
Abstract. Experimental and theoretical high-pressure research
on simple metals is reviewed. It is shown that simple metals
undergo transition sequences from close-packed highly-sym-
metric to less-symmetric and often less closely packed struc-
tures as pressure is varied over a wide range. A number of
theoretical perspectives concerning the nature of this behavior
are reviewed with a focus on the electrophysical properties of
lithium and calcium at high pressure. Static and shock-wave
compression data on Li and Ca are presented.

1. Instead of an introduction,
or what simple metals are

Most physicists not directly involved in high-pressure
research, when asked how substances behave under high
compression, are most likely to say that they transform into
phases that are more and more closely packed, and,
specifically, insulators under pressure finally transform into
metals. And metals, as textbooks on solid state physics tell us
(e.g., see Ref. [1]), tend to crystallize in such structures in
which the atoms are closely packed, and the most `popular'
are three highly symmetric structures, face-centered cubic

(fcc), body-centered cubic (bcc), and hexagonal close-packed
(hcp), in which most metals crystallize at atmospheric
pressure. As for insulator ±metal transitions, today we know
a lot about them from experiments. These data suggest that,
when subjected to high pressure, many insulators and
semiconductors transform into metals. For instance, for a
long time it has been known that group-IV semiconductors,
which crystallize in a cubic non-close-packed, or open,
diamond structure (silicon, germanium, and gray tin) under
fairly moderate pressures (p � 11:7, 10.6, and 0.5 GPa for Si,
Ge, and a-Sn, respectively) transform into a less symmetric
tetragonal structure of the white-tin (b-Sn) type and become
metals [2]. In addition to covalent group-IV semiconductors,
as increasingly higher pressures are reached owing to the
advances in experimental techniques, many classical insula-
tors, e.g., inert gases (Xe), molecular crystals �I2�, group-VIa
semiconductors (S, Se, Te), and some others, are found to
transform to the metallic state (e.g., see the reviews [3, 4]).
Interestingly, some of these `new metals' also exhibit a
transition into the superconducting state.

In the early years of theoretical solid-state physics,Wigner
and Huntington showed [5] that the pressure-induced transi-
tion of non-metallic molecular hydrogen to the atomic
metallic state is possible. The authors used elementary, and
therefore very approximate, methods of calculations, with the
result that a very rough estimate was obtained [5] for the
pressure of the insulator ±metal transition in hydrogen.
However, although the pressures at which such a transition
should have happened (even according to much more
accurate estimates) have long been reached, hydrogen
`stubbornly refuses' to transform into the metallic state at
fairly low temperatures, where it is sure to be solid, despite all
the efforts of experimenters. Instead, it forms exotic crystal
structures, remaining an insulator and retaining its quasimo-
lecular structure (e.g., see the review [6]). Unfortunately, the
`unwillingness' of hydrogen to become ametal denies us of the
opportunity to obtain not merely high-Tc superconductor (as
Ashcroft assumed [7]), but, so to say, `heat-resistant' super-
conductor, since, according to the latest estimates [8], the
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superconducting transition temperature in it could be as high
as 600 K.

As for simple (nontransition) metals (this review deals
mainly with the simplest of such metals, s-elements of the first
and second groups of the Periodic Table), it would seem that
all basic questions concerning their behavior, including
behavior under pressure, have been fully answered already
in the period of the rapid development of pseudopotential
theory (see Refs [9, 10]). Within this theory, due to the
orthogonality of the wave functions of valence sp-electrons
of simple metals to the wave functions of the ion core, the
Coulomb electron ± ion interaction is replaced with a much
weaker pseudopotential. Moreover, it was assumed that in
calculating themajority of physical properties of alkali metals
we can always limit ourselves to second-order perturbation
theory in the pseudopotential. When calculating the cohesive
energies and phonon spectra of solids, such an approach is
equivalent to assuming the point ions are submerged in a sea
of the homogeneous gas of interacting electrons. It can be
shown that in second-order perturbation theory the given
problem is reduced to solving the problem of the behavior of
neutral atoms with pair interparticle interaction.

Pseudopotential theory was used to calculate the phonon
spectra of alkali metals, with the results demonstrating good
agreement with the experimental data (see the collection of
three articles by Heine, Cohen, and Weaire [10] and the
literature cited therein). Also calculated were the total
energies for simple structures, and it was found that for Li
and Na the most energetically favorable structure is the hcp
lattice [10].

At low temperatures these two metals do indeed have a
rhombohedral structure, denoted 9R, which is close to the
hcp structure, but at high temperatures their structure
becomes bcc. According to the same calculations, such a
rhombohedral structure must also be the ground state of
potassium, rubidium, and cesium, which at low temperatures
retain their bcc structure, however. Note that the difference in
the total energies of these structures proved to be so small
(� 1mRy � 160 K) that at that time the discrepancy between
theory and experiment seemed insignificant.

But the above approach contained a certain ambiguity,
which amounted to the fact that the possibility of formulating
pseudopotential theory for calculations of the lattice proper-
ties in terms of pair interaction leads to a contradiction in
lattice dynamics theory. In a system with a pair potential, the
Cauchy relations for elastic moduli must hold. However,
Brovman et al. [11] found that for the Cauchy relations to be
valid, in calculating the phonon spectra onemust use not only
second-order perturbation theory, but also third- and fourth-
order perturbation terms in the pseudopotential. A detailed
discussion of these aspects can be found in the review in
Ref. [12].

Generally speaking, it could be understood as early as the
1970s that the problem of structural transformations in
simple metals is actually more complicated than it would
seem from the viewpoint of second-order perturbation theory
in pseudopotential approach. It was then that Kagan's group
studied in detail (see Ref. [13]) the properties of the
hypothetical metallic phase of hydrogen, including the case
of high pressure. The researchers used perturbation-theory
techniques up to the fourth order in the electron±proton
interaction. They found that simple highly symmetric
structures in the metallic phase of hydrogen are dynamically
unstable up to very high pressures of about 20Mbar. At lower

pressures, complex anisotropic structures have minimal
energy. This enabled the researchers to assume that metallic
hydrogen under ultrahigh pressures may be liquid, even at
T � 0. Recently, their results (see Ref. [13]) were corrobo-
rated by ab initio density functional calculations [8]. In recent
years, these studies have gained importance because of
advances in experimental research into the crystal structure
of simple metals at high pressure.

2. The study of alkali metals at high pressure

Alkali metals are simple s-metals, which under normal
pressure are described fairly well by the model of quasifree
electrons with a nearly parabolic dispersion law. Their Fermi
surfaces differ very little from a sphere, and many of their
properties can be calculated with good accuracy by perturba-
tion techniques up to the second order in the weak
pseudopotential. It would seem that, as pressure grows, they
should continue being `good' metals, while their crystal
structure, which already under normal pressure is highly
symmetric, should not change significantly upon compres-
sion.

The experimental situation is much more interesting,
however. As high-pressure techniques were developed, i.e.,
as diamond anvil cells used for static compression appeared
and as powerful synchrotron X-ray sources and refined
methods of processing X-ray patterns were developed [3, 14,
15], it was found that in the pressure range to 200 GPa all
alkali metals experience a series of structural transformations,
with the emerging high-pressure phases often being less
symmetric and having a less close packing than the phases
that exist at ambient pressure.Modern dynamic (shock-wave)
methods of quasi-isentropic compression (e.g., see Ref. [16])
have made it possible to arrive at new results that also
corroborate the existence of phase transitions in alkali metals
at such pressures. These data will be described in greater
detail in Section 2.5.

In recent years, a number of review articles [15, 17 ± 19]
have been published in which the results of experimental
research of structural transformations in alkali metals at high
pressure are discussed in detail. For this reason, we will not
describe the experimental details; instead we will focus on the
most important points.

Table 1 lists the known data on sequences of structural
phase transitions for some s- and p-elements and the
pressures at which the transition to a particular structure
occurs. The table was compiled from the data in Refs [2 ± 4,
15, 17 ± 22]. Most of these results were obtained at room
temperature. The first column lists the structures at normal
pressure. Most structures are abbreviated in the traditional
manner. Notation of type `Cs-III', `Ba-IV', etc. in quotation
marks refer to complex structure types discussed below. (In
the text we use symbols of type Cs-III without quotation
marks to denote the sequential numbers of high-pressure
phases.) The question marks in some places indicate
structures that have yet to be solved. Table 1 illustrates the
homological behavior of elements when within one group
the sequences of high-pressure phases often coincide. For
heavier elements, the transitions to similar structures happen
at lower pressures, although there are exceptions to this rule.
In those cases where experimental data exist, we see that the
structural sequences end with the highly symmetric phases
returning. Obviously, at some very high pressures all the
other elements will finally transform into simple close-
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packed structures (maybe with the exception of metallic
hydrogen, which, as noted above, at ultrahigh pressures
may be liquid at T � 0). Below we discuss in detail the
structural sequences in alkali and alkali-earth elements.

Table 1 shows that under normal conditions (p � 1 bar
andT � 300K) all alkali metals crystallize into fcc structures.
Here, we will not discuss the problem of the phase diagram of
the light alkali metals Li and Na at p � 1 bar and low
temperatures, where they transform into the rhombohedral
phase 9R (a detailed bibliography on this topic can be found
in Syassen's review [17]). In all alkali metals the first pressure-
induced structural transition is the bcc ± fcc transformation,
which can be considered an entirely natural transition to a
more closely packed structure under pressure. No further
structural transitions follow this `natural' pattern. Here,
within the range of pressures reached in experiments, the
very sequences of polymorphic transitions for light (Li and
Na) and for heavy (K, Rb, Cs) alkali metals differ.

