
Abstract. A description of dislocation and disclination defects in
terms of the Riemann ±Cartan geometry is given, with the
curvature and torsion tensors interpreted as the surface densi-
ties of the Frank and Burgers vectors, respectively. A new free-
energy expression describing the static distribution of defects is
presented and equations of nonlinear elasticity theory are used
to specify the coordinate system. Application of the Lorentz
gauge leads to equations for the principal chiral SO(3) field.
In the defect-free case, the geometric model reduces to elasticity
theory for the displacement vector field and to a principal chiral
SO(3)-field model for the spin structure. As illustrated by the
example of a wedge dislocation, elasticity theory reproduces
only the linear approximation of the geometric theory of de-
fects. It is shown that the equations of asymmetric elasticity
theory for Cosserat media can also be naturally incorporated
into the geometric theory as gauge conditions. As an application
of the theory, phonon scattering on a wedge dislocation is
considered. The energy spectrum of impurities in the field of a
wedge dislocation is also discussed.

1. Introduction

Many solids have a crystalline structure. However, ideal
crystals are absent in nature, and most of their physical
properties, such as plasticity, melting, growth, etc., are
defined by defects in the crystalline structure. Therefore, a
study of defects is a topical scientific question of importance
for applications in the first place. A broad experimental and
theoretical investigation of defects in crystals started in the
1930s and continues nowadays. At present, a fundamental
theory of defects is absent in spite of the existence of dozens of
monographs and thousands of articles.

One of the most promising approaches to the theory of
defects is based on the Riemann ±Cartan geometry, which
involves nontrivial metric and torsion. In this approach, a
crystal is considered as a continuous elastic medium with a
spin structure. If the displacement vector field is a smooth
function, then there are only elastic stresses corresponding to
diffeomorphisms of the Euclidean space. If the displacement
vector field has discontinuities, then we say that there are
defects in the elastic structure. Defects in the elastic structure
are called dislocations and lead to the appearance of
nontrivial geometry. Precisely, they correspond to a nonzero
torsion tensor, equal to the surface density of the Burgers
vector.

The idea to relate torsion to dislocations appeared in the
1950s [1 ± 4]. This approach is still being successfully devel-
oped (see reviews [5 ± 11]), and is often called the gauge theory
of dislocations. A similar approach is also being developed in
gravity [12]. It is interesting to note that E Cartan introduced
torsion in geometry [13] having the analogywithmechanics of
elastic media in mind.
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The gauge approach to the theory of defects is being
developed successfully, and interesting results are being
obtained in this way [14 ± 17]. We note in this connection
two respects in which the approach proposed below is
essentially different. In the gauge models of dislocations
based on the translational group or on the semidirect
product of the rotational group with translations, one
usually chooses the distortion and displacement fields as
independent variables. It is always possible to fix the
invariance under local translations such that the displace-
ment field becomes zero, because it transforms by simple
translation under the action of the translation group. In this
sense, the displacement field is a gauge parameter of local
translations, and physical observables are independent of it in
gauge-invariant models.

The other disadvantage of the gauge approach is the
equations of equilibrium. Einstein-type equations are
usually considered for distortion or vielbein, with the right-
hand side depending on the stress tensor. This appears
unacceptable from the physical standpoint because of the
following reason. For example, we consider one straight edge
dislocation. In this case, the elastic stress field differs from
zero everywhere. Then the torsion tensor (or curvature) is also
nontrivial in the whole space due to the equations of
equilibrium. This is wrong from our point of view. Indeed,
we can consider an arbitrary domain of the medium outside
the cutting surface and look at the creation process for an
edge dislocation. The chosen domain was a part of the
Euclidean space with identically zero torsion and curvature
before the defect creation. It is clear that torsion and
curvature remain zero because the process of dislocation
formation is a diffeomorphism for the considered domain.
In addition, the cutting surface may be chosen arbitrarily for
the defect creation, leaving the dislocation axis unchanged.
Then it follows that torsion and curvature must be zero
everywhere except at the dislocation axis. In other words,
the elasticity stress tensor cannot be the source of disloca-
tions. To avoid the apparent contradiction, we propose a
radical way out: we do not use the displacement field as an
independent variable at all. This does not mean that the
displacement field does not exist in real crystals. In the
proposed approach, the displacement field exists and can be
computed in those regions of the medium that do not contain
cores of dislocations. In this case, it satisfies the equations of
nonlinear elasticity theory.

The proposed geometric approach allows considering
other defects that do not relate directly to those of elastic
media.

The intensive investigations of other defects were con-
ducted in parallel with the study of dislocations. The point is
that many solids have not only elastic properties but also a
spin structure. For example, there are ferromagnets, liquid
crystals, and spin glasses. In this case, there are defects in the
spin structure that are called disclinations [18]. They arise
when the director field has discontinuities. The presence of
disclinations is also connected to nontrivial geometry.
Namely, the curvature tensor equals the surface density of
the Frank vector. The gauge approach based on the rotation
group SO�3� was also used for describing disclinations [19].
SO�3�-gauge models of spin glasses with defects were
considered in [20, 21].

The geometric theory of the static distribution of defects
that describes both types of defects Ð dislocation and
disclination Ð from a single standpoint was proposed in [22].

In contrast to other approaches, it involves a vielbein and an
SO�3� connection as the only independent variables. The
torsion and curvature tensors have direct physical meaning as
the surface densities of dislocations and disclinations, respec-
tively. Covariant equations of equilibrium for the vielbein
and SO�3� connection similar to those in a gravity model with
torsion are postulated. To define the solution uniquely, we
must fix the coordinate system (fix the gauge) because any
solution of the equations of equilibrium is defined up to
general coordinate transformations and local SO�3� rota-
tions. The elastic gauge for the vielbein [23] and the Lorentz
gauge for the SO�3� connection [24] were proposed recently.
We stress that the notions of a displacement vector and
rotation angle are completely absent in our approach. These
notions can be introduced only in those domains where
defects are absent. In this case, equations for the vielbein
and SO�3� connection are identically satisfied, the elastic
gauge reduces to the equations of nonlinear elasticity theory
for the displacement vector, and the Lorentz gauge leads to
the equations for the principal chiral SO�3� field. In other
words, to fix the coordinate system, we choose two funda-
mental models: elasticity theory and the principal chiral field
model.

To show the advantages of the geometric approach and
to compare it with the elasticity theory, we consider in detail
a wedge dislocation in the frameworks of the elasticity
theory and the proposed geometric model. We show that
the explicit expression for the metric in the geometric
approach is simpler and coincides with the induced metric
obtained within the elasticity theory only for small relative
deformations.

As an application of the geometric theory of defects, we
consider two examples in the last sections of the present
review. First, we solve the problem of phonon scattering on a
wedge dislocation. The problem of phonon scattering is
reduced to the integration of equations for extremals for the
metric describing awedge dislocation (because phononsmove
along extremals in the eikonal approximation). As a second
application, we consider the quantummechanical problem of
impurity or vacancy motion inside a cylinder whose axis
coincides with a wedge dislocation. The wave functions and
energy spectrum of the impurity are found explicitly.

The presence of defects results in a nontrivial Riemann ±
Cartan geometry. This means that for describing the
phenomena that relate ingeniously to elastic media, we must
make changes in the corresponding equations. For example,
if a phonon propagation in an ideal crystal is described by the
wave equation, then the presence of defects is easily taken into
account. For this, the flat Euclidean metric has to be replaced
by a nontrivial metric describing the distribution of defects.
The same substitution must be made in the SchroÈ dinger
equation to describe other quantum effects. It is shown
nowadays that the presence of defects essentially influences
physical phenomena. The SchroÈ dinger equation in the
presence of dislocations was considered in [26 ± 46] for
different problems. Problems related to the wave or Laplace
equations were considered in [47 ± 54]. The influence of the
nontrivial metric related to the presence of defects was
investigated in electrodynamics [55] and hydrodynamics
[56]. Scattering of phonons on straight parallel dislocations
was studied in [57 ± 59].

Another approach to the theory of defects based on affine
geometry with a nonzero nonmetricity tensor was recently
considered in [60].
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2. Elastic deformations

We consider infinite three-dimensional elastic media. We
suppose that the undeformed medium in the defect-free case
is invariant under translations and rotations in some
coordinate system. Then, the medium in this coordinate
system y i, i � 1; 2; 3, is described by the Euclidean metric
di j � diag �� � ��, and the system of coordinates is called
Cartesian. Thus, in the undeformed state, we have the
Euclidean space R3 with a given Cartesian coordinate
system. We also assume that torsion (see the Appendix) in
the medium is equal to zero.

Let a point in the medium have coordinates y i in the
ground state. After deformation, this point has the coordi-
nates

y i ! x i�y� � y i � u i�x� �1�

in the initial coordinate system, see Fig. 1. The inverse
notation is used in the elasticity theory. One usually writes
x i ! y i � x i � u i�x�. These are equivalent because both
coordinate systems x i and y i cover the whole R3. However,
in the theory of defects considered in the next sections, the
situation is different. Generally, the elastic medium fills the
whole Euclidean space only in the final state. Here and in
what follows, we assume that fields depend on coordinates x
that are coordinates of points of the medium after the
deformation and cover the whole Euclidean space R3. In the
presence of dislocations, the coordinates y i do not cover the
whole R3 in the general case because part of the medium may
be removed or, conversely, added. Therefore, the system of
coordinates related to points of the medium after an elastic
deformation and defect creation is more preferable.

In the linear elasticity theory, relative deformations are
assumed to be small (qj u i 5 1). The functions u i�x� �
u i�y�x�� are then components of a vector field that is called
the displacement vector field and is the basic variable in
elasticity theory.

In the absence of defects, we assume that the displacement
field is a smooth vector field in the Euclidean space R3. The
presence of discontinuities and singularities in the displace-
ment field is interpreted as the presence of defects in elastic
media.

Inwhat follows, we consider only static deformations with
the displacement field u i independent of time. Then the basic
equations of equilibrium for small deformations are (see,
e.g., [61])

qjs j i � f i � 0 ; �2�
s i j � ld i jE k

k � 2mE i j ; �3�

where s i j is the stress tensor, which is assumed to be
symmetric. The tensor of small deformations Ei j is given by
the symmetrized partial derivative of the displacement vector:

Ei j � 1

2
�qiuj � qjui� : �4�

Latin indices are raised and lowered with the Euclidean
metric di j and its inverse d i j. The letters l and m denote
constants characterizing elastic properties of media and are
called LameÂ coefficients. The functions f i�x� describe the
total density of nonelastic forces inside the medium. We
assume in what follows that such forces are absent:
f i�x� � 0. Equation (2) is Newton's law, and Eqn (3) is
Hook's law relating stresses to deformations.

In a Cartesian coordinate system and for small deforma-
tions, the difference between upper and lower indices
disappears because the indices are raised and lowered with
the help of the Euclidean metric. One usually forgets about
this difference due to this reason, and this is fully justified. But
in the presence of defects, the notion of the Cartesian
coordinate system and Euclidean metric is absent, and the
indices are raised and lowered with the help of a Riemannian
metric. Therefore, we distinguish between the upper and
lower indices as is accepted in differential geometry, having
the transition to elastic media with defects in mind.

The main problem in the linear elasticity theory is the
solution of the second-order equations for the displacement
vector that arise after substitution of (3) into (2) with some
boundary conditions. Many known solutions are in good
agreement with experiment. Therefore, one may say that
equations (3) and (2) have a solid experimental background.

We now look at the elastic deformations from the
standpoint of differential geometry. From the mathematical
standpoint, map (1) is itself a diffeomorphism of the
Euclidean space R3. The Euclidean metric di j is then induced
by the map y i ! x i. This means that in the deformed state,
the metric in the linear approximation is given by

gi j�x� � qyk

qx i

qy l

qx j
dkl � di j ÿ qi uj ÿ qj u i � di j ÿ 2Ei j ; �5�

i.e., is defined by the tensor of small deformations (4). We
note that in the linear approximation, Ei j�x� � Ei j�y� and
quj=qx i � quj=qy i.

In Riemannian geometry, the metric uniquely defines the
Levi-Civita connection eGi j

k�x� (Christoffel symbols),
Eqn (A.11). We can compute curvature tensor (A.15) for
these symbols. This tensor is identically zero, eRi j k

l�x� � 0,
because the curvature of the Euclidean space is zero, and the
map y i ! x i is a diffeomorphism. The torsion tensor is equal
to zero for the same reason. Thus, an elastic deformation of
the medium corresponds to the trivial Riemann ±Cartan
geometry, with zero curvature and torsion tensors.

The physical interpretation of metric (5) is as follows. The
external observer fixes a Cartesian coordinate system corre-
sponding to the ground undeformed state of the medium. The
medium is then deformed, and the external observer discovers
that the metric becomes nontrivial in this coordinate system.
If we assume that elastic perturbations in the medium
(phonons) propagate along extremals (lines of minimal
length), then their trajectories in the deformed medium are
defined by Eqns (A.14). Trajectories of phonons are now not
straight lines because the Christoffel symbols are nontrivial
(eGjk

i 6� 0). In this sense, metric (5) is observable. Here, we see

y i

x i

x i � y i � u i�x�

Figure 1. Elastic deformations.
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the essential role of the Cartesian coordinate system y i

defined by the undeformed state, with which the measure-
ment process is connected.

We assume that the metric gi j�x� given in Cartesian
coordinates corresponds to some state of an elastic medium
without defects. The displacement vector is then defined by
system of equations (5), and its integrability conditions are
the equality of the curvature tensor to zero, in accordance
with Theorem 2 in theAppendix. In the linear approximation,
these conditions are known in elasticity theory as the Saint-
Venant integrability conditions.

We make a remark that is important for the following
consideration. For appropriate boundary conditions, the
solution of elasticity theory equations (2) and (3) is unique.
From the geometric standpoint, this means that elasticity
theory fixes diffeomorphisms. This fact is used in the
geometric theory of defects. Equations of nonlinear elasticity
theory written in terms of the metric or vielbein are used for
fixing the coordinate system.

