space plasmas.
Fast variations of dielectric parameters of continuous media
in the course of laser pump-probe experiments, phase
transitions, and ionization processes are characterized by
finite relaxation times that can become comparable to the
period of the probing wave. These relaxation times
determine the nonstationarity-induced dispersion of the
dielectric permeability e�t�, which essentially affects the
spectra of reflected and transmitted radiation. The variable
velocity of electromagnetic wave propagation in such media
can result in a complete reshaping of both reflected and
refracted waves, rapidly transforming harmonic fields to
unharmonic ones. The dynamics of nonstationary electro-
magnetic fields opens many opportunities for optimizing
processes of energy and information transfer through these
media. The ongoing interest in such problems is fueled by
several research goals:

Ð to find the time-dependent generalizations of Fresnel
and Snell laws, not restricted by any assumptions about the
smallness or slowness of variations of fields or media;

Ð to visualize the coupling between spatial and temporal
variations of fields;
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Ð to reveal methods for the fast nondestructive optical
testing of materials and targets.

Moreover, an important task is to elaborate an analytic
approach to these topics, which until recently were considered
the exclusive field of computer simulations.

In this review, to provide some physical insight into the
electromagnetic processes in media with time-dependent
dielectric parameters, we consider the simplest case where
the relaxation dynamics of the medium is governed not by
the field of a traveling wave but by external sources, e.g., by
heating, ionization, or phase transitions. This approach was
used in the first attempts to explain the cross-modulation of
radiowaves in the ionosphere, arising when the probing
wave was traversing the plasma area with oscillating
absorption, and produced due to the heating of this area
by a strong field [1]. The effects of velocity modulation for
HF microwaves in a transmission line with time-varying
parameters were shown in Ref. [2] as long ago as 1958.
Several years later, the development of laser physics
attracted attention to the dynamics of optical processes in
media with extremely short relaxation times of the dielectric
permeability, comparable with the periods of light waves;
series of such problems were posed due to the analysis of
ultrafast ionization in gases [3] and solids [4]. The drastic
amplitude ± phase reshaping of short optical pulses interact-
ing with these materials impedes the feasibility of traditional
analysis of these interactions in the framework of the concept
of harmonic alternating electromagnetic fields.

Other mechanisms for the formation of unharmonic
waves are connected with the nonstationary diffraction
pattern of wave pulses. The passage of a short pulse through
an opening can result in its angular splitting [5] or in far-zone
formation of the pulse with an envelope close to the time
derivative of its initial envelope [6]. The dynamics of
unharmonic single-cycle transients in a free space is now
arousing interest due to perspectives of attosecond optics [7].

The mathematical formalism of electrodynamics of
nonstationary media began its development as a general-
ization of some existing models of wave propagation in
stationary heterogeneous media. One of the first papers
devoted to wave propagation in a transmission line with a
time-dependent velocity v�t� � v0U�t� [2] was based on the
model U�t� � 1� t=t0, similar to the well-known Rayleigh
profile of a coordinate-dependent wave velocity in a hetero-
geneous medium, v�z� � v0�1� z=L� [8]. The model of step-
like variation of the dielectric permeability e�t� [9] was used
for the presentation of complicated dependences e�t� by
means of sequences of step-like changes [10], resembling the
scheme of formal replacement of a continuous spatially
heterogeneous distribution e�z� by some stepped profile [11].
The reflectivity of a nonstationary dielectric with e�t� given by
the temporal analog of the Epstein heterogeneous layer was
examined in Ref. [12]. This spatiotemporal analogy proves to
be a useful tool for solving the series of problems discussed
below. A formal analogy between some equations in optics of
time-dependent media and electrodynamics of nonstationary
transmission lines is also widely used.

This review is organized as follows. Section 2 is devoted to
the time variations of cavity eigenmodes due to rapid
ionization of gas inside the cavity. The exact analytic
solutions of Maxwell equations for the electromagnetic
waves propagating both in the dielectric medium with a
time-varying refractive index n�t� and in plasmas with a
time-varying electron density N�t� are found in Section 3.

These exactly solvable models, containing several free
parameters, visualize the influence of finite relaxation times
of the aforesaid variations on the reflectivity of such media.
The generalized Fresnel and Snell formulas, obtained in the
framework of these models for arbitrary frequencies, polar-
izations, and incidence angles of reflecting waves are exam-
ined in Section 4. Some peculiarities of wave dynamics in
spatially heterogeneous nonstationary structures and media
with time-dependent absorption are shown in Sections 5 and
6, respectively. The tendencies of the coupled space ± time
evolution of short unharmonic pulses are noted in Section 7;
some important unsolved problems of the topic discussed are
listed at the end of this section.

2. Flash ionization in the cavity
and the dynamics of eigenmodes

Amplitude ± frequency variations of eigenmodes in a cavity,
produced by the ionization of neutral gas inside this cavity,
have received considerable attention lately in the electrody-
namics of time-varying media and the physics of laser ±
plasma interactions. These nonstationary phenomena are
governed by space ± time variations of the plasma frequency
Op, determined by the structure of ionization fronts. The
simplest cases examined below are connected with the model
of the sudden ionization of a neutral gas filling the cavity by a
high-voltage discharge, laser pulse, or electron beam. Such
sudden or `flash' ionization leads to a reduction in the
dielectric constant e, nearly equal to one, to the value
e � 1ÿ O2

po
ÿ2. This reduction provides the up-shift of the

cavity eigenfrequencies and changes in eigenmode intensities.
Frequency up-conversion for the microwave radiation

interacting with a layer of rapidly growing ionization density
was examined in Refs [13, 14]. This nonstationary effect
results in the formation of up-shifted spectra of eigenmodes
o1 � �o2

n � O2
p�1=2 [15], whereon is the eigenfrequency of the

nth mode in the cavity filled by a neutral gas. For simplicity,
we consider a rectangular cavity below. The eigenfrequencies
of such a cavity with perfectly reflecting walls are known to be

on � pc

�������������������������������������������������������
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�
�
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�2

�
�
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�2
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; �2:1�

where Lx, Ly, and Lz are the cavity dimensions and p, g, and j
are nonnegative integers, labeled as n � �p; g; j �.

The electric field E�r; t� in the cavity is determined by the
equation [16]

H 2Eÿ 1

c 2
q2E
qt 2
� O2

p�r; t�
c 2

E : �2:2�

It is assumed in deriving Eqn (2.2) that plasma electrons
are created with zero initial velocity. The general solution of
(2.2) can be written as a linear superposition of cavity
eigenmodes,

E�r; t� �
X
n

cnEn�r� ; �2:3�

where En�r� describes the spatial structure of these cavity
orthogonal eigenmodes:�

V

En�r�En 0 �r� dr � dnn 0 : �2:4�
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Here, the integration covers the entire volumeV of the cavity.
Substituting (2.3) in (2.2) and taking orthogonality condition
(2.4) into account, we can derive an evolution equation for the
mode amplitudes cn,

q2cn

qt 2
� �o2

n � Cnn�cn � ÿ
X
n 6� n 0

Cnn 0cn 0 �t� ; �2:5�

where the mode coupling coefficients Cnn 0 are given by [17]

Cnn 0 �
�
V

O2
p�r; t�EnEn 0 dr : �2:6�

As can be clearly seen from (2.5), the different eigenmodes
are linearly coupled to each other and oscillate with a time-
varying frequency On defined by

O2
n � o2

n � Cnn 0 : �2:7�

The eigenfrequencies on are given in (2.1).
The simplest model for flash ionization in a cavity

corresponds to the assumption that ionization occurs uni-
formly in the entire volume V. This means that the plasma
frequency is independent of the spatial coordinates,
O2

p � O2
p�t�. In this case, the coupling coefficients are

Cnn 0 � O2
pdnn 0 �2:8�

and the right-hand side of (2.5) is reduced to zero. This means
that the cavity modes in a homogeneous immobile time-
varying media are uncoupled. Precisely this case is consid-
ered below in Sections 2.1 and 2.2, devoted to aperiodic and
nonmonotonic variations of ionization density. In contrast,
Section 2.3 illustrates the simplest case of spatially hetero-
geneous ionization produced by an ionization front moving
with a constant velocity.

2.1 Monotonic saturation of ionization
Because the eigenmodes in a cavity filled by a spatially
uniform plasma are uncoupled, we can solve Eqn (2.5) for
each mode separately. The time dependence of the plasma
frequency can therefore be presented without any loss of
generality in the form

O2
p�t� � O2

0W
2�t� ; �2:9�

W 2�t� � 1ÿU 2�t� ; U
���
t� 0
� 1 :

According to (2.9), the plasma frequency grows from
Op � 0 at the beginning of ionization �t � 0� up to its
maximum value Op � O0. Substitution of (2.9) in (2.5) yields
a dimensionless equation governing the evolution of the nth
mode (2.1),

q2cn

qt 2
� cn

�
o2

n � O2
0

�
1ÿU 2�t��	 � 0 : �2:10�

Omitting the index n for simplicity, introducing the new
function F � c

����
U
p

,

q2F
qt 2
ÿUt

U

qF
qt
� F

�
o2

n � O2
0�1ÿU 2� � 3

4

U 2
t

U 2
ÿUtt

2U

�
� 0 ;

�2:11�

and using the new variable

t �
� t

0

U�t 0� dt 0 ; �2:12�

we can eliminate the term with the first derivative qF=qt from
(2.11),

q2F
qt 2
� F

�
o2
1

U 2�t� ÿ O2
0 �

U 2
t

U 2
ÿUtt

2U

�
� 0 ; �2:13�

o2
1 � o2

n � O2
0 :

The model dependence U�t� has not been specified yet
and, thus, Eqn (2.13) is used below for the different models of
U�t�.

We first consider the monotonic dependence character-
ized by only one free parameter, the time scale t0:

U�t� �
�
1� t

t0

�ÿ1
: �2:14�

The instant t � 0 corresponds to the beginning of ioniza-
tion; the saturation of ionization �U! 0, Op ! O0� sets in
for the times t4 t0 (Fig. 1). Substitution of (2.14) in (2.12)
gives the explicit expressions for the new variable t and the
function U�t�,

t � t0 ln

�
1� t

t0

�
; U�t� � exp

�
ÿ t
t0

�
: �2:15�

Introducing the new variable d � Uÿ1, we can rewrite
master equation (2.13) in the form of a Bessel equation:

q2F

qd2
� 1

d
qF
qd
� F

�
o2
1t

2
0 ÿ

q2

d2

�
� 0 ; �2:16�

q2 � �O0t0�2 � 1

4
:

Solution of Eqn (2.16) is given by the Hankel function H
�2�
q .

1.0

W 2

0.5

0 1 2 3 x

1

2

Figure 1.Normalized density of ionizationW 2�t� � N�t�=N0 is plotted vs

the normalized time x � t=t0. Curve 1 relates to the monotonic saturation

(2.14), curve 2 Ð to nonmonotonic variations W 2; the ascending and

descending parts of curve 2 are presented by models (2.20) and (2.42) for

the cases 04 t4 tm and t5 tm, respectively.
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Finally, using (2.12), we obtain the time-dependent part of
the nth eigenmode of nonstationary electric field (2.3),

cn � An

������������
1� t

t0

r
H �2�q

�
o1t0

�
1� t

t0

��
; �2:17�

where the function H
�2�
q is chosen in order to provide the

asymptotic time dependence of the solution described for long
times t4 t0 by harmonic oscillations exp �ÿio1t�, andAn is a
normalization constant. Supposing the stationary oscillations
of eigenmodes with amplitudes An0 to be fixed at the time
instant t � 0, we can write the constant An as

An � An0

�
H �2�q �o1t0�

�ÿ1
: �2:18�

Substitution of (2.18) in (2.17) gives the expression
describing the unharmonic oscillations of the electric field
accompanying the process of growing ionization. This result
is not restricted by any assumptions about the values of the
cavity eigenfrequencies on, plasma frequency O0, or ioniza-
tion time scale t0. The asymptotic form of theHankel function
for large values of the argument gives the expression for the
electric field in the limit t4 t0, when the steady state of the
ionization process is nearly achieved:

cn �
An0

H
�2�
q �o1t0�

������������������
p

2�o1t0�
r

exp
�ÿi�o1t� jn�

�
;

�2:19�
jn � o1t0 ÿ p

4
ÿ p

2
q :

Owing to ionization in the cavity, the eigenfrequencies
grow fromon up too1 and the amplitudes of eigenmodes can
be reduced; this effect for the intensity of the electric
component is illustrated in Fig. 2. The authors of [18] link
such a reduction to the collisionless plasma heating produced
by the forming plasma waves. A similar decrease in the
electric field was reported in the framework of the WKB
approximation in Ref. [19] for the model U � exp �ÿt=t0�.
Both these models are characterized by one free parameter,
the time scale t0 determining the growth of the electron

density at the beginning of the ionization process. More
complicated models of flash ionization, containing two free
parameters, are considered below.

2.2 Nonmonotonic ionization
We consider the nonmonotonic process of ionization, when
the electron density first grows up to its maximum value
during some finite timeT and then either begins to decrease or
remains constant. The dynamics of eigenmodes in the cavity is
governed by Eqn (2.10), but the ascending branch of the
function U�t� is presented here by the more flexible model
containing two free parameters: the characteristic time scale
t0 and a dimensionless numberM:

U 2�t� �
�
cos

t

t0
�M sin

t

t0

�ÿ2
; �2:20�

M5 0 ; U 2
���
t� 0
� 1 ; U 2

���
t�T
� �1�M 2�ÿ1 � U 2

m :

The parameters t0 andM are determined by the initial rate of
ionization growth t1 and the time T:

qU 2

qt

����
t� 0

� ÿ 2M

t0
� ÿ 1

t1
;

qU 2

qt

����
t�T

� 0 ; �2:21�

t0 � T�arctanM�ÿ1 : �2:22�

The solution of Maxwell equation (2.10) for the model in
(2.20), shown in Fig. 1, can be obtained by means of the
procedure described in Section 2.1. Performing transforma-
tions (2.11), we obtain Eqn (2.13), but with the parametero1
different from the one in (2.13):

o2
1 � o2

n � O2 ; O2 � O2
0�1�Mÿ2� : �2:23�

Substitution of (2.20) in (2.12) yields the new variable t,

t � t0����������������
1�M 2
p ln

1�m� tan
ÿ
t=�2t0�

�
1ÿmÿ tan

ÿ
t=�2t0�

� ; �2:24�

m� �
����������������
1�M 2

p
�M ; m�mÿ � 1 : �2:25�

Using (2.24) and (2.20), we can obtain the explicit expression
for U�t�:

U�t� � coshj����������������
1�M 2
p ; j � t

����������������
1�M 2
p

t0
ÿ arsinhM ; �2:26�

j
���
t� 0
� j0 � ÿ ln �m�� ; j

���
t�T
� 0 : �2:27�

Finally, substitution of (2.23) and (2.26) inMaxwell equation
(2.13) gives the equation governing the function F:

q2F
qj2
� F

�
ÿq2 � D

cosh2 j

�
� 0 ; �2:28�

D � �o1t0�2 ÿ 1

4
; q2 � 1

4
� �t0O0�2

M 2
: �2:29�

Equation (2.28) is well known in quantummechanics [20]. It is
worth emphasizing that in contrast to the traditional
quantum mechanics, Eqn (2.28) is written in the j-space.