2.1 Heavy alkali metals
Let us first discuss the transition in heavy alkali metals K, Rb,
and Cs that are in the beginning of long periods of the
Periodic Table, in which the d-shells of transition metals fill
up. A special place in the structural sequences in these metals
is occupied by the isostructural transition in fcc Cs at 4.2 GPa
with an approximately 10% jump in volume (the Cs-II ±
Cs-III transition), first discovered by Bridgman [23] in the
1940s. An explanation of the nature of this transition, whose
idea was first suggested by Fermi, was proposed by
Sternheimer [24], who calculated the electronic structure of
cesium in the approximation of a spherically symmetric
Wigner ± Seitz cell, i.e., actually in the `compressed atom'
model. On the basis of these calculations, Sternheimer
concluded that, under compression corresponding to a
pressure of approximately 4 GPa, the mutual arrangement
of the s- and d-bands in Cs suddenly changes. In view of this,
the s-band is depleted and the valence 6s-electron goes over to
the 5d-shell, with the cesium becoming a transition metal, so
to say. Since the radius of the 5d-orbital is much smaller than
that of the 6s-orbital, the volume of metallic cesium suddenly
decreases. (Note that an isostructural transition of this type
can be initiated even in a simple model system with a stepwise
pair potential when the interaction radius suddenly
decreases.)

At that time it was assumed that under higher pressures
both Rb and K would also undergo such transitions, which
are related to changes in the electronic structure of the type
ns1 ! �nÿ 1�d1 (where n is the principal quantum number),
but no isostructural transitions in these metals were ever
discovered. What's more, subsequent ab initio, or first-
principles, calculations of the electronic structure of Cs (e.g.,
see Ref. [25] and the literature cited therein) have shown that
the picture of a sudden change in the electronic structure of Cs
at certain pressure is to a certain extent an idealization.
Actually, at pressures ranging from atmospheric to 11 GPa,
the wave function of the cesium electron changes smoothly.
More recent experimental studies (e.g., see Syassen's review
[17]) have shown that the Cs-III phase exists only at high
temperatures (> 200 K) but not at low temperatures. Most
likely, as noted byGloÈ tzel andMcMahan [25], this means that
the transition to theCs-III phase is caused by effects related to
the phonon contribution to the crystal's free energy. Of
course, the effects proper may be caused by a change in the
electronic structure, but in any case the existence of the high-
temperature Cs-III phase is not a direct consequence of a
sudden sÿd transition. In addition, in recent experiments
conducted by Schwarz [26] and McMahon et al. [27] it was
shown that the Cs-II ±Cs-III transition is not an isostructural
one. X-ray diffraction analysis has shown that the structure of
Cs-III can only approximately be considered a distorted fcc
structure; actually it has orthorhombic symmetry and
contains 84 (!) atoms in unit cell [27].

In alkali metals, the high pressure phases that appear after
the fcc phase exhibit complicated crystal structures with a
lower symmetry and a smaller number ZNN of nearest
neighbors than that in the fcc lattice. For instance, cesium
under p � 4:4 GPa transforms into a body-centered tetra-
gonal (bct) structure with four atoms per unit cell and a
coordination numberZNN � 8, which is known asCs-IV. The
structure can be imagined as consisting of layers of trigonal
prisms, where in each subsequent layer the prisms are turned
though an angle of 90� in relation to the previous layer. The
Rb-V phase has a similar crystal structure under pressures
ranging from 20 to 48GPa. Interestingly, such a structure has
not been detected in any other elementary substance. It can be
considered similar to the structure of some metallic disilicides
(the a-ThSi2 structure type [28]). Here, the Cs atoms occupy
the sublattice of cations (Th), while the locations of the anions

Table 1. The structural sequences for s- and p-elements. The numbers in parentheses are the transition pressures in GPa.

Li, bcc
Na, bcc
K, bcc
Rb, bcc
Cs, bcc

Be, hcp
Mg, hcp
Ca, fcc
Sr, fcc
Ba, bcc

Si, diamond
Ge, diamond
Sn, diamond

P, orthorhombic
As, rhombohedral
Sb, rhombohedral
Bi, rhombohedral

(7.5) fcc
(65) fcc
(11.6) fcc
(7.0) fcc
(2.3) fcc

(52) bcc
(19.5) bcc
(3.5) bcc
(5.5) hcp

(11.7) b-Sn
(10.6) b-Sn
(0.5) b-Sn

(4.5) rhombohedral
(25) sc
(6.4) sc
(2.5) monoclinic

(38) rhombohedral
(103) cI16
(23) `K-III'
(14) ?
(4.2) `Cs-III'

(32) sc
(24) orthorhombic
(13) `Ba-IV'

(13.2) orthorhombic
(75) orthorhombic
(15) bct

(10) sc
(48) `Ba-IV'
(8.6) `Ba-IV'
(2.7) `Ba-IV'

(42) cI16

(17) `Rb-IV'
(4.4) bct

(35) ?
(45) dhcp

(15.6) sh
(85) sh
(44) bcc

(137) sh
(97) bcc
(28) bcc
(4) oC16

(20) bct
(12) oC16

(46) `Ba-IV'

(42) oC16
(102) oC16
(>120) hcp

(262) bcc

(8.8) bcc

(48) oC16
(72) dhcp

(42) dhcp
(170) hcp

(78) fcc
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(Si) remain vacant. The Cs-IV structure exhibits an interest-
ing property (see Refs [29, 30]); namely, the electron density
distribution in it has peaks at the interstitials corresponding
to the positions of the Si atoms in ThSi2, as if electrons are
trying to imitate the absent anions. The same similarities with
structures of binary compounds are observed for many other
high-pressure phases of alkali metals (for details seeRefs [17 ±
19]).

One of the most exotic high-pressure phases of alkali
metals is theRb-IV phase, stable in the pressure range from 17
to 20 GPa (Fig. 1). It is a host ± guest structure formed by a
framework of columns of square antiprisms arranged parallel
to the c-axis and located at the center and the corners of the
unit cell (host structure). Along the faces of the cell channels
are formed, and in these channels chains of Rb atoms forming
tetragonal structures are located (guest structure). The atomic
separations in the chains are incommensurate with frame-
work period [32]. Apparently, to a certain extent the
tetragonal K-III structure is similar to the structure of Rb-IV.

2.2 Light alkali metals
The high-pressure phases of the light alkali metals Li and Na,
which we will examine in greater detail, proved to be no less
complicated or exotic. Instead of unfilled d-states (the case of
heavy alkali metals), in Li and Na above the Fermi level there
are p-states, which means that when pressure is applied to
light alkali metals, the situation is usually characterized in
terms of electron sÿp transitions. As with sÿd transitions, we
do not mean a sudden change in the mutual arrangement of
the electronic bands at a certain pressure, but a gradual filling
up of the p-band as the pressure grows at the expense of the
s-band. As an example, Fig. 2 shows the dependence of the
numbers of s- and p-electrons in lithium, Ns and Np, on the
relative volume V=V0 (V0 is the specific volume at p � 0),
which we calculated for the fcc phase and the high-pressure
cI16 phase of lithium, which we discuss in greater detail in

Section 2.5. Upon compression, Ns monotonically decreases
while Np increases, with the ratio Np=Ns in the cI16 phase
increasing faster. Note that there is ambiguity in Ns and Np,
since their estimates depend on the geometry of the calcula-
tions. In the case at hand we used what is known as the atomic
sphere approximation (for details see Section 3.2).

Several remarks concerning the relationship between sÿd
(or sÿp) electronic transitions and structural sequences are in
order. First, not in a single transition metal with d-electrons
have crystalline phases similar to the complex high-pressure
phases of alkali metals been observed. Second, Table 1 shows
that such host±guest crystal structures have also been
observed under pressure in elements of the fourth and fifth
groups, although the electronic structure of the latter has little
in commonwith the electronic structure of alkali metals. Such
phases also exist in BiÿPb and BiÿIn alloys at normal
pressure [33, 34]. Also, complex structures of the Cmca
type, close to the orthorhombic structure of the Cs-V
phase, are observed in solid molecular hydrogen (e.g., see
Ref. [6]), in which there can be no sÿp or sÿd transitions.
Moreover, as noted in the introduction, in the theoretical
calculations of Kagan's group [13], the existence of highly
anisotropic high-pressure phases for metallic hydrogen was
also predicted. Since these calculations were done by
perturbation techniques with the electron ± proton coupling
constant acting as the small parameter, it is more proper to
speak of metallic hydrogen being closer (in this approxima-
tion) to a system of nearly free electrons than to transition
metals. Nevertheless, anisotropic phases may exist in this
case, too. The thing is that compression leads to a gradual
change in the symmetry of the wave functions of the valence
electrons due to the admixture of states with higher angular
momenta, l � 1, 2, 3, etc., since these are less compressible
than the spherical s-states. We will return to the discussion of
the concept of an sÿd transition in Section 3, where we
discuss the high-pressure phases of alkali-earth elements, in
which it also plays an important role, and will demonstrate,
using the example of calcium, the results of numerical
calculations of the electronic structure and behavior of the
s- and d-bands.

In view of what has been said above, Degtyareva's
attempt [34, 35] to describe the emergence of complex
anisotropic structures in simple sp-metals by using the
Hume-Rothery rule [36], which was initially formulated for

Figure 1.Crystal structure of the Rb-IV phase (view along the c-axis of the

tetragonal framework). The square antiprisms form columns oriented

parallel to the c-axis. Chains of Rb atoms are located in linear channels

within the framework. The period in the chains is incommensurate with

the frame period. (Taken from Ref. [17]).
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alloys of noble metals, appears to be very interesting. In the
simplest approach, this rule amounts to the following. Let us
take the Fermi sphere of free electrons for a certain alloy and
build for it a large Brillouin zone. At a certain concentration
of the alloy, when the Fermi sphere touches the faces of the
Brillouin zone, structural transformation or ordering hap-
pens in the alloy. Clearly, in alkali metals with one atom per
unit cell (as in the case of any odd number of atoms), the
Fermi sphere cannot touch a face of the Brillouin zone, but
this is quite possible in structures with an even number of
atoms per unit cell. All the high-pressure phases in alkali
metals discussed earlier have an even number of atoms per
unit cell. Degtyareva [35] built a Brillouin zone for the
orthorhombic structure oC16 (in another system of nota-
tions, Cmca) with 16 atoms per unit cell (Cs-V). Next, she
showed that at the pressure at which the Cs-IV ±Cs-V
transition occurs the Fermi sphere may touch the faces of
the Brillouin zone that correspond to the most intense
diffraction peaks in the Cs-V phase. No specific calculations
of the total energies of phases are given in Refs [34, 35].