3. Dislocations

We start with the description of linear dislocations in elastic
media (see, e.g., [61, 62]). The simplest and most widespread
examples of linear dislocations are shown in Fig. 2.We cut the
medium along the half-plane x2 � 0, x1 > 0, move the upper
part of the medium located over the cut x2 > 0, x1 > 0 by the
vector b towards the dislocation axis x3, and glue the cutting
surfaces. The vector b is called the Burgers vector. In the
general case, the Burgers vector may not be constant on the
cut. For the edge dislocation, it varies from zero to some
constant value b as it moves from the dislocation axis. After
the gluing, the medium comes to the equilibrium state called
the edge dislocation, see Fig. 2a. If the Burgers vector is
parallel to the dislocation line, it is called the screw dislocation
(Fig. 2b).

A given dislocation can be made in different ways. For
example, if the Burgers vector is perpendicular to the cutting
plane and directed from it in the considered cases, then the
produced cavity must be filled with themedium before gluing.
It is easy to imagine that the edge dislocation is also obtained
as a result, but rotated by the angle p=2 around the x3 axis.
This example shows that a dislocation is characterized not by
the cutting surface but by the dislocation line and the Burgers
vector.

From the topological standpoint, the medium containing
several dislocations or even an infinite number of them is the
Euclidean space R3. In contrast to the case of elastic

deformations, the displacement vector in the presence of
dislocations is no longer a smooth function because of the
presence of cutting surfaces. At the same time, we assume that
partial derivatives of the displacement vector qju i (the
distortion tensor) are smooth functions on the cutting
surface. This assumption is justified physically because these
derivatives define deformation tensor (4). In its turn, partial
derivatives of the deformation tensor must exist and be
smooth functions in the equilibrium everywhere except,
possibly, the dislocation axis, because otherwise equations
of equilibrium (2) have no meaning. We assume that the
metric and vielbein are smooth functions everywhere in R3

except, maybe, dislocation axes, because the deformation
tensor defines the induced metric (5).

The main idea of the geometric approach amounts to the
following. To describe single dislocations in the framework of
elasticity theory, we must solve equations for the displace-
ment vector with some boundary conditions on the cuts. This
is possible for a small number of dislocations. But, with an
increasing number of dislocations, the boundary conditions
become so complicated that the solution of the problem
becomes unrealistic. Besides, one and the same dislocation
can be created by different cuts, which leads to an ambiguity
in the displacement vector field. Another shortcoming of this
approach is that it cannot be applied to the description of a
continuous distribution of dislocations because the displace-
ment vector field does not exist in this case at all because it
must have discontinuities at every point. In the geometric
approach, the basic variable is the vielbein, which by
assumption is a smooth function everywhere except, possi-
bly, dislocation axes. We postulate new equations for the
vielbein (see Section 5). In the geometric approach, the
transition from a finite number of dislocations to their
continuous distribution is simple and natural. In this way,
the smoothing of singularities occurs on dislocation axes in
analogy with the smoothing of mass distribution for point
particles in passing to continuous media.

We now develop the formalism of the geometric
approach. In the general case involving defects, we do not
have a preferred Cartesian coordinate frame in the equili-
brium because there is no symmetry. Therefore, we consider
arbitrary coordinates x m, m � 1; 2; 3, in R3. We use Greek
letters for coordinates allowing arbitrary coordinate changes.
Then the Burgers vector can be expressed as the integral of the
displacement vector�

C

dxm qmu i�x� � ÿ
�
C

dxm qmy i�x� � ÿbi ; �6�

where C is a closed contour surrounding the dislocation axis,
Fig. 3.

This integral is invariant under arbitrary coordinate
transformations x m ! x m 0 �x� and covariant under global
SO�3� rotations of y i. Here, components of the displacement
vector field u i�x� are considered with respect to the ortho-
normal basis in the tangent space, u � u iei. If components of
the displacement vector field are considered with respect to
the coordinate basis u � u m qm, the invariance of integral (6)
under general coordinate changes is violated.

In the geometric approach, we introduce a new indepen-
dent variable Ð the vielbein Ð instead of partial derivatives
qm ui,

em
i�x� � qmy i outside the cut,

lim qm y i on the cut.

�
�7�

b

x1

x3

x2

a

b
x1

x3

x2

b

Figure 2. Straight linear dislocations. (a) The edge dislocation. The

Burgers vector b is perpendicular to the dislocation line. (b) The screw

dislocation. The Burgers vector b is parallel to the dislocation line.
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The vielbein is a smooth function on the cut by construction.
We note that if the vielbein was simply defined as the partial
derivative qmy i, then it would have a d-function singularity on
the cut because the functions y i�x� have a jump. The Burgers
vector can be expressed through the integral over a surface S
having the contour C as the boundary,�

C

dxmem
i �

��
S

dx m ^ dxn�qmen i ÿ qnemi� � bi ; �8�

where dx m ^ dxn is a surface element. As a consequence of
the definition of the vielbein in (7), the integrand is equal to
zero everywhere except at the dislocation axis. For the edge
dislocation with a constant Burgers vector, the integrand has
a d-function singularity at the origin. The criterion for the
presence of a dislocation is a violation of the integrability
conditions for the system of equations qmy i � em

i:

qmeni ÿ qnemi 6� 0 : �9�

If dislocations are absent, then the functions y i�x� exist and
define the transformation to a Cartesian coordinates frame.

In the geometric theory of defects, the field em
i is identified

with the vielbein. Next, we compare the integrand in (8) with
the expression for torsion in Cartan variables, Eqn (A.21).
They differ only by terms containing the SO�3� connection.
This is the ground for the introduction of the following
postulate. In the geometric theory of defects, the Burgers
vector corresponding to a surface S is defined by the integral
of the torsion tensor:

bi �
��

S

dxm ^ dxnTmn
i :

This definition is invariant with respect to general coordinate
transformations of xm and covariant with respect to global
rotations. Thus, the torsion tensor has a straightforward
physical interpretation: it is equal to the surface density of
the Burgers vector.

The physical interpretation of the SO�3� connection is
given in Section 4, and we now show how this definition
reduces to the expression for Burgers vector (8) obtained

within elasticity theory. If the curvature tensor for the SO�3�
connection is zero, then, according to Theorem 3, the
connection is locally trivial, and there exists an SO�3�
rotation such that o j

m i � 0. In this case, we return to
expression (8).

If the SO�3� connection is zero and the vielbein is a
smooth function, then the Burgers vector corresponds
uniquely to every contour. It can then be expressed as a
surface integral of the torsion tensor. The surface integral
depends only on the boundary contour but not on the surface
due to the Stokes theorem.

We have shown that the presence of linear defects results
in a nontrivial torsion tensor. In the geometric theory of
defects, the equality of the torsion tensor to zero, Tmn

i � 0, is
naturally considered the criterion for the absence of disloca-
tions. Then, under the name dislocation fall not only linear
dislocations but, in fact, arbitrary defects in elastic media. For
example, point defects; vacancies and impurities, are also
dislocations. In the first case, we cut out a ball from the
Euclidean space R3 and then shrink the boundary sphere to a
point (Fig. 4). In the case of impurity, a point of the Euclidean
space is blown up to a sphere and the produced cavity is filled
with the medium. Point defects are characterized by the mass
of the removed or added media, which is also defined by the
vielbein as [22]

M � r0

���
R3

d3x
ÿ
det em

i ÿ det e
�
m
i �; e

�
m
i � qmy i ; �10�

where y i�x� are the transition functions to a Cartesian
coordinate frame in R3 and r0 is the density of the medium,
which is supposed to be constant. The mass is defined by the
difference of two integrals, each of them being separately
divergent. The first integral is equal to the volume of the
medium with defects and the second is equal to the volume of
the Euclidean space. The torsion tensor for a vacancy or
impurity is zero everywhere except at one point, where it has a
d-function singularity. For point defects, the notion of the
Burgers vector is absent.

According to the given definition, the mass of an impurity
is positive because matter is added to the medium, and the

x2

x1

C

b

Figure 3. Section of the medium with the edge dislocation. C is the

integration contour for the Burgers vector b.

Figure 4. Point defect: a vacancy appears when a ball is cut out from the

medium, and the boundary sphere is shrunk to a point.
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mass of a vacancy is negative because part of the medium is
removed. The negative sign of the mass causes serious
problems for the physical interpretation of solutions of the
equations of motion or the SchroÈ dinger equation. Hence, we
make a remark. Strictly speaking, the integral in (10) should
be called the `bare' mass because this expression does not
account for elastic stresses arising around a point dislocation.
The effective mass of such a defect must contain at least two
contributions: the bare mass and the free energy coming from
elastic stresses. The question about the sign of the effective
mass is not solved yet and requires a separate analysis.

In addition to point and line dislocations, surface defects
may also exist in three-dimensional space. In the geometric
approach, all of them are called dislocations because they
correspond to a nontrivial torsion.

4. Disclinations

In the preceding section, we related dislocations to a
nontrivial torsion tensor. For this, we introduced an SO�3�
connection. Now we show that the curvature tensor for the
SO�3� connection defines the surface density of the Frank
vector characterizing other well-known defects Ð disclina-
tions in the spin structure of media [61].

Let a unit vector field n i�x� �n ini � 1� be given at all points
of the medium. For example, n i has the meaning of the
magnetic moment located at each point of the medium for
ferromagnets (Fig. 5a). For nematic liquid crystals, a unit
vector field n i with the equivalence relation n i � ÿn i

describes the director field (Fig. 5b).
We fix some direction in the medium n i

0. Then the field
n i�x� at a point x can be uniquely defined by the field
oi j�x� � ÿo j i�x� taking values in the rotation algebra so (3)
(the rotation angle),

n i � n j
0Sj

i�o� ;

where Sj
i 2 SO�3� is the rotationmatrix corresponding to the

algebra element o i j. Here, we parameterize the rotation
group SO�3� by elements of its algebra (see, e.g., [24]) as

S j
i �

ÿ
e�oe�

�
i
j � cos od j

i �
�oe�i j
o

sin o

� oio j

o2
�1ÿ cos o� 2 SO�3� ; �11�

where �oe� j
i � o ke j

ki and o � ����������
o ioi

p
is the modulus of the

vectoroi. The pseudovector o k � oi jei j k=2, where ei j k is the
totally antisymmetric third-rank tensor, e123 � 1, is directed
along the rotation axis and its length equals the rotation
angle. We call the field oi j�x� the spin structure of the
medium.

If a medium has a spin structure, then it may have defects
called disclinations. For linear disclinations parallel to the x3

axis, the vector field n lies in the perpendicular plain x1, x2.
The simplest examples of linear disclinations are shown in
Fig. 6. Every linear disclination is characterized by the Frank
vector

Yi � Ei j k O j k ; �12�

where

O i j �
�
C

dxm qmo i j �13�

and the integral is taken along a closed contour C surround-
ing the disclination axis. The length of the Frank vector is
equal to the total angle of rotation of the field n i as it goes
around the disclination.

The vector field n i defines a map n: R3 ! S 2 of the
Euclidean space to a sphere. For linear disclinations parallel
to the x3 axis, this map is restricted to amap of the planeR2 to
the circle S 1. In this case, the total rotation angle must
obviously be a multiple of 2p.

For nematic liquid crystals, we have the equivalence
relation n i � ÿn i. Therefore, for linear disclinations parallel
to the x3 axis, the director field defines a map n:R2 ! RP1 of
the plane to the projective line. In this case, the length of the
Frank vector must be a multiple of p. The corresponding
examples of disclinations are shown in Fig. 7.

As for the displacement field, the field o i j�x�, taking
values in the algebra so (3), is not a smooth function on R3 in
the presence of disclinations.Wemake a cut inR3 bounded by
the disclination axis. Then the field o i j�x�may be considered
smooth in the whole space except the cut. We assume that all
partial derivatives of o i j�x� have the same limit as it
approaches the cut from both sides. We then define the new
field

om
i j � qmo i j outside the cut,

lim qm o i j on the cut.

�
�14�

The functions o i j
m are smooth everywhere by construction

except, maybe, on the disclination axis. Then the Frank
vector can be expressed as the surface integral

O i j �
�
C

dxmom
i j �

��
S

dx m ^ dxn�qmo i j
n ÿ qnom

i j� ; �15�

where S is an arbitrary surface having the contour C as the
boundary. If the field o i j

m is given, then the integrability

a b

Figure 5. Examples of media with the spin structure: (a) ferromagnet,

(b) liquid crystal.

x2

x1

C

a x2

x1

C

b

Figure 6. The vector field distributions on the plane x1, x2 for the linear

disclinations parallel to the x3 axis. (a) jYj � 2p and (b) jYj � 4p.
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conditions for the system of equations qmo i j � om
i j are

qmon
i j ÿ qnom

i j � 0 : �16�

This noncovariant equality yields the criterion for the absence
of disclinations.

In the geometric theory of defects, we identify the field
om

i j with the SO�3� connection. In the expression for the
curvature in (A.22), the first two terms coincide with (16), and
we therefore postulate the covariant criterion of the absence
of disclinations as the equality of the curvature tensor for the
SO�3� connection to zero:

Rmn
i j � 0 :

Simultaneously, we give the physical interpretation of the
curvature tensor as the surface density of the Frank vector

O i j �
��

dxm ^ dxnRmn
i j : �17�

This definition reduces to the previous expression for the
Frank vector (15) in the case where rotation of the vector n
occurs in a fixed plane. In this case, rotations are restricted by
the subgroup SO�2� � SO�3�. The quadratic terms in the
expression for the curvature in (A.22) disappear because the
rotation group SO�2� is Abelian, and we obtain the previous
expression for Frank vector (15).

Thus, we described the media with dislocations (defects of
elastic media) and disclinations (defects in the spin structure)
in the framework of the Riemann ±Cartan geometry, the
torsion and curvature tensors being identified with the surface
density of dislocations and disclinations, respectively. The
relations between physical and geometrical notions are
summarized in the Table.

The same physical interpretation of torsion and curvature
was considered in [63]. Several possible functionals for the
free energy were also considered. In the next section, we
propose a new expression for the free energy.