1.0

Q

0.8

0 0.5 1.0 x

Figure 2. Time variations of the fundamental eigenmode intensity due to

flash ionization in the cavity for saturation of ionization (2.14). The

normalized intensity of the electric componentQ of this mode is plotted vs

the normalized time x � t=t0, �Opt0�2 � 0:75, Op �
���
3
p

o0.
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To solve Eqn (2.28), it is useful to introduce a new
function f and a new variable u:

f � F�coshj�q ; u � 1

2
�1ÿ tanhj� : �2:30�

By these transformations, Eqn (2.28) is reduced to the
standard hypergeometric equation

u�1ÿ u� q
2f

qu2
ÿ �gÿ u�1� a� b�� q f

qu
ÿ abf � 0 ; �2:31�

a; b � 1

2
� q� o1t0 ; g � 1� q ; �2:32�

where the value of q is determined in (2.29). Because the
parameters in (2.32) satisfy the condition

a� b� 1 � 2g ; �2:33�

solutions of Eqn (2.31) are known to be the hypergeometric
functions [18]

f1 � f �a; b; g; u� ; f2 � f �a; b; g; 1ÿ u� : �2:34�

Now, we can write the electric field in (2.11) in a form
convenient for the forthcoming analysis. Presenting the factor
Uÿ1=2 in (2.11) by means of (2.26) as

Uÿ1=2 �
����������������
1�M 24

p
�coshj�ÿ1=2 �2:35�

and using (2.30) and (2.34), we obtain the solutions of (2.10)
for the nth eigenmode:

c1; 2 � A
����������������
1�M 24

p
f1; 2�coshj�ÿ1=2ÿq : �2:36�

With the values of the parameters a and b given in (2.32), we
can choose a linear superposition of solutions f1 and f2 in
(2.36) such that it ensures a decrease in the eigenmode
amplitude at the beginning of ionization.

This analysis is valid for arbitrary correlations between
the frequencies on and O0 and the parameters t0 and M.
However, for some values of these quantities, the obtained
results can be simplified due to the reduction of hypergeo-
metric functions to elementary ones. Thus, in the case where

b � 1

2
� qÿ o1t0 � ÿm ; m � 0; 1; 2; . . . ; �2:37�

the hypergeometric function is known to be reduced to an nth-
degree polynomial [20]; for example, in the simple case where
n � 0, Eqn (2.36) yields

f1 � f2 � 1 ; A � �1�M 2�q=2A0 ; �2:38�
qc
qt

����
t� 0

�Mtÿ10

�
1

2
� q

�
:

The condition

qc
qt

����
t� 0

< 0

is satisfied if q < ÿ1=2, and we therefore have to choose the
minus sign in the square root defining the value of q from
(2.29). The amplitude c then decreases monotonically,

achieving the value

c
���
t�T
� A0�1�M 2�q=2�1=4 < A0 �2:39�

at the instant of maximum ionization �t � T �.
Another simple solution of Eqn (2.28) arises in the case

whereD � 0,o1t0 � 0:5. Using the definition ofj0 in (2.27),
we obtain

c � A0

����������������
1�M 24
p

exp
�
q�j0 ÿ j����������������

coshj
p ; c

���
t�T
� A0

����������������
1�M 24
p

�m��q ;

qc
qt

����
t� 0

� A0t
ÿ1
0

�
M

2
ÿ q

����������������
1�M 2

p �
:

�2:40�

In contrast to the previous case, the derivative qc=qtjt� 0 is
negative for q > 1=2. Therefore, solution (2.40) describes a
monotonic decrease of the electric field amplitude from c�0�
to c�T �,

c�T �
c�0� �

����������������
1�M 24
p

�m��q < 1 : �2:41�

Depending on the cavity eigenfrequencies and the parameters
of the ionization process, this decrease may become rather
substantial. Presentation of the descending branch of ioniza-
tion density by means of the model

W 2�t�
���
t5T
� coshÿ2

�
tÿ T

t2

�
�2:42�

yields a continuous dependence of the plasma frequencyOp�t�
and its first time derivative at the instant of maximum
ionization t � T for arbitrary values of the time scale t2. To
provide the continuity of the second derivative of the plasma
frequency at the same instant t � T, the value of t2 has to be
chosen as

t2 �Mt0 : �2:43�
Thus, models (2.20) and (2.42) describe the time-depen-

dent ionization for each time 04 t <1 (see Fig. 1).
The Maxwell equation for an electric field in the cavity

with decreasing ionization density (2.42) can be written in the
form similar to (2.28),

q2cn

qt 2
� cn

�
o2

n �
O2

0

cosh2
��tÿ T �=t2

� � � 0 : �2:44�

Using this analogy, we can express the solution of (2.44)
through hypergeometric functions f1 and f2:

c � �cosh x�ÿiq�A f1�x� � B f2�x�
�
; �2:45�

where A and B are some constants,

q � ont2 ; D � �O0t2�2 ; x � tÿ T

t2
: �2:46�

The parameters of these hypergeometric functions are

a; b � 1

2
� iq�

���������������������������
1� 4�o1t2�2

q
: �2:47�

Solution (2.45) describes the growth of amplitudes due to
a decrease in ionization.
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The dynamics of uncoupled eigenmodes was examined
here for models of spatially homogeneous ionization. How-
ever, in a more realistic situation related to spatially
heterogeneous electron density or mobile ionization fronts,
some coupling of modes occurs. In the next section, it is
shown that this mode coupling can essentially modify the
temporal modulation of eigenmodes.

2.3 Coupling of eigenmodes
due to moving ionization fronts
The up-shift of eigenfrequencies due to ionization in a cavity
can be increased as comparedwith homogeneous ionization if
the electron density is spatially heterogeneous. The time
evolution of each mode proves to be coupled in this case to
the evolution of all the other modes in the cavity. To visualize
some salient features of this process, it is worthwhile
considering flash ionization produced by an electron beam.

We assume that the electron density perturbation asso-
ciated with an electron beam crosses a rectangular cavity in
the z-direction with some constant velocity v. If we suppose,
for simplicity, that the electron beam is homogeneous in the
plane z � 0 and crosses the boundary z � Lz at t � 0, moving
towards z � 0, we can write

O2
p�r; t� � O2

0 f �z� vt� : �2:48�

To calculate the coupling coefficients Cnn 0 �t� in (2.6) for
the density profile described by (2.48), we must take the
orthogonality of eigenfunctions for transverse standing
electromagnetic waves into account. Substitution of (2.48) in
(2.6) yields

Cnn 0 �t� � 2

Lz
Inn 0dpp 0dgg 0 ; �2:49�

Inn 0 �
� Lz

0

sin

�
jz

Lz

�
sin

�
j 0z
Lz

�
f �z� vt� dz : �2:50�

The simplest model for calculation of the coupling coeffi-
cientsCnn 0 in (2.49) is connectedwith the representation of the
beam density profile by means of the Heaviside function H,

O2
p�z; t� � O2

0H�z� vtÿ Lz� : �2:51�

Substitution of (2.51) in (2.50) gives the values of the coupling
coefficients [21]

Cnn 0 �t� � O2
0

p
dpp 0dgg 0

�
1

j� j 0
sin

�
p
Lz
� j� j 0�vt

�
ÿ 1

jÿ j 0
sin

�
p
Lz
� jÿ j 0�vt

��
; j 6� j 0 ; �2:52�

Cnn 0 �t� � O2
0

2p j

�
2p j
Lz

vt� sin

�
2p j
�
1ÿ vt

Lz

���
; j � j 0 :

�2:53�
An analysis of (2.52) and (2.53) shows that the mode

coupling occurs in the geometry discussed above along the
direction of perturbation propagation. Substitution of (2.52)
and (2.53) in (2.5) yields a set of equations governing the
evolution of coupled modes in a cavity.

This set of equations can be solved numerically [21];
however, some qualitative results can be revealed without
these solutions. We assume that there is a dominant mode n1

such that we can retain only the term corresponding to this
mode in the right-hand side of (2.5),

an1 � An1 exp �ÿion1t� ; �2:54�

where An1 is the amplitude of the n1th mode. If the slow
evolution of frequency on is neglected, we see from (2.5) that
four modes an can be resonantly excited. These modes satisfy
the resonant condition

on � pnv
Lz
� on1 � pvn1

Lz
: �2:55�

This resonance can be explained if we consider the
dominant mode as a linear superposition of two counter-
popagating waves of the same frequency and amplitude. The
plus (minus) sign in the right-hand side of (2.55) refers to
counter- (co-) propagation of the dominant mode with
respect to the moving perturbation of the electron density. If
the resonant mode n corresponds to the reflection (transmis-
sion) of the dominant mode, then the sign in the left-hand side
of (2.55) must be opposite (equal) to the sign in the right-hand
side of (2.55). This can easily be seen in a free space, where
Kz � ocÿ1, K 0z � o 0cÿ1, and the resonant condition (2.55)
simply reduces to the double Doppler shift effect, giving the
frequencies of the counter-propagating �o 0� and co-propa-
gating �o 00� waves as

o 0 � o�1� b�
1ÿ b

; o 00 � o�1ÿ b�
1� b

: �2:56�

The frequencieson andon1 were supposed above to retain
constant values. However, the resonant modes satisfy time-
dependent dispersion equation (2.7) and therefore, rigorously
speaking, some time variations of on and on1 do exist. This
means that several modes eventually obey resonant condi-
tions (2.55) while the perturbation front evolves across the
cavity. Moreover, the resonant frequency up-shift produced
by the moving ionization front can essentially exceed the
value of the up-shift in a homogeneously ionized medium,
especially in the case of relativistic velocities of ionization
fronts [21].

The mode coupling effects are shown to provide a broad
spectrum of eigenmodes. This result is in agreement with
experimental observations [22]. A similar analysis can be
performed in the case where space ± time variations of
density are created due to photoionization of the neutral gas
in a cavity [23]. All these effects are examined for standing
waves in a cavity. The dynamics of traveling electromagnetic
waves in semi-infinite nonstationary media are considered in
Section 3 below.

3. Dynamical and adiabatic regimes
in the reflectivity of time-varying dielectrics

This section is devoted to the amplitude, phase, and frequency
modulation of electromagnetic waves interacting with dielec-
trics with time-dependent optical properties. Such situations
can be encountered in a series of `hot' topics in the physics of
laboratory and space plasmas, energy transfer through
nonstationary media, and optical diagnostics of ultrafast
processes. The time variations of dielectric susceptibilities
are characterized by finite relaxation times, and the nonsta-
tionary reflectivity of such materials depends on the ratios of
these relaxation times to periods of EM waves. Some
tendencies in the processes of coupled amplitude ± phase
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reshaping of EM waves in nonstationary dielectrics were
found in Refs [24, 25] by numerical simulations. However,
analytic insights into the optics of time-varying media have
been less elaborated up to now than those of heterogeneous
materials.

One of the first attempts to develop an analytic
approach to nonstationary electrodynamics was based on
the model of a `sudden' jump-like variation of the dielectric
susceptibility [9]. This model is widely used now for analysis
of up-shifting of the frequency of waves interacting with a
rapidlymoving ionization front in gases. Such a front, created
by laser-induced ionization of a neutral gas, has an ultrashort
rise time (about the half-pulse duration); the plasma char-
acteristics behind the front change slowly in the recombina-
tion time scale (� ns). The front propagates with the velocity
v nearly equal to the group velocity of the laser pulse.
Interaction of the moving front with the probe photons,
provided by a secondary, low-energy laser probe pulse,
results in an up-shift of its frequency. This effect, entitled
photon acceleration in Ref. [26], ensures significant blue-
shifting caused by relativistic ionization fronts [27, 28]. The
frequency blue-shift attained by a probe laser pulse with the
initial frequency o0 after collision with the front moving with
the velocity v at the angle g is [29]

oup

o0
� 1ÿ b cos g

1ÿ b2
ÿ
b
�������������������������������������������������������������
�bÿ cos g�2 ÿ O2

moÿ2�1ÿ b2�
q

1ÿ b2
;

�3:1�
whereOm is the maximum plasma frequency of the ionization
front, the co- and counter-propagation configurations corre-
spond to the respective values g � 0 and g � p, and b � v=c.

Formula (3.1) was verified in the experiments [30], which
demonstrated the spectral up-shift of the order of 25 nm for
the probe photons (l � 560 nm). These phenomena attract
attention due to their potential use as a diagnostic tool for
the measurement of relativistic velocities of plasma struc-
tures and for the design of new types of tunable and
ultrashort radiation sources [22] An essential blue-shifting
of photons was shown to arise due to the collision of probe
photons with the accelerated ionization fronts produced by
the propagation of an ionizing laser pulse in a gas with a
density gradient [31].

All these phenomena are based on the interactions of
photons with moving interfaces resembling different mod-
ifications of the Doppler frequency shift. In contrast, this
section is devoted to frequency variations arising due to the
interaction of radiation with an immobile dielectric whose
dielectric permeability varies in time.Moreover, the aforesaid
examples relate to the limiting case where the relaxation time
t0 of the nonstationary dielectric permeability of the medium
is much shorter than the characteristic times T of the
alternating electromagnetic field. The opposite limit corre-
sponds to the adiabatic approximation, where T4 t0.
However, in a number of problems, both applied and
academic, situations occur where the time scales T and t0
prove to be of the same order of magnitude and, thus, the
exact analytic solutions of Maxwell equations with time-
dependent coefficients are required for the analysis of the
wave dynamics. Some of these exactly solvable models are
considered below.

To illustrate the crucial role of nonstationary variations of
the dielectric permeability e�t�, we consider the simplest case
where the relaxation dynamics of the medium are governed

not by the field of the traveling wave but by external sources,
e.g., by heating, ionization, or phase transitions. In particular,
this approach can be related to the optics of a probing wave in
the so-called `pump-probe' experiments, involving ultrashort
pump pulses.

To tackle this problem, we model a nonstationary
spatially homogeneous, nonmagnetic, and lossless medium
by writing the dielectric displacement D produced by a
variable electric field E�t� as a scalar product

D � e�t�E�t� : �3:2�
The dielectric permeability e�t� can be expressed through

the function U�t� as

e�t� � n 2
0U

2�t� ; U
���
t� 0
� 1 ; �3:3�

where n0 is the value of the refractive index before perturba-
tion and the dimensionless function U�t� accounts for the
time dependence of the dielectric permeability.

To examine the reflection and refraction on the boundary
z � 0 of the half-space filled by dielectric (3.2), (3.3) or an
ionizing medium, the following problems have to be solved:

(1) to find the models of time-dependent dielectric
permeabilities (3.2) and (3.3) and to obtain the relevant
solutions of Maxwell equations, visualizing the crucial role
of nonstationarity-induced dispersion;

(2) to build the nonstationary generalizations of Fresnel
formulas describing both dynamical and adiabatic reflection
regimes; and

(3) to illustrate the link between the reflectivity of the
ionizing medium and the ionization times.

3.1 Dispersion of nonstationary dielectrics
The finite relaxation times of the nonstationary dielectric
permeability e�t� determine the variety of regimes of propaga-
tion of an electromagnetic wave in a dielectric characterized
by a time-dependent e�t�. To visualize these regimes, we
consider a linearly polarized EM wave, incident normal on
the boundary of the half-space z5 0 filled by the nonsta-
tionary dielectric. The electric and magnetic components of
this wave are related by the Maxwell equations

qEx

qz
� ÿ 1

c

qHy

qt
; �3:4�

qHy

qz
� ÿ 1

c

qDx

qt
: �3:5�

We have implicitly assumed that the medium is nonmagnetic;
the electric displacement Dx is determined by Eqn (3.2).