Strong doubts have been repeatedly expressed in the
literature of whether such a simple approach can lead to a
quantitative description of structural transformations even in
noble-metal alloys (e.g., see Ref. [37]). However, very recently
calculations to verify and justify from first principles the
Hume-Rothery rule as applied to the description of phase
transformations were done for alkali metals under pressure
[38] and for the sequences of complex structures in CuÿZn
and CuÿAl alloys [39]. In Section 3.2.2 we will continue the
discussion of these works and, in general, will examine the
microscopic mechanisms of structural transformations in
simple metals. Now, however, we turn to the description of
methods of ab initio calculations. We will also show that in
most cases such calculations correctly describe the structural
sequences for a large number of metals under pressure.

2.3 First-principles calculations.
Calculation of thermodynamic functions
Quantummechanical first-principles calculations are done on
the basis of the density functional theory (DFT) [40, 41].
Within this approach, the calculation of the physical proper-
ties of crystals is reduced to solving the three-dimensional
SchroÈ dinger-type equation for the electron wave functions
cj�r�, known as the Kohn ± Sham equation:�

ÿ �h2 H2

2m
� Veff�r�

�
cj�r� � ej cj�r� : �1�

Thanks to translational symmetry, this equation can be
solved for a single unit cell. The effective potential Veff�r�
can be written as follows:

Veff�r� �
X
N

VN�rÿ Rn� � e 2
�

n�r 0�
jrÿ r 0j dr

0 � Vxc

�
n�r�	 ; �2�

where VN is the potential of the ion at point RN, n�r� is the
electron charge density, and

Vxc

�
n�r�	 � dExc

�
n�r�	

dn�r� �3�

is the exchange-correlation potential. Here, Exc

�
n�r�	 is the

exchange-correlation energy functional. The exact expression
for this functional is unknown, and in most cases the local

density approximation (LDA) is used to calculate it:

Exc

�
n�r�	 � � n�r� excÿn�r�� dr ; �4�

where for exc
ÿ
n�r�� at each point r one uses the well-known

value for a homogeneous electron gas. This approximation
produces results that agree very well with the experimental
data, especially in the case ofmetals. Sometimes it is necessary
to employ more intricate approaches, which allow, in
particular, for the dependence of the exchange-correlation
energy not only on the local density proper, but also on the
gradients of this density. In the latter case one usually speaks
of the generalized gradient approximation (GGA). Details
can be found in Kohn's Nobel Lecture [41].

The following procedure is used in LDA to calculate the
total energy of crystal. First, the Kohn ± Sham equation (1) is
solved self-consistently. For this a probe wave function ck�r�
is expanded in a certain set of basis functions fki�r�,

ck�r� �
X
i

ci fki�r� ; �5�

and the coefficients ci of the basis functions fki are
determined by the Rayleigh ±Ritz variational principle. In
this case, the solutions ck j�r� are periodic Bloch functions
depending on the quasimomentum k and the band index j.
Then we calculate the electron charge density

n�r� �
X
k; j

c �k j�r�ck j�r� �6�

and the total energy

Etot

�
n�r�	 � T0

�
n�r�	� e 2

2

�
n�r� n�r 0�
jrÿ r 0j dr dr 0

�
�
n�r�Vext�r� dr� Exc

�
n�r�	� e 2

2

X
N;N 0

ZNZN 0

jRN ÿ RN 0 j : �7�

Here, T0

�
n�r�	 is the kinetic energy of a system of non-

interacting electrons with the same charge density as that of
the electrons in the crystal; the second and third terms on the
right-hand side of equation (7) describe, respectively, the
electron ± electron and electron ± ion interactions; Vext is the
external potential generated by the ion system [the first term
on the right-hand side of equation (2)]; Exc

�
n�r�	 is defined in

(4); and, finally, the last term on the right-hand side of
equation (7) describes the Coulomb ion ± ion interaction (ZN

is the ion charge).
The calculations can be done for any crystal structure and

any atomic separation, i.e., for any unit-cell volume. The
pressure p corresponding to the given volume V,

p�V� � ÿ qEtot

qV
; �8�

is usually determined via numerical differentiation of Etot�V�.
After this we can calculate the crystal's enthalpy

H � Etot � pV : �9�

By comparing the enthalpies of different lattices at a given
pressure we can determine the energetically favorable type of
lattice at the given pressure (at T � 0).
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Actually, to calculate the phase diagram of a system at
finite temperatures we must calculate not the enthalpy H,
which describes the properties of a rigid lattice at T � 0, but
the Gibbs free energy G [42], which, in addition to the energy
of the static lattice, incorporates the contributions from
electronic excitations and from lattice vibrations. When the
temperature T is much lower than the characteristic electron
energies E of about several electronvolts, all thermal effects
associated with electronic excitations are small and can be
ignored. At the same time, the contribution of lattice
vibrations may prove significant in determining the phase
diagram of the crystal, especially when the differences in the
total energies of different phases are very small. This happens
to be the case, say, for light alkali metals at low temperatures
and pressures.

The Gibbs free energy G is equal to [43]

G � F� pV : �10�

Here, F is the Helmholtz free energy,

F � Etot�V� � Fph�V;T � ; �11�

and the thermal (phonon) contribution to F can be written as
follows:

Fph�V;T � � 1

2

X
q; l

�hoql�V�

� kBT
X
q; l

ln

�
1ÿ exp

�
ÿ �hoql�V�

kBT

��
; �12�

where q is the phonon wave vector and l is the phonon mode
index. The first term in this formula describes zero-point
motion. The free energy of the phonon subsystem, Fph, in (12)
is written in the `quasiharmonic' approximation, in which the
phonon frequencies oql depend on the volume V. Allowing
for anharmonicity in this approximation is reduced to
allowing for thermal expansion of the crystal at every
temperature and then recalculating the phonon frequencies
for the increased volume. The thermal expansion coefficient
a�T � can be written as follows:

a�T � � 1

3B

X
q; l

gl�q� cVl�q;T � ; �13�

where B is the bulk modulus,

gl�q� �
d lnoql�V�

d lnV
�14�

is the GruÈ neisen parameter for the lth mode, and

cVl�q;T � � oql�V�
V

d

dT

�
exp

�
ÿoql�V�

kBT

�
ÿ 1

�ÿ1
�15�

is the contribution of the lth mode to the lattice specific heat
at constant volume V. Here, the crystal's total specific heat is

cV�T � �
X
q; l

cVl�q;T � : �16�

Quong and Liu [44] showed that the use of the quasiharmonic
approximation together with first-principles calculations of
the free energy leads to an increase in the calculated lattice
parameter for Li at room temperature by approximately 2%,

which actually removes all discrepancy between theory and
experiment. Furthermore, Liu et al. [45] showed that for
lithium under normal conditions the bcc structure is the most
energetically favorable one.

Several serious computational problems emerge when we
carry out the above procedure, and the problems, basically,
are related to solving the three-dimensional Kohn ± Sham
differential equation for crystals. Actually, this is a well-
known problem in solid-state physics when one has to deal
with calculations of the electron band structure and the
corresponding Bloch wave functions (e.g., see Ref. [46]).
Many methods of solving this problem have been developed,
and they differ mainly in the type of the basis functions fki

used to expand the wave function ck j�r�. For instance, in the
first-principles pseudopotential method (which, in contrast to
the `old' phenomenological pseudopotential method dis-
cussed earlier, uses no information from experiments), the
basis functions are plane waves, exp �ikr�. Among the most
effective and fast methods wemust mention the linear muffin-
tin orbitals (LMTO) method [47]. A modification of this
method, the full-potential linear muffin-tin orbitals (FP-
LMTO) method, which incorporates the nonspherical crys-
tal potential with the complete symmetry of the lattice [48] has
been used in our calculations of lithium at high pressure,
which we will describe in Section 2.5.

There is one more very important problem in the density
functional method. The method was derived mathematically
only to determine the energy and properties of the ground
state of the electron system and static response functions (in
particular, the electron contribution to the phonon spectra of
crystals). The electron energy spectra ej�k� determined by the
Kohn ± Sham equation (1) and the corresponding wave
functions ck j�r� are, in a sense, only auxiliary quantities that
are needed in order to calculate the ground-state properties.
By their very definition they do not necessarily coincide with
the real electron excitation spectrum. On the other hand, to
calculate the kinetic, optical, and other properties of crystals,
we need to known the excitation spectrum. However, the
large experience of specific calculations of metallic systems
has shown that the electron spectrum obtained through the
solution of equation (1) makes it possible to determine with
good accuracy the optical spectra and the kinetic character-
istics, including the electrical resistance [48].

2.4 Experimental methods of static
and dynamic compression
In this section we briefly describe some of the modern
experimental possibilities presented by high-pressure phy-
sics. In the late 1970s, the rapid development of diamond
anvil high-pressure cells made it possible to achieve much
higher pressures compared to the existing metal and hard-
alloy cells, although at the expense of the size of the samples
being studied. Nevertheless, these techniques make it possible
to investigate not only the crystal structure, but also many
other properties, including optical spectra, electrical resistiv-
ity, and magnetic susceptibility. Usually, measurements in
diamond anvil cells are done at relatively low temperatures,
T < 500 K. It would be interesting, therefore, to conduct
experiments in diamond anvils in a wider temperature range.
Recently, there has been substantial progress in this field.
Gregoryanz et al. [49] studied the phase diagram of hydrogen
at T � 1100 K and pressures up to roughly 70 GPa and at
T � 650 K and pressures up to roughly 150 GPa and
established the melting curve of molecular hydrogen. At
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present, various groups of experimenters are working to
further increase pressure and temperature simultaneously in
diamond anvil cells.