5. Free energy

Until now, we have discussed only the relation between
physical and geometrical notions. To complete the construc-
tion of the geometric theory of defects, we have to postulate
equations of equilibrium describing the static distribution of
defects in media. The vielbein em

i and SO�3� connection om
i j

are basic and independent variables in the geometric
approach. In contrast to previous geometric approaches, we
completely abandon the displacement field u i and spin
structure o i j as the fields entering the system of equilibrium
equations. In the general case of a continuous distribution of
defects, they simply do not exist. Nevertheless, at some level
and under certain circumstances, they can be reconstructed,
and we discuss this in the following section.

The expression for free energy was derived in [22]. We
assume that equations of equilibrium must be covariant
under general coordinate transformations and local rota-
tions, be at most of the second order, and follow from a
variational principle. The expression for the free energy
leading to the equilibrium equations must then be given by
the volume integral of a scalar function (the Lagrangian) that
is quadratic in torsion and curvature tensors. There are three
independent invariants quadratic in the torsion tensor and
three independent invariants quadratic in the curvature
tensor in three dimensions. It is possible to add the scalar
curvature and a `cosmological' constant L. We thus obtain a
general eight-parameter Lagrangian

1

e
L � ÿKR� 1

4
Ti j k�b1Ti j k � b2T

k i j � b3T
jd i k�

� 1

4
Ri j k l�g1Ri j k l � g2R

k l i j � g3R
ikd j l�ÿ L ; e �det em

i;

�18�

where K, b1;2;3, and g1;2;3 are constants, and we have
introduced the trace of the torsion tensor Tj � Ti j

i and the
Ricci tensor Rik � Ri j k

j. Here and in what follows, transfor-
mation of the Greek indices into the Latin ones and vice versa
is always performed using the vielbein and its inverse. For
example,

Ri j k l � Rmnkl e
m
i e

n
j; Ti j k � Tmnk e

m
i e

n
j :

The particular feature of three dimensions is that the full
curvature tensor is in a one-to-one correspondence with Ricci
tensor (A.25) and has three irreducible components. There-
fore, the Lagrangian contains only three independent
invariants quadratic in the curvature tensor. We do not
need to add the Hilbert ± Einstein Lagrangian eR, also
yielding second-order equations, to the free energy (18)
because of identity (A.26).

Thus, the most general Lagrangian depends on eight
constants and leads to very complicated equations of
equilibrium. At present, we do not know precisely what
values of the constants describe this or that medium. There-
fore, we make physically reasonable assumptions to simplify
matters. Namely, we require that equations of equilibrium
must allow the following three types of solutions.

1. There are solutions describing the media with only
dislocations,

Rmn
i j � 0; Tmn

i 6� 0 :

x2

x1

C

a x2

x1

C

b

Figure 7. The director field distribution in the x1, x2 plane for the linear

disclinations parallel to the x3 axis. (a) jYj � p and (b) jYj � 3p.

Table. The relation between physical and geometrical notions in the
geometric theory of defects.

Existence of defects Rmn
i j Tmn

i

Elastic deformations 0 0

Dislocations 0 6� 0

Disclinations 6� 0 � 0

Dislocations and disclinations 6� 0 6� 0
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2. There are solutions describing the media with only
disclinations,

Rmn
i j 6� 0; Tmn

i � 0 :

3. There are solutions describing the media without
dislocations and disclinations,

Rmn
i j � 0; Tmn

i � 0 :

It turns out that these simple assumptions reduce the number
of independent parameters from eight to two. We now prove
this statement. Lagrangian (18) yields the equilibrium
equations

1

e

dL
demi
� K�Re mi ÿ 2R m

i �

� b1

�
HnT

nm
i ÿ 1

4
Tjk lT

j k l emi � T m j kTi j k

�
� b2

�
ÿ 1

2
Hn�Ti

mn ÿ Ti
nm� ÿ 1

4
Tjk lT

l j ke mi

ÿ 1

2
Tj m kTk i j � 1

2
Tjk mTk i j

�
� b3

�
ÿ 1

2
Hn�T ne mi ÿ Tme ni� ÿ 1

4
TjT

jemi

� 1

2
TmTi � 1

2
TjTi j

m
�

� g1

�
ÿ 1

4
Rjk lmR

j k lme mi � R m j k lRi j k l

�
� g2

�
ÿ 1

4
Rjk lmR

lm j ke mi � Rk lm jRi j k l

�
� g3

�
ÿ 1

4
RjkR

j ke mi � 1

2
R m jRi j � 1

2
RjkRj i k

m
�

� Le mi � 0 ; �19�

1

e

dL
dom

i j
� K

�
1

2
Ti j

m � Ti e
m
j

�
� b1

1

2
T m

j i

� b2
1

4
�T m

i j ÿ Ti j
m�

� b3
1

4
Tj e

m
i � g1

1

2
HnR

nm
i j � g2

1

2
HnRi j

nm

� g3
1

4
Hn�Rn

i e
m
j ÿ R m

i e
n
j� ÿ �i$ j � � 0 ; �20�

where the covariant derivative acts with the SO�3� connection
on Latin indices and with the Christoffel symbols on Greek
ones. For example,

HnT
rm

i � qnT rm
i � eGns

rT sm
i � eGns

mTrs
i ÿ oni

jT rm
j ;

HnR
rm

i j � qnR rm
i j � eGns

rR sm
i j � eGns

mR rs
i j

ÿ oni
kR rm

k j ÿ onj
kR rm

i k :

The first condition for the class of solutions of the
equilibrium equations is that they permit solutions describ-
ing the presence of only dislocations in media. This means the
existence of solutions with zero curvature tensor correspond-
ing to the absence of disclinations. Substitution of the

condition Rmn
i j � 0 in Eqn (20) for the SO�3� connection

yields

�12k� 2b1 ÿ b2 ÿ 2b3�Ti � 0 ;

�Kÿ b1 ÿ b2�T � � 0 ; �21�
�4K� 2b1 ÿ b2�Wi j k � 0 :

Here, Ti, T
�, and Wi j k are the irreducible components of the

torsion tensor,

Ti j k �Wij k � T �Ei j k � 1

2
�di kTj ÿ dj kTi� ;

where

T � � 1

6
Ti j k E i j k ; Tj � Ti j

i ;

Wij k � Ti j k ÿ T � Ei j k ÿ 1

2
�di kTj ÿ dj kTi� ;

Wi j k E i j k � 0; Wij
i � 0 :

In the general case of dislocations, all irreducible
components of the torsion tensor differ from zero (Ti, T

�,
Wij k 6� 0) and Eqns (21) have a unique solution

b1 � ÿK; b2 � 2K; b3 � 4K : �22�

For these coupling constants, the first four terms in
Lagrangian (18) are equal to the Hilbert ± Einstein Lagran-
gian K eR�e� up to a total divergence due to identity (A.26).
Equation (19) then reduces to the Einstein equations with a
cosmological constant

eRmn ÿ 1

2
gmn eRÿ L

2K
gmn � 0 : �23�

In this way, the first condition is satisfied.
According to the second condition, the equations of

equilibrium must allow solutions with zero torsion Tmn
i � 0.

In this case, the curvature tensor has the additional symmetry
Ri j k l � Rk l i j, and Eqn (20) becomes�

g1� g2 �
1

4
g3

�
Hn�RSn

ie
m
j ÿRSm

ie
n
j ÿRSn

je
m
i �RSm

je
n
i�

� 1

6
�g1 � g2 � 4g3��eni emj ÿ e mi e

n
j�HnR � 0 : �24�

Here, we decompose the Ricci tensor into irreducible
components,

Ri j � RS
i j � RA

i j � 1

3
Rdi j ;

where

RS
i j � RS

j i; RSi
i � 0 ; RA

i j � ÿRA
j i :

We note that for zero torsion, the Ricci tensor is symmetric:
RA

i j � 0. Contraction of Eqn (24) with em
j leads to the

equation�
g1 � g2 �

1

4
g3

�
HnR

Sn
m � 1

3
�g1 � g2 � 4g3�HmR � 0 :

In the general case of nonvanishing curvature, the covariant
derivatives HnR

Sn
m and HmR differ from zero and are

independent. Therefore, we obtain two equations for the
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coupling constants,

g1 � g2 �
1

4
g3 � 0 ; g1 � g2 � 4g3 � 0 ;

which have a unique solution

g1 � ÿg2 � g; g3 � 0 : �25�

In this case, Eqn (19) for the vielbein corresponding to a
nonzero torsion also reduces to Einstein equations (23).

The last requirement for the existence of solutions with
zero curvature and torsion is satisfied only for zero cosmolo-
gical constant L � 0.

Therefore, the simple and physically reasonable require-
ments define the two-parameter Lagrangian [22]

1

e
L � ÿK eR� 2gRA

i jR
A i j ; �26�

which is the sum of the Hilbert ± Einstein Lagrangian for the
vielbein and the square of the antisymmetric part of the Ricci
tensor. We note that eR�e� and RA

i j�e;o� are constructed for
different metric connections.

Other quadratic Lagrangians were considered, e.g., in [9,
63]. We note that they also contain the displacement vector as
an independent variable along with the vielbein.

Expression (26) defines the free energy density in the
geometric theory of defects and leads to the equilibrium
equations (the Euler ±Lagrange equations). In our geometric
approach, the displacement vector and spin structure do not
enter expression (26) for the free energy.

6. Gauge fixing

In the geometric approach, the vielbein em
i and SO�3�

connection omi
j are the only variables. The displacement

field ui and the spin structure oi
j can be introduced only in

those regions of media where defects are absent. As the
consequence of the absence of disclinations Rmni

j � 0, the
SO�3� connection is actually a pure gauge (A.23), i.e., the spin
structure oi

j exists. If, in addition, dislocations are absent
(Tmn

i � 0), then there is the displacement field such that its
partial derivatives are equal to the vielbein, Eqn (A.24). In
this and only in this case can we introduce the displacement
field and spin structure. We show below that this can be done
such that the equations of the nonlinear elasticity theory and
the principal chiral SO�3� field are satisfied.

For free energy (26), the Euler ± Lagrange equations are
covariant under general coordinate transformations in R3

and localSO�3� rotations. Thismeans that any solution of the
equilibrium equations is defined up to diffeomorphisms and
local rotations. For the geometric theory of defects to make
predictions, we have to fix the coordinate system (to fix the
gauge in the language of gauge field theory). This allows us to
choose a unique representative from each class of equivalent
solutions. After tat, we can say that this solution of the
Euler ±Lagrange equations describes the distribution of
defects in the laboratory coordinate system.

We start with gauge-fixing the diffeomorphisms. For this,
we choose the elastic gauge proposed in [23]. This question is
of primary importance, and we discuss it in detail.

Equations (2) and (3) of elasticity theory for f i � 0 yield
the second-order equation for the displacement vector,

�1ÿ 2s�4ui � qi qj u j � 0 ; �27�

where

s � l
2�l� m�

is the Poisson ratio (ÿ14s4 1=2) and 4 is the Laplace
operator. It can be rewritten in terms of induced metric (5),
for which we obtain a first-order equation. We choose
precisely this equation as the gauge condition fixing the
diffeomorphisms. We note that the gauge condition is not
uniquely defined because the induced metric is nonlinear in
the displacement vector, and different equations for the
metric may have the same linear approximation. We give
two possible choices,

g mn H
�
mgnr � s

1ÿ 2s
g mnH

�
rgmn � 0 ; �28�

g mn� H
�
mgnr � s

1ÿ 2s
H
�
rg

T � 0 ; �29�
where we introduced the notation gT � g mn� gmn for the trace of
metric. Gauge conditions (28) and (29) are understood in the
following way. The metric g mn

�
is a Euclidean metric written in

an arbitrary coordinate system, for example, in a cylindrical
or spherical coordinate system. The covariant derivative H

�
m is

built from the Christoffel symbols corresponding to the
metric g

�
mn, and H

�
m g
�
nr � 0 as a consequence. The metric gmn

is the metric describing dislocations [an exact solution of the
equilibrium equations for free energy (26)]. The gauge
conditions differ because in the first and second cases, the
contraction is performed with the metric of dislocation gmn

and the Euclidean metric g
� mn

, respectively, without changing
the linear approximation. Both gauge conditions yield
Eqn (27) in the linear approximation in the displacement
vector (5). This is most easily verified in Cartesian coordi-
nates.

From the geometric standpoint, we have the following.
The medium with dislocations is diffeomorphic to the
Euclidean space R3 equipped with two metrics g

�
mn and gmn.

Themetric g
�
mn is a flat Euclideanmetric written in an arbitrary

coordinate system. The metric gmn is not flat and describes the
distribution of dislocations in the same coordinate system. In
fact, the metric g

�
mn is used only to fix the coordinate system in

which the metric gmn is measured.
If solution of the equilibrium equations satisfies one of the

gauge conditions (28), (29), written, for example, in a
cylindrical coordinate system, then we say that the solution
is found in the cylindrical coordinates. We suppose here that
the distribution of dislocations in elastic media in the
laboratory cylindrical coordinate system is described by this
particular solution. Analogously, we may seek solutions in a
Cartesian, spherical, or any other coordinate system.

Gauge conditions can also be written for the vielbein em
i,

which is defined by Eqn (A.16). This involves additional
arbitrariness because the vielbein is defined up to local
rotations. This invariance leads to different linear approx-
imations for the vielbein in terms of the displacement vector.
We consider two possibilities in Cartesian coordinates:

emi � dmi ÿ qm ui ; �30�
emi � dmi ÿ 1

2
�qm ui � qi um� ; �31�

where the index is lowered with the help of the Kronecker
symbol. For these possibilities and gauge condition (29), we
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have two gauge conditions for the vielbein,

g mn� H
�
meni � 1

1ÿ 2s
e m
�

i H
�
me

T � 0 ; �32�

g mn� H
�
meni � s

1ÿ 2s
e m
�

i H
�
me

T � 0 ; �33�

where eT � e
� m

i em
i. These conditions differ in the coefficient

before the second term. We note that in a curvilinear
coordinate system, the covariant derivative H

�
m must also

include a flat SO�3� connection acting on indices i, j. We can
also write other possible gauge conditions having the same
linear approximation. The question of the correct choice is
unanswered at present and outside the scope of this review. At
the moment, we want only to demonstrate that the system of
coordinates must be fixed and that the gauge condition
depends on the Poisson ratio, which is an experimentally
observed quantity.