Solving system (3.4), (3.5) involves three steps.
(A) We reduce this system to one equation governing the

electric displacement Dx,

q2Dx

qz2
ÿ n 2

0U
2�t�

c 2
q2Dx

qt 2
� 0 : �3:6�

Introducing the new variable t of the dimension of time as

t �
� t

0

dt 0

U�t 0� �3:7�

and the new function

F � Dx���������
U�t�p ; �3:8�
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we can write Eqn (3.6) as

q2F
qz 2
ÿ n 2

0

c 2
q2F
qt 2
� n 2

0

c 2
F

�
UUtt

2
ÿU 2

t

4

�
: �3:9�

(B) The time dependence of the dielectric permeability still
remains unknown. However, with the new representation in
(3.7) and (3.8), the time-dependent coefficient is eliminated
from the left-hand side of Eqn (3.9). The nonstationarity is
now taken into account by the expression in brackets on the
right-hand side of Eqn (3.9). A particularly interesting class of
U�t� corresponds to the simplest case where the expression in
brackets in Eqn (3.9) is equal to some real constant Tÿ2; the
quantity T has the dimension of time:

UUtt

2
ÿU 2

t

4
� 1

T 2
: �3:10�

The function F is then governed by an equation with constant
coefficients:

q2F
qz 2
ÿ n 2

0

c 2
q2F
qt 2
� n 2

0

c 2T 2
F : �3:11�

Equations (3.10) and (3.11) determine the time dependence of
the dielectric permeability U�t� and the wave fields corre-
sponding to the model U�t�. The normalized dielectric
permeability described by the solution of Eqn (3.10) satisfy-
ing the condition U�0� � 1 is [32]

U�t� � 1� s1t

t1
� s2t

2

t 22
; s1; 2 � 0;�1 ; �3:12�

where t1 and t2 are positive free parameters. The constantTÿ2

can be expressed in terms of these parameters, which, in their
turn, are connected with the extremum Um and duration d of
profile (3.12):

1

T 2
� s2

t 22
ÿ s 21
4t 21

: �3:13�

Depending on the values of t1, t2 and s1, s2, the function U�t�
provides flexible representations of both ascending and
descending time dependences U�t�, shown in Fig. 3. For
instance, in the case where s1 � ÿ1, s2 � 1, and t2 4 2t1, the
function U�t� reaches its minimum Um (see Fig. 3) at the
instant tm:

tm � yt2 ; Um � U�tm� � 1ÿ y 2 ; y � t2
2t1

< 1 : �3:14�

At the instant t � 2tm, this dielectric function returns to its
initial value U � 1.

(C) The solution of Eqn (3.11) related to model (3.12) can
be written as a traveling wave in the �z; t�-space:

F � exp
�
i�qzÿ ot�� ;

�3:15�
q � on0

c
N ; N �

������������������������
1ÿ �oT �ÿ2

q
:

Substitution of solution (3.15) in Eqn (3.8) yields the electric
displacement

Dx � A
���������
U�t�

p
exp

�
i�qzÿ ot�� ; �3:16�

where A is a normalization constant. Finally, substitution of
Eqn (3.16) in (3.5) gives the expressions for the field
components inside nonstationary medium (3.12) and for the
parameter t:

Ex � A

n 2
0

�
U�t��ÿ3=2 exp �i�qzÿ ot�� ; �3:17�

Hy � A

n0N

�
U�t��ÿ1=2 exp �i�qzÿ ot�� ; �3:18�

t � t2��������������
1ÿ y 2

p arctan

�
t
��������������
1ÿ y 2

p
t2 ÿ ty

�
; s1 � ÿ1 ; s2 � 1 ;

�3:19�

t � t2

2
��������������
1� y 2

p ln

�
1� t�t2yÿ�ÿ1
1ÿ t�t2y��ÿ1

�
; s1 � 1 ; s2 � ÿ1 ;

�3:20�
y� �

��������������
1� y 2

p
� y :

Thus, using the formalism of t-space gives the explicit
expressions for the EM field, valid during the time of
existence of model (3.12): 04 t4 t 22 =t1 � 2yt2. To examine
the field at the time t5 2yt2, we must specify the dependence
U�t� at this time. This specification is shown below to provide
a series of peculiarities in the reflectivity of medium (3.12) at
the instant t � tm.

The formulas for EM fields (3.17) and (3.18) propagating
in nonstationary medium (3.12) are obtained without any
restricting assumptions about the relations between the
frequency and the relaxation times of the medium t1 and t2.
These formulas contain the phase factor exp

�
i�qzÿ ot��,

expressed using the variable t: in this `t-space', the spatio-
temporal structure of the discussed EM fields resembles that
of traveling harmonic waves.

We next analyze the amplitude ± phase structure of field
components (3.17) and (3.18), emphasizing some peculiarities
of this structure originating from the strong nonstationarity
of the medium in which they travel.

(1) The wave propagation is characterized by the non-
stationarity-induced dispersion described by the factor q in
Eqn (3.15). This effect, independent of the natural dispersion
of material, is determined by the relaxation times of the
variable dielectric permeability. The concave temporal
profile of dielectric permeability depicted in Fig. 3 gives rise

1

2

1.0

U 2�t�
0.8

0.6

0.4

0.2

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
x

Figure 3. Time-varying normalized dielectric permeability U 2�t� (3.12),
s1 � ÿ1, s2 � 1, x � t=tm < 1; the characteristic time tm is given in (3.14).

When x5 1, the permeability U 2 either returns to its initial value (U � 1,

branch 1) or remains constant (U � Um, branch 2).
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to the normal dispersion

N �
������������������������
1ÿ �oT �ÿ2

q
:

This waveguide-like formula shows the appearance of a
nonstationarity-induced cutoff frequency oc � Tÿ1. In con-
trast, a convex profile of U�t� gives rise to the abnormal
dispersion

N �
������������������������
1� �oT �ÿ2

q
;

and the cutoff effect does not arise in this case.
(2) The propagation of an EM wave in a nonstationary

dielectric, described in terms of the t-space, is accompanied
by the formation of time-dependent phase shiftj between the
Ex and Hy components. Substitution of (3.12) in (3.18) gives
the value of this phase shift:

j � arcsin

"
ys1 � s2t=t2������������������������������������������������

�ot2�2 � �s1y� s2t=t2�2
q #

: �3:21�

In the �z; t�-space, the waveforms of electric and magnetic
components (3.17) and (3.18) are nonsinusoidal and, more-
over, owing to time-varying factor (3.21), these waveforms
are different in each cross section inside the medium.

(3) The time scales t1 and t2, as well as the values s1 and s2,
are free parameters of model (3.12). In the special case where
t2 � 2t1, s1 � �1, s2 � 1, the nonstationarity-induced disper-
sion vanishes �N � 1, T!1� and the time-dependent factor
U�t� is written as

U �
�
s1 � t

2t1

�2

: �3:22�

In this case, Eqn (3.11) determining the field F is reduced to
the wave equation in a free space �z; t�,

q2F
qz 2
ÿ 1

v 2

q2F
qt 2
� 0 ; v � c

n0
: �3:23�

Substitution of (3.22) in (3.8) yields the variable

t � t

�
1� s1t

2t1

�ÿ1
: �3:24�

Expressing the solution of wave equation (3.23) through an
arbitrary function F

��tÿ z=v�tÿ10

�
and using (3.8), we can

find the electric displacementDx; thus, for the medium with a
decreasing dielectric permeability �s1 � ÿ1�, we have

Dx �
�
1ÿ t

2t1

�
F�u� ;

�3:25�

u � tÿ10

�
t

�
1ÿ t

2t1

�ÿ1
ÿ z

v

�
:

These results, obtained by solving Eqn (3.6) governing the
electric displacementDx, can be found from another equation
governing the magnetic field Hy. This equation is derived by
eliminating Dx from Maxwell equations (3.4) and (3.5):

q2Hy

qz 2
ÿ n 2

0U
2�t�

c 2
q2Hy

qt 2
� n 2

0

c 2
qU 2

qt
qHy

qt
: �3:26�

Direct substitution shows that the function Hy in (3.18) is a
solution of Eqn (3.26). In Section 4, we show that both these
solutions, Dx and Hy, found here for the normal incidence,
allow generalization for any arbitrary incidence angles.

Equation (3.26) allows finding a new temporal profile
U�t�, reducing (3.26) to the form of thewave equation in a free
space, Eqn (3.23). This profile is different from (3.22):

U 2�t� �
�
1ÿ t

tm

�4=3

; 04 t4 tm � 2t1
3
: �3:27�

The dynamics of an arbitrarily shaped transient traveling
in medium (3.27) can be presented by the time-domain
solution of Eqn (3.26),

Hy � A

�
1ÿ t

tm

�ÿ1=3
F�u� ;

�3:28�

u � t1
t0

��
1ÿ t

tm

�1=3

ÿ 1� z

vt1

�
;

where F is an arbitrary function and A is a normalization
constant.

Remarkably, the nonstationarity-induced dispersion does
not occur in models (3.22) or (3.27); in particular, the
harmonic wave propagation in these media is characterized,
unlike (3.15), by the wave vector q � o=v, i.e., the dispersion
factor N in (3.15) is reduced to unity.

We stress again that expressions (3.25) and (3.28) are valid
for arbitrary waveforms, including the widely discussed
ultrashort single-cycle pulses. These waveforms can be
considered the exact analytic solutions in the time-domain
optics of nonstationary media.

3.2 Ultrafast variations of reflected fields
To find the time-dependent reflection coefficient R, we must
use the continuity conditions for the electric and magnetic
field components on the interface z � 0 of the nonstationary
dielectric. We consider the normal incidence of a monochro-
matic linearly polarized CW train with frequency o from the
vacuum on the interface z � 0. Continuity conditions for the
Ex andHy components, Eqns (3.17) and (3.18), yield the value
of the reflection coefficient in this case,

R � Nÿ n0U
ÿ
1� iUt=�2o�

�
N� n0U

ÿ
1� iUt=�2o�

� : �3:29�

Formula (3.29) describes the simplest time-dependent
generalization of the Fresnel law, visualizing the substantial
influence of finite relaxation times t1 and t2 on the reflectivity
of dielectrics. We use (3.29) to examine some optical effects
arising due to the decrease in dielectric permeability,
described by the descending branch of curve (3.12). Accord-
ing to this curve (see Fig. 3), the refractive index n is changed
from the value n � n0 �t � 0� to its minimum value n �
n0�1ÿ y 2� at the instant t � tm, Eqn (3.14). Assuming that
such a change is initiated by fast ionization, we can consider
the forthcoming reinstatement of unperturbed values of n as a
slow process, determined, e.g., by recombination, its char-
acteristic time being about a nanosecond; this means that
during some time after tm, the graph of n�t� can be
approximated by a horizontal line (see Fig. 3). Some salient
features of nonstationary reflectivity in the time interval
04 t4 tm are listed below:
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(A) The reflection coefficient at t4 0 is given by its
stationary real value

R � 1ÿ n0
1� n0

;
qn0
qt
� 0 : �3:30�

The beginning of the ionization process provides a disconti-
nuity of the first time derivative of the dielectric permeability:

qU 2

qt

����
ÿ 0

� 0 ;
qU 2

qt

����
� 0

� ÿ 2s1
t1

: �3:31�

This discontinuity results in a jump-like variation of the
reflection coefficient from the real value n � n0 to a complex
one:

R
���
� 0
� Nÿ n0

ÿ
1ÿ is1=�2ot1�

�
N� n0

ÿ
1ÿ is1=�2ot1�

� : �3:32�

The time-variable phase j in (3.29) also has a discontinuity at
t � 0.

(B) The smooth variation in the reflection coefficient after
its beginning at t � 0 is interrupted by another discontinuity
at t � tm. At this moment, the dielectric permittivity and its
first derivative remain continuous, but the second time
derivative Utt in model (3.12) has a discontinuity,

Ut

���
tmÿ 0
� Ut

���
tm�0
� 0 ;

Utt

���
tmÿ 0
� 4n0�1ÿ y 2�

t 22
; �3:33�

Utt

���
tm� 0

� 0 :

This discontinuity leads to a jump-like transition of R from
the value Rm � R�tm� to a stationary value R2:

Rm � Nÿ n0�1ÿ y 2�
N� n0�1ÿ y 2� ; R2 � 1ÿ n0�1ÿ y 2�

1� n0�1ÿ y 2� : �3:34�

The graph of the reflection coefficient containing these
peculiarities is shown in Fig. 4.

(C) The distortions of reflected waveforms produced by
the aforesaid variations in the reflection coefficient exist
during the restricted time interval 04 t4 tm; during this
interval, the initially sinusoidal waveforms can be completely
deformed. Thus, in the case where the period of the probing
wave T� is comparable with the ionization time tm, the
reflected CW train of harmonic waves can contain one or a
few unharmonic waveforms, located in the interval
04 t4 tm. This short-lived burst of radiation is character-
ized by an essential spectral broadening, determined by the
time tm. Owing to this effect, the diffraction pattern of the
reflected wave includes some weak short-lived sidelobes
containing information about the ionization dynamics. The
registration of these sidelobes would be a difficult but
promising experiment.

It should be emphasized that these reflectivity effects,
based on the nonstationarity-induced dispersion, were
revealed by means of the exactly solvable model of time-
dependent dielectric permeability, Eqn (3.12). The reflection
coefficient proves to be dependent on both the current value
of e�t� and its first and second derivatives. When the influence
of these derivatives, described in the expression for reflection
coefficient (3.27) by the terms containing �ot1�ÿ1 and
�oT �ÿ2, is substantial, we can speak about the dynamical
regime of reflectivity. The phase modulation of a reflected
wave, described by the time-dependent phase shift j�t� in
(3.29), is also inherent in the dynamical regime of reflection.

The opposite case, where these terms are negligible,
corresponds to the adiabatic regime; reflection coefficient
(3.27) for this regime is written as

R � 1ÿ n0U�t�
1� n0U�t� : �3:35�

The phase modulation of the reflected wave does not arise in
this approximation related to nonstationary geometric optics
[33]. Finally, when the variation of U�t� is also negligible,
expression (3.35) is reduced to the traditional Fresnel formula
(3.30), which thus proves to be a limiting case of the more
general time-dependent result in (3.29).

It is noteworthy that the modelU�t� in (3.12) contains two
free parameters: its extremum Um and the time scale tm,
U�tm� � Um. These parameters being fixed, the initial rate of
variation of the dielectric permeability, described by the
derivative Ut at t � 0, is also fixed, see (3.31). However, it is
sometimes convenient to keep the given values Um and tm to
model the variation of U�t� by means of another value of
Ut

��
t� 0

. This can be done in the framework of another exactly
solvable model of nonstationary dielectric permeability,
presented by the inverse dependence [32]

t

T
� 1

2

�
Mÿ

������������������������
U�UÿUm�

p
� �1ÿM 2� arcosh

� ����
U
p ÿM

�����������������
UÿUm

p
1ÿM 2

��
: �3:36�

Similarly to (3.12), this model also contains two free
parameters, M and T, which are expressed through Um and
tm:

M �
���������������
1ÿUm

p
; 04M4 1 ;

tm
T
� 1

2

�
M� �1ÿM 2� arcosh

�
1����������������

1ÿM 2
p

��
:

�3:37�
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Figure 4. Formation of discontinuities in the time-dependent reflection

coefficient with respect to the power jRj2 for the model of dielectric

permeability shown in Fig. 3 (branch 2); x � t=t0.
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However, the value of the slope Ut

��
t� 0

is different from
(3.31):

qU
qt

����
t� 0

� ÿ 2M

T
: �3:38�

Until now, we have been speaking about the CW train of
monochromatic waves, reshaping due to interaction with the
nonstationary dielectric. However, this approach is not
convenient for the analysis of the interaction of initially
unharmonic broadband single-cycle waveforms with these
media. Such pulses are characterized by nonstationary
reshaping even in the course of propagation in a free space
(see Section 7). The dynamics of some single-cycle waveforms
in a plasma-like medium are considered in Ref. [34] in the
framework of the time-domain approach.

3.3 Reflectivity of rapidly ionizing plasma
In discussing wave processes in materials with a time-varying
dielectric permeability e�t�, we have not specified the nature of
thematerial. However, the fast and substantial changes in e�t�
are often attained in plasma ionization; therefore, it makes
sense to specially examine the reflection of EM waves from
such media, especially because the mathematical basis of this
analysis is different from the approach used in Section 3.1.