The use of powerful shock waves to compress matter
makes it possible to achieve much higher pressures than is
possible in static compression. It is obvious, however, that the
process heats the sample to very high temperatures, with the
result that there is the danger of the sample melting.
Naturally, for studying phase transitions in the solid state
the effects of irreversible heating should be minimized, and
this can be done via quasi-isentropic compression (i.e., with
the entropy S � const.) For this reason, the compression of
substances has been done through a sequence of direct and
reflected shock waves, with the latter generated as a result of
their reverberation in a plane geometry [50, 51]. High-
explosive generators of plane shock waves have been
employed for this purpose. By using multi-step shock
compression the heating of the samples is reduced tenfold,
while the degree of compression of the samples is higher (by a
factor of ten) than that in the direct shock wave. Recently,
Loubeyre et al. [52] suggested combining the diamond anvils
and shock wave methods. The essence of their suggestion is to
pre-compress the sample in a diamond anvil cell up to
pressures of about 1 GPa and additionally compress it by a
laser-generated shock wave. This approach may prove to be
very fruitful in high-pressure physics.

2.5 The crystal structure and the electrical resistance
of lithium at high pressure
2.5.1 High-pressure phases of Li. We will now discuss in
greater detail the high-pressure phases of lithium and their
physical properties. Not so long ago the behavior of lithium
under pressure attracted the interest of researchers, since
Neaton and Ashcroft [53] expressed the idea that lithium
under a pressure of about 100 GPa may transform into a
crystalline low-symmetry phase with paired atoms, resem-
bling one of the low-symmetry structures of solid molecular
hydrogen. According to their calculations, lithium will be in
the insulating (more exactly, semiconducting) state with a
small band gap. This supposition was the more unexpected
since, say, Cs remains a metal even in its anisotropic high-
pressure phases (earlier Wittig [54] found that in its Cs-V
phase cesium even becomes a superconductor). Soon after
that several anomalies in the behavior of lithium at high
pressure, demonstrating at least a substantial worsening of
lithium's metallic properties (Fig. 3) were discovered in
shock-wave experiments [50, 51], which were later corrobo-
rated in independent experiments on a light-gas gun [55]. The
behavior of lithium under pressures up to roughly 50 GPa has
also been investigated under static compression in a diamond
anvil cell [56]. By studying X-ray diffraction patterns it was
found that at a pressure of about 42 GPa lithium transforms
into a very unusual cubic structure cI16with 16 atoms per unit
cell (Fig. 4a), never before observed in elementary substances.
Later, the cI16 phase was also discovered in experiments
involving Na under 103 GPa [17]. The cI16 structure agrees
fully with the structure of the compound CoU [18] and can be
visualized as being a distorted bcc cell doubled along each of
the axes x, y, and z. The displacements of atoms from their
sites in an ideal bcc lattice are characterized by a quantity d,
which increases upon compression [56] (Fig. 4b).

Hanfland et al. [56] also did theoretical calculations of the
total energies for a large number of crystalline phases of
lithium for different compressions, including the semicon-

ducting phase oC8 (proposed by Neaton and Ashcroft [53]).
The researchers found that the cI16 phase has a broader
stability range compared to all other studied structures and is
the ground state of lithium up to pressures of about 165 GPa.
The oC8 structure becomes energetically preferable only at
pressures higher than 165 GPa. Recently, Rousseau et al. [57]
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once more calculated the phase diagram of lithium in the
pressure range up to 140 GPa. In addition to finding the total
energies, they also calculated the phonon frequencies for
lithium under high compression. In particular, they found
that up to roughly 140 GPa the oC8 phase is dynamically
stable but is less energetically favorable than the cI16 phase.
What is more, according to their calculations, at pressures
higher than 88 GPa the most favorable structure was not the
cI16 phase, as Hanfland et al. [56] maintained, but an
orthorhombic structure with 24 atoms per unit cell, Cmca-24
(oC24). The transition to this new phase from the cI16 phase
can be practically continuous, since there is a strain that
transforms the cI16 structure at a certain value of d �01=8� to
the Cmca-24 structure. Note that under a pressure of roughly
165 GPa the calculated differences of the total energies for
different crystalline phases of Li are very small.

2.5.2 Electrical resistivity of shock-compressed lithium.
Recently, measurements have been carried out [50, 51] of the
electrical resistivity of shock-compressed lithium up to
210 GPa (see Fig. 3). Figure 3 clearly shows that the
resistivity r of lithium under pressures ranging from 30 to
150 GPa increases by a factor of approximately 20 from
values typical of metals, but in the interval from 160 to
210 GPa returns to its initial values. To interpret the
experimental data presented in Fig. 3, we calculated the
resistivity of lithium up to compressions of approximately
0:25V0 (p � 165 GPa) by the FP-LMTOmethod. The results
of these calculations are briefly discussed in Ref. [51]. There,
we calculated the total energy of the fcc and cI16 phases of
lithium, and the cI16 phase proved to be stable with respect to
the fcc phase in the pressure range from 50 to 165 GPa, which
corroborates the results of the calculations done by Hanfland
et al. [56]. The cI16 structure has a highly nontrivial electron
spectrum (Fig. 5b), which is closer to the spectrum of
semimetals than to that of simple metals. Note that for the
same compression �V � 0:3V0� the spectrum of fcc Li is close
in shape to the parabolic law of dispersion of quasifree
electrons (Fig. 5a).

The electron density of states N�E� for the cI16 structure,
calculated as an integral over the Brillouin zone,

N�E� � 2

�2p�3
X
k; j

d�Ek j ÿ E� ; �17�

is depicted in Figs 6a ± c for successive compressions to
V=V0 � 0:5, 0.4, and 0.3, respectively. The density of states
at V=V0 � 0:4 (Fig. 6b) coincides almost perfectly with the
diagram given in Ref. [56], which suggests that the two results
are in good agreement. Figure 6d shows the behavior under
compression of the density of states at the Fermi level, N�0�,
for the fcc and cI16 phases of Li. Clearly, N�0� in the cI16
phase is much smaller than in the fcc phase, and very rapidly
decreases as the pressure rises. All this means that lithium in
the cI16 phase becomes worse and worse as a metal as the
pressure grows. Note, however, that up to the highest
pressures studied so far in this case, p � 165 GPa, lithium
does not transform into an insulator or semiconductor.

From the theory of metals (e.g., see Ref. [1]) it follows that
the electrical resistivity of a metal as a function of pressure
and temperature can be written as follows:

r�T; p� � 4p�
opl�p�

�2 1

t�T; p� : �18�

Here, t is the electron lifetime, which depends on, among
other things, temperature and pressure, andopl is the electron
plasma frequency, which can be calculated by the formula

o2
pl �

4pe 2

3V

X
k; j

jvk jj2 d�Ek j ÿ EF� ; �19�

where EF is the Fermi energy and

vk j � 1

�h

dEk j

dk

is the velocity of an electron in state ck j.
In themodel of nearly free electrons, the plasma frequency

is expressed in terms of the electronic density nel by the Drude
formula

o2
pl �

4pnele 2

m
� 4pe 2

m

Z

V
; �20�

where V is the atomic volume and Z is the valence. This
implies that as pressure grows, opl increases as follows:

opl�V� � opl�0�
�������
V0

V

r
: �21�

Here, V0 and opl�0� are, respectively, the atomic volume and
plasma frequency at p � 0. If we think of lithium as a metal
with nearly free electrons, then, according to (20), opl�0�
should be equal to 8.04 eV. However, our calculations of the
behavior of opl under pressure using formula (19) and their
comparison with the values calculated by formulas (20) and
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(21) show that even in the fcc phase lithium is not ametal with
nearly free electrons (Fig. 7).

First, the value ofopl�0� for the fcc phase is smaller than in
the free electron model and amounts to 6.73 eV. Second, as
Fig. 7 shows, although opl in the fcc phase increases with
pressure, it does this much more slowly than formula (21)
would suggest. In the cI16 phase the plasma frequency drops
as the pressure grows, despite the fact that V decreases. The
thing is that the summation in (19) for the cI16 phase is over a
complex Fermi surface, which in no respect resembles the
sphere of nearly free electrons, but, as in the case of

semimetals, consists of several small surfaces containing a
very small number of carriers (cf. the electron spectrum in
Fig. 5b). Upon compression, the total area of all these
surfaces for cI16 Li decreases faster than does the volume V.
This alone should lead, in accordance with formula (18), to a
significant increase in the electrical resistivity of cI16 Li with
pressure.

In their experiments on measuring the resistivity of
lithium up to 30 ± 40 GPa, Lin and Dunn and Shimizu et al.
[58] recorded a significant increase in r beginning at
approximately 10 GPa, i.e., still in the fcc phase. This shows
that, apparently, the relaxation time t also changes with
pressure. According to Matthiessen's rule, we can write

1

t�T; p� �
1

timp�p� �
1

tph�T; p� ; �22�

where the electron lifetime due to the scattering on impurities
and lattice defects is denoted by timp, and the lifetime due to
electron ± phonon scattering by tph. Of course, where there
are many impurities and lattice defects, Matthiessen's rule
may break down. However, the experimental data [58] show
that, in addition to the absolute increase in the resistance of
lithium with pressure, the resistance increases substantially
with temperature, even at� 20ÿ30GPa. This means that not
only an increase in the number of defects, especially
dislocations, with pressure contributes substantially to
resistance, but so does the increase in the relaxation rate due
to electron scattering by phonons.

The relaxation rate 1=tph�T; p� for T5 0:3YD, where
YD � 400 K is the Debye temperature of lithium, can be
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expressed as follows:

1

tph�T; p� � 2pl�p�T : �23�

Here, l�p� is the electron ± phonon coupling constant, which
can be written in the form

l � Z
Mho2i ; �24�

where ho2i is the mean square of the phonon frequencies and
Z is the Hopfield parameter, which can be expressed in terms
of matrix element of the electron ± phonon interaction.

Figure 8 shows the dependence of the phonon part of the
electrical resistivity of lithium on the density n and tempera-
ture, calculated by the formula

rph�T; n� �
l�n�T�
opl�n�

�2 : �25�

Here, we have used the functions opl�V� for the fcc and cI16
phases shown in Fig. 7. To estimate the dependence of l on
density, we used the results of Christensen and Novikov [59],
who numerically analyzed the behavior of l for fcc Li at
compressions up to V � 0:4V0. They found that l at such
compressions increases more than sixfold, from 0.4 to 2.55.
Since from our calculations it follows that 1=o2

pl for fcc Li
decreases slightly with increasing pressure (see Fig. 7), the
overall increase in rph in the fcc phase due to electron ±
phonon scattering amounts to a factor of 3.6.