Gauge conditions (32) ± (33) are first-order equations by
themselves and have some arbitrariness. Therefore, to fix a
solution uniquely, we must impose additional boundary
conditions on the vielbein for any given problem.

If the defect-free case, Tmn
i � 0 and Rmn j

i � 0, and the
equilibrium equations are satisfied because the Euler ±
Lagrange equations for (26) are satisfied. In this and only in
this case, we can introduce a displacement vector, and the
elastic gauge reduces to the equations of the nonlinear
elasticity theory. In the presence of defects, a displacement
field does not exist, and the elastic gauge simply defines the
vielbein.

In choosing the free-energy functional, we required that
the conditions Rmn

i j � 0 and Tmn
i � 0 satisfy the Euler ±

Lagrange equations. This is important because otherwise we
would obtain an additional condition on the displacement
vector (the Euler ±Lagrange equations) besides the elasticity
theory equations following from the elastic gauge.

We stress an important point once again. In the geometric
theory of defects, we assume that there is a preferred
laboratory coordinate system in which measurements are
made. This coordinate system is related to the medium
without defects and elastic stresses and corresponds to the
flat Euclidean spaceR3. Gauge conditions (28), (29) and (32),
(33) are written precisely in this Euclidean space R3 and
contain a measurable quantity, the Poisson ratio s. This
property essentially distinguishes the geometric theory of
defects from the models of gravity in which all coordinate
systems are considered equivalent.

The elastic gauge is used to fix the diffeomorphisms.
The expression for the free energy in (26) is also invariant
under local SO�3� rotations, and they must also be fixed.
For this, we recently proposed the Lorentz gauge for the
connection [24]:

qmom j
i � 0 : �34�

This gauge is written in the laboratory Cartesian coordinate
system and has deep physical meaning. That is, let disclina-
tions be absent (Rmnj

i � 0). Then the SO�3� connection is a
pure gauge:

om j
i � qmSÿ1j kSk

i; Sj
i 2 SO�3� :

In this case, the Lorentz gauge reduces to the principal chiral
SO�3�-field equations

qm�qmSÿ1j kSk
i� � 0

for the spin structureoi j�x�. Principal chiral field models (see,
e.g., [64 ± 68]) for different groups and in a different number
of dimensions attract much interest in mathematical physics
because they admit solutions of topological soliton types and
find broad application in physics.

Thus, Lorentz gauge (34) means the following. In the
absence of disclinations, the equations of equilibrium are
identically satisfied, and there exists a field oi j that satisfies
equations for the principal chiral field. By this we mean that
the spin structure of the medium is described by the model of
the principal chiral field in the defect-free case.

The principal chiral field model is not the only one that
can be used for fixing local rotations. The Skyrme model [69]
can also be used for this purpose. The Euler ±Lagrange
equations for this model are not difficult to rewrite in terms
of the SO�3� connection and use as gauge conditions.

There are other models for spin structures. For describing
the distribution of magnetic moments in ferromagnets or the
director field in liquid crystals, one uses the expression for the
free energy depending on the vector n-field itself [70, 61].
Lately, much attention has been paid to the Faddeevmodel of
the n-field [71]. The question of whether there are gauge
conditions for theSO�3� connection that yield thesemodels in
the absence of disclinations is unanswered at present.

Thus, we pose the following problem in the geometric
theory of defects: to find the solution of the Euler ± Lagrange
equations for free energy (26) that satisfies the elastic gauge
for the vielbein and the Lorentz gauge for the SO�3�
connection. In Sections 8 and 11, we solve this problem for
the wedge dislocation in the framework of classical elasticity
theory and the geometric theory of defects, respectively, and
afterwards compare the obtained results.

7. Asymmetric elasticity theory

In the preceding section, we used the elasticity theory and the
principal chiral SO�3�-field model to fix the invariance of free
energy (26) in the geometric theory of defects. This is not a
unique possibility, because other models may be used for
gauge fixing. In the present section, we show how another
model Ð asymmetric elasticity theory Ð can be used for
fixing diffeomorphisms and local rotations.

At the beginning of the last century, the Cosserat brothers
developed the theory of elastic media every point of which is
characterized not only by its position but also by its
orientation in space [72], i.e., a vielbein is specified at every
point (Fig. 8).

From the physical standpoint, this means that every atom
in the crystalline structure is not a point but an extended
object having orientation. In this case, the stress tensor is no
longer symmetric, and the corresponding theory is called the
asymmetric elasticity theory. Contemporary exposition of
this approach is given in [73]. In the present section, we
show that the asymmetric elasticity theory is naturally
incorporated into the geometric theory of defects.

The main variables in the asymmetric elasticity theory are
the displacement vector u i�x� and the rotation angle oi�x�.
The direction of the pseudovector oi coincides with the
rotation axis of the medium element and its length is equal
to the angle of rotation. The angle of rotation discussed in
Section 4 is dual to the spin structure field oi j�x�:
oi j � ei j ko k.

The Cosserat medium is characterized by the stress tensor
si j�x� (the density of forces acting on the surface with the
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normal i in the direction j ) and the torque stress tensor mi j�x�
(the density of torques acting on the surface with the normal i
in the direction j ). The Cosserat medium is in equilibrium if
forces and torques are balanced at each point,

qj s j i � f i � 0 ; �35�

e i j ksj k � qjm j i �mi � 0 ; �36�
where f i�x� and mi�x� are the densities of nonelastic external
forces and torques. As a consequence of Eqn (36), the stress
tensor is symmetric if and only if the condition qjm j i �mi � 0
is satisfied.

The displacement field and rotation angle uniquely define
the deformation tensor Ei j�x� and the twist tensor Ki j�x�:

Ei j � qi uj ÿ oi j ;

Ki j � qi oj; oi j � ei j kok : �37�
In general, the deformation and twist tensors have no
symmetry in their indices.

Hook's law in the Cosserat medium is changed to two
linear relations connecting the stress and torque tensors with
the deformation and twist tensors,

si j � 2mEfi j g � 2aE�i j � � ldi jEkk ; �38�
mi j � 2gKfi j g � 2EK�i j � � bdi jKkk ; �39�

where m and l are the LameÂ coefficients, and a, b, g, and E are
four new elastic constants characterizing the medium. Braces
and square brackets denote symmetrization and antisymme-
trization of indices, respectively.

In the case where

oi j � 1

2
�qi uj ÿ qj ui� ; �40�

the deformation tensor is symmetric and has the previous
form (4). Equation (36), together with (38) and (39), then
reduces to the equation

�g� E�e i j k4qj uk �mi � 0 :

The first term vanishes as a consequence of Eqn (27). Thus,
for spin structure (40) andmi � 0, we return to the symmetric
elasticity theory.

Equations (35), (36), (38), and (39), together with the
boundary conditions, define the equilibrium state of Cosserat
media. We now show how this model is included in the
geometric theory. First, we note that in the absence of defects

(Tmn
i � 0, Rmn

i j � 0), the fields u i and o i j exist. Then the
vielbein and the SO�3� connection are defined by the
deformation and twist tensors in the linear approximation:

em
i � qmy jSj

i�o���d j
m ÿ qmu j ��d i

j � oj
i �� d i

m ÿ Emi ; �41�

om
i j � qmo i j � e i j

_kKm k : �42�

We note that relations (37) can be regarded as equations
for the displacement vector and rotation angle. The corre-
sponding integrability conditions were obtained in [74]. These
integrability conditions are the linear approximations of the
equalities Tmn

i � 0 and Rmn
i j � 0 defining the absence of

defects.
If nonelastic forces and torques are absent ( f i � 0,

mi � 0), then the asymmetric theory of elasticity reduces to
second-order equations for the displacement vector and
rotation angle:

�m� a�4u i � �mÿ a� l� qiqj u j ÿ 2aqj o j i � 0 ; �43�

�g� E�4o i��gÿ E� b� qiqjo j � 2ae i j k�qj uk ÿ oj k� � 0 :

�44�

We rewrite these equations for the vielbein and SO�3�
connection:

�m� a�H m
�
em

i � �mÿ a� l�H i
�
eT ÿ �mÿ a�om

m i � 0 ; �45�
1

2
�g� E� e i j k Hm

�
om j k � 1

2
�gÿ E� b� e m j k H i

�
om j k

� 2ae im jem j � 0 : �46�
Of course, these are not the only equations that coincide with
Eqns (43) and (44) in the linear approximation. At present, we
do not have arguments for a unique choice. The derived
nonlinear equations of the asymmetric elasticity theory can be
used as gauge conditions in the geometric theory of defects.
Here, we have six equations for fixing the diffeomorphisms
(three parameters) and local SO�3� rotations (three para-
meters). Thus, the asymmetric elasticity theory is naturally
embedded in the geometric theory of defects.

In Section 6, we considered the elastic gauge for the
vielbein and the Lorentz gauge for the SO�3� connection. In
this case, the spin structure variables do not interact with
elastic deformations when defects are absent. In the asym-
metric elasticity theory, the elastic stresses directly influence
the spin structure and vice versa.

8. Wedge dislocation in elasticity theory

By wedge dislocation, we understand an elastic medium that
is topologically the Euclidean space R3 without the z � x3

axis Ð the core of dislocation, obtained as follows. We
consider the infinite elastic medium without defects and cut
out an infinite wedge of angle ÿ2py. For definiteness, we
assume that the edge of the wedge coincides with the z axis
(Fig. 9). The edges of the cut are then moved symmetrically
one to the other and glued together. After that, the medium
moves to the equilibrium state under the action of elastic
forces. If the wedge is cut out from themedium, then the angle
is considered negative: ÿ1 < y < 0. For positive y, the wedge
is added. Thus, the elastic media initially occupies a domain
greater or lesser than the Euclidean space R3, depending on

Figure 8. Every point of the Cosserat medium is characterized not only by

its position but also by its orientation in space.
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the sign of the deficit angle y; in cylindrical coordinates r,j, z,
this domain is described by the inequalities

04 r <1; 04j4 2pa; ÿ1 < z <1; a � 1� y:

�47�

We note that the wedge dislocation is often called
disclination. In our approach, this term seems unnatural
because the wedge dislocation is related to a nontrivial
torsion. Moreover, the term disclination is used for defects
in the spin structure.

We now proceed with the mathematical formulation of
the problem for the wedge dislocation in the framework of
elasticity theory. To avoid divergent expressions arising for
infinite media, we suppose that the wedge dislocation is
represented by a cylinder of a finite radius R. This problem
has translational symmetry along the z axis and rotational
symmetry in the x, y plane. Therefore, we use a cylindrical
coordinate system. Let

ûi � �ûr; ûj; ûz� �48�
be the components of the displacement covector with respect
to the orthonormal basis in the cylindrical coordinate system.
In domain (47), this covector satisfies the equilibrium
equation that follows from substitution of (3) in Eqn (2),

�1ÿ 2s�4ûi � H
�
iH
�
j û

j � 0 ; �49�
where H

�
i is the covariant derivative for the flat Euclidean

metric in the considered coordinate system.
For references, we write expressions for the divergence

and Laplacian for a covector field in the cylindrical
coordinate system:

H
�
i û

i � 1

r
qr�rû r� � 1

r
qjûj � qzû z ;

4ûr � 1

r
qr�r qr ûr� � 1

r2
q2jûr � q2z ûr ÿ

1

r2
ûr ÿ 2

r2
qjûj ;

4ûj � 1

r
qr�r qr ûj� � 1

r2
q2jûj � q2z ûj ÿ

1

r2
ûj� 2

r2
qjûr ;

4ûz � 1

r
qr�r qr ûz� � 1

r2
q2jûz � q2z ûz :

Taking the symmetry of the problem into account, we seek the
solution of Eqn (49) in the form

ûr � u�r� ; ûj � A�r�j ; ûz � 0 ;

where u�r� and A�r� are two unknown functions depending
only on the radius. We impose the boundary conditions

ûrjr� 0 � 0; ûjjr� 0 � 0; ûjjj� 0 � 0;

ûjjj� 2pa � ÿ2pyr; qrûrjr�R � 0: �50�

The first four equations are geometrical and correspond
to the process of dislocation creation. The last condition
has simple physical meaning: the absence of external
forces at the boundary of the medium. The unknown
function A�r� is found from the second to the last
boundary condition (50):

A�r� � ÿ y
1� y

r :

Straightforward substitution then shows that the j and z
components of equilibrium equation (49) are identically
satisfied, and the radial component reduces to the equation

qr�r qru� ÿ u

r
� D; D � ÿ 1ÿ 2s

1ÿ s
y

1� y
� const :

The general solution of this equation is

u � D

2
r ln r� c1r� c2

r
; c1;2 � const :

The constant of integration c2 � 0 due to the boundary
condition at zero. The constant c1 is found from the last
boundary condition in (50). Finally, we obtain the known
solution of the considered problem [62]:

ûr � D

2
r ln

r

eR
;

ûj � ÿ y
1� y

rj : �51�

The letter e in the expression for ûr denotes the base of the
natural logarithm. We note that the radial component of the
displacement vector diverges as R!1. This means that the
description of the wedge dislocation requires considering a
finite-radius cylinder.

The linear elasticity theory is applicable for small relative
displacements, which for a wedge dislocation are equal to

dûr
dr
� ÿ y

1� y
1ÿ 2s
2�1ÿ s� ln

r

R
;

1

r

dûj
dj
� ÿ y

1� y
:

This means that we can expect correct results for the
displacement field for small deficit angles (y5 1) and near
the boundary of the cylinder (r � R).

We find themetric induced by the wedge dislocation in the
linear approximation in the deficit angle y. Calculations can
be performed using general formulas (5) or the known
expression for the variation of the metric

dgmn � ÿH
�
mun ÿ H

�
num : �52�

After simple calculations, we obtain the expression for the
metric in the x, y plane:

dl 2 �
�
1� y

1ÿ 2s
1ÿ s

ln
r

R

�
dr 2

� r 2
�
1� y

1ÿ 2s
1ÿ s

ln
r

R
� y

1

1ÿ s

�
dj2 : �53�

R

y

x

ÿ2py

Figure 9. Wedge dislocation with the deficit angle 2py. For negative and

positive y, the wedge is cut out or added, respectively.
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This metric is compared with the metric obtained as the so-
lution of three-dimensional Einstein equations in Section 11.