Reflectivity of ionizing plasma essentially depends on the
ionization time. This dependence has been examined numeri-
cally (see, e.g., Refs [24, 25] and the references therein); here,
we consider some analytic models of the time-dependent
density of ionization. We first discuss wave effects stimulated
by the growth of the electron densityN in a semi-infinite space
from the initial value N1 at the instant t � 0 up to its
asymptotic value Nm corresponding to the saturation of the
ionization process. The time dependence of the plasma
density N�t� can be modeled in this case as

N�t� � 2N1 ÿNm � 2�Nm ÿN1�
1� exp �ÿt=t0� ; �3:39�

where t0 is the characteristic ionization time. Expressing the
field components E and H and the electric current j induced
by this field through the vector potential A,

E � ÿ qA
qt

; H � rotA ; �3:40�

j � ÿ e2N�t�A
mc

; �3:41�

and considering the linearly polarized wave �c � Ax,
Ay � Az � 0�, we can write the Maxwell equation for the
function c:

q2c
qz 2
ÿ 1

c 2
q2c
qt 2
� c

c 2

�
2O2

1 ÿ O2
m �

2�O2
m ÿ O2

1�
1� exp �ÿt=t0�

�
: �3:42�

It is convenient to seek the solution of (3.42) in the form

c � BF exp
�
i�kzÿ ot�� ; c 2k 2 � o2 ÿ O2

m : �3:43�

Substitution of (3.43) in (3.42) gives an equation for the
function F, dependent upon the normalized variable x � t=t0,

q2F
qx 2
ÿ 2ip

qF
qx
ÿ t 20 �O2

2 ÿ O2
1� exp �ÿx�

1� exp �ÿx� F � 0 ; p � ot0 :

�3:44�

Using the new variable u � ÿ exp �ÿx�, we can reduce (3.44)
to the standard hypergeometric equation (2.31). In so doing,
the values of the parameters a, b, and g in (2.31) are

a; b � it0

h
o�

�����������������������������
O2

1 ÿ O2
m � o2

q i
; g � 1� 2ip : �3:45�

The solution of Eqn (3.44) is represented by the hypergeo-
metric series F�a; b; g; u�. The convergence condition for this
series [35]

Re �a� bÿ g�4 0 �3:46�

is satisfied for the values in (3.45): a� bÿ g � ÿ1; thus, the
vector potential component c in (3.43) can be written as

Ax � c � BF

�
a; b; g;ÿ exp

�
ÿ t

t0

��
exp

�
i�kzÿ ot�� :

�3:47�

Substitution of (3.47) in (3.40) yields the components Ex and
Hy; these components, expressed through the hypergeometric
function F, are nonsinusoidal. The continuity conditions for
Ex and Hy on the interface z � 0 give the value of the
reflection coefficient:

R � pFÿ iuFu ÿ pFN

pFÿ iuFu � pFN
; N �

�����������������������
1ÿ O2

moÿ2
q

: �3:48�

Here, Fu is the derivative of the hypergeometric function; this
derivative can be calculated by the formula [35]

dF�a; b; g; u�
du

� ab
g

F�a� 1; b� 1; g� 1; u� : �3:49�

Because the ratio Fu=F is finite, the long-term �t4 t0�
asymptotic form of the reflection coefficient R in (3.48) is
reduced to the stationary limit:

limR
���
t4 t0
� 1ÿN

1�N
: �3:50�

Proceeding in a similar fashion, we can examine the
reflectivity of nonstationary plasma in another ionization
regime, when the electron density N�t� is growing from the
initial value N1 to its maximum Nm during a finite time t0.
This regime can be described by the model containing three
free parameters Ð the time scale t0 and the dimensionless
quantities Q and G:

N�t� � N1 � G

�
cosh2 Q

cosh2 �t=t0 ÿQ� ÿ 1

�
: �3:51�

Introducing the characteristic timeT determined by the initial
growth rate of ionization N�t� (Fig. 5a), we can find the
quantities Q and G from the equation following from (3.51):

1

N

dN

dt

����
t� 0

� 2G tanhQ

t0
� Nm

T
; �3:52�

Q � artanh

� ���������������
1� 4s 2
p ÿ 1

2s

�
; s � 2T

t0

�
1ÿ N1

Nm

�
: �3:53�

The electron density reaches its maximum value Nm during
the time Tm � t0 coshQ.
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The field c is described in this case by an equation similar
to (3.42):

q2c
qz 2
ÿ 1

c 2
q2c
qt 2
� c

c 2

�
O2

1 ÿ O2
m �

O2
m cosh2 Q

cosh2 �t=t0 ÿQ�

�
: �3:54�

Seeking the solution of (3.54) in the form

c � BF exp
�
i�kzÿ ot�� ; k 2c 2 � o2 � O2

1 ÿ O2
m ; �3:55�

we reduce (3.54) to the familiar equation (2.31) for the
hypergeometric function F�u� with the parameters a, b, and
g and the variable u given by

a; b � 1

2

�
1�

�����������������������������������������
1� 4�Omt0 coshQ�2

q �
; g � 1� ip ; �3:56�

u � 1

2
�1ÿ tanhj� ; j � t

t0
ÿQ : �3:57�

Because Re �a� bÿ g� � 0, the series F�u� converges in
accordance with condition (3.46). Continuing this analogy
with field (3.47), we can see that the reflection coefficient
connected with ionization regime (3.51) is given again by
formula (3.48) in which the wavenumber k and the variable u
are given in (3.55) and (3.57), respectively.

It is remarkable that for some values of parameters (3.56),
the solutions of Eqn (3.54), expressed via the hypergeometric
functions F, can be essentially simplified. These functions are
known to be reduced to polynomials if the parameters a or b
are equal to negative integers. Thus, equating b � ÿn, we find
the relevant values of the product �Omt0 coshQ�2 in (3.56),

�Omt0 coshQ�2 � n�n� 1� ; n � 1; 2; 3; . . . : �3:58�

With condition (3.58) satisfied, solutions Fn are repre-
sented by nth-degree polynomials in the variable u,

F1 � 1ÿ 2u

g
; F2 � 1ÿ 6u

g
� 12u 2

g�g� 1� : �3:59�

Using the definition of j, we can rewrite these polynomials as

F1 � tanhj� ip

g
;

�3:60�
F2 � 3 tanh2 jÿ �1� p 2� � 3ip tanhj

g�g� 1� :

In deriving formulas (3.59) and (3.60), we assumed for
simplicity that the probing wave is incident on the plasma
interface z � 0 at the instant t � 0.

Substitution of functions (3.59) in (3.40) and (3.48) yields
explicit expressions for the field components E andH and the
reflection coefficientR; thus, in the case where n � 3, we have

R3�
ÿ3 tanhj�1ÿ tanh2 j��10 tanhj� 2ip� 3ipÿ1�1ÿ 5 tanh2 j��
12 tanhj�5 tanh2 jÿ 4ÿ p 2� ÿ 2ip�18 tanh2 jÿ 7ÿ p 2� ÿ K

;

K � ÿ9ipÿ1�1ÿ tanh2 j��1ÿ 5 tanh2 j� : �3:61�

The drastic nonstationary distortions of the reflected
waveform, described by the coefficient R3, are shown in
Fig. 5b. This graph illustrates the reflectivity of rapidly
ionizing air under normal conditions (the molecular density
is given by the Loschmidt number N � 2:7� 1019 cmÿ3) for
the ionization level 50%, probing wavelength l � 0:8 mm,
and ionization time Tm � 1:25l=c.

We stress some peculiarities of reflectivity in the time
interval 04 t4Tm, shown by this example:

(A) Both amplitude and phase of the complex reflection
coefficient are time-dependent, such that the phase shift of R
vanishes at the end of the ionization process and the value of
R at this moment t � Tm becomes purely real:

R
���
Tm

� 3�3� 2p 2�
9� 14p 2 � 2p 4

: �3:62�

(B) The discontinuity in the curvature of the temporal
profile of ionization N�t� at the instant t � Tm [model (3.51)]
results in a jump-like change of the reflection coefficient R
from the value in (3.61), dependent on the ionization rate
through the parameter p, to the stationary value in (3.62),
independent of this parameter. Such a change, in turn, leads
to a discontinuity at the trailing edge of the reflected
waveform.

(C) Due to the high probing wave frequency o
�O2

mo
ÿ2 � 0:01�, the value of the plasma refraction index is

close to unity and, thus, the stationary value of reflection
coefficient (3.29) is small: R � 0:005. The maximum value of
nonstationary reflection coefficient (3.61) is much higher:
R � 0:32. This temporal variation in R provides the forma-
tion of an ultrashort solitary unharmonic reflected pulse from
the leading edge of the probing CW train: the half-width of
this pulse Dt is much less than the probing wave period t�:
Dt � 0:1t�.

Moreover, the reflectivity of rapidly ionizing plasma can
open the route to the generation of ultrashort pulses
without the `pedestal', which is important for the creation
of a `plasma mirror' in experiments with the extreme regime
of laser ± plasma interactions [36 ± 38]. The principle of the
`plasma mirror' is related to focusing a laser beam on a low-
reflectivity vacuum, a dielectric interface, such that most of
the pedestal is transmitted. As the intensity increases in
time, the ionization of the dielectric medium due to multi-
photon absorption develops, and the reflection acquires a
`metallic' character. If the electron density exceeds the
critical value for the given laser wavelength (Nc �
1:75� 1021 cmÿ3, l � 800 nm), the reflectivity increases
suddenly [39]. The physical fundamentals of a number of
effects of electron dynamics in a powerful light field are
examined in Ref. [40].

1.0

W 2

0.5

0 1 x

a
R

0.3

0.1

0 0.5 1.0

b

x

Figure 5. Nonstationary reflectivity of rapidly ionizing plasma: (a) the

temporal growth of the normalized ionization densityW � N�t�=Nm,N�t�
is given in (3.51), x � t=T0, G � 1017 cmÿ3, Q � 3:5; W � 1 when x5 1;

(b) the reflection coefficient R for the leading edge of a CW train

(l � 0:8 mm, t0 � 1:25 fs) for the conditions shown in figure a; when

x5 1, the value R remains constant.
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4. Phase effects
in the optics of nonstationary media

The complex reflection coefficients obtained above for
different models of media with time-dependent dielectric
properties describe the formation of a time-varying phase
shift of a reflected wave. This effect was discussed in Section 3
for a simple caseÐ the reflection of normally incident waves.
In contrast, a variety of phase phenomena occuring in both
the reflection and refraction of waves in the course of oblique
propagation are discussed below.

The polarization structure of incident waves is known to
provide the difference in reflection of S- and P-polarized
waves. Nonstationary generalizations of the classical Fresnel
reflection formulas for these waves are obtained in Section 4.1
in the framework of exactly solvable models. The correspond-
ing generalizations of the Snell law, revealing the difference in
refraction of S- and P-polarized waves, are also found. The
amplitude ± phase reshaping of harmonic fields inside the
nonstationary dielectric layer is considered in Section 4.2.
Similar phenomena in microwave transmission lines with
distributed time-dependent parameters are discussed in
Section 4.3.

4.1 Polarization phenomena in the reflectivity
of time-varying lossless media
This section is devoted to the analysis of the reflection of
waves incident on the immobile interface z � 0 of a time-
varying dielectric under an arbitrary incidence angle g. We
first consider the model of the time-dependent dielectric
permeability U�t� in (3.12) and perform the calculations of
the reflection coefficients for S- and P-polarized waves
separately. Speaking, for brevity, about S- and P-waves, we
can generalize the approach developed above (Section 3.1) for
the normal incidence.

(1) S-wave; this wave is characterized by an electric
component Ex and magnetic components Hy and Hz.
Eliminating the magnetic components from the Maxwell
equations,

qEx

qz
� ÿ 1

c

qHy

qt
;

qEx

qy
� 1

c

qHz

qt
;

�4:1�
qHz

qy
ÿ qHy

qz
� 1

c

qDx

qt
;

yields an equation similar to Eqn (3.6) for the electric
displacement Dx,

q2Dx

qz 2
� q2Dx

qy 2
ÿ n 2

0U
2�t�

c 2
q2Dx

qt 2
� 0 : �4:2�

Using the new variable t in (3.7), we can write the solution of
(4.2) as

Dx � B
���������
U�t�

p
exp

�
i�k?z� kkyÿ ot�� ; �4:3�

where kk � ocÿ1 sin g; the quantities kk, k?, ando are related
by the dispersion equation

k 2
k � k 2

? �
o2

c 2
n 2
0N

2 ; N �
������������������������
1ÿ �oT �ÿ2

q
: �4:4�

The parametersN andTwere determined in (3.13) and (3.15).
Omitting the phase factor for simplicity, we obtain the field

components Ex, Hy, and Hz satisfying Maxwell equations
(4.1):

Ex � B

n 2
0U

3=2
;

Hy

Hz

� �
� B

ÿ
1� iUt=�2o�

�
n0NU 1=2

cos g
ÿ sin g

� �
:

�4:5�

Here, B is a normalization constant; expressions (4.5) satisfy
the condition divH � 0.

To find the reflection coefficient Rs, it is convenient to
introduce an angle b such that the componentsHy andHz are
written as

Hy � H cos b ; Hz � ÿH sin b ; H �
�������������������
H 2

y �H 2
z

q
:

�4:6�
Using this representation and letting Ei denote the amplitude
of the incident wave, we can write the continuity conditions
on the interface z � 0:

Ei�1� Rs� � Bnÿ20 Uÿ3=2 ; Ei�1ÿ Rs� cos g � H cos b ;

Ei�1� Rs� sin g � H sin b : �4:7�

Manipulations with conditions (4.7) give the definition of the
angle b,

sin g � ns sin b ; ns � n0UNÿ1
�
1� iUt

2o

�
; �4:8�

and the expression for the complex reflection coefficient Rs,

Rs �
cos gÿ

����������������������
n 2
s ÿ sin2 g

q
cos g�

����������������������
n 2
s ÿ sin2 g

q : �4:9�

Formula (4.8) can be considered the generalized Snell law.
The value b in (4.8) is complex: b � b1 � ib2. This means that
equal-phase and equal-amplitude planes are not parallel and
hence the normals to these planes form some angle: a similar
field structure and a complex refraction angle are known to
arise in the wave propagation in an absorbing dielectric [41].
Separation of the real and imaginary parts of (4.8) yields
equations for b1 and b2:

tanb1 �
1

gl

���������������������������������������������������
1

2

�
ÿG�

�����������������������
G 2 � 4g2l 2

p �r
; �4:10�

g � Ut

2o
; l � N sin g

n0U
; tanh b2 � ÿg tan b1 : �4:11�

In the case of S-polarization, the quantity G is determined by

G � Gs � l 2�g2 ÿ 1� � �1� g2�2 : �4:12�

(2) P-wave; as opposed to the S-wave, the P-wave field is
characterized by a magnetic component Hx and electric
components Ey and Ez, related by the equations

qHx

qz
� 1

c

qDy

qt
; ÿ qHx

qy
� 1

c

qDz

qt
;

�4:13�
qEz

qy
ÿ qEy

qz
� ÿ 1

c

qHx

qt
:

August, 2005 Optics of nonstationary media 809



Elimination of the electric displacement components Dy and
Dz from system (4.13) reduces this system to one equation,
similar to Eqn (3.35):

q2Hx

qz 2
� q2Hx

qy 2
ÿ n 2

0U
2�t�

c 2
q2Hx

qt 2
� n 2

0

c 2
qU 2

qt
qHx

qt
: �4:14�

Using model (3.12) and the variable t, we again find the
solution of (4.14):

Hx � B����
U
p

�
1� iUt

2o

�
exp

�
i�k?z� kkyÿ ot�� : �4:15�

Proceeding in the fashion used above in the case of an
S-wave, we obtain the components Ey and Ez, which satisfy
the equation divE � 0. Comparing these Hx, Ey, and Ez

components of the P-wave with the Ex, Hy, and Hz

components of the S-wave in (4.5), we see that the duality
principle, allowing the replacement E>ÿH, B>D in the
Maxwell equations, remains valid for nonstationary media.