In experiments involving shock compression of lithium
[50, 51, 55], the researchers observed a rapid increase in
resistivity under compressions to about 0:4V0 (see Fig. 3),
which apparently, in accordance with the experimental data
of Hanfland et al. [56], corresponds to the transition of Li into
the cI16 phase. This assumption is corroborated by the
theoretical results in Refs [51, 56, 59]. Estimates made by
Christensen and Novikov [59] show that in cI16 Li the value
of l is unlikely to vary noticeably with pressure and remains
practically the same as in the fcc phase, i.e., about 2.55.
However, in cI16 Li, the value of 1=o2

pl changes very
perceptibly, which in turn leads to a very significant increase
in electrical resistivity.

There are two more possible reasons for the increase in r
of cI16 Li, observed in shock-wave experiments [50, 51, 55].
One reason is the increase in temperature that happens as the
shock-wave compression grows; the other reason is the
scattering on defects, whose role increases substantially as
the number of carriers, i.e., the density of conduction
electrons in the cI16 phase, drops. The subsequent decrease
in r observed in shock-wave experiments cannot be explained
if one considers only the crystalline phases of lithium.
Apparently, the main role in this phenomenon is played by
the destruction of the complex anisotropic crystal structures
and the transition of lithium, caused by the increase in
temperature in such shock compressions, into the liquid
state, where the behavior of its electrons more resembles
that of a homogeneous electron gas (of nearly free electrons).

3. The effect of pressure on the properties
of alkali-earth metals

3.1 High-pressure phases and the metal ± semiconductor
transition in heavy alkali-earth metals
While the simplicity of alkali metals for a long time produced
no serious doubts in the mind of physicists, the same cannot
be said about some s-elements of the second group, precisely,
about the heavy alkali-earth metals Ca, Sr, and Ba. The
behavior of the light alkali-earth metals Mg and Be differs
substantially from that of heavy alkali-earth metals, and we
will not discuss the properties of Mg and Be in this review.
Under normal conditions, heavy alkali-earth metals crystal-
lize into highly symmetric close-packed structures with one
atom per unit cell (see Table 1). In accordance with the simple
single-particle model used to describe electronic structures,
the two valence electrons may completely fill up the first
Brillouin zone, which means that crystals of the bivalent
alkali-earth elements could be insulators. However, it is a
well-known fact that at atmospheric pressure they are metals.

We performed the ab initio density-functional calculations
of calcium's properties by the full-potential linear augmented
plane wave (FP-LAPW) method as implemented in the
Wien2k program package [60]. In this method (e.g., see
Ref. [46]), the electron wave functions ck�r� are expanded
on the basis of augmented plane waves, fk, linearized in
energy. Near an atom, fk�r� is a linear combination of the
radial functions ul�r;E�multiplied by the spherical harmonics
Ylm�r̂�, where l and m are quantum numbers. In interstitials
the expansion is in plane waves, exp �ikr�.

Figures 9a and b show the results of our calculations of the
electronic band structure for fcc Ca under normal and high
pressures. Clearly, at normal pressure, the larger number of
filled electronic states below EF, as should be the case in all
simple metals, correspond to the model of nearly free
electrons with the parabolic dispersion law ek � k2=2m. This
band may be approximately considered as derived from the
filled s-states of Ca atoms. The bands above EF appear to a
great extent because of the overlap of the atomic wave
d-functions. In the larger part of the Brillouin zone these
unfilled states are above the s-states, but along some
directions the upper and lower bands overlap. It is because
of this overlap that the crystals of alkali-earth elements are
metals. In this sense, it would be more natural to call them
semimetals, since they contain charge carriers of both signs,
electrons and holes, and the number of such carriers is the
same. One should bear in mind, however, that the total

35

r p
h
,r
el
.u

n
it
s

30

25

20

15

10

5

0
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

Density, g cmÿ3

T � 450K

300 K

150 K

Figure 8.Electrical resistivity of lithium as a function of density at different

temperatures. First-principles calculation.

770 E GMaksimov, M VMagnitskaya, V E Fortov Physics ±Uspekhi 48 (8)



number of carries in alkali-earth metals in normal conditions
is much higher than in such classical semimetals as bismuth.

In the 1960s, alkali-earth metals attracted much attention
from physicists, both theoreticians and experimenters. In
1963, Stager and Drickamer [61] detected a peak in the
electrical resistivity r of Ca at pressures of about 30 ±
40 GPa.1 Moreover, they concluded from the temperature
dependence of r that Ca in this pressure range behaves like a
semiconductor or a semimetal with a very low carrier
concentration. Actually, they observed a negative tempera-
ture coefficient of resistance dr=dT in the temperature
interval from 77 to 300 K. Soon after that, theoretical
calculations of the electronic structure [62 ± 64] showed that
as the pressure to which fcc Ca is subjected grows, the number
of carriers tend to decrease and even a small energy gap may
appear in the electron spectrum.

In the same period (1960s), the excitonic insulator model
became very popular with theoreticians. In 1961, Mott [65]
pointed out that semimetals with a low concentration n of
electrons and holes (na 3

B < 1=4, where aB is the Bohr radius)
cannot exist due to the formation in them of nonconducting
states of bound electron ± hole pairs, or excitons. Later,
Keldysh and Kopaev [66] and JeÂ rome, Rice, and Kohn [67]
showed that even when na 3

B > 1=4, there may be a transition
of a semimetal to the insulator state, which became know as
an excitonic insulator. However, for such a transition to
happen at na 3

B > 1=4, the spectrum of electronic excitations
must exhibit specific properties. In this review there is no
place for a discussion of all the details of the theory of
excitonic insulators, all the more so since they have been
described very well in the review articles [68, 69].We only note

that the properties of an excitonic insulator do not differ in
any way from those of an ordinary insulator. Perhaps, what is
important is that this transition is largely determined by the
correlation energy of the crystal's electrons. Among the large
number of candidates for the role of excitonic insulators,
JeÂ rome, Rice, and Kohn [67] also mentioned alkali-earth
metals, precisely for the reason that the results of their
theoretical calculations demonstrated that even within the
single-particle band approach an energy gap may appear.

All this prompted experimenters to study in detail the
behavior of alkali-earth metals under pressure [70, 71].
McWhan et al. [70] measured the electrical resistivity of
strontium and the bivalent rare-earth element ytterbium
(which is close in its chemical properties to alkali-earth
metals) in a temperature interval from 2 to 298 K at pressures
up to 5 GPa. At p � 2:5 GPa and T � 4:2 K, they recorded a
sudden jump in the value of r of Yb by a factor of
approximately 6� 104. For Sr, at p � 3:5 GPa there was
also a jump in r, but a much smaller one (the value increased
only by a factor of 50). Both for Yb and Sr at T � 298 K the
recorded variation of r was not so dramatic. A negative
temperature coefficient of resistance was detected for ytter-
bium at 1 < p < 4:5 GPa and for strontium at
3 < p < 4:3 GPa. Furthermore, in the temperature interval
from 100 to 300 K and at pressures 1:974 p4 3:5 GPa, r of
Yb exhibited an exponential temperature dependence with a
very low activation energy. The temperature dependence of r
in Sr is not exponential, although its temperature coefficient
of resistance is negative. All this promptedMcWhan et al. [70]
to suggest that, under pressure, Yb exhibits a transition from
the metallic state to the semiconducting state, while Sr
exhibits a transition from the metallic state to a semimetallic
state with a small number of carriers. Another conclusion
arrived at in Ref. [70] was that in neither Yb nor Sr had a
transition to the excitonic insulator phase been detected.
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Figure 9. Electronic band structure of calcium; the dashed curve indicates the position of the Fermi level. (a) Metallic fcc phase, V � V0;

(b) semiconducting fcc phase, V � 0:6V0; (c) metallic bcc phase, V � 0:55V0; and (d) semiconducting sc phase (unstable; see main text), V � 0:53V0.

1 Most likely, these values of pressure are overstated, since the researchers

used an old pressure scale. According to present views, the maximum in

the electrical resistivity of Ca lies in the pressure range from 12 to 19 GPa.
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Today, this seems only naturalÐnothing different could ever
have been detected. According to the estimates made by these
researchers, the binding energy of the excitons in these
systems is very low, so that the emerging energy gaps must
also be small. Actually, the researchers observed something
very similar, especially if one bears in mind that when high
pressure is applied, it produces many defects in the crystal
and, accordingly, related electronic states in the energy gap.
Of course, the presence of such states, especially with their
number unknown, may lead to a sizable discrepancy between
the properties of the real crystal and those of a pure
semiconductor. Dunn and Bundy [71] studied the behavior
of the electrical resistivity of calcium under pressure, but the
results of their investigation will be discussed later, in Section
3.2, while here we will briefly discuss the experimental data
and the results of theoretical calculations pertaining to the P
vs. T phase diagram of alkali-earth metals.

Phase transitions in heavy alkali-earth metals at high
pressure (see Table 1) have been thoroughly investigated by
Olijnyk and Holzapfel [72], who studied the X-ray diffraction
with allowance for dispersion in energy. They discovered
structural transitions in Ca at 19.5, 32, and 42 GPa; however,
further investigations [73] did not corroborate the transition
at 42 GPa. In strontium, structural phase transitions were
detected at 3.5, 24, 35, and 46 GPa, while in barium the phase
transitions occurred at 5.5, 12.2, and 46GPa. Here, the Ba-IV
phase and the isostructural phase Sr-V have a very complex
tetragonal structure. Like the host ± guest structure of the
Rb-IV phase, it is incommensurate (a similar structure type is
that of CuAl2 [18]), while the structure of the Sr-IV phase has
yet to be solved. On the whole, the structural sequences in
alkali-earth metals exhibit the same `unorthodox' tendency
also observed in alkali metals: as pressure is increased,
transitions to less closely packed structures occur, with the
symmetry of the lattice becoming lower.Wewill now examine
this tendency using the phase diagram of calcium as an
example. For calcium, all the known high-pressure phases
have highly symmetric cubic structures which can be studied
more easily from the theoretical viewpoint. Here, we would
like to note that in the series of heavy alkali-earth metals there
is partial similarity in relation to the fcc ± bcc phase transition.
According to the model of electron transfer from the s-band
to the d-band, the pressure of the fcc ± bcc transition is
determined by a universal parameter, the number of valence
d-electrons in the system, Nd; under normal conditions, the
heavy alkali-earth metals Ca, Sr, and Ba are, so to say, in
different stages of a continuous electronic sÿd transition [74].
Indeed, the number of d-electrons in the heaviest element, Ba,
is higher than in Ca or Sr, with the result that the bcc structure
in barium is realized already at atmospheric pressure.
However, this simple model does not explain the entire
sequence of transitions in alkali-earth metals.