9. Edge dislocation in elasticity theory

Wedge dislocations are relatively rarely met in nature because
they require a large amount of a medium to be added or
removed, resulting in a vast quantity of energy expenses.
Nevertheless, their study is of great importance because other
linear dislocations can be expressed as a superposition of
wedge dislocations. In this respect, wedge dislocations are
elementary.We show this for an edge dislocationÐone of the
most widespread dislocations, as an example. An edge
dislocation with the core coinciding with the z axis is shown
in Fig. 10a. It appears as the result of cutting themedium over
the half-plane y � 0, x > 0, moving the lower edge of the cut
towards the z axis by a constant (far from the core of the
dislocation) Burgers vector b, and subsequently gluing the
edges. To find the displacement vector field for the edge
dislocation, we may solve the corresponding boundary value
problem for equilibrium equations (49) [61]. However, we
follow another way, knowing the explicit form of the
displacement vector for a wedge dislocation. The edge
dislocation is represented by the dipole of two wedge
dislocations with positive, 2py, and negative, ÿ2py, deficit
angles as shown in Fig. 10b. We assume that the axes of the
first and second wedge dislocations are parallel to the z axis
and intersect the x, y plane at points with the respective
coordinates �0; a� and �0;ÿa�. The distance between the
wedge dislocation axes is 2a. It follows from the expression
for the displacement field in (51) that far away from the origin
(r4 a), the displacement field for the wedge dislocations has
the following form in the first order in small y and a=r:

u �1�x � ÿy
�

1ÿ 2s
2�1ÿ s� x ln

rÿ a sinj
eR

ÿ �yÿ a�
�
jÿ a cosj

r

��
; �54�

u �1�y � ÿy
�

1ÿ 2s
2�1ÿ s� �yÿ a� ln rÿ a sinj

eR

� x

�
jÿ a cosj

r

��
;

u �2�x � y
�

1ÿ 2s
2�1ÿ s� x ln

r� a sinj
eR

ÿ � y� a�
�
j� a cosj

r

��
; �55�

u �2�y � y
�

1ÿ 2s
2�1ÿ s� � y� a� ln r� a sinj

eR

� x

�
j� a cosj

r

��
:

It is sufficient to sum displacement fields (54) and (55) to find
the displacement field for the edge dislocation because the
elasticity theory equations are linear. After simple calcula-
tions, up to the translation of the whole medium by a constant
vector along the y axis, we obtain

ux � b

�
arctan

y

x
� 1

2�1ÿ s�
xy

x2 � y2

�
;

�56�
uy � ÿb

�
1ÿ 2s
2�1ÿ s� ln

r

eR
� 1

2�1ÿ s�
x2

x2 � y2

�
;

where we have introduced the notation for the modulus of the
Burgers vector

b � jbj � ÿ2ay :
This result coincides with the expression for the displacement
field obtained by direct solution of the elasticity theory
equations [61]. Thus, we have shown that the edge disloca-
tion is a dipole of two parallel wedge dislocations.

We next find the metric induced by the edge dislocation.
Using formulas (52), we obtain the metric in the x, y plane in
the linear approximation in y and a=r:

dl 2 �
�
1� 1ÿ 2s

1ÿ s
b

r
sinj

�ÿ
dr 2 � r 2 dj2

�
ÿ 2b cosj

1ÿ s
dr dj : �57�

We note that the induced metric for an edge dislocation is
independent of R.

10. Parallel wedge dislocations

In the absence of disclinations (Rmni
j � 0), the SO�3�

connection is a pure gauge, and equations of equilibrium for
the SO�3� connection (20) are identically satisfied. In this
case, the explicit form of the SO�3� connection is uniquely
determined by the spin structureoi j. The fieldoi j satisfies the
equations for the principal chiral field as a consequence of the
Lorentz gauge in (31). Solution of this system of equations
defines a trivial SO�3� connection. Thus, in the absence of
disclinations, the problem is reduced to the solution of the
Einstein equations for the vielbein in the elastic gauge and
solution of the principal chiral field model for the spin
structure. After that, we can compute the torsion tensor
through formulas (A.21), which defines the surface density
of the Burgers vector.

Because disclinations are absent (the curvature tensor is
equal to zero), we have a space of absolute parallelism. The
whole geometry is then determined by the vielbein em

i, which
uniquely defines the torsion tensor via (A.21) for a vanishing
SO�3� connection. Here, we assume that the trivial SO�3�
connection is equal to zero. The vielbein em

i satisfies the three-
dimensional Einstein equations with a Euclidean signature
metric, which follow from the expression for the free energy
(26) for Rm n j

i � 0,

eRmn ÿ 1

2
gmn eR � Tmn : �58�

y

xR

z b

a

x

y

a

ÿa

b

ÿ2py

2py

Figure 10. Edge dislocation with the Burgers vector b directed to the

dislocation axis (a). Edge dislocation as the dipole of two wedge

dislocations with positive and negative deficit angles (b).
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Here, we have added the source of dislocations Tmn to the
right-hand side of the Einstein equations (it is the energy ±
momentum tensor in gravity).

We note that without a source of dislocations, the model
would be trivial. Indeed, the scalar curvature andRicci tensor
are equal to zero, eR � 0, eRmn � 0 forTmn � 0 as a consequence
of Einstein equations (58). Then, the full curvature tensor
without sources is also equal to zero because in three-
dimensional space, it is in a one-to-one correspondence with
Ricci tensor (A.25). The vanishing of the full curvature tensor
means the triviality of the model because defects are absent in
this case. The similar statement in three-dimensional gravity
is well known. It is usually formulated as: ``Three-dimen-
sional gravity does not describe dynamical, i.e., propagating
degrees of freedom.''

For our purposes, we have to find the solution of Einstein
equations (58) describing one wedge dislocation. The Einstein
equations are a system of nonlinear second-order partial
differential equations. Not too many exact solutions are
known at present, even in a three-dimensional space. The
remarkable exact solution describing an arbitrary static
distribution of point particles is well known in three-
dimensional gravity for the Lorentz signature metric
�� ÿ ÿ� [75 ± 77]. We find this solution for the Euclidean
signature metric and show that it describes an arbitrary
distribution of parallel wedge dislocations in the geometric
theory of defects. Hence, we first consider the more general
case of an arbitrary number of wedge dislocations and then
analyze in detail one wedge dislocation, which is of interest to
us. We do this deliberately because the solution in a more
general case does not involve essential complications. At the
same time, an arbitrary distribution of wedge dislocations is
much more interesting for applications. For example, the
edge dislocation was shown in the preceding section to be
represented by a dipole of two wedge dislocations of different
signs.

We consider an elastic medium with arbitrarily distribu-
ted but parallel wedge dislocations. We choose the coordinate
system such that the z � x3 axis is parallel to the dislocation
axes and the axes fxag � fx; yg, a � 1; 2 are perpendicular to
the z axis. Then the metric has the block-diagonal form

ds2 � dl 2 �N 2 dz2 ; �59�
where

dl 2 � ga b dx
a dxb

is a two-dimensional metric on the x, y plane. A two-
dimensional metric gab�x; y� and a function N�x; y� are
independent of z due to translational symmetry along the z
axis.

We can say this more simply dropping the physical
arguments. We consider the block-diagonal metric of form
(59), which has translational invariance along the z axis. We
then show that the corresponding solution of the Einstein
equations indeed describes an arbitrary distribution of
parallel wedge dislocations.

The curvature tensor for metric (59) has the components

eRa b g
d�R

�2�
a b g

d ; eRa z g
z � 1

N
HaHgN ; eRa b g

z � eRa z g
d � 0 ;

where R
�2�
a b g

d is the curvature tensor for the two-dimensional
metric gab and Ha is the two-dimensional covariant derivative
with the Christoffel symbols.

We choose the source of dislocations as

Tzz � 2p�������
g�2�

p XM
n�1

ynd
�2��rÿ rn� ;

�60�
Ta b � Ta z � Tz a � 0;

where d �2��rÿ rn� � d�xÿ xn� d�yÿ yn� is the two-dimen-
sional d-function on the x, y plane with the support at a
point rn � �xn; yn�. The factor g�2� � det ga b in front of the
sum is due to the property of the d-function, which is not a
function but a tensor density with respect to general
coordinate transformations. We show later that the solution
of the Einstein equations with such a source describes M
parallel wedge dislocations with deficit angles yn, which
intersect the x; y plane at the points �xn; yn�. In three-
dimensional gravity, this source corresponds to particles of
masses mn � 2pyn, being at rest at the points rn.

Einstein equations (58) then reduce to four equations,

HaHbNÿ gabH gHgN � 0 ; �61�

ÿ 1

2
N 3R�2� � 2p�������

g�2�
p XM

n�1
ynd

�2��rÿ rn� ; �62�

where R�2� is the two-dimensional scalar curvature.
The metric of form (59) is still invariant under coordinate

transformations in the x; y plane. Using this residual
symmetry, we fix the conformal gauge on the plane (this is
always possible locally),

ga b � e2fdab ;

where f�x; y� is some function.
In the conformal gauge, Eqn (61) becomes

qaqbN � 0 :

For constant boundary conditions for N on the boundary of
the x, y plane, this equation has the unique solution
N � const. Changing the scale of the z coordinate, we can
setN � 1 without loss of generality. Then Eqn (62) reduces to
the Poisson equation

4f � ÿ2p
X
n

ynd
�2��rÿ rn� ;

which has the general solution

f �
X
n

yn ln jrÿ rnj � 1

2
lnC ; C � const > 0 :

Thus, the metric in the x, y plane is

dl 2�C
Y
n

jrÿ rnj2yn�dr 2� r 2 dj2� ;

04 r <1; 04j < 2p ; �63�

where the polar coordinates r,j cover the whole planeR2 and
not more (this is important!). Any solution of the Einstein
equations is defined up to choosing the coordinate system
because the equations are covariant. Using this, we setC � 1,
which is always possible by choosing the scale of r.

This is indeed the exact solution of the Einstein equations
describing an arbitrary distribution of parallel wedge disloca-
tions. This statement is made clear by the following con-
sideration.
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We note that transition to a continuous distribution of
dislocations in the geometric approach is simple. For this, we
have to substitute a continuous distribution of sources in the
right-hand side of the Einstein equations instead of d-sources.

We consider one wedge dislocation with the source at the
origin in more detail to show that metric (63) indeed describes
an arbitrary distribution of wedge dislocations,

Tzz � 2p�������
g�2�

p yd�2��x; y� : �64�

The corresponding metric (63) for C � 1 is

dl 2 � r2y� dr 2 � r 2 dj2� : �65�

We pass to the new coordinates

r 0 � 1

a
r a ; j0 � aj ; a � 1� y ; �66�

in which the metric becomes Euclidean,

dl 2 � dr 0 2 � r 0 2 dj 0 2 ; �67�

but the range of the polar angle differs from 2p: 04j0 < 2pa,
and covers the x, y plane with the angle 2py removed or
added.

Because the metric coincides with the Euclidean one in the
primed coordinate system r 0;j 0, we have the Euclidean plane
with a removed or added wedge because the angle j0 varies
within the interval �0; 2pa�. The transformation to the
coordinates r;j in (66) means the gluing of the edges of the
wedge that has appeared, which produces a cone. Therefore,
both metrics (65) and (67) describe the same geometric object
Ð conical singularity. The torsion and curvature tensors are
obviously zero everywhere except at the origin.

Creation of a conical singularity coincides exactly with
creation of the wedge dislocation in the geometric theory of
defects. It is not difficult to show that general solution (63)
describes an arbitrary distribution of conical singularities
with deficit angles yn located at points rn. Thus, this solution
describes an arbitrary distribution of parallel wedge disloca-
tions.

In the next section, we consider one wedge dislocation in
detail. For this, we perform one more coordinate transforma-
tion:

f � ar 0; j � 1

a
j 0: �68�

Metric (67) then becomes

dl 2 � 1

a2
df 2 � f 2 dj2; a � 1� y: �69�

This is one more frequently used form of the metric for a
conical singularity.

11. Wedge dislocation in the geometric approach

We now consider a wedge dislocation from the geometric
standpoint. Qualitatively, the creation of a wedge dislocation
coincides with the definition of conical singularity. However,
there is a quantitative difference because metric (69) depends
only on the deficit angle y and cannot coincide with the
induced metric (53) obtained within the elasticity theory. The
difference arises because we require the displacement vector

in the equilibrium to satisfy equilibrium equations after
removing the wedge and gluing its edges (creating conical
singularity) in the elasticity theory. At the same time, the x, y
plane for a conical singularity after the gluing can be
deformed in an arbitrary way. Formally, this manifests itself
in that metric (53) obtained within the elasticity theory
depends explicitly on the Poisson ratio, which is absent in
gravity theory.

We proposed the elastic gauge for solving this problem
[23]. We choose elastic gauge (33) as the simplest one for
a wedge dislocation. This problem can be solved in two
ways. First, the gauge condition can be inserted into the
Einstein equations directly. Second, we can find the
solution in any suitable coordinate system and then find
the coordinate transformation such that the gauge condi-
tion is satisfied.