The continuity conditions for the P-wave yield the
nonstationary generalization of the Snell law,

sin g � np sin b ; np � n0NU

�
1� iUt

2o

�ÿ1
; �4:16�

and the reflection coefficient Rp for P-waves,

Rp �
�n0U�2 cos gÿ

����������������������
n 2
p ÿ sin2 g

q
�n0U�2 cos g�

����������������������
n 2
p ÿ sin2 g

q : �4:17�

The real part of the complex refraction angle b is then given by
Eqn (4.10) due to replacement:

G � Gp � l 2�g2 ÿ 1� �N 4 : �4:18�

The imaginary part of b is determined by the expression

tanh b2 � g tanh b1 : �4:19�

The dimensionless parameters l and g were defined in
(4.11). It is noteworthy that the complex reflection angles for
S- and P-waves are distinguishable, the incidence angle being
the same. In the special case where s2 � 0, Eqn (3.13), it can be
shown that N 2 � 1� g2 and, thus, the real parts b1 for the
S- and P-waves coincide; however, even in this case, the
imaginary parts b2 for the S and P waves have opposite
signs.

(3) Until now, we have been considering the reflectivity of
nonstationary media using the model of time-varying
dielectric permeability. In contrast, the reflection ± refraction
problems for plasmas with rapidly varying ionization were
treated in Section 3.3 beyond the scope of this concept.
Although the analysis in Section 3.3 was performed for the
normal incidence, its generalization to the case of inclined
incidence is trivial. Thus, for example, considering the
inclined incidence of an S-wave on the interface of plasma
with growing ionization (3.51), we can use solution (3.55),
(3.56) corresponding to this model, and, by analogy with
(4.8), (4.9), derive the time-dependent Snell law

sin g � sin b
1ÿ iK

; K � 1

2p cosh2 j

Fu

F
: �4:20�

The reflection coefficient for this rapidly ionizing area is

Rs �
cos gÿ

������������������������������������
�1ÿ iK �2 ÿ sin2 g

q
cos g�

������������������������������������
�1ÿ iK �2 ÿ sin2 g

q : �4:21�

The attempt to calculate the reflection of P-waves in the
framework of this approach faces some analytical difficulties.
It is easy to find the componentsHx,Ey, andEz characterizing
the polarization structure of a P-wave: thus, the component
Hx satisfies the equation similar to (3.54),

q2Hx

qz 2
� q2Hx

qy 2
ÿ 1

c 2
q2Hx

qt 2
� O2

c 2
Hx

�
cosh2 Q

cosh2 �t=t0 ÿQ� ÿ 1

�
:

�4:22�
The solution of (4.22) was shown in (3.56) to be represented in
the form

Hx � F�a; b; g; u� exp �i�k?z� kkyÿ ot�� ;
where F is hypergeometric function (3.56). The vector-
potential components Ay and Az are determined by the
equation coinciding with (4.22). Substitution of Ay and Az in
(3.40) gives the electric field components Ey and Ez. The
problem arises in deriving the reflection coefficient Rp, based
on the continuity of the electric displacement component Dz.
This function, determined in accordance with (4.13) by the
expression

Dz � c

�
qHx

qz
dt ; �4:23�

contains the hypergeometric function F�a; b; g; u� in the
integrand; this integrand has to be calculated numerically,
and then the calculations of b and Rp can be completed.

In conclusion, we stress some properties of nonstationary
reflection that are common for all the problems discussed:

(A) the complex refraction angles, as well as the effective
refractive indices ns in (4.8) and np in (4.16), were shown to be
different for S and P waves. This difference indicates the
appearance of a peculiar short-lived birefringence effect for
oblique wave propagation in the time-varying isotropic and
homogeneous dielectrics. In the case of normal incidence, the
difference between S- and P-polarizations vanishes and the
power reflection coefficients jRsj2 and jRpj2 become equal; it
then follows that Rs � ÿRp and the values of b1 and b2 are
reduced to zero: b1 � b2 � 0.

(B) Owing to the complex values of ns and np, the
reflection coefficient Rs in (4.9) cannot grow to the value
Rs � 1 corresponding to the total internal reflection; analo-
gously, the coefficient Rp in (4.17) cannot fall to the value
Rp � 0 corresponding to the Brewster effect. Thus, ultrafast
variations of the dielectric permeabilities impede the manifes-
tation of these classic phenomena in the optics of time-
dependent media.

(C) The time variations of the reflection coefficient can be
used for optical measurement of relaxation times of fast phase
transitions for some materials. Thus, investigations of none-
quilibrium superconductivity have demonstrated an impor-
tant role of the order parameter in the structure of a
superconductor perturbed by photons or injected carriers
[42]. On sufficiently short time scales, these perturbations can
throw the order parameter (e.g., the energy gap) out of
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equilibrium with both the phonon and superconducting
systems. The return to equilibrium can be characterized by
some relaxation time, which grows in the vicinity of the
critical temperature.

Time-resolved optical measurements [43] revealed an
abrupt change in the carrier relaxation time when the
samples became superconducting. The temperature-depen-
dent investigations of the carrier relaxation time in a high-
temperature superconductor film, performed in Ref. [37],
were based on the absorption of an ultrashort light pulse by
carriers in the film. The subsequent energy relaxation between
electrons and photons was monitored by the optical probing
of temperature-dependent reflectivity change as a function of
the time delay after the excitation pulse. This thermo-optical
perturbation decreased the order parameter D by destroying
the density of superconducting carriers. The relative pertur-
bations of the power reflection coefficient as small as
djRj2=jRj2 � 1:5� 10ÿ4, measured by means of 80-fs-dura-
tion light pulses, vanished during the relaxation time about
one or a few picoseconds. Another mechanism of fast thermic
variation of a solid's reflectivity is considered in Section 6.

4.2 Unharmonic traveling waves
in nonstationary dielectric layers
The accumulation of amplitude ± phase distortions in the
course of propagation of an EM wave through a time-
varying material was shown above to be short-lived; this
effect proved to be essential when the relaxation time and the
wave period become comparable. The path of such accumula-
tion develops at a distance of only a few wavelengths and,
thus, we can speak about some nonstationary layer. To reveal
this reshaping of refracted waves, we restrict ourselves to the
simple case of the normal incidence of waves on the interface
z � 0.

Considering the model in (3.12) and the corresponding
refracted wave presentation in form (3.15), we draw attention
to the phase factor exp

�
i�qzÿ ot��, expressed through the

variable t in (3.7). In this t-space, the space ± time structure of
the field resembles that of a traveling harmonic wave. We
emphasize some peculiarities of this structure:

(A) The electric component in (3.17) can be viewed as a
nonstationary wave traveling in the �z; t�-space with a
constant phase velocity. However, in the physical space
�z; t�, the phase velocity varies in time. These variations give
rise to a drastic reshaping of waveforms. To determine this
reshaping, we must calculate the amplitude of the refracted
wave in the plane z � 0. This amplitude is known to be
expressed through the reflection coefficient R as
Et � E0�1� R�. Using formula (3.27) for R and (3.17) for
the electric component of the refracted field Et gives the
explicit expression for Et,

Et �
2E0N exp

�
i�qzÿ ot��

U
����
U
p �

N� n0U�1� iUt=�2o�
� : �4:24�

(B) The waveform of the refracted magnetic component
Ht in (3.18) is distinguished from Et by an additional
amplitude ± phase modulation,

Ht � n0U

N

�
1� iUt

2o

�
Et : �4:25�

(C) The normalized dielectric permeability U in (3.12)
decreases to its minimum value Um � 1ÿ y 2 during the time

tm � t2y, Eqn (3.14). At the instant tm, the derivative Ut is
equal to zero and the wavefront position z0 is determined by
the equation

qz0 ÿ ot�tm� � 0 : �4:26�

The parameter t�t� for the descending branch of U�t� under
discussion is given in (3.19), with t�tm� > tm. The leading edge
of the wave train is reshaped while traveling through the
perturbed area.

Proceeding in a similar fashion, we can examine the
propagation of the probing wave through the rapidly
ionizing plasma layer created by discharge in gases or laser
ionization of solid targets, e.g., bulk quartz [4], described by
model (3.51). We consider the transmission of a wave train,
whose reflection is depicted in Fig. 5b, using the same values
of plasma and wave parameters. In this case, condition (3.58)
with n � 3 is satisfied and, thus, the refracted field compo-
nents can be represented by means of (3.61) and (3.62);
however, the constant B has to be replaced by the amplitude
of the refracted wave E on the interface z � 0. We suppose
that the plasma layer thickness d exceeds the distance
z0 � cTm traveled by the leading edge during the time of
ionization Tm � t0Q (3.51); therefore, the rest of the path
dÿ z0 is traversed by the wave train in the plasmawith a time-
independent density. This wave train is partially reflected
back on the interface z � d. If this plane corresponds to the
boundary between ionized and nonionized air, the reflection
coefficient R can be found from the boundary condition

Et�1� R� � Ht�1ÿ R� : �4:27�

The refracted waveform traveling in the area z5 d is here
determined as E � Et�1� R�. The leading edge of the
refracted waveform is reshaped; being calculated in the
framework of model (3.51), such a reshaping yields the
formation of a discontinuity at the instant t � Tm. Compar-
ison of Fig. 5a and Fig. 5b shows that these nonstationary
effects are well expressed in the vicinity of the point t � Tm,
where the curvature of the ionization graph (Fig. 5a) is
discontinuous.

4.3 Microwave analogies of time-dependent optical effects
It is noteworthy that some of the pioneering research in
electromagnetic wave propagation in time-varying media
was performed several decades ago not in the optical but in
themicrowave spectral range. It was shown inRef. [2] that the
velocity of a wave traveling in a microwave transmission line
with a distributed inductance L could be modulated due to
time variations of the inductance. In view of the remarkable
analogy between this microwave and the relevant optical
phenomena, it is worth examining such microwave phenom-
ena in detail.

We consider the model of a lossless line characterized by a
time-dependent inductance L � L0U

2�t�. The distribution of
the current I and voltage V in this line is known to be
described by the set of equations [44]

qV
qz
� L0U

2 qI
qt
� RI � 0 ;

qI
qz
� C

qV
qt
� GV � 0 ; �4:28�

where L0, C, R, and G are the unperturbed line inductance,
capacity, resistance, and leakage parameter per unit length;
the resistance and leakage currents are neglected below for
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simplicity. The parameters L0 and C are determined, for
instance, for the stripline formed by two metal strips and
the dielectric substrate between them, according to the
formulas [44]:

L0 � 4p� 10ÿ7
d

b
; C � 10ÿ9

36p
er

b

d
; �4:29�

where er is the effective dielectric permeability of the substrate
layer, d and b are its thickness and width, and L0 and C are
expressed here in H mÿ1 and F mÿ1, respectively. Expressing
the current I and voltage V through a generating function c,

I � ÿC qc
qt

; V � qc
qz

; �4:30�

we can reduce system (4.28) to one equation, similar to
Eqn (3.6) discussed above:

q2c
qz 2
ÿU 2�t�

v 2
0

q2c
qt 2
� 0 : �4:31�

Scrutinizing the time variations of the inductance gov-
erned by the model U�t� given by (3.12),

L � L0

�
1� s1t

t1
� s2t

2

t 22

�2

� L0U
2�t� ; �4:32�

we can represent solutions of (4.30) in the form coinciding
with (3.16):

c � B
���������
U�t�

p
exp

�
i�qzÿ ot�� ; �4:33�

where the variable t was determined in (3.19) and (3.20).
Substitution of the generating function c, Eqn (4.33), in
(4.30) gives the explicit expressions for the current I and
voltage V:

I � ioCUÿ1
�
1� iUt

2o

�
c ;

V � iqc ; �4:34�

q � o
v0

N ; N 2 � 1ÿ �oT �ÿ2 ; Z �
������
C

L0

r
:

Here, Z is known to be the impedance of the line with
constant values of L0 and C. Considering the quantity
v0=U�t� in (4.31) as the time-modulated velocity of wave
propagation, we can interpret the formation of unharmonic
current and voltage waves (4.34) as the result of this velocity
modulation. The finite relaxation times of inductance varia-
tions determine the frequency dispersion of this transmission
line. Expressions (4.30) for the instantaneous voltage and
current resemble expressions (3.17) and (3.18) for unharmo-
nic electric and magnetic fields. Using the Kirchhoff rules for
voltage and current instead of continuity conditions for the
components of the EM field allows investigating the reflec-
tion of waves in the homogeneous transmission line due to
switching of time-varying inductance at some segment of this
line. Thus, the reflection coefficient Rc with respect to the
current, derived from Eqn (4.34), is

Rc �
Z0

ÿ
1� iUt=�2o�

�ÿNUZ

Z0

ÿ
1� iUt=�2o�

��NUZ
: �4:35�

The valueRc is complex, the line being lossless; the imaginary
part of Rc is linked with the time-varying inductance.

The effect of velocity modulation can be used for the
optimization of the parameters of the tunable delay line.
Thus, we suppose that the inductance L�t� in (4.31) grows
�s1 � 1, s2 � ÿ1� from the initial value L0 up to its maximum
Lm during the time T. We then find the distance l passed by
the zero-crossing point, which traverses the input of the line at
the instant t � 0.

The condition qlÿ ot � 0, Eqn (4.33), yields the distance
l; calculating the value of t�t� from (3.20), we obtain

l � v0T

2y
��������������
1� y 2

p ln

�
y�
yÿ

�
; y� �

��������������
1� y 2

p
� y : �4:36�

The parameter y � t2=�2t1� is expressed through the quan-
tities L0 and Lm as

y �
�����������������������������

Lm

L0

r
ÿ 1

s
: �4:37�

On the other hand, the same point on the wave envelope,
while traveling in the line with a constant inductance L0,
passes the distance l0 � v0T < l; hence, in the case where
y � 0:5, we have l � 0:85l0: Therefore, the nonstationary
inductance results in a deceleration of the wave during the
transition time.

In concluding this section, it is worth mentioning the
adiabatic limit of the expressions derived above. This limit
corresponds to the case of a `slow' modulation of the
dielectric permeability, with Ut=o! 0, Utt=o2 ! 0, N! 1.
In this limit, the distinguished expressions for the effective
refraction indices ns in (4.8) and np in (4.16) degenerate to the
coinciding ones,

ns � np � n0U�t� : �4:38�

Substitution of (4.35) in Fresnel laws (4.9) and (4.17) gives
the adiabatic values of the reflection coefficientsRs andRp for
S-and P-polarized waves. We also note the peculiar case
where N � 1, although both Ut and Utt retain finite values.
This situation, occuring in model (3.12) with s2 � 1, y � 1,
was presented above by dependence (3.22).

5. Electromagnetic fields
in variable spatiotemporal structures

Until now, the analysis of problems of EMwave propagation
in nonstationary media was restricted by assumptions about
the spatially homogeneous temporal variations of these
media. However, there is a multitude of problems where
both temporal and spatial variations of dielectric parameters
affecting the wave propagation must be taken into account.
The simplest example of such effects, connected with the
motion of an ionization front separating gas bulks with
different dielectric permeabilities, was mentioned briefly in
Section 3. The more complicated effect of reflectivity of a
moving ionization front was observed in the course of
ultrafast ionization of solid targets, e.g., quartz [4], resulting
in the formation of the so-called `plasma mirror'. The
oscillations of this mirror, excited by alternating pressures of
a pumping beam, provide the phase modulation phenomena
in a reflected wave, including, in particular, generation of
harmonics.
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The optical effects of traveling perturbations, forming
smoothly varying spatiotemporal structures, are usually
examined by means of computer simulation; a detailed
description of such procedures is given, e.g., in Ref. [45]. The
development of the analytic theory of such effects remains a
hot topic in the electrodynamics of continuous media. By
contrast, the analytic approach in the theory of wave
interaction with immobile spatiotemporal structures is
elaborated somewhat better. The mathematical scheme of
this theory is based on the representation of the dielectric
permeability of the medium as a product of two functions:
one dependent only on spatial coordinates and the other
dependent only on time:

e�r; t� � n20W
2�r�U 2�t� : �5:1�

Some problems that can be investigated in the framework
of this approach are considered below for nonstationary EM
waves traveling in a transmission line (Section 5.1), standing
in a cavity (Section 5.2), and traversing a heterogeneous layer
(Section 5.3). Despite the differences in the physical statement
of these problems, they are unified mathematically by the
factored representations of the spatiotemporal dependences
of their dielectric parameters.