3.2 The study of the properties of calcium at high pressure
In normal conditions, calcium crystallizes into an fcc
structure with the largest possible coordination number
ZNN � 12 (packing index Z � 0:74). At room temperature
and a pressure of 19.5 GPa, calcium transforms into a bcc
phase with ZNN � 8 and Z � 0:68, while at 32 GPa it
transforms into a less closely packed simple-cubic (sc)
structure (ZNN � 6 and Z � 0:52) [72]. After that, at least up
to 80 GPa, experiments revealed no structural transforma-
tions in calcium [73, 75]. Earlier attempts [76] to calculate the
phase diagram of calcium on the basis of phenomenological

pseudopotential theory were not successful. In particular,
these calculations suggested that at normal pressure the stable
phase must be bcc. Actually, at p � 0, bcc Ca becomes stable
at temperatures of about 700 K. More successful in this
respect were the first-principles calculations by Skriver [74],
Wentzcovitch and Krakauer [77], and Ahuja et al. [78], who
used various modifications of the LMTO method [47]. For
instance, already in the earlier work of Skriver [74] it was
shown that the fcc ± bcc transition in Ca must happen at
� 21 GPa, which is slightly higher than the experimental
value of 19.5 GPa. Later, Wentzcovitch and Krakauer [77]
calculated that the transition occurs at a slightly lower
pressure, p � 16 GPa, which is close to our result for Ca
(17 GPa). Skriver [74] did not consider the possibility of a
bcc ± sc transition; instead he predicted a direct bcc ± hcp
transition at p � 80 GPa. In their theoretical paper, written
after the experimental discovery of the bcc ± sc transition,
Ahuja et al. [78] calculated with reasonably high accuracy the
pressures of the fcc ± bcc (15 GPa) and bcc ± sc (33 GPa)
transitions. In addition, the researchers predicted an sc ± hcp
transition at p � 120 GPa.

3.2.1 The metal ± semiconductor transition in Ca under
pressure.We have done detailed calculations of the electronic
band structure and related properties of calcium in a range of
compressions corresponding to a variation of the specific
volume from 1:1V0 to 0:3V0. The calculations were done for
the fcc, bcc, and sc phases. Figure 10 shows the calculated
differences of the total energies, Ebcc ÿ Efcc and Esc ÿ Efcc.
Clearly, the total energy differences are very small and
therefore the calculation of these differences requires special
accuracy. This is also true of calculations of the total energies
proper by formula (7), where very small differences of large
quantities must be calculated exactly. The necessary accuracy
is achieved by controlling the convergence in all free
parameters of the calculation. We also calculated the
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enthalpy (9) for these three phases and obtained the values of
pressures of the fcc ± bcc and bcc ± sc transitions, which are in
reasonable agreement with the results of the calculations done
by Ahuja et al. [78] and the experimental data of Olijnyk and
Holzapfel [72].

As noted above, even the simplest pseudopotential
calculations [62, 63] show that as pressure grows, fcc Ca
may transform into a semiconductor with a small energy gap.
A similar result was obtained by Skriver [74], who used the
LMTO method. Our calculations confirm that in the fcc Ca
spectrum there is a very small (� 0:1 eV) semiconductor gap;
see Fig. 9b (as is known, inDFT the gap width is considerably
understated [41]). Generally speaking, as noted in Section 2.3,

the calculation of the energy gap in DFT is not rigorous, since
DFT is intended only for calculations of ground-state proper-
ties. The properties of excited states, to which the gap width
belongs, are calculated by employing approximations that go
beyond DFT (for a more detailed discussion, see, for
example, Ref. [41]).

Figure 11a shows the electron densities of states we
calculated for fcc Ca at various compressions. Clearly, at
normal pressure (i.e., at V � V0), the density of states is that
of an ordinary metal. At a compression up to approximately
V � 0:75V0, a gap appears in the electron spectrum (cf.
Figs 9a and b), which under further compression widens,
but then at approximately V � 0:57V0 closes. Actually, the
re-entrant metallic fcc phase of Ca is not realized, since
somewhat earlier, at V � 0:60V0, there occurs the transition
to the metallic bcc phase. Most likely, the real values of the
gap in fcc Ca exceed the values obtained in our calculations,
but they are sure to be very small [71]. No semiconducting
state appears in the bcc structure, which is in full agreement
with the shape of the electron spectrum in Fig. 9c. In sc Ca
there is also a very narrow range of compressions,
V=V0 � 0:53ÿ0:55 (Figs 9d and 11b), where a very narrow
gap exists; most likely, this the region of `pseudogap'
behavior. However, no semiconducting state of calcium is
realized in the sc structure, since in the indicated range of
compressions the bcc phase is the ground state, while the sc
phase becomes stable only at V=V0 � 0:45. Nevertheless,
immediately after the bcc ± sc transition, calcium is a `worse'
metal than in the bcc phase. This becomes clear if we look at
Fig. 12, which depicts the volume dependence of the density
of states at the Fermi level in the fcc, bcc, and sc phases.

Figure 13 shows the results of measurements of the
electrical resistance of Ca under pressure [71]. In the 12 ±
19-GPa range there is a maximum in the resistance (Fig. 13b),
and within this range the temperature coefficient of resistance
is negative (Fig. 13a). In accordance with the results of
experimental studies of transitions in Ca done by Olijnyk
andHolzapfel [72], Skriver's theoretical calculations [74], and
our calculations, the semiconducting state in fcc Ca exists up
to the point where calcium transforms into the metallic bcc
phase. Dunn and Bundy [71] related the subsequent increase
in resistance, which begins at� 23ÿ25 GPa, to the transition
of Ca into a new unknown phase. However, later studies of
the crystal structure of Ca [72, 73] clearly showed that there is
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no structural transition at these pressures. The increase in
resistance observed by Dunn and Bundy [71] is, most likely,
related to the increase in the number of defects in samples
because of the increasing non-hydrostatic conditions near the
highest pressure reached in these experiments. There is one
more reason why resistance could increase at pressures higher
than 23 GPa, and that is an increase in the electron ± phonon
coupling constant l. Figure 13a shows that the temperature
coefficient of resistance is positive for pressures higher than
23 GPa and increases with pressure still further. Bearing in
mind that, according to formula (25), dr=dT � l, the above-
mentioned increase in the temperature coefficient of resis-
tance is an indication that the electron ± phonon coupling
constant grows with pressure. Unfortunately, the experimen-
tal data provided by Stager and Drickamer [61] and Dunn
and Bundy [71] do not allow one to determine the semicon-
ducting gap in fcc Ca, in contrast to the data on Yb [79]
(mentioned above), where there is a range of pressures within
which the observed dependence r�T � is exponential.

3.2.2 The microscopic nature of structural transformations in
Ca. As with alkali metals, the calculations for calcium done
by Skriver [74] and Ahuja et al. [78] show that the arrange-
ment of its energy bands changes continuously. Figure 14a
shows the arrangement of the unhybridized bands that
originate from the atomic 3p-, 3d-, and 4s-states of calcium
as calculated by Ahuja et al. [78] in accordance with the
Wigner ± Seitz rule. 2 Clearly, as the sample is compressed, all
the bands gradually broaden, the bottom of the 3d-bands

drops in relation to the Fermi energyEF and the 4s-band, and
the entire 4s-band moves above EF when V=V0 � 0:2.

Calculations have shown that already at normal pressure
the d-band of pretransition element Ca contains a substantial
number of electrons. According to our estimates, under
threefold compression to V � 0:3V0, the electronic con-
figuration in Ca changes from 4�sp�1:483d0:52 to
4�sp�0:643d1:36. Thus, almost 0.9 of an electron gets redis-
tributed from the sp-band to the d-band. This estimate was
done in the atomic sphere approximation (ASA), in which the
polyhedral unit cell is replaced by an equally large Wigner ±
Seitz sphere and the crystal potential is assumed to be
spherically symmetric. Figure 14b shows the results of our
calculation of the number of sp- and d-electrons in Ca as a
function of compression. In this case Nsp and Nd were
estimated in a more realistic approximation, with allowance
for the true shape of the cell and the crystal potential. Here,
the MT-geometry is used, in which there is an intersphere
region of a complicated shape, and in this region it is difficult
to represent the wave function as a linear combination of
`quasiatomic' s-, p-, and d-states. In the case at hand, the
redistribution of charge takes place with the active participa-
tion of this interstitial region, with the result that the total
number of valence electrons of Ca,Nsp �Nd, is smaller than 2
and changes under compression. Moreover, since there is a
certain ambiguity in the definitions of Nsp and Nd, they may
be weakly dependent on the selected radius of the spheres
surrounding the atoms, the number of reciprocal lattice
vectors taken into account, and some other free parameters
used in the calculation. However, it must be noted that when
the accuracy of calculations is high (and takes up a lot of
computer time), the observed characteristics of substances,
such as the total energy or the equation of state, should not
depend on these free parameters.