It is easier to follow the second way because the solution
for the metric is known, Eqn (69). The vielbein can be
associated with metric (69) as

er
r̂ � 1

a
; ej

ĵ � f:

Here, a hat over an index means that it corresponds to the
orthonormal coordinate system, and an index without a hat is
the coordinate one. Components of this vielbein are the
square roots of the corresponding metric components and
therefore have symmetric linear approximation (31). We
transform the radial coordinate f! f �r� because a wedge
dislocation is symmetric under rotations in the x, y plane.
After that transformation, the vielbein components take the
form

er
r̂ � f 0

a
; ej

ĵ � f; �70�
where the prime denotes differentiation with respect to r. We
choose the vielbein corresponding to the Euclidean metric as

e
�
r
r̂ � 1; e

�
j
ĵ � r : �71�

It defines the Christoffel symbols G
�
mn

r and SO�3� connection
o�mi j, which define the covariant derivative. We write only the
nontrivial components

G
�
rj

j � G
�
j r

j � 1

r
; G

�
jj

r � ÿr; o
�
j r̂

ĵ � ÿo�j ĵ
r̂ � 1:

Substitution of the vielbein into gauge condition (33) yields
the Euler differential equation for the transition function

f 00

a
� f 0

ar
ÿ f

r 2
� s
1ÿ 2s

�
f 00

a
� f 0

r
ÿ f

r 2

�
� 0 :

Its general solution depends on two arbitrary constants C1;2,

f � C1r
g1 � C2r

g2 ; �72�

where the exponents g1;2 are defined by the quadratic
equation

g2 � 2gybÿ a � 0; b � s
2�1ÿ s� :

For y > ÿ1, it has real roots of different signs: a positive root
g1 and negative g2. We recall that there are thermodynamical
constraints ÿ14s4 1=2 on the Poisson ratio [61].
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To fix the constants, we impose boundary conditions on
the vielbein:

er
r̂
��
r�R
� 1; ej

ĵ
��
r� 0
� 0 : �73�

The first boundary condition corresponds to the last
boundary condition for displacement vector (40) (the
absence of external forces on the surface of the cylinder),
and the second one corresponds to the absence of the angular
component of the deformation tensor at the core of disloca-
tion. Equations (73) define the values of the integration
constants

C1 � a
g1R g1ÿ1 ; C2 � 0 : �74�

The obtained vielbein defines the metric

dl 2 �
�

r

R

�2g1ÿ2�
dr 2 � a2r 2

g21
dj2

�
; �75�

where

g1 � ÿyb�
��������������������������
y2b2 � 1� y

p
:

This is the solution of the posed problem. The derived
solution is valid for all deficit angles y and for all 0 < r < R.
The obtained metric depends on three constants: y, s, and R.
The dependence on the deficit angle y is due to its occurrence
in the right hand side of Einstein equations (58). The
dependence on the Poisson ratio comes from elastic gauge
(33), and, finally, the dependence on the cylinder radius
comes from boundary condition (73).

If a wedge dislocation is absent, then y � 0, a � 1, and
g1 � 1, and metric (75) goes to the Euclidean one
dl 2 � dr 2 � r 2 dj 2, as expected.

We compare metric (75) obtained within the geometric
approach with the induced metric from elasticity theory in
Eqn (53). First, it has a simpler form. Second, in the linear
approximation in y, we have

g1 � 1� y
1ÿ 2s
2�1ÿ s� ;

and metric (75) can be easily shown to coincide precisely with
metric (53) obtained within the elasticity theory. We see that
induced metric (53) provides only the linear approximation
for themetric obtained within the geometric theory of defects,
which, in addition, has a simpler form. Beyond the perturba-
tion theory, we see essential differences. In particular, metric
(53) is singular at the origin, whereas metric (75) obtained
beyond the perturbation theory is regular.

The stress and deformation tensors are related by Hook's
law (3). There is an experimental possibility to check formulas
(75) because the deformation tensor is the linear approxima-
tion for the induced metric. For this, one has to measure the
stress field for a single wedge dislocation. In this way, the
geometric theory of defects can be experimentally confirmed
or discarded.

The problem of reconstruction of the displacement field
for a given metric reduces to solving differential equations (5)
with metric (75) on the right hand side and boundary
conditions (50). We do not discuss this problem here. We
note that in the geometric theory of defects, a complicated
stage of finding the displacement vector where it exists is
simply absent and is not necessary.

Two-dimensional metric (75) describes the conical singu-
larity in the elastic gauge. The relation between conical
singularities and wedge dislocations was established in [22,
78 ± 80]. In these papers, the metric was used in other gauges
(coordinate systems).

12. Elastic oscillations in media with dislocations

Elastic oscillations in elastic media without defects are
described by a time-dependent vector field u i�t; x� that
satisfies the wave equation (see, e.g., [61])

r0�u i ÿ m4u i ÿ �l� m� q i qj u j � 0 ; �76�

where the dots denote differentiation with respect to time and
r0 is the mass density of the medium, which is assumed to be
constant. If the medium contains defects, then the metric of
the space becomes nontrivial, di j ! gmn � em

ien
jdi j. We

assume that relative displacements for elastic oscillations are
much smaller than stresses induced by defects:

qmu i 5 em
i : �77�

Then, in the first approximation, we assume that elastic
oscillations propagate in a Riemannian space with a non-
trivial metric induced by dislocations. Here, we discard
changes in the metric due to the elastic oscillations them-
selves. Therefore, for elastic oscillations, we postulate the
following equation, which is a covariant generalization of (76)
for spatial variables:

r0�u i ÿ meDu i ÿ �l� m�eHi eHj u
j � 0 ; �78�

where u i denote components of the displacement vector field
with respect to an orthonormal space basis ei (see the
Appendix), eD � eHi eHi is the covariant Laplace ± Beltrami
operator built for the vielbein em

i, and eHi is the covariant
derivative. The explicit form of the covariant derivative of the
displacement field is

eHiu
j � emieHmu

j � emi�qmu j � uk eomk
j � ;

where eomk
j is the SO�3� connection built for zero torsion.

We note that the displacement vector field describing
elastic oscillations is not the total displacement vector field
of points of amediumwith dislocations. It was already said in
Section 3 that the displacement field for dislocations can be
introduced only in those regions of the medium where defects
are absent. If it is denoted by u i

D, then the total displacement
field in these regions is given by the sum u i

D � u i. There, the
vielbein is defined only by the displacement field for
dislocations em

i � qmu i
D. We note that the smallness of

relative deformations (77) is also meaningful in those regions
of space where displacements u i

D are not defined.
We now decompose the displacement field covariantly

into transverse and longitudinal parts uLi and uTi,

u i � uTi � uLi ;

which are defined by the relations

eHi u
Ti � 0 ; �79�

eHi u
L
j ÿ eHj u

L
i � 0 : �80�
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In three-dimensional space, the decomposition of a vector
field into longitudinal and transverse parts up to a constant is
unique. We recall that Latin indices are lowered with the help
of Kronecker symbols, u i � ui, and this operation commutes
with covariant differentiation. Equation (80) can be rewritten
as

eHi u
L
j ÿ eHj u

L
i � e mi e

n
j�eHm u

L
n ÿ eHn u

L
m �

� e mi e
n
j�qm uLn ÿ qn uLm � � 0 ;

because transformation of Latin indices into Greek ones
commutes with the covariant differentiation, and the Chris-
toffel symbols are symmetric in the first two indices. The last
equality means that the 1-form dxmuLm is closed. It is easily
verified that Eqn (78) for elastic oscillations is equivalent to
two independent equations for transverse and longitudinal
oscillations,

1

c2T
�uTi ÿ eDuTi � 0;

1

c2L
�uLi ÿ eDuLi � 0 ; �81�

where

c2T �
m
r0
; c2L �

l� 2m
r0

are the squares of sound velocities for transverse and long-
itudinal oscillations.

Particles arising after the secondary quantization of
Eqns (81) are called phonons in solids. Therefore, strictly
speaking, the problem of scattering of phonons on disloca-
tions is a quantum mechanical one. In the present review, we
consider only classical aspects of this problem.

Wave equations (81) contain second and first derivatives
of the displacement field. The latter are contained in the
covariant Laplace ± Beltrami operator ~D. The terms with
second derivatives can be written in the four-dimensional
form g ab qa qb, where g ab is the inverse metric to

gab � c2 0
0 ÿgmn

� �
; �82�

where c is either the transverse or longitudinal sound velocity.
Above, we used the following notation. Four-dimensional
coordinates are denoted by Greek letters from the beginning
of the alphabet fxag � fx0 � t; x1; x2; x3g, and letters from
the middle of the Greek alphabet denote only spatial
coordinates fx mg � fx1; x2; x3g. This rule can be easily
remembered by the inclusions f1; 2; 3g � f0; 1; 2; 3g and
fm; n; . . .g � fa; b; . . .g. Christoffel symbols (A.11) can be
computed for four-dimensional metric (82), which defines a
system of ordinary nonlinear equations for extremals xa�t�
(lines of extremal lengths that coincide with geodesics in
Riemannian geometry), where dots denote differentiation
with respect to the canonical parameter t. For the block-
diagonal metric in (82), these equations decompose:

�x 0 � 0 ; �83�

�x m � ÿeGnr
m _x n _x r ; �84�

where eGnr
m are the three-dimensional Christoffel symbols

constructed for the three-dimensional metric gmn, which,

as we recall, depends only on spatial coordinates for a
static distribution of defects. Let fxa�t�g be an arbitrary
extremal in four-dimensional space ± time. For metric (82),
its natural projection on space fxa�t�g ! f0; xm�t�g is then
also an extremal but now for the spatial part of the metric
gmn.

Equations for extremals (83) and (84) are invariant under
linear transformations of the canonical parameter t. There-
fore, the canonical parameter can be identified with time,
t � t � x0, without loss of generality as a consequence of
Eqn (83).

We assume that a particle moves in space along an
extremal x m�t� with velocity v. This means that

gmn _x m _xn � v2 :

The length of the tangent vector to the corresponding
extremal ft; x m�t�g in four-dimensional space ± time is then
equal to

gab _xa _xb � c2 ÿ v2 :

Hence, if the particle moves in space along an extremal with a
velocity less than, equal to, or greater than the speed of sound,
then its world line in space ± time is timelike, null, or
spacelike, respectively.

We return to the propagation of phonons in media with
defects. As in geometric optics [81], there are useful notions
of wave fronts and rays in the analysis of the asymptotic
form of solutions for wave equations (81). We do not
consider mathematical aspects of this approach, which is
nontrivial and complicated [82], and instead give only a
physical description. In the eikonal (high-frequency)
approximation, phonons propagate along rays coinciding
with null extremals for the four-dimensional metric gab.
Forms of rays, which are identified with trajectories of
phonons, are defined by the three-dimensional metric gmn.
This means that in the eikonal approximation, trajectories
of transverse and longitudinal phonons in a medium with
defects are the same and are defined by Eqn (84). The
difference reduces to the velocities of propagation for
transverse and longitudinal phonons being different and
equal to cT and cL, respectively.

13. Scattering of phonons on a wedge dislocation

Calculations in the present section coincide, in fact, with the
analysis performed in Section 3 of [59]. The difference is that
in what follows, we use the metric written in the elastic gauge.
This is important because we assume that trajectories of
phonons seen in an experiment coincide with extremals for
the metric precisely in this gauge.

In the presence of one wedge dislocation, the space metric
in the cylindrical coordinates r;j; z is

gmn �

r2gÿ2

R2gÿ2 0 0

0
a2

g2
r2g

R2gÿ2 0

0 0 1

0BBBB@
1CCCCA ; �85�

where the nontrivial part of the metric in the r;j plane
was obtained earlier [see Eqn (75)]. Here, we change g1 to
g for simplicity of notation. The inverse metric is also
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diagonal,

gmn �

R2gÿ2

r2gÿ2
0 0

0
g2

a2
R 2gÿ2

r 2g
0

0 0 1

0BBBB@
1CCCCA :

Christoffel symbols for metric (85) are calculated accord-
ing to formulas (A.11). As a result, only four Christoffel
symbols differ from zero:

eGr r
r � gÿ 1

r
; eGjj

r � ÿ a2r
g
; eGrj

j � eGj r
j � g

r
:

In the preceding section, we showed that in the eikonal
approximation, phonons propagate along extremals x m�t�
defined by Eqns (84). In the case considered here, these
equations are

�r � ÿ gÿ 1

r
_r 2 � a2

g
r _j2 ; �86�

�j � ÿ 2g
r

_r _j ; �87�

�z � 0 ; �88�
where the dot denotes differentiation with respect to time t. It
follows from the last equation that phonons move along the z
axis with constant velocity, which corresponds to transla-
tional invariance along z. This means that scattering on a
wedge dislocation is reduced to a two-dimensional problem in
the r;j plane, as could be expected.

The system of equations for r�t� and j�t� in (86) and (87)
can be explicitly integrated. For this, we find two first
integrals. First, for any metric, there is the integral for the
equations for extremals

gmn _x m _xn � const :

We then have the equality

r2gÿ2 _r 2 � a2

g2
r2g _j2 � C0 � const > 0 : �89�

Second, the invariance of themetric under rotations about
the z axis results in the existence of an additional integral. It is
constructed as follows. There is a Killing vector correspond-
ing to the invariance of the metric, which in cylindrical
coordinates has the simple form k � qj. Straightforward
verification proves that

gmnk
m _xn � const :

In the considered case, this results in the identity

r2g _j � C1 � const : �90�

We analyze the form of an extremal r � r�j�. First
derivatives can be found from Eqns (89) and (90):

_r � �rÿ2g�1
�����������������������������
C0r2g ÿ a2

g2
C 2

1

s
; �91�

_j � C1r
ÿ2g : �92�

Admissible values of the radial coordinate r for which the
expression under the square root is nonnegative are to be
found later. From the above equations, we obtain the
equation defining the form of nonradial (C1 6� 0) extremals

dr

dj
� _r

_j
� �r

�����������������������
C0

C2
1

r2g ÿ a2

g2

s
: �93�

This equation can be easily integrated, and we finally obtain
explicit formulas defining the form of an extremal:�

r

rm

�2g

sin2
�
a�j� j0�

� � 1 ; �94�

where

rm �
�

C1a������
C0

p
g

�1=g

� const > 0 ; j0 � const :

The constant rm is positive and defines theminimal distance at
which an extremal approaches the core of the dislocation, i.e.,
r5 rm. Only for these values of r is the expression under the
root in Eqn (93) nonnegative. The integration constant j0 is
arbitrary and corresponds to the invariance of the problem
under rotations around the core of dislocation.

Equations for extremals (86) and (87) also have degen-
erate solutions:

1

g
r g � �

������
C0

p
�t� t0� ; j � const ; t0 � const : �95�

These extremals correspond to radial motion of phonons.
Such trajectories are unstable in the sense that there are no
nonradial extremals near them.

We note that circular extremals (r � const) are absent as a
consequence of Eqn (86), although integrals of motion (89)
and (90) allow such a solution. This is because Eqn (86) was
multiplied by _r in deriving first integral (89).