5.1 Transition regimes in a transmission line
with spatially distributed parameters
Unlike the transition regime in a line with a time-
dependent inductance and constant capacity examined
above (Section 4.3), we focus attention here on a more
complicated system whose parameters vary in both time and
space. To simplify the analysis, we again consider the time-
dependent inductance L�t� in form (4.32), assuming that the
capacity per unit length is spatially distributed as

C�z� � C0W
2�z� ; W�z� �

�
1� s1z

L1
� s2z

2

L2
2

�ÿ1
: �5:2�

The equation for the generating function c in (4.30),
describing the transmission line under discussion, can be
derived by analogy with (4.31), with distribution (5.2) taken
into account:

q2c
qz 2
ÿ W 2�z�
v 20U

2�t�
q2c

qy2
� 0 ; y �

� t

0

dt1
U 2�t1� : �5:3�

The forthcoming analysis can be viewed as a general-
ization of Eqn (4.31) and its solution (4.33). We introduce a
new function F and variables Z [46] and t1:

F � c��������������������
W�z�U�t�p ; Z �

� z

0

W�z 0� dz 0 ; t1 �
� y

0

dy 0

U�y 0� :

�5:4�
Considering models (4.32) and (5.2) and imposing the
additional condition U 2�t�U 2�y� � 1, we obtain an equation
for the function F:

q2F
qZ2
ÿ 1

v 2
0

q2F
qt 21
� D2F

v 20
; D2 � Tÿ2 ÿ �pv0�2 : �5:5�

The simplest example of a pair of functions related by the
above condition U 2�t�U 2�y� � 1 is

U�t� � 1� t

t1
; U�y� �

�
1� y

t1

�ÿ1
:

The characteristic time T for model (4.32) was defined in
(3.13) and the parameter p 2 is connected with the hetero-
geneity profile in (5.2):

p 2 � s2

L2
2

ÿ s 21
4L2

1

: �5:6�

The parameter D2 in (5.5) characterizes the simultaneous
influence of heterogeneity- and nonstationarity-induced
dispersion. The solution of Eqn (5.5) can be represented as a
harmonic wave in the �Z; t1�-space. Substitution of this
solution in (5.4) yields the generating function for the
transmission line,

c �
��������������������
W�z�U�t�

p
exp

�
i�qZÿ ot1�

�
; �5:7�

q � o
v0

N ; N 2 � 1ÿD2

o2
: �5:8�

The result in (5.7) describes the multitude of transition
regimes in the transmission line with a nonuniformly
distributed capacity. For example, we consider the spatial
variation of capacity distributed according to (5.2) along a
line segment of length l; the capacity C decreases from C0 to
the value Cm at the point z � 0:5l and then increases to the
value C0 at the point z � l. Substitution of (5.2) in (5.4) gives
the variable Z�z� in this case,

Z�z� � l

2Y
���������������
1ÿ Y 2
p arctan

�
2Y

���������������
1ÿ Y 2
p

z=l

lÿ 2Y 2z=l

�
; �5:9�

Y �
���������������������
1ÿ

��������
C0

Cm

rs
: �5:10�

The length l of the segment corresponds to the value
Z0 � Z�l �,

Z0 �
l

2Y
���������������
1ÿ Y 2
p arctan

�
2Y

���������������
1ÿ Y 2
p

1ÿ 2Y 2

�
: �5:11�

It makes sense to isolate the special case D � 0, where the
contributions to dispersion of the transmission line produced
by heterogeneous capacity and time-dependent inductance
aremutually compensated.A similar situationwasmentioned
in Section 3.1 for a special type of time variation of refractive
index (3.22), the medium being homogeneous. However, the
interplay of spatial and temporal variations of the wave
velocity v�z; t� � v0=

ÿ
U�t�W�z�� was shown to provide a

flexible choice of parameters, resulting in a peculiar regime
of propagation D � 0 in a transmission line. In this case,
equation (5.5) is reduced to the form

q2F
qZ2
ÿ 1

v 2
0

q2F
qt 2
� 0 : �5:12�

Equation (5.12) describes the distortionless propagation
of an arbitrarily shaped pulse F�t1 ÿ Z=v0� in the �t1; Z�-
space; the dependences Z � Z�z� and t1 � t1�t� determine
the controlled reshaping of this pulse in the physical space
�z; t�.

It is remarkable that the mathematical formalism devel-
oped above proves to be useful for the analysis of another
wave problem, propagation of Alfven waves through hetero-
geneous time-varying plasma. We consider a circularly
polarized Alfven wave that travels along the external
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homogeneous magnetic field H0 (z-direction). We suppose
that the plasma density N is coordinate-dependent and the
magnetic field varies in time:

N � N0W
2�z� ; H � H0U

2�t� : �5:13�

The dimensionless functions W�z� and U�t� satisfy the
conditions

W
���
z� 0
� 1 ; U

���
t� 0
� 1 : �5:14�

The coupled transverse perturbations of the plasma velocity v
and magnetic field H induced by the Alfven wave are
governed by the equations of magnetic hydrodynamics [47]:

qH?
qt
� H0U�t� qv?qz ; �5:15�

qv?
qt
� H0U�t�

4pN0W 2�z�
qH?
qz

: �5:16�

Introducing the normalized variables

v � v?
vA

; b � H?
H0

; �5:17�

where vA � H0=
�����������
4pN0

p
is the Alfven velocity, and choosing

the generating function c�z; t� such that

b � qc
qz

; v � 1

vAU�t�
qc
qt

; �5:18�

we reduce system (5.15), (5.16) to one equation [48]:

q2c
qz 2
ÿ W 2�z�
v 2AU

2�t�
�
q2c
qt 2
ÿUt

U

qc
qt

�
� 0 : �5:19�

Using the new variable

t �
� t

0

U�t 0� dt 0 �5:20�

permits us to eliminate the unknown time variation of the
magnetic field U�t� from Eqn (5.19):

q2c
qz 2
ÿW 2�z�

v 2A

q2c
qt 2
� 0 : �5:21�

It is worth stressing the similarity of Eqns (5.21) and (5.3).
Again considering the profile of plasma density in (5.2) and
continuing this analogy, we can represent the solution of
(5.21) in the form

c �
�����������
W�z�

p
exp

�
i�qZÿ ot�� : �5:22�

The variable Z is defined in (5.4) and the wavenumber q
depends on the heterogeneity parameter p in (5.6),

q � o
vA

����������������������
1ÿ �pvA�

2

o2

s
: �5:23�

Substitution of (5.22) in (5.18) gives the explicit expres-
sions for the plasma velocity v? and transverse magnetic
component H? in the field of the Alfven wave traversing a
heterogeneous plasma layer. Unlike these waves in homo-
geneous magnetoplasma, the Alfven waves under discussion

are characterized by strong heterogeneity-induced disper-
sion.

Because solution (5.22) is independent of the specific
model of temporal profile U�t�, this solution seems to be
rather general. In particular, the case where q � 0, Eqn (5.23),
corresponds to the propagation of an arbitrarily shaped
Alfven pulse in plasma (5.13) along a time-varying magnetic
field, its temporal variations being also arbitrary. This
analysis may be interesting for problems of both gaseous
[49] and semiconductor [50] plasmas.

5.2 Time-domain optics
of nonstationary heterogeneous layers
Along with the model of spatiotemporal variations of the
dielectric permeability e�z; t� used in (5.1), it is worth
discussing another factored representation of e�z; t� in the
form

e�z; t� � n 2
0

�
1ÿ t

TF�z�
�2
; �5:24�

where T is some time scale and F�z� is an arbitrary function.
Model (5.24) can be used for the analysis of delay time
characterizing the propagation of an EM pulse through a
time-varying heterogeneous dielectric layer.

To calculate these delay times, we find the characteristic
curves for wave equation (5.2) with the dielectric function
e�z; t� given by (5.24). The equation governing such a curve
with a positive slope in the �z; t� plane is

dt

dz
� 1

v0

�
1ÿ t

TF�z�
�
: �5:25�

This equation is solvable after multiplication with an
integrating factor y�z� [51]:

v0

�
d�ty�
dz
ÿ t

dy
dz

�
� yÿ ty

TF�z� : �5:26�

Equalizing the terms in (5.26) containing the factor t, we find
the function

y � exp

�
1

v0T

� z

0

dz 0

F�z 0�
�
: �5:27�

The remaining terms in (5.26) determine the characteristic
curve passing through the point �0; t0� in the plane �z; t�:

v0�tyÿ t0� �
� z

0

y�z 0� dz 0 : �5:28�

It was emphasized above that the equation of character-
istic line (5.28) is valid for an arbitrary spatial profile of the
dielectric permeability F�z� inside a layer. To give an example
of an analytic calculation of travel time, we consider the
simplest permeability profile F�z� � 1� z=L, whereL is some
spatial heterogeneity scale. Using Eqns (5.27) and (5.28) gives
the explicit expression for the time of travel t� through a layer
with thickness d :

t�
T
� t0

T y�d � �
q

q� 1

�
1� d

L
ÿ 1

y�d �
�
;

�5:29�
y�d � �

�
1� d

L

�q

; q � L

v0T
:
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The result in (5.29) is physically acceptable provided t� < T
and t0 < T.

It is worth checking formula (5.29) and finding its limit
related to the nonstationary layer with vanishing spatial
heterogeneity �L!1, F! 1� and the same thickness d. In
this case, the limit of the function y�d � is

lim y�d �
���
L!1

� exp �a� ; a � d

v0T
; �5:30�

and Eqn (5.29) yields

t�
T
� 1�

�
t0
T
ÿ 1

�
exp �ÿa� : �5:31�

On the other hand, one can suppose from the very
beginning that the layer is spatially homogeneous and, thus,
model (5.24) is reduced to e � n 2

0 �1ÿ t=T �2. The calculation
of the propagation time t� by means of a wave equation with
this model of e�t� gives the same result (5.31).

5.3 Generation of photons in time-dependent dielectrics
It was shown above that the interaction of traveling EM
waves with a nonstationary dielectric results in spectral
broadening of the wave field; one can speak about the
generation of new harmonics. A similar effect is examined
below for the eigenmodes in a cavity with time-varying
eigenfrequencies e�t�. These variations can be produced, for
instance, due to a nonlinear modulation of the dielectric
permeability of the medium in a cavity by some external
pumping wave [52]. Another possibility for producing such
variations is connected with using a cavity with movable
perfectly reflecting walls [53]. An interesting situation invol-
ving the moving mirror in a cavity is a resonant perturbation,
arising when the mirror oscillates periodically with the period
of some cavity's eigenfrequency. Owing to this resonance, the
field inside the cavity and the moving mirror become strongly
coupled. In particular, the generation of THz eigenmodes can
be expected in a microwave cavity due to mirror oscillations
with hypersound frequencies if the amplitudes of these
oscillations are sufficiently large [54].

We consider the mechanism of eigenmode generation
using the factored representation of the dielectric perme-
ability in (5.1). The vector potential A and electric displace-
ment D for the nth mode can also be sought in a factored
form:

A�r; t� � g�r� u�t� ; D�r; t� � e�r� g�r� v�t� : �5:32�

We suppose that the function g�r� satisfies the equation
[12]

rot rot g � o2
n

c 2
e�r� g ; �5:33�

where on is the eigenfrequency for the nth mode, defined, for
example, for the rectangular cavity in (2.1). The solutions of
Eqn (5.33) can be chosen to be real vector functions satisfying
the orthogonality conditions�

e�r� gn�r� gm�r� dr � dnm : �5:34�

Expressing the field components E and H via the vector
potential A by means of (3.40) and using Maxwell equations,

we obtain ordinary differential equations for time-dependent
factors of the vector potential A and electric displacement D:

du

dt
� ÿ cv

u 2�t� ;
dv

dt
� uo2

n

c
: �5:35�

System (5.35) can be replaced by one second-order differ-
ential equation,

d2v

dt 2
� o2

nv

u 2�t� � 0 : �5:36�

Equation (5.36) resembles the equation of motion of the
oscillator with a time-dependent frequency. Some of such
oscillators are well known in classical [55] and quantum [18]
mechanics. As the first example, we consider the case of
parametric excitation, where the properties of a medium
oscillate harmonically with the frequency O equal to the
doubled frequency of the nth eigenmode: O � 2on. This can
be achieved, for example, by means of a change in the density
of the medium due to the action of a powerful external
monochromatic pumping wave, running in the transverse
direction. Considering the factor uÿ2�t� in (5.36) represented
as a sum,

uÿ2�t� � 1� K cos �2ont� ; jKj5 1 ; �5:37�

and using the theory of parametric generation [55], we can
seek the solution of (5.36) in the form

v�t� � m�t� exp �ÿiont� � n�t� exp �iont� ; �5:38�

with slowly varying time-dependent amplitudes m�t� and n�t�.
Substituting (5.38) and (5.37) in (5.36), neglecting the second-
order derivatives of slowly varying amplitudes, and averaging
over fast oscillations with the frequency on, we arrive at the
pair of equations

dm
dt
� ÿ ionKn

4
;

dn
dt
� ionKm

4
; �5:39�

whose solutions are

m�t� � cosh

�
onKt
4

�
; n�t� � i sinh

�
onKt
4

�
: �5:40�

If the nth eigenmode was not excited at the initial instant
t � 0, the amount of photons related to this mode at some
moment t is given by [12]��n�t���2 � sinh2

�
onKt
4

�
: �5:41�

For large values of the parameter onKt4 4, this amount
increases exponentially with time. In the real case of a cavity
with a finiteQ-factor, formula (5.41) is valid provided time t is
less than the relaxation time tc � Q=on. Even in the case of
the Q-factor as large as 107 and the coupling parameter
K � 10ÿ4ÿ10ÿ5, the number of photons in (5.41) is difficult
to register in the experiment.

The modification of this vibrating cavity scheme is
connected with the accelerated motion of the dielectric
when, for example, the cavity formed by two parallel
perfectly reflecting planes remains immobile and the dielec-
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tric slab initially located between these planes is rapidly
removed. Calculations [53] show that such a removal is
accompanied by generation of photons.

6. Electrodynamics of media
with time-dependent dissipation

In considering the wave effects in media with rapidly varying
dielectric parameters, dissipation phenomena have been
ignored. It was assumed that the dissipative distortions of an
EM field developed more slowly than the nonstationarity-
induced reshaping processes. Under this assumption, some
time-independent absorption can be easily considered, for
example, in the framework of the model U�t� in (3.12) with
U�t� replaced with the sum U�t� � Y, where Y � const. As
distinguished from this, we now examine somewave processes
characterized by time-dependent resistance or absorption.

One of the first investigated processes of this kind was
connected with the dynamics of lightning. The time-depen-
dent resistance R�t� per meter in the lightning channel,
growing due to ionization of the air, was modeled in Ref. [56]
as R�t� � exp �t=t0� ÿ 1 with t0 � ms. Similar phenomena on
the ns scale were discussed for spark discharges in high-
voltage laboratory devices [57].

Another display of nonstationary conductivity was
connected with cross-modulation of radiowaves in the iono-
spheric collisional plasma [47]. The heating of electrons by a
powerful wave results in a periodic modulation of the electron
temperature and, respectively, the frequency of temperature-
dependent electron-neutral collisions. These variations yield
temporal changes in the plasma conductivity and, in this
manner, the modulation of absorption of another probing
wave traversing the perturbed region. The characteristic times
of the modulation of absorption due to this thermic effect are
known to be much longer then the time of collisions between
electrons and heavy particles [47].

The temporal variations in dissipation in optical systems
can develop faster by far. These effects are illustrated below
by optical filters with saturating absorption (Section 6.1) and
the tuning of reflectivity of some semiconductors due to
thermic variation in their absorption (Section 6.2). Some
problems related to the telegraph equation with a time-
varying conductivity are discussed in Section 6.3.