Thus, there is no way in which one can rigorously
determine the number of valence p- or d-electrons in the
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2 According to the Wigner ± Seitz rule, the top of a band (antibonding

state) is defined as the energy E � Etop at which the function ul�r;E� at
r � rWS is zero, while the bottom of a band Ebot (bonding state)

corresponds to the zero of the radial derivative u 0l �r � rWS;E�. Here,

ul�r;E� is the solution of the radial SchroÈ dinger equation, rWS is the radius

of the Wigner ± Seitz sphere, and l � s; p; d; . . . .
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system and relate them uniquely to the crystal structure. To
obtain a correct sequence of phases that appear under
pressure by theoretical means, we must carry out exact
calculations of the total energies of the various crystal
structures. Qualitatively, however, such a `quasiatomic'
picture of the transformation of the electronic states in alkali
and alkali-earth metals under pressure proves to be useful.
Indeed, atoms with valence electrons primarily of the s-type
can be pictured as spheres for which close packing into highly
symmetric, isotropic structures seems only natural. Under
compression, when the contributions of d- and p-components
in the wave function increase, the tendency toward aniso-
tropy, caused by an increase in the directionality of the bonds,
becomes more andmore evident, with the result that there is a
redistribution of electron charge from the nucleus to the
periphery, since p- and d-states, in contrast to s-states,
contribute nothing to the change density on the nucleus.
This last fact was used by Takemura et al. [29] to account for
the stabilization of the Cs-IV structure mentioned in Section
2.1, a structure in which the electronic density has maxima in
the interstitials, which correspond to the positions of negative
ions. A similar description of the stabilization of the Cs-IV
structure has been recently proposed in Ref. [30]. The
researchers did first-principle calculations in the tight-bind-
ing method to build Wannier functions and found that at
pressures corresponding to the transition to the Cs-IV phase
these functions resemble atomic d-orbitals much more than
they do spherically symmetric s-orbitals. As for calcium, we
note that because of the directionality of the d-wave functions
their overlap integrals are large, with the result that the
d-band in the sc structure proves to be almost twice as wide as
that in the bcc structure, which facilitates stabilization of the
sc phase at appropriate compressions. However, we note once
more that the reasoning concerning the role of sÿd and sÿp
transitions in the structural transformations of simple metals
is, basically, of a qualitative nature: it more likely provides an
easy-to-grasp picture useful for understanding the results of
first-principles calculations.

Concluding this section, we turn once more to the
problem of an alternative explanation of the sequence of
structural transformations in simple metals and, in particu-
lar, in lithium, an explanation based on the Hume-Rothery

rule. As noted earlier, attempts of this kind have recently
been made by Degtyareva [35] and Ackland and Macleod
[38]. In particular, Ackland and Macleod [38] discussed the
possibility of using the Hume-Rothery rule to explain the
structural transformations in a large number of simple
metals, including Li, Na, K, Rb, Cs, Ca, Sr, and Ba. In
addition, the researchers actually performed extensive
density-functional calculations for the cI16 phase of lithium
using a first-principles pseudopotential method. They found
that the region of stability of the cI16 phase that emerged
from their calculations was in good agreement with the
Hume-Rothery rule. In the cI16 structure there appears a
Bragg plane (2 1 1), for which the reciprocal lattice vector is
close in length to the Fermi momentum of free electrons with
a density corresponding to the electronic density in cI16 Li.
Actually, Ackland and Macleod's results [38] cannot serve as
proof that the Hume-Rothery rule can be used to describe all
structural transformations in simple metals. These results, as
well as the reasoning concerning sÿd and sÿp transitions,
can only illustrate that in this specific case the Hume-
Rothery rule qualitatively explains the nature of the
stability of the cI16 phase. For instance, it is quite clear
that the existence in calcium of an sc structure does not fit
into the Hume-Rothery rule. It is also clear that any attempt
to calculate the total energy of crystal structures with
allowance, in the spirit of the Hume-Rothery rule, for the
interaction of electrons only with Bragg planes whose
reciprocal lattice vectors G are close in size to the Fermi
momentum of free electrons with an appropriate charge
density is doomed to failure. As is known, in the calcula-
tions that use a first-principles pseudopotential, achieving
convergence requires using a very large number of plane
waves (or corresponding to them reciprocal lattice vectors
G) and not a small number of vectors G whose size is close
to kF.

3.2.3 The thermodynamic and electrophysical properties of Ca.
By numerically calculating the partial derivative of the total
energy [see Eqn (8)] we arrived at an equation of state for
calcium at T � 0, i.e., the relation between pressure and
specific volume, p�V�. Figure 15 shows the calculated
functions p�V� for the fcc, bcc, and sc phases of calcium. It
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also shows the experimental p�V� curves obtained in static
experiments [72] and under shock compression [79 ± 81].
Clearly, under low compression, the data of shock-wave
experiments agree fairly well with the static data and the
results of our calculations. However, beginning with
V=V0 � 0:45 the pressure begins to rise very rapidly,which
was interpreted by Bakanova and Dudoladov [79] and
Al'tshuler et al. [80] as a kink in the Hugoniot curve related
to a structural transition to a less compressible phase due to
an sÿd electron transition.

As the data of static experiments [72] and the results of
theoretical calculations show, at pressures that approxi-
mately coincide with the assumed kink, at room temperature
there is a transition from the bcc structure to the sc structure,
i.e., on the contrary, to a more compressible phase with a
smaller number of nearest neighbors, ZNN. Furthermore, as
mentioned earlier, there are no abrupt sÿd electron transi-
tions in calcium. The thing is, most likely, that under high
compression and upon transforming into the more open sc
structure with an 8% decrease in volume, the temperature in
the shock wave rises substantially. Thus, we can assume that
the kink on the p�V� curve reported in Refs [79, 80] is caused
not by an electron transition but by a polymorphic bccÿsc
transformation.

Recently, the electrical resistivity of shock-compressed
calcium and its melt has been measured in the high-pressure
(10 ± 50 GPa) and high-temperature (800 ± 1600 K) regions
[82]. The researchers used the method of multi-step shock
compression, briefly described in Section 2.4. The obtained
experimental time profiles of pressure p�t� and electrical
resistance R�t� for calcium are shown in Fig. 16. They also
calculated the thermodynamic characteristics of calcium with
the use of equations (10) ± (12) for the thermodynamic
potential and did first-principles calculations of the total
energy Etot�V� for the three crystalline phases of Ca using
formula (7). Since at present there are no detailed calculations
of the phonon spectra of calcium, to calculate the thermal

contribution Fph�V;T � the authors used a semiempirical
expression within the Einstein model. This expression can be
written as follows [83, 84]:

Fph�V;T � � Etot�V��

� 3R

�
YD

2
� T ln

�
1ÿ exp

�
ÿYD

T

���
ÿ asRT� Em : �26�

Here, the notation is quite common. The adjustable para-
meter as is zero for the solid state and finite for the melt. The
parameter Em sets the reference point for the total energy
Etot�V� of each phase and is used to remove small inaccuracies
in determining the pressures of the structural transitions,
discrepancies that emerged both in our first-principles
calculations and in the works of Skriver [74], Wentzcovitch
and Krakauer [77], and Ahuja et al. [78]. Such discrepancies
may be related to the use of approximate expressions for the
exchange ± correlation potential or to the fact that the fcc ±
bcc transition is close to a semiconductor ±metal transition.
As noted above, the calculations of such transitions in DFT
must be highly accurate. Detailed descriptions of the method
of calculating the thermal contribution to the free energy and
of building theYD�V� function can be found in Refs [83, 84].
Here, the adjustable parameters (other than Em) in (26) were
determined from the Hugoniots obtained in Refs [79 ± 81].

The extraction of the Hugoniot adiabats for different
phases of calcium from the experimental data in Refs [80, 81]
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was done on the assumption that for small (compared to
p � ÿqEtot=qV) thermal pressures the location of the calcu-
lated Hugoniot in the D; u plane, where D is the shock wave
velocity and u is the mass velocity, is for all practical purposes
independent of the constant termEm in (26). It was found that
in this approximation it is possible to calculate the Hugoniot
for bcc Ca by using only the total energy of this phase, which
we calculated from first principles, and the expression (26)
with the functions YD�V� and Etot�V� in the form proposed
by Molodets [83]. The results of these calculations are
depicted in Fig. 17 by the segment 3.

As Fig. 17 suggests, the straight line 3 coincides only with
a fraction of the experimental data taken from Refs [80, 81].
Consequently, the other segments of the Hugoniot adiabat
belong to other phases of calcium and their mixtures: 1, fcc
phase; 2, a mixture of fcc and bcc phases; 4, a mixture of the
bcc phase and Ca melt; and 5, Ca melt. In the final analysis,
this separation made it possible to build the thermodynamic
potentials of the above phases, to calculate the equilibrium
lines, and to identify in detail the thermodynamic states of
calcium in an experiment in which the electrical resistance of
calcium was measured at high pressures and temperatures.

Figure 18 shows the phase diagram and thermodynamic
states of calcium under multi-step shock compression.
Calculations of the fcc ± bcc equilibrium line with allowance
for temperature (segment 2) have shown that there is not one
thermodynamic state realized in the experiment that lands
in the stability region of the fcc phase. The thermodynamic
state in the first shock wave is located, most likely, in the
stability region of the bcc phase. This state is depicted in
Fig. 18 by a black square, while the respective temperature
and reciprocal specific volume 1=V calculated for this state
are listed in Table 2, taken from Ref. [82].

A much more complicated situation arises in the identifi-
cation of the thermodynamic state in the second shock wave.
As Fig. 18 shows, the value of the pressure measured in the
experiment, p � 28 GPa, is to the left of the bcc ± sc
equilibrium line (the dotted line 4), i.e., in the stability region
of the bcc phase. We immediately note that on this equili-
brium curve taken from Ref. [72] there is only one experi-
mental point, which corresponds to room temperature and a

pressure of 32 GPa [72, 73]. Due to the scantiness of
thermophysical data, at present it is difficult to calculate this
equilibrium curve using Molodets's approach [83], as we did
inRef. [82] in the case of the fcc ± bcc transition.What is clear,
however, is that since the sc phase is less closely packed than
the bcc phase, the equilibrium curve may, as the temperature
increases, slant to the left, i.e., to the region of lower pressures.
Such behavior is clearly evident from the equilibrium line 2
that we calculated. Of course, the slant to the left on the
bccÿsc line may prove to be much smaller than on the
fccÿbcc line. Bearing in mind the aforesaid and the existing
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Ref. [82] for the case of single-shock compression of monolithic Ca;

2, results of calculations of a segment of the fcc ± bcc equilibrium line;

3, results of calculations of a segment of the bcc ±melt equilibrium line;

dashed curve, results of calculations of the adiabat of multi-step shock

compression; dotted line 4, the bcc ± sc equilibrium line [75]; &, thermo-
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near the bcc ± sc equilibrium line, for which the crystalline phase has not

been uniquely determined (see main text); &, estimate of thermodynamic

states in the sc phase; and *, thermodynamic state of the Ca melt in the

first shock wave. (Taken from Ref. [82]).