We now analyze the form of nonradial extremals (94). For
any extremal, the radius r first decreases from infinity to the
minimal value rm and then increases from rm to infinity. We
can assume here without loss of generality that the argument
of the sine in (94) varies from 0 to p. Thus, we obtain the range
of the polar angle

04j� j0 4
p
a
:

This means that the extremal comes from infinity at the angle
ÿj0 and goes to infinity at the angle p=aÿ j0. This
corresponds to the scattering angle

w � pÿ p
a
� py

1� y
: �96�

We note that the scattering angle depends only on the deficit
angle y and does not depend on the elastic properties of the
medium. The scattering angle has a simple physical inter-
pretation. For positive y, the medium is cut and moved apart.
A wedge of the same medium without elastic stresses is
inserted in the cavity that has appeared. Afterwards, gluing
is performed, and the wedge is compressed. The compression
coefficient for all circles centered at the origin is equal to
1=�1� y� due to symmetry considerations. Therefore, the
scattering angle equals half the deficit angle times the
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compression coefficient,

w � 2py
2

1

1� y
:

For y � 0, the dislocation is absent, and the scattering angle is
equal to zero.

For positive deficit angles, the scattering angle is positive,
which corresponds to repulsion of phonons from the wedge
dislocation. Corresponding extremals are shown in Fig. 11a,
and they have asymptotes as r!1.We note that for positive
deficit angles, no two points on the r;j plane can be
connected by an extremal, i.e., there is a domain to the right
of the wedge dislocation that cannot be reached at all by a
phonon falling from the left.

All extremals shown in the figures in the present section
are calculated numerically. The values of the deficit angle y,
the scattering angle w, and the minimal distance rm to the
dislocation axis are shown in the figures. For definiteness, we
choose j0 � p corresponding to the fall of phonons from the
left.

For negative deficit angles, the scattering angle is negative
and is defined by the same formulas (96). This corresponds to
the attraction of phonons to the dislocation axis. In Fig. 11b,
we show two extremals with the same parameter rm but for
two dislocations with different deficit angles. For
ÿ1=2 < y < 0, the scattering angle varies from 0 to 2p
(Fig. 11b). For y � ÿ1=2, the scattering angle is equal to 2p.
We note that for negative deficit angles, phonons have no
asymptotes as r!1, i.e., for y � ÿ1=2, phonons fall from
infinity (x! ÿ1, y! �1) and return to infinity (x! ÿ1,
y! ÿ1).

When the deficit angle is sufficiently small (ÿ1 < y <
ÿ1=2), a phonon makes one or several turns around the
dislocation and then goes to infinity. Examples of such
trajectories are shown in Figs 12 ± 14.

We consider the asymptotic behavior of nonradial
extremals as r!1. As a consequence of Eqn (91), far from
the dislocation core, we obtain

_r � �
������
C0

p
rÿg�1 :

It follows from this equation that the dependence of the
radius on time is the same as for radial extremals (95). Because
g > 0, an infinite value of r corresponds to an infinite value of

time t. This means that the r;j plane with the given metric is
complete at r!1. The origin (the dislocation core) is a
singular point. Only radial extremals fall into it at a finite
moment of time.

Integrals of motion (89) and (90) have simple physical
meaning. Equations for extremals (84) follow from the
variational principle for the Lagrangian

L � 1

2
gmn _x m _xn ; �97�

describing motion of a free massless point particle in a
nontrivial metric gmn�x�. Here, the metric is considered as a
given external field and is not varied.

The energy corresponding to this integral is equal to

E � 1

2
gm n _x m _xn � 1

2

r 2gÿ2

R2gÿ2 _r 2 � 1

2

a2

g2
r 2g

R2gÿ2 _j2 � 1

2
_z 2 :

If the metric, as in our case, does not depend on time
explicitly, then the energy is conserved (E � const) and its
numerical value for the motion in the r;j plane is propor-
tional to the integral of motion C0.

For a wedge dislocation, the metric is independent of the
polar angle j, and the Lagrangian is invariant under
rotations: j! j� const. By the Noether theorem, the
angular momentum conservation law corresponds to this
invariance,

J � ÿ a 2

g 2
r 2g

R 2gÿ2 _j � const :

y

x

w

4 8

8

4
rm � 3 rm

rm � 1

y � 1=4
w � p=5

a by

x4 8

8

4

rm � 1

y � ÿ1=2
w � ÿp

y � ÿ1=4
w � ÿp=3

Figure 11. (a) Extremals for the wedge dislocation with a positive (y > 0)

deficit angle. Two extremals and their reflections with respect to the x axis

are shown for the same y > 0 but different rm. (b) Extremals for the wedge

dislocation with a negative (ÿ1=24y < 0) deficit angle. Two extremals

are shown for the same rm but different deficit angles y.

4 8 x x

8
y

y

4

y � ÿ2=3
w � ÿp

rm � 1=6

Figure 12. For y � ÿ2=3, an extremal makes one turn around the

dislocation and then goes forward in the original direction. The blown-

up part of the trajectory is shown in the square to the right.

x

y

4 8 x

8
y

4

rm � 1=100
y � ÿ3=4
w � ÿ3p

Figure 13. For y � ÿ3=4, an extremal makes two turns around the

dislocation and then goes back. The blown-up part of the trajectory is

shown in the square to the right.
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As a consequence, the constant of integration C1 is propor-
tional to the angular momentum.

We note that the behavior of extremals differs qualita-
tively from trajectories of point particles moving in flat space
with the Euclidean metric dmn in an external potential field
U�x�. It can be easily shown that trajectories of point particles
described by the Lagrangian

L � 1

2
dm n _x m _xn ÿU

cannot coincide with extremals (84) for any function U�x�.
In the present section, we have shown how the problem

of scattering of phonons on the simplest wedge dislocation
is solved in the geometric approach. The results of
calculations can be checked experimentally. The more
general problem of scattering of phonons on an arbitrary
distribution of wedge dislocations, including the edge
dislocation and continuous distribution of dislocations, is
solved in [59]. Solution of this problem in the geometric
approach is simpler than in the framework of the classical
elasticity theory, where we have to solve partial differential
equations with complicated boundary conditions. In [59],
calculations were performed in the conformal gauge for the
metric. For comparison with experiment, the results must be
rederived in the elastic gauge, which has physical meaning in
the geometric approach.

14. An impurity in the field
of a wedge dislocation

We consider elastic media with one wedge dislocation
containing one atom of impurity or vacancy. If we
consider the influence of an impurity on the distribution
of elastic stresses small compared with the elastic stresses
induced by the dislocation itself, then the motion of the
impurity can be considered as taking place in three-
dimensional space with nontrivial metric (75). In the
geometric approach, we assume that the potential energy
of the interaction is zero, and all interactions are due to
changes in the kinetic energy, which depends explicitly on
the nontrivial metric.

We solve the corresponding quantum mechanical pro-
blem.We consider bound states of impurity in the presence of
a wedge dislocation moving inside a cylinder of radius R. We
assume that the cylinder axis coincides with the dislocation

core. The stationary SchroÈ dinger equation is

ÿ �h2

2M
eDC � EC ; �98�

where �h is the Planck constant andM,C, and E are the mass,
wave function, and energy of the impurity. The nontriviality
of the interaction with dislocation reduces to the nontrivial
Laplace ±Beltrami operator

eDC � 1���
g
p qm� ���gp g m nqnC � ;

where the metric was found earlier [see Eqn (75)] and
g � det gm n.

Taking the symmetry of the problem into account, we
solve SchroÈ dinger equation (98) in cylindrical coordinates by
separation of variables. Let

C�r;j; z� � Z�z�
X1

m�ÿ1
cm�r� exp �imj� ;

where we have the two following possibilities for the normal-
ization functionZ�z�. If the impurity moves freely along the z
axis with momentum �hk, then

Z�z� � 1������
2p
p exp �ikz� :

If its motion is restricted by the planes z � 0 and z � z0, then

Z�z� �
�����
2

z0

s
sin kl z ; kl � pl

z0
:

In what follows, we drop the integer-valued subscript l
indicating the restricted motion, having both possibilities in
mind.

The condition for the constant m (the eigenvalue of the
projection of the momentum on the z axis) to be an integer
appears due to the periodicity condition

C�r;j; z� � C�r;j� 2p; z� :

For the radial wave function cm�r�, we then obtain the
equation

R2gÿ2

r2gÿ1
qr�r qr cm� �

�
2ME

�h2
ÿ g2

a2
R2gÿ2

r2g
m2 ÿ k2

�
cm � 0 :

�99�

4 8 x

8
y

4

y � ÿ4=5
w � ÿ4p

rm � 1=1000

x

y

x

y

Figure 14. For y � ÿ4=5, an extremal makes two and a half turns around the dislocation and then goes forward in the original direction. Subsequent

blown-up parts of the trajectory are shown in the two squares to the right.
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We introduce the new radial coordinate

r � r g

gR gÿ1 :

This is the transformation in (72) and (74) up to a constant.
The radial equation is then

1

r
qr�r qrcm� �

�
b2 ÿ n2

r2

�
cm � 0 ; �100�

where

b2 � 2ME

�h2
ÿ k2 ; n � jmj

a
> 0 :

This is the Bessel equation. We solve it with the boundary
condition

cmjr�R=g � 0 ; �101�

which corresponds to the motion of the impurity inside a
cylinder with an impenetrable boundary. The general solu-
tion of Bessel equation (100) is

cm � cmJn�br� � dmNn�br� ; cm; dm � const ;

where Jn and Nn are the Bessel and Neumann functions of
order n [83]. The boundedness of the wave function on the axis
of the cylinder requires dm � 0. The integration constants cm
are found from the normalization condition�R

0

dr rjcmj2 � 1 :

Boundary condition (101) yields the equation for b

Jn

�
bR
g

�
� 0 ; �102�

which defines the energy levels of bound states. It is well
known that for real n > ÿ1 and R=g, this equation has only
real roots. Positive roots form an infinite countable set and all
of them are simple [83]. This provides the inequality

b2 � 2ME

�h2
ÿ k 2 5 0 :

We label the positive roots of Eqn (102) by n � 1; 2; . . . (the
principal quantum number): b! bn �m; a; g;R�. Then the
spectrum of bound states is

En � �h2

2M
�k2 � b 2

n � : �103�

For large radii br4 1 and br4 n, we have the asymptotic
form

Jn�br� �
��������
2

pbr

s
cos

�
brÿ np

2
ÿ p

4

�
:

As a result, we obtain an explicit expression for the spectrum,

bn �
gp
R

�
n� jmj

2a
ÿ 1

4

�
: �104�

In the absence of a defect, a � 1, g � 1, r � r, and the
radial functions cm are expressed through the Bessel func-
tions of integer order n � jmj. In this case, the spectrum of
bound states depends only on the sizes of the cylinder. In the
presence of the wedge dislocation, Bessel functions have a
noninteger order in general. In this case, the spectrum of
energy levels acquires dependence on the deficit angle y and
the Poisson ratio s characterizing elastic properties of the
medium.

If the mass of impurity and vacancy is defined by integral
(10), then M > 0 for an impurity and the energy eigenvalues
are positive. For a vacancy,M < 0 and the energy eigenvalues
are negative. In this case, the energy spectrum is not bounded
from below, which causes serious problems for physical
interpretation. It seems that one has to insert not the bare
mass in the SchroÈ dinger equation (10) but the effective mass,
with the contribution of elastic stresses arising around a
vacancy taken into account. This question presently remains
unanswered.

The presentation in this section is close to that in [28]. In
contrast to that paper, we use the elastic gauge for the metric.
Therefore, our results depend not only on the deficit angle of a
wedge dislocation but also on the elastic properties of the
medium.

Calculations of the energy levels of an impurity in the field
of a wedge dislocation are actually equivalent to the
calculations of bound-state energies in the Aharonov ±
Bohm effect [84] (see reviews [85, 86]). The difference
amounts only to changing the order of the Bessel functions,

n �
����mÿ F

F0

���� ;
where F0 � 2p�hc=e is the magnetic flux quantum and e is the
electron charge.

The considered example shows how the presence of
defects is taken into account in the geometric approach in
the first approximation. If calculations in some problem were
performed in elastic media without defects, then to take the
influence of defects into account we have to replace the flat
Euclidean metric with a nontrivial metric describing the given
distribution of defects. This problemmay appear complicated
mathematically because we have to solve the three-dimen-
sional Einstein equations to find the metric. However, there
are no principal difficulties: the effect of dislocations reduces
to a change in the metric.

15. Conclusion

The geometric theory of defects describes defects in elastic
media (dislocations) and defects in the spin structure
(disclinations) from a single standpoint. This model can be
used for describing single defects as well as their continuous
distribution. The geometric theory of defects is based on the
Riemann ± Cartan geometry. By definition, torsion and
curvature tensors are equal to the surface densities of Burgers
and Frank vectors, respectively.

Equations defining the static distribution of defects are
covariant and have the same form as equations of gravity
models with dynamical torsion. To choose a solution
uniquely, we must fix the coordinate system. For this, the
elastic gauge for the vielbein and the Lorentz gauge for the
SO�3� connection are proposed. In the defect-free case, the
displacement vector field and the field of the spin structure
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can be introduced. Equations of equilibrium are then
identically satisfied, and the gauge conditions reduce to the
equations of elasticity theory and the principal chiral SO�3�
field. In this way, the geometric theory of defects incorporates
elasticity theory and the principal chiral field model.

In a certain sense, the elastic gauge represents the
equations of the nonlinear elasticity theory. Nonlinearity is
introduced in elasticity theory in two ways. First, the
deformation tensor is defined through the induced metric

Ei j � 1

2
�di j ÿ gi j�

instead of being defined by linear relation (4). Then the stress
tensor is given by an infinite series in the displacement vector.
Second, Hook's law can be modified assuming nonlinear
dependence of the stress tensor on the deformation tensor.
Hence, the elastic gauge condition yields the equations of the
nonlinear elasticity theory where the deformation tensor is
assumed to be defined through the induced metric and
Hook's law is kept linear. A generalization to the nonlinear
dependence of the deformation tensor on the stress tensor is
obvious.