6.1 Saturation of absorption
The reflection ± refraction processes in a layer with time-
varying absorption attract attention as the basis for saturat-
ing absorbingwave filters. Such filters can be examined due to
appropriate generalization of the model in (3.12),
e�t� � n 2

0U
2
1 �t�:

U1�t� �
1� ir0

�
1� t

T1
� t 2

T 2
2

�
; 04 t4 tm ;

1� irm ; rm � r0�1� y 2� ; t5 tm ; y � T2

2T1
:

8>><>>:
�6:1�

The imaginary part of the normalized complex refractive
index U1�t� varies from the initial value to its extremal value
during the saturation time tm. This saturation of absorption
can be considered a result of the `pump ± probe' interaction,
when the nonlinear absorption of the pump wave results in
the transition of molecules to a new level responsible for
attenuation of the probing wave. The time tm, dependent on

the power of the pump wave and the transition kinetics, may
be as short as several picoseconds or may become even
comparable with the rise time of the pumping pulse. To
stress the effects caused by the saturation of absorption, the
real part of U1�t� is supposed to remain constant.

It is easy tomodify the solution of Eqn (3.6) in accordance
with the new representation for U1 in (6.1). Substitution of
(6.1) in (3.3) gives the wavenumber q; thus, in the case of
increasing absorption, the value of q is

q � on0
c

N ;

N �
������������������������������������������������������������
1ÿ r20

4o2T 2
1

� ir0

�
1ÿ 1

o2T 2
2

�s
: �6:2�

The solution of Eqn (3.6) in the time interval 04 t4 tm can
be written as traveling wave (3.16),

c �
������
U1

p
exp

�
i�qzÿ ot�� ;

dependent on the wavenumber q in (6.2) and the variable t:

t
T2
� ÿ i

2S
�����
r0
p ln

�
1� t=tÿ
1ÿ t=t�

�
; t� � ST2 � tm ;

�6:3�
S �

������������������������������
r0�1� y 2� ÿ 1

q
; y � T2

2T1
:

It is worth mentioning some peculiarities of this traveling
wave:

(A) The wave propagation is characterized by dispersion
described by the complex parameterN in (6.2) and dependent
on the relaxation times of variable absorption.

(B) The value ImN determines the spatial scale of the
exponential decay of the wave field. In the case of decreasing
absorption, the imaginary term in the expression for N is
replaced by ir0

�
1ÿ �oT2�ÿ2

�
. Thus, due to the dispersion

produced by decreasing absorption, this decay vanishes for
the frequency o � Tÿ12 ; the value of N in this case is real:
N �

��������������
1ÿ y 2

p
.

(C) In the limiting case of vanishing absorption, the
wavenumber q and variable t tend to the values q � on0=c
and t � t corresponding to the traveling wave in a stationary
medium.

Proceeding according to the technique developed in
Section 3.1 for a conservative medium, we find the reflection
and transmission coefficients for the medium discussed. The
saturation of absorption provides the change of the reflection
coefficient R, from the initial value R1 to the value R2, for
example, in the case of normal incidence:

R1 � 1ÿ n0�1� ir0�
1� n0�1� ir0�

; R2 � 1ÿ n0�a� ib�
1� n0�a� ib� ; �6:4�

a; b �
�����������������������������������������������������������������������������

1� r20�1� y 2�2
q

� 1

r
:

It makes no sense here to derive the complicated expressions
for the modulus jR2j2 and phase j2; the computer calculation
of these parameters is easily programmable.

Depending on the saturated value of absorption para-
meter (6.1), the saturation can result in both an increase and a
decrease in reflectivity. Thus, considering the medium with
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n0 � 1:7 and r0 � 1, we can find from (6.4) that the power
reflection coefficient jR1j2 at the time before the beginning of
the saturation process is jR1j2 � 0:33. The saturation with
y � 1 results in a decrease in reflection,

jR2j2 � 0:27 < jR1j2 ;

while in the case where rm � 25r0 �y � 4:9�, the reflection
coefficient grows:

jR2j2 � 0:72 > jR1j2 :

The regime of attenuated transmission (the transmission
factor jT2j2 � 1ÿ jR2j2 � 0:28 decreases compared to the
initial value jT1j2 � 0:67) indicates the effect of saturated
absorption. This nonmonotonic variation of jR2j2 accompa-
nying the growth of absorption can become even more
complicated with the time variations of the real part of U1�t�
taken into account. The same analysis remains valid in the
case of decreasing absorption and in the case of an amplifying
medium.

6.2 Thermic modulation of a semiconductor reflectivity
This section is devoted to the thermic tuning of reflectivity of
some semiconductors with free carriers belonging to the
AIIIBV group, e.g., InP, InSb, and GaAs. The well-known
method of such tuning is based on the modulation of the free-
carrier density in a semiconductor plasma produced by
powerful laser radiation and providing the transition of
electrons to the conductivity zone. In contrast, the thermic
modulation of conductivity connected with Joule heating of
carriers in the collisional plasma of semiconductors does not
need the generation of any new carriers because it is based on
the change in frequency of their collisions; the energy
expenditure in such a process is much less.

The perturbations of the semiconductor's dielectric
parameters, caused by thermic variations in the frequency of
carrier collisions, are usually small. However, these perturba-
tions can be essentially strengthened due to a special choice of
parameters of the cross-modulation process, when the plasma
frequency Op, the reflecting wave frequency o, and the
frequency of collisions n satisfy the condition

Op � o � n : �6:5�

With this condition satisfied, both real and imaginary parts of
the dielectric permeability,

Re e � eL

�
1ÿ O2

p

o2 � n2�Te�
�
;

�6:6�

Im e � n�Te�eLO2
p

o
�
o2 � n2�Te�

� ;
can be deeplymodulated owing to thermic variations in n�Te�;
here,Te is the carrier's temperature, eL is the static value of the
dielectric permeability, and O2

p � 4pe2N=�m�eL�; for simpli-
city, we consider only one type of carrier, e.g., electrons with
the effective massm � and densityN. The reflection coefficient
for the waves incident normal to the interface of medium (6.6)
can be written as

R � 1ÿ n

1� n
; n �

�������������������������
Re e� i Im e
p

: �6:7�

To optimize the regime of reflectivity tuning transparency
determined by (6.6), the following circumstances have to be
taken into account:

(A) The different physical mechanisms of scattering of
carriers interacting with a semiconductor crystal lattice are
characterized by different dependences n�Te�. It makes sense
to consider the conditions in which the scattering on ionized
impurities prevails over other scatteringmechanisms, because
the scattering on ionized impurities is distinguished by the
strong temperature dependence [58]

n�Te� � n0 f ÿ3=2 ; �6:8�

where f is the normalized value of the carrier temperature
Te � f � Te=Te0� and Te0 and n0 are the unperturbed values
of the parameters Te and n. This situation occurs, for
instance, in the n-type InAs in the low-temperature range
10 K< Te < 120 K [59].

(B) To illustrate the possibilities of thermic control of
wave beams under condition (6.5), we examine the reflection
of millimeter radiation with l � 3 mm, related to one of the
atmospheric transparency windows, from a InAs plate.
Taking the corresponding parameter values [60] eL � 12:2,
m� � 0:07m, n0 � 2:5� 1012 rad sÿ1,N � 3� 1014 cmÿ3, and
considering the electron heating from Te0 � 40 K up to
Te � 110 K � f � 2:75�, we can find the power reflection
coefficients jRj2 for the unperturbed ( f � 1, jRj2 � jR1j2� and
perturbed � f � 2:75, jRj2� jR2j2� conductivities: jR1j2 � 0:3,
jR2j2 � 0:6. Thus, even moderate heating can double the
strengthening of reflectivity.

(C) The relaxation time for the electron temperature Te

under the conditions discussed is about tc � 10 ps [62];
therefore, the intensity of the reflected wave can be doubled
during the time close to its period.

This example allows us to note the problems in the search
for materials characterized by appropriate values of the
parameters N and Te0, providing fast electro-optical modula-
tion of reflectivity in the spectral range between microwaves
and far IR radiation and, in particular, in the submillimeter
range, which is very important for applications.

6.3 Telegraph equation for a transmission line
with time-varying losses
The saturation of absorption due to cross-modulation of EM
waves considered in Section 6.1 corresponds to the case where
both real and imaginary parts of dielectric permeability (6.6)
depend on the absorption parameters. In contrast, we now
discuss another model of media with time-varying conductiv-
ity, describing a series of physically meaningful situations.
The well-known problem giving rise to this model is
connected with the propagation of an EM wave in a
transmission line with losses, described by Eqns (4.28). To
stress the effects caused by time-dependent losses, we
consider, for example, the growth of leakage currents
produced by an increasing discharge in the line. In this way,
the parameterG in (4.28), characterizing the leakage currents,
is supposed to be time-dependent:

G � G0 P�t� ; P
���
t� 0
� 1 : �6:9�

For simplicity, the resistance R is neglected below.
Expressing the voltage and current in the line in terms of

the generating function c in (4.30), we can reduce system
(4.28) to one equation, coinciding formally with the telegraph
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equation with a time-varying conductivity:

q2c
qz 2
ÿ 1

v 20

q2c
qt 2
� P�t�
v 20T

qc
qt

; T � C

G0
: �6:10�

Here, C is the capacity per unit length of the line and the
velocity v0 is defined in (4.31). The time-dependent coefficient
P�t� on the right side of (6.10) is an unknown function of time.
To determine the function that allows an exact analytic
solution of (6.10), we seek the solution in the form

c � F exp

�
ÿ
� t

0

a�t 0� dt 0
�
: �6:11�

Substitution of (6.11) in telegraph equation (6.10) gives
the equation for the function F :

q2F
qz 2
ÿ 1

v 20

q2F
qt 2
� 1

v 20

�
MF� B

qF
qt

�
;

�6:12�
M � a2 ÿ qa

qt
ÿ aP

T
; B � P

T
ÿ 2a :

Imposing the additional conditions

M � 0 ; B � const � 1

t0
; �6:13�

we can reduce Eqn (6.12) to the standard form of the
telegraph equation with constant coefficients:

q2F
qz 2
ÿ 1

v 2
0

q2F
qt 2
� 1

v 2
0 t0

qF
qt

: �6:14�

The meaning of the parameter t0, which has the dimension of
time, is to be established below.

We now seek the time dependence of leakage losses P�t�
and the function a�t� in Eqn (6.12). Representing the function
a�t� in (6.12) as

a � 1

2t0
�gPÿ 1� ; g � t0

T
; �6:15�

and substituting expression (6.15) in the conditionM � 0 [see
(6.12)], we obtain the equation for the function P�t�:

2t0g
qP
qt
� 1ÿ g 2P 2 : �6:16�

The solution of Eqn (6.16) satisfying the initial conduc-
tion P�0� � 1 can be written in either of two forms:

P1 �
�
g tanh

�
artanh gÿ1 � t

2t0

��ÿ1
; g5 1 ; �6:17�

P2 � gÿ1 tanh
�
artanh g� t

2t0

�
; g4 1 ; �6:18�

P � 1 ; g � 1 ;

depending on the ratio between the times t0 and T. In time
t4 2t0, the functions P1; 2 reach their asymptotic values
gÿ1. We see from expressions (6.17) and (6.18) that the time
scale t0 characterizes the relaxation time of variable losses
and the asymptotic value of the leakage parameter
G � 1=t0. Figure 6, representing models (6.17) and (6.18),

shows the saturation of losses, which increase (decrease) with
time when g > 1 �g < 1�.

Now we can construct the function c in (6.11), which
describes the field in a nonstationary conductor. The solution
of telegraph equation (6.10) can be written as a damping
wave,

F � exp
�
i�qzÿ ot�� ; q � ovÿ1N ; N 2 � 1� i

ot0
:

�6:19�

Substituting the values ofP�t� from (6.17) and (6.18) and then
calculating the exponential factor in expression (6.11), we
obtain, for instance, for the fast relaxation �g < 1� that

exp

�
ÿ
� t

0

a dt 0
�
� exp

�
t=�2t0�

��������������
1� g 2

p �
cosh

�
artanh g� t

2t0

��ÿ1
:

�6:20�

By combining results (6.19) and (6.20), we arrive at a simple
solution of nonstationary telegraph equation (6.10):

c � 2Dÿ1 exp
�
i�qzÿ ot�� ; �6:21�

D � 1� g� �1ÿ g� exp
�
ÿ t

t0

�
:

Substitution of the generating function c given by (6.21)
in (4.30) gives explicit expressions for the current I and
voltage V in the transmission line with time-varying leakage.
The generalization of this analysis to the case of a finite
resistance R is trivial.

It is interesting to note the special case of the model under
discussion that corresponds to the value B � 0 in system of
equations (6.12). In this case, Eqn (6.12) for the function F
becomes the wave equation in free space,

q2F
qz 2
ÿ 1

v 2

q2F
qt 2
� 0 : �6:22�

The solution of this equation is an arbitrary twice differenti-
able function F�tÿ z=v�. The function P�t� determined from
the conditions M � 0, B � 0 decreases according to the

2.0

P

1.0

0.5

0 0.5 1.0 2.0 x

1

2

Figure 6. The normalized time-varying conductivity P in (6.17) and (6.18)

as a function of time, x � t=t0. Curves 1 and 2 correspond to the respective
values g � 0:5 and g � 2.
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formula

P �
�
1� t

2T

�ÿ1
: �6:23�

Calculating the exponential factor in the function F in
(6.11) formodel (6.23), we obtain the solution of the telegraph
equation describing the propagation of an arbitrarily shaped
pulse F:

c �
�
1� t

2T

�
F

�
tÿ z=v

t0

�
:

Substitution of (6.21) in (4.30) allows us to find both
current and voltage waveforms of the EM pulse propagating
in a nonstationary line with the decreasing leakage parameter
G � G0

ÿ
1� t=�2T ��ÿ1.

It is worth mentioning that the analysis of the nonsta-
tionary telegraph equation developed here may also become
useful for certain problems in cross-disciplinary physics.
Thus, it was shown in Ref. [61] that the model of random
walk with a variable speed v � v0U�t� can be reduced to
Eqn (6.10) with P�t� � 1=U�t�; the function then has the
meaning of probability density. If the time of field variation is
sufficiently long �tP�t�4T �, Eqn (6.10) is reduced to the
equation governing the quasistationary field,

q2c
qz 2
� P�t�
v 2T

qc
qt

: �6:24�

In this case, changing the time variable as

t�t� �
� t

0

dt 0

P�t 0� �6:25�

converts Eqn (6.24) into the standard quasistationary equa-
tion describing, for instance, the diffusion of a field in the
�z; t� space with the diffusion coefficient equal to v 2T.

7. Conclusion. Time-domain optics
of unharmonic waves

In conclusion, it is worth noting some consequences of the
discussed results and mentioning the problems that remain
insufficiently elaborated. Attention was given above to the
drastic reshaping of both reflected and refracted waves
interacting with time-varying media; in particular, this
interaction was shown to transform harmonic waves to
unharmonic ones. Performing the relevant generalizations of
reflection ± refraction laws, one could speak about the optics
of nonsinusoidal waves.

However, other types of nonsinusoidal waves can arise in
a stationary medium or even in a free space due to coupled
spatiotemporal variations in diffracted pulses. Advances over
the last decade in few-cycle transient generation using broad-
band radars with the transient duration t0 about 1 ns [62],
terahertz optical devices (t0 � 0:1ÿ1 ps) [63], and femtose-
cond optical systems (t0 � 5ÿ10 fs) [64] have attracted great
interest in radiophysics and optoelectronics. To examine the
fast interaction of these transients with continuous media,
one has to take the spatiotemporal evolution of transients on
the way from source to target into account. To understand the
fundamental role of coupling between spatial and temporal
reshaping of the pulse, it is worthwhile to show, first, how

these processes develop during paraxial propagation of a
three-dimensional pulse in a free space (Section 7.1); a flexible
model of waveforms characterized by a well-expressed
leading edge with a finite slope, an arbitrary number of
unharmonic oscillations, and an exponentially damping
`tail' is described in Section 7.2. The effects of diffraction ±
dispersion coupling, including pulse reshaping, frequency
red-shifting, and polarity reversal for a pulse traveling in a
dispersive medium, are considered in Section 7.3.