Table 2. Electrical resistivity r�p;T � of different phases of calcium at high
pressure p and temperatures T.

Phase of Ca r, mO cm
(�5%)

p, GPa
(�8%)

T, K 1=V,
g cmÿ3

bcc 12.0 14 810 2.346

14.5 18 1325 2.476

bcc, sc (?) 21.7 28 1080 2.821

sc 16.6 36 1165

17.8* 41* 1210*

Melt 11.8 32 1580 3.057

1. In calculations ofr�p;T � for sc Ca, the variation in the speciéc volume
V in the bcc ë sc phase transition was not taken into account.
2. Asterisks mark the values of r, p, and T that refer to the moment tr at
which resistivity begins to gradually increase.
3. The question mark indicates the state in the bcc ë sc transition region
for which the crystalline phase has not been uniquely deéned (see main
text).
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experimental inaccuracies in determining the pressure, we
cannot be certain that the thermodynamic state in the second
shock wave is in the stability region of the bcc phase.

As for the thermodynamic state of calcium in the third
shock wave, the corresponding pressure of 36 GPa indicates
that this state is in the stability region of the sc phase. To
estimate the temperature in the second and third shockwaves,
we used the free energy of the bcc phase [82]. Of course, in
such a calculation the kink in the Hugoniot adiabat on the
bcc ± sc equilibrium line, which is determined by the transition
heat of this polymorphic transformation, is not taken into
account. Let us assume that the overstatement of the
temperature resulting from such an approximation is no
smaller than the change in temperature in the segment where
the Hugoniot coincides with the fcc ± bcc equilibrium line,
which is roughly 150 K (see Fig. 18). The thermodynamic
states found by such amethod with an error in temperature of
roughly 150 K are listed in Table 2 and depicted in Fig. 18.
The state in the second shockwave is marked by a gray square
and that for the sc phase by white squares.

Now let us go back to discussing the behavior of
electrical resistance under compression. The typical experi-
mental step-wise time profiles of the electrical resistance R�t�
of calcium obtained in the experiments [82] were of two
types. Figure 16a shows the first type, whose characteristic
feature is the nonmonotonic increase in resistance with
pressure. The first sudden jump in R at time t1 corresponds
to the jump in pressure in the first shock wave. The second
sudden jump in R at time t2 occurs in the second shock wave.
There is nothing remarkable in the increase of the sample's
resistance caused by a shock wave: such a wave initiates a
rise in temperature and increases the number of various
defects in the sample. However, at time t3 the sample's
electrical resistance suddenly drops. Such behavior of R in
the third shock wave is clearly remarkable. The measured
values of electrical resistance did not allow us, due to the
small number of experimental points, to carry out a detailed
quantitative analysis of the dependence of R on temperature
and pressure. However, combining the results of theoretical
calculations with the experimental data for calcium under
static compression (at T � 300 K) and on heating up to
about the melting point (at p � 0), we were able to develop
scenarios [82] that explain the experimental results.

Table 2 lists, in addition to the thermodynamic character-
istics, the measured values of the electrical resistivity r�T; p�
for all the thermodynamic states being discussed. It also lists
the data on r�T; p� for the bcc phase, obtained in a separate
experiment at p � 18 GPa in a single shock wave. An
approximation of the three values of r at p � 14, 28, and
18 GPa by the linear function

r�T; p� � A�Tÿ T0� � B�pÿ p0� � C �27�

yields

A � ÿ6:20� 10ÿ10 O cm Kÿ1 ;

B � 7:05� 10ÿ7 O cm GPaÿ1 ;

C � 2:17� 10ÿ5 O cm :

Due to the ambiguity in the results of measurements and
the small number of experimental points, we cannot state
with confidence that r�T; p� is described by linear function
(27). However, despite the large errors, we can definitely say

that for calcium the value of the temperature coefficient of
resistance

s � 1

r
qr
qT
� A

r

at T � 1000 K is several orders of magnitude smaller than in
normal conditions. This fact does not come as a surprise. The
thing is that, in contrast to most simple metals, alkali-earth
metals in the melted state have a temperature coefficient of
resistance that is nearly zero or even negative [85]. Bearing in
mind that in a shock wave the crystal not only gets heated but
becomes disordered, small values of the temperature coeffi-
cient of resistance in shock-compressed calcium at high
temperatures is quite permissible. Many transition metals in
an amorphous or disordered state also have small or even
negative temperature coefficients of resistance at high
temperatures [86]. Our first-principles calculations of the
electronic structure of Ca at high pressures show, as do the
earlier calculations of Skriver [74] andAhuja et al. [78], that in
the investigated pressure range d-electrons play an important
role in calcium and that the properties of calcium in these
conditions are close to those of transition metals.

As noted above, in the oscillograms in Fig. 16a the
electrical resistance R of a calcium sample varies nonmono-
tonically with increasing pressure: the jump in pressure in the
third shock wave at time t3 is accompanied by a sudden drop
in R rather than by an increase. If we assume that the
thermodynamic state of calcium in the second shock wave
corresponds to the bcc phase and the one in the third shock
wave corresponds to the sc phase, it becomes very difficult to
explain the sudden drop in resistance in the third shock wave.
Earlier, we remarked that at a pressure above the fcc ± bcc
transition pressure, calcium in the sc phase is a worse metal
than in the bcc phase. But if we assume that the thermo-
dynamic state of calcium in the second shock wave is also an
sc phase, the subsequent drop in electrical resistance in the
third shock wave finds a simple and natural explanation.
What we mean is that the metallic properties of calcium in the
sc phase improve with increasing pressure (see Fig. 12),
leading to a decrease in resistance in the third shock wave.
The existing ambiguities in the calculated values of tempera-
ture and the experimental errors in measuring pressure and
the bcc ± sc phase boundary proper allow for such a
possibility.

The experimental profiles of the electrical resistance R�t�
of the second type are shown in Fig. 16b. What sets these
profiles apart from those of the first type is that here
resistance varies monotonically with pressure. Our calcula-
tions (see Ref. [82]) show that in the given case the
thermodynamic state of calcium behind the front of the first
shock wave corresponds to the melt of this metal. The
obtained value of the electrical resistivity r of the Ca melt in
the first shock wave at time t1 is presented in Table 2 together
with the calculated temperature. The thermodynamic state of
the melt is marked in Fig. 18 by a black circle. No calculations
of the thermodynamic state of calcium in the second and
subsequent shock waves for the case corresponding to
Fig. 16b were done.

Note the specific feature of the thermophysical properties
of the melt of calcium. As Fig. 17 shows, the Hugoniot
adiabat (HA) for Ca melt (segment 5) is located to the right
of the HA for bcc Ca (segment 3). This fact is an indication
that as calcium melts in the shock wave, its specific volume
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decreases. This experimental fact agrees with the negative
slope of the calculated equilibrium line 3 in Fig. 18, which
means that within the given range of pressures and tempera-
ture the melt of calcium is more dense than the crystal proper.

We also note that, according to the calculations [82], the
sudden increase in the slope of the HA at u � 3ÿ4 km sÿ1 (see
Fig. 17) is a consequence of the kink in the HA as the adiabat
intersects the equilibrium line and themelt curve (curves 2 and
3, respectively, in Fig. 18) and not the result of an electron
transition, as assumed by Bakanova and Dudoladov [79] and
Al'tshuler et al. [80].

4. Conclusion

In our review we limited ourselves to a discussion of a very
small area of recent high-pressure research. We covered the
structural and electrical properties of alkali and alkali-earth
metals somewhat more thoroughly. However, even this was
enough to see the progress in high-pressure physics in the last
few years, which was caused by developing experimental
techniques and by raising the accuracy of theoretical calcula-
tions. Let us briefly summarize our discussion.

First, at high pressures alkali and alkali-earth metals,
which in normal conditions behave as systemswith nearly free
electrons and crystallize in highly symmetric close-packed
lattices, often demonstrate polymorphic transitions into
exotic structures, many of which have never before been
observed. Second, as pressure grows, these metals may
transform into semimetallic phases with a small number of
charge carriers or even into narrow-gap semiconductors.
Third, modern ab initio density-functional calculations
make it possible to predict and with good accuracy establish
the limits of existence of new crystalline phases in the given
metals. These calculations show, in particular, that simple
models of the respective structural transformations, models
related to sÿp and sÿd electronic transitions or the Hume-
Rothery rule, cannot guarantee sufficient accuracy in
determining the structural sequences and the exact bound-
aries in the phase diagram.

Note that the problem of predicting high-pressure phases
is a difficult one. In the above-described methods, the search
for stable high-pressure phases is done by looking through all
possible crystal structures and comparing their total energies.
However, as it became clear from experiments, even simple
metals under high compressions may have such complex
structures (e.g., the Rb-IV in Fig. 1) that it is hardly possible
to suppose a priori that such structures exist, with the result
that one is forced to calculate total energies for an extremely
large number of different structures. In such cases, one can
use, say, the method of ab initio molecular dynamics (the
Car ± Parrinellomethod [87]), in which the atoms `themselves'
seek the energy minimum in the process of computer
simulation. However, the number of local minima that
emerge in the process can be so large that even the power of
modern computers may not be enough. The second difficulty
in these predictions and even simply in calculations is related
to the fact that differences in the enthalpies of many high-
pressure phases are very small and comparable to the thermal
energy of the crystal. In our review we briefly described a way
to calculate the free energy within the quasiharmonic
approximation. Unfortunately, there are very few works in
which this time-consuming procedure is consistently realized
to the end within DFT. A detailed list of references to the
literature in this field can be found in Katsnel'son and

Trefilov's monograph [88]. The paper by Liu et al. [45] is
one example of calculations of this kind. The researchers
calculated the free energy of lithium in the bcc, fcc, hcp, and
9R structures over the range of compressions �12% by
volume.
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