7.1 Diffraction-induced spatiotemporal evolution
of pulses in a free space
The interplay between transverse, longitudinal, and temporal
distortions of localized pulses traveling in the z-direction is
described by the paraxial equation for the electric field
E�r; z; t� [65]:

D?E � 2

c

q2E
qz qt 0

; D? � q2

qx 2
� q2

qy 2
; t 0 � tÿ z

c
: �7:1�

The nonseparable solution of Eqn (7.1) is

E�r; z; t 0� � iLR

q
F

�
t 0 ÿ r 2

2cq

�
; �7:2�

where r 2 � x 2 � y 2, q � z� iLR,

LR � ka20
2

�7:3�

is the diffraction length, k is the wavenumber, a0 is the waist
radius of the paraxial beam, and F is an arbitrary function.
The pulsed beam diffraction arising due to its finite transverse
size induces, through the factor iLR=q in Eqn (7.2), the
propagation changes in the on-axis waveform. Writing this
factor as

iLR

q
� exp �ij��������������������������

1� �z=LR�2
q ; j � arctan

�
z

LR

�
; �7:4�

we can relate the factor
�
1� �z=LR�2

�ÿ0:5
to the pulse

amplitude attenuation, while the phase j is responsible for
the evolution of the pulse shape: Eqn (7.2) is real at z � 0 and
imaginary for large z4LR. The parameter in (7.4) is known
as the Gouy phase shift and takes values from ÿ0:5p to
�0:5p. Independent of the choice of the function F, the
coupling of its spatial and temporal variations comes from
the complex space-dependent time shift r 2=�2cq�. Its real part

ts � ÿ zr 2

2cjqj2 �7:5�

is the actual time of arrival of the pulse at each plane z. This
shift is connected with the paraxial spherical phase front of
radius R�z�:

R�z� � jqj
2

2
� z

"
1�

�
LR

z

�2
#
: �7:6�

The imaginary part of the time shift, iLRr
2=�2cjqj2�, deter-

mines the spatial distribution of pulse attenuation.
We illustrate the spatiotemporal coupling phenomena by

choosing the function F in the form of a few-cycle three-
dimensional pulsed wave beam described by the so-called
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Poisson-spectrum pulse [66]:

F � Re f �t� ; f �t� �
�
1ÿ it 0

t0

�ÿm
: �7:7�

Here, t0 and the integer m5 1 are free parameters and
t 0 � tÿ z=c is the retarded time for points located on the
z axis �x � 0; y � 0�. This nonseparable waveform, depicted
in Fig. 7, provides a useful analytic tool for the investigation
of coupled diffraction- and dispersion-induced distortions of
localized fields with curvilinear wavefronts.

We stress some important properties of Poisson-spectrum
pulses.

(A) This flexible model is suitable for waveforms of any
duration and with an arbitrary number of oscillations.

(B) The 1=e width of this pulse is

T � t0

���������������������������
exp

�
2

m

�
ÿ 1

s
; �7:8�

which can represent a large variety of pulses: the value m � 1
is related to a single maximum of F, whereas large values of
the parameter m correspond to a growing number of
oscillations with an almost constant frequency o � m=t0 in
the central part of the pulse. The limit m4 1 is related to the
cos-Gaussian pulse

F � exp

�
ÿ t 2

T 2

�
cos �ot� :

(C) To describe the dynamics of a three-dimensional
structure of pulses (7.7), we must replace the retarded time t 0

by the shifted time t 0 ÿ r 2=�2cR�, whereR and r are the radius
of wavefront curvature (7.6) and the distance between the
beam axis and the observation point on the wavefront.

To examine the formation of a spatiotemporal structure
from waveform (7.7) in the course of its propagation, we can
rewrite solution (7.2) with the above-mentioned replacements
t 0 ! t 0 ÿ r 2=�2cR�:

E�r; z; t 0� � iLR

q

�
it0

t 0 ÿ r 2=�2cR� � i
ÿ
t0 � r 2LR=�2cjqj2�

� �m :
�7:9�

According to definition (7.7), we must use the real part of
(7.9).

Solution (7.9) reveals the following spatiotemporal dis-
tortions of the initial waveform:

(1) The 1=e pulse width is increased compared with (7.8):

T � t0

�
1� r 2LR

2cjqj2
� ���������������������������

exp

�
2

m

�
ÿ 1

s
: �7:10�

(2) The frequency of oscillations is red-shifted:

om � m

�
t0 � r 2LR

2cjqj2
�ÿ1

: �7:11�

(3) The Gouy factor iLR=q describes pulse temporal
reshaping, including its polarity reversal during pulse travel
from z5 ÿ LR to z4LR (Fig. 8).

Such transformations have been observed experimentally
in the diffraction of ultrashort pulses [67].
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ÿ0.5
ÿ3 ÿ2 ÿ1 0 1 2 3 x

1

2

y

Figure 7. Poisson-spectrum pulses (7.7) for the parameter values m � 1

(curve 1) and m � 2 (curve 2) are plotted vs the normalized time x � t=t0.
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Figure 8. Reshaping of Poisson-spectrum pulse (7.7) with m � 4 and

reversal of its polarity on the beam axis in the course of propagation from

z � ÿ2LR (a), through z � 0 (b), and further to z � 2LR (c).
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7.2 Modeling of unharmonic transients
by means of Laguerre functions
The effects of spatiotemporal reshaping of a pulse in a free
space were shown above by means of a simple model of a
Poisson-spectrum pulse. However, the dynamics of such
reshaping depend on the pulse waveform, which can differ
essentially from the traditional models of quasimonochro-
matic signals with rectangular or Gaussian envelops:

(a) the ultrashort transient contains only a few field cycles,
whose shape is usually far from sinusoidal;

(b) the rising and falling edges of the transient are
asymmetric;

(c) the zeros of the envelop are unequally spaced.
Flexible models of plane-wave envelops describing con-

tinuous waveforms that have properties (a) ± (c) can be
represented by a series of Laguerre functions Ln�t 0� defined
on the time interval 04 t <1 [32],

F�t 0� �
X1
n� 0

anLn�t 0� : �7:12�

The Laguerre functions

Ln�x� � exp �x=2�
n!

d n

dxn

�
xn exp �ÿx�� �7:13�

are known to be orthonormal on the interval 04 x <1,�1
0

Ln�x�Lm�x� dx � dnm : �7:14�

The behavior of the Ln near the leading edge of the transient
x! 0 (Fig. 9a),

Ln�0� � 1 ;
qLn�x�
qx

����
x� 0

� ÿ
�
n� 1

2

�
; �7:15�

shows that none of the functions Ln can themselves represent
a signal with zero starting point. However, such a signal can
be represented by linear combination (7.12) obeying the
conditionX1

n� 0

an � 1 : �7:16�

The simplest example of the discussed waveform, given by
expression (7.12),

Fm�t 0� � B
�
Lm�t 0� ÿ Lm�2�t 0�

�
; �7:17�

is shown in Fig. 9b in the case where m � 0, a0 � 1, and
a2 � ÿ1, the other coefficients in (7.12) being zeros. To
compare waveforms (7.17) with different values of m, the
waveforms corresponding to the values m � 0; 1, and 2, are
depicted in Fig. 9b.

Waveforms (7.17) have a number of properties suitable
for modeling single-cycle and few-cycle transients:

(1) Unlike the Gaussian and Poisson-spectrum pulses,
extended fromÿ1 to�1, the waveforms Fm in (7.17) have a
well-expressed leading edge at the point t � 0 and a controlled
slope at this point:

Fm�0� � 0 ;
qFm

qt 0

����
t 0 � 0

� 2B

t0
: �7:18�

(2) The waveforms Fm can contain an arbitrary number of
unharmonic oscillations. The temporal structure of the
waveform Fm has m� 2 zero-crossing points, spaced by
unequal distances, m� 2 different extrema, and an exponen-
tially decreasing `tail'.

(3) The envelope Fm has the integral property�1
0

Fm�x� dx � 0 : �7:19�

Until now, we have been discussing plane waves. How-
ever, using the procedure applied in Section 7.1 to the
Poisson-spectrum pulses, we can build the three-dimensional
solution of Eqn (7.1) related to the Laguerre waveformsFm, in
the form of nonseparable solution (7.2):

E�r; z; t� � iLR

q
Fm�u� ; u � t 0 ÿ r 2=�2cq�

t0
: �7:20�

After this, the tendencies of the space ± time evolution of
pulses in a free space, visualized in Section 7.1 for themodel of
a Poisson-spectrum pulse, can also be revealed for the
transients Fm; however, more tedious algebra is needed for
the analysis of Fm.

1.0

L
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ÿ0.5

0
2 4 6 x
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L1
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0.5
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0
4 8 x

1 3

2

b

Figure 9. (a) Laguerre envelops L0�x�, L1�x�, and L2�x�; (b) curves 1, 2, and 3 correspond to the respective envelopes F0, F1, and F2 (7.17); x � t=t0.
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The tendencies of formation of unharmonic waves were
discussed above in the framework of the model of a
dispersionless homogeneous medium. Manifestations of the
same tendencies in a dispersive medium result in the
enrichment of this process by new phenomena.

7.3 Nonstationary waves in stationary media
The dynamics of unharmonic waveforms with curvilinear
phase fronts in dispersive media depend on the interplay of
diffraction and dispersion perturbations. The mathematical
basis for the analysis of dispersive effects in paraxial CW
Bessel beams and Gaussian pulse beams was developed in
Refs [68, 69]. Avoiding the massive mathematical computa-
tions used in these articles, we qualitatively mention the
physical fundamentals of these processes. The most signifi-
cant space ± time coupling phenomena arising due to the
interaction of diffractive and dispersive effects are related to
the curvature of the pulse front. In the course of propagation,
the redder frequencies, diffracted at large angles and therefore
traveling at a reduced longitudinal velocity, are delayed with
respect to the bluer frequencies, diffracted at smaller angles.
On the other hand, there is an additional pulse front curvature
in dispersive media, originated by the difference of group
velocities between the on-axis part of the pulse and the off-
axis red-shifted part. In normal dispersion, the red compo-
nents, diffracted further from the axis, travel faster than the
blue components near the axis, while the opposite occurs in
anomalous dispersion. The normal dispersion straightens out
the pulse fronts, bending them in the opposite direction to
that of the diffraction-induced one; in the anomalous
dispersion, both curvatures add up.

This spatial separation of frequencies arising between the
on-axis and off-axis parts of a diffracting pulse can become
interesting for the control of pulse angular divergence. The
dynamics of reshaping processes in pulsed beams are
governed by the competition between diffraction, increasing
the pulse front curvature, and dispersion, connected with the
frequency red-shift at the off-axis part of the pulse. The
curvature radius of the pulse front, arising due to the
superposition of diffraction- and dispersion-induced curva-
tures, was obtained for Gaussian pulsed beams as [66]

1

RT
�
�
1� LR

LD

�
1

R
; �7:21�

whereR is the curvature radius in a free space, Eqn (7.6),LR is
diffraction length (7.3), the signs `ÿ' (`�') in (7.21) correspond
to the normal (abnormal) dispersion, andLD is the dispersion
length dependent on some characteristic pulse duration:

LD � 2�Dt�2
jKooj ; Koo � q2K

qo2
: �7:22�

We see from (7.21) that normal dispersion can weaken the
wavefront convexity and even make it concave. In the special
case where LR � LD, the wavefront remains planar in the
model under discussion.

To illustrate the feasibility of controlled variation of the
pulse front curvature, we evaluate the parameters in formula
(7.21). We consider the Gaussian pulse with the half-width
Dt � 1:4 fs and carrier frequency o � 1:75� 1015 rad sÿ1

(l � 1:06 mm) traveling in a fused silica; the wavenumber k
and the value Koo are k � 91:930 cmÿ1 and Koo �
217:8 cmÿ1 fs2; and the dispersive length LD is

1:8� 10ÿ3 cm. Supposing the initial beam width a0 in (7.3)
to be 2, 6.3, and 19 mm, we have the ratio LR=LD equal to 0.1,
1, and 10, respectively. In the case of a small waist size
�LR=LD � 0:1�, diffraction is much stronger than disper-
sion, and the pulse fronts remain convex. In the case where
a0 � 6:3 mm, the dispersion cancels the diffraction curvature.
Finally, in the case where a0 � 19 mm �LR=LD � 10�, the
stronger dispersion turns the pulse front concave.

It was supposed above that the diffracted pulse incident
on the interface of a dispersive medium is characterized by a
spherical phase front. Strictly speaking, the spatiotemporal
structure of the incident pulse in a far zone is determined by
the generalized time-dependent diffraction integral [70]

E�x; y; z; t� � 1

c

��
q
qt

E0

�
x 0; y 0; 0; tÿ z

c

�
z

R2
dx 0 dy 0 ;

�7:23�

where R2 � x 2 � y 2 � z 2. According to (7.23), the diffracted
pulse can be split into two partially overlapping pulses if the
observation angle is sufficiently large [68]. The shorter the
pulse, the deeper the minimum resulting from its splitting.
However, the problem of controlled interaction of such
complicated waveforms with dispersive media has not yet
been examined.

Propagation of electromagnetic waves in nonstationary
media was examined above by means of exact analytic
solutions of the Maxwell equations for these media. General-
ization of the classical Fresnel formulas based on these
solutions had shown the decisive role of nonstationarity-
induced dispersion in the whole set of reflection ± refraction
processes in time-varying media. The dynamical regimes of
reflectivity resulting in spectral broadening and ultrafast
amplitude ± phase reshaping of EM waves are analyzed in
the framework of exactly solvable models of time-dependent
dielectric permeability; the special models describing these
effects for rapidly ionizing plasmas are presented. The
properties of unharmonic waves forming in time-varying
media are visualized owing to a special mathematical
transformation, reducing these waves to harmonic ones in
some conventional space. Qualitative analogies between
nonstationary dielectrics and transmission lines with time-
varying parameters are widely used.

The electrodynamics of nonstationary media is nowadays
a `hot' and rapidly expanding branch of wave theory.
However, it is worth stressing some problems that still
remain today.

(1) The optics of media with moving spatiotemporal
perturbations of the refractive index.

(2) The search for optimized regimes for the propagation
of directed beams of single-cycle transients through nonsta-
tionary media.

(3) The nonstationary electrodynamics of random media.
(4) The time-domain analysis of ultrafast optical phenom-

ena.
(5) The development of the quantum approach to

nonstationary optical problems explaining, in particular, the
generation of photons in squeezed states due to nonadiabatic
distortions of the electromagnetic vacuum (see, e.g., Refs [12,
58] and the references therein).

Experimental methods in the optics of nonstationary
media are now in the making. To develop these methods,
one needs high temporal resolution for the observation of
rapid wave processes and short-lived states of matter in the
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picosecond and femtosecond ranges. Unlike the electronic
technique used for measuring short radio pulses irradiated by
UBW radars [71], similar measurements of light fields require
new broadband optical systems. Such systems have been used
successfully, for example, for observing spectra of relaxation
oscillations of molecules in the THz range [72] and measuring
pulse electric fields bymeans of spectral-phase interferometry
[73]. Growing attention is being given now to the unique
properties of nonstationary optical fields arising due to the
interaction of laser radiation with rapidly ionizing plasmas
with the ionization time shorter than the pumping wave
period, and, in particular, to the generation of the high
harmonics �n > 200� of this wave [74]. The elaboration of
such methods provides the experimental basis for a new
branch in the optics of nonstationary media Ð attosecond
optics [75].
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