As an example, we considered the wedge dislocation from
the standpoint of the elasticity theory and the geometric
theory of defects. We showed that the elasticity theory
reproduces only the linear approximation of the geometric
approach. In contrast to the induced metric obtained within
the exact solution of the linear elasticity theory, the expres-
sion for the metric obtained as the exact solution of the
Einstein equations in the elastic gauge is simpler and is
defined for the whole space and for all deficit angles. The
obtained expression for the metric can be checked experimen-
tally.

Two problems are considered as applications of the
geometric theory of defects. The first is the scattering of
phonons on a wedge dislocation. In the eikonal approxima-
tion, the problem is reduced to the analysis of extremals for
the metric describing a given dislocation. Equations for
extremals are integrated explicitly and the scattering angle is
found. The second of the considered problems is the
construction of the wave functions and energy spectrum of
impurity in the presence of a wedge dislocation. This requires
solving the SchroÈ dinger equation. This problem is mathema-
tically equivalent to solving the SchroÈ dinger equation for
bound states in the Aharonov ±Bohm effect [86]. The explicit
dependence of the spectrum on the deficit angle and elastic
properties of the medium is found in the presence of a wedge
dislocation.

The geometric theory of static distribution of defects can
also be constructed for membranes, i.e., on the plane R2. For
this, one has to consider the Euclidean version [87] of two-
dimensional gravity with torsion [88 ± 90]. This model is
favored by its integrability [91 ± 94].

The developed geometric construction in the theory of
defects can be inverted, and we can consider the gravitational
interaction of masses in the universe as the interaction of
defects in elastic ether. Point masses and cosmic strings [95,
96] then correspond to point defects (vacancies and impu-
rities) and wedge dislocations. In this interpretation of
gravity, we have a question about the elastic gauge, which
has direct physicalmeaning in the geometric theory of defects.
If we take the standpoint of the theory of defects, then the
elastic properties of ether correspond to some value of the
Poisson ratio, which can be measured experimentally.

It seems interesting and important for applications to
include time in the considered static approach for describing
motion of defects in the medium. Such a model is lacking at
present. From the geometric standpoint, this generalization
can be easily performed, at least in principle. It suffices to
change the Euclidean space R3 to the Minkowski space R1:3

and to write a suitable Lagrangian quadratic in curvature and
torsion, which corresponds to the true gravity model with
torsion. One of the arising problems is the physical inter-
pretation of the additional components of the vielbein and
Lorentz connection that contain the time index. The physical
meaning of the time component of the vielbein
e0

i ! q0u i � v i is simple Ð this is the velocity of a point of
the medium. This interpretation is natural from the physical
standpoint because the motion of continuously distributed
dislocations means a flowing of the medium. In fact, the
liquid can be imagined as an elastic medium with a
continuous distribution of moving dislocations. This means
that the dynamical theory of defects based on the Riemann ±
Cartan geometry must include hydrodynamics. It is not clear
at present how this can happen. Physical interpretation of the
other components of the vielbein and the Lorentz connection
with the time index also remains unclear.

The author is sincerely grateful to I V Volovich for
numerous discussions on the problems considered in this
paper. This work is supported by the RFBR (grant 05-01-
00884) and the program of support for leading academic
schools (grant AS-1542.2003.1).

16. Appendix.
Some differential geometry

In the appendix, we briefly present the main facts from
differential geometry and introduce the notation used in this
review. The description is given in local coordinates, which is
sufficient for our purposes. We recommend [97] as a textbook
on differential geometry.

If the metric g and the affine connection G are given, then
we say that the geometry is defined on a differentiable
manifold M, dimM � m. We assume that all fields on the
manifold are smooth C1�M� functions except, possibly, at
some singular points, and do not stipulate that in what
follows. We also assume that the manifoldM is topologically
trivial, i.e., diffeomorphic to the Euclidean space Rm.

In a local coordinate system x m, m � 1; . . . ;m, themetric is
given by a nondegenerate symmetric covariant second-rank
tensor gmn�x�, which defines the scalar product of vector fields
X � X mqm, Y � Y mqm:

�X;Y � � X mY ngmn ; gmn � gnm ; det gmn 6� 0 : �A:1�

In general, the scalar product may not be positive definite. If
the scalar product is positive definite, we say that a
Riemannian metric is given on a manifold. By definition, the
metric is a covariant tensor field, i.e., it transforms under
coordinate changes xm ! xm 0 �x� by the tensor law

gm 0n 0 � qx m

qx m 0
qxn

qxn 0
gmn :

This means that the scalar product of vector fields �X;Y� is a
scalar field. In a similar way, contractions with the metric gmn
and its inverse g mn, g mngnr � dm

r , allows one to build scalar
fields from higher-rank tensors or to lower their rank. The
metric is also used for lowering and raising tensor indices.
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An affine connection on a manifold in a local coordinate
system is given by the set of coefficients Gmn

r�x� that trans-
form under the diffeomorphisms as

Gm 0n 0
r 0 � qx m

qx m 0
qxn

qx n 0 Gmn
r qx

r 0

qxr
� q2xr

qxm 0qxn 0
qxr

0

qx r : �A:2�

These coefficients do not constitute a tensor field because of
the presence of an inhomogeneous term in (A.2). An affine
connection on a manifold defines covariant derivatives of
tensor fields. In particular, covariant derivatives of a vector
field and 1-form A � dx mAm are given by

Hm X
n � qm X n � X rGmr

n ; �A:3�
HmAn � qmAn ÿ Gmn

rAr : �A:4�
The covariant derivative of a scalar field coincides with the
partial derivative, Hmj � qmj. The covariant derivative of
higher-rank tensors is built in a similar way and contains one
term with the plus and minus sign for each contravariant and
covariant index, respectively. One can easily check that the
covariant derivative of a tensor of an arbitrary type �r; s� is a
tensor field of type �r; s� 1�, i.e., it has one additional
covariant index. We note that the covariant derivative of a
product of tensor fields may contain arbitrary contractions of
indices. For example,

qm�X nAn� � Hm�X nAn� � �HmX
n�An � X n�HmAn� :

Because the inhomogeneous term in (A.2) is symmetric in
the indices m 0 and n 0, the antisymmetric part of the affine
connection 2G�mn�r forms a tensor field of type �1; 2�, which is
called the torsion tensor,

Tmn
r � Gmn

r ÿ Gnm
r: �A:5�

In general, the connection Gmn
r has no symmetry in its

indices and is not related to the metric gmn in any way because
these notions define different geometric operations on a
manifold M. We then say that the affine geometry is given
onM.We emphasize that themetric and the affine connection
are defined arbitrarily and are completely independent
geometric notions. Therefore, in the construction of physical
models, they can be considered independent fields having
different physical interpretations.

If the affine geometry is given on a manifold, then we can
construct the nonmetricity tensor Qmnr that is by definition
equal to the covariant derivative of the metric:

ÿQmnr � Hmgnr � qmgnr ÿ Gmn
sgsr ÿ Gmr

sgns : �A:6�

By construction, the nonmetricity tensor is symmetric with
respect to the permutation of the last two indices:
Qmnr � Qmrn. We note that we need both objects, the metric
and the connection, to define the nonmetricity.

Thus, for a given metric and connection, we constructed
two tensor fields: the torsion and the nonmetricity tensor. We
prove that for a given metric, torsion, and nonmetricity
tensor, we can uniquely reconstruct the corresponding affine
connection. Equation (A.6) can always be solved for the
connection G. Indeed, the linear combination

Hm gnr � Hn grm ÿ Hr gmn

yields the expression for the affine connection with all
lowered indices:

Gmnr � Gmn
sgsr � 1

2
�qmgnr � qngrm ÿ qrgmn�

1

2
�Tmnr ÿ Tnrm � Trmn� � 1

2
�Qmnr �Qnrm ÿQrmn� :

�A:7�

The right-hand side of this equality is symmetric in the indices
m and n except one term Tmnr=2, and this is in accord with the
definition of the torsion tensor in (A.5). Thus, to define the
affine geometry on amanifoldM, it is necessary and sufficient
to define three tensor fields: metric, torsion, and nonmetri-
city. We stress once again that all three objects can be
specified in a completely arbitrary way, and they can be
considered different dynamical variables in models of
mathematical physics.

It is easy to compute the number of independent
components of connection, torsion, and nonmetricity tensors:

�Gmn
g� � m3 ; �Tmn

r� � m2�mÿ 1�
2

;

�Qmnr� � m2�m� 1�
2

:

This shows that the total number of independent components
of the torsion and nonmetricity tensors equals the number of
components of the affine connection.

We now consider particular cases of the affine geometry.
In the attempt to unite gravity and electromagnetism,

Weyl considered the nonmetricity tensor of a special type [98],

Qmnr �Wm gnr ; �A:8�

whereWm is theWeyl form identified with the electromagnetic
potential (here, torsion was assumed to be identically equal to
zero). We say that a Riemann ëCartan ëWeyl geometry is
deéned on a manifold if there are given a metric, torsion, and
nonmetricity of special type (A.8).

If the nonmetricity tensor is identically zero,Qmnr � 0, but
the metric and torsion are nontrivial, then we say that a
Riemann ëCartan geometry is given on a manifold. As a
consequence of (A.7), the aféne connection is deéned
uniquely by the metric and torsion in this case:

Gmnr � 1

2
�qm gnr � qngmr ÿ qrgmn�

� 1

2
�Tmnr ÿ Tnrm � Trmn� : �A:9�

This connection is called metrical because the covariant
derivative of the metric is identically equal to zero:

Hm gnr � qm gnr ÿ Gmn
sgsr ÿ Gmr

sgns � 0 : �A:10�

The metricity condition ensures that covariant derivatives
commute with raising and lowering of indices.

If the torsion tensor identically vanishes, Tmn
r � 0, and

nonmetricity has special form (A.8), then we say that a
Riemann ëWeyl geometry is given.

If both nonmetricity and torsion tensors are identically
equal to zero,Qmnr � 0, Tmnr � 0, and the metric is nontrivial,
then we say thatRiemannian geometry is given on a manifold.
In this case, the metrical connection is symmetric with respect

July, 2005 Geometric theory of defects 697



to the érst two indices and uniquely deéned by the metric:

eGmnr � 1

2
�qm gnr � qn gmr ÿ qrgmn� : �A:11�

This connection is called the Levy-Civita connection or
Christoffel symbols.

We use the tilde to denote the geometric objects con-
structed only for the metric and zero torsion and nonme-
tricity, i.e., in a (pseudo-)Riemannian geometry. The prefix
pseudo- is used when the metric is not positive definite.

From the expression for Christoffel symbols (A.11), we
see that

qm gnr � eGmnr � eGmrn : �A:12�

This means that for the Christoffel symbols to be zero in some
coordinate system, it is necessary and sufficient that the
metric components be constant in these coordinates. In
another coordinate system, they may be nontrivial because
Christoffel symbols are not components of a tensor. For
example, the Christoffel symbols for Euclidean space are zero
inCartesian coordinates but differ from zero, e.g., in spherical
or cylindrical coordinate systems.

In the case where the nonmetricity tensor and torsion are
identically zero and there is a coordinate system in which the
metric is equal to the diagonal unit matrix in the neighbor-
hood of every point, and, consequently, the Christoffel
symbols are zero, the geometry is called locally Euclidean.
The corresponding coordinate system is called Cartesian.

We say that a vector fieldX � X mqm is transported parallel
along a curve x m�t�, t 2 R, if

_xn HnX
m � 0 ;

where _x m � dxm=dt is the tangent vector to the curve.
Multiplying this equation by dt, we obtain

dX m � dxnqnX m � ÿdxnGnr
mX r ;

where dxn � dt _xn. We say that under the parallel transport
from a point xn to a neighboring point xn � dxn, the vectorX m

acquires a differential dX m, which is linear in dxn and the
components of the vector field. In a similar way, we define
parallel transport of arbitrary tensor fields along a curve
x m�t�. The result of parallel transport between two points
depends in general on a curve connecting these points. We
note that parallel transport along a curve is defined only by
the affine connection and has no relation to the metric.

There are two types of distinguished curves x m�t� in an
affine geometry: geodesics and extremals. A geodesic line is a
curve such that a vector tangent to it remains tangent under
parallel transport along the curve.With the parameter t along
the curve chosen canonically, a geodesic line is defined by the
system of nonlinear ordinary differential equations

�x m � ÿGnr
m _xn _xr : �A:13�

Although a geodesic line is defined only by the symmetric part
of the affine connectionGfmngr, the latter depends nontrivially
on the torsion and nonmetricity. Explicit expression (A.7)
yields

Gfmngr� eGmn
r� 1

2
�Tr

mn� Tr
nm� � 1

2
�Qmn

r �Qnm
rÿQr

mn� :

The second type of distinguished curves in an affine
geometry are extremals or lines of extremal length connect-
ing two points. These lines are exclusively defined by the
metric. With the parameter along the curve chosen canoni-
cally, extremals are defined by an equation similar to (A.13),

�x m � ÿeGnr
m _xn _xr : �A:14�

However, we now have not a general affine connection on the
right-hand side but Christoffel symbols constructed only
from the metric. We see that geodesics and extremals are in
general different curves on amanifold. In aRiemann ±Cartan
geometry, geodesics and extremals coincide if and only if the
torsion tensor is antisymmetric in all three indices. In
Riemannian geometry, geodesics and extremals always
coincide.

The primary role in differential geometry is played by the
curvature tensor of the affine connection, which arises in
different contexts. In local coordinates, it is defined by the
expression

Rmnr
s � qmGnr

s ÿ Gmr
lGnl

s ÿ �m$ n� ; �A:15�

where the parentheses �m$ n� denote the previous terms with
the permuted indices m and n. It can be easily verified that
curvature (A.15) is indeed a tensor field. We note that the
curvature tensor has no relation to a metric and is defined
entirely by the connection. In an affine geometry, the
curvature tensor with all of its indices lowered has no
symmetry under permutations of indices except antisymme-
try in the first two indices.

Contraction of the curvature tensor in the two indices
yields the Ricci tensor Rmn � Rmrn

r, which is also defined
entirely by the connection. In Riemannian geometry, the
Ricci tensor for the Levi-Civita connection is symmetric
with respect to the permutation of indices: eRmn � eRnm. In a
Riemann ±Cartan geometry, this symmetry is generally
absent for a nonzero torsion tensor.

If a metric is also given on a manifold, then we can
construct the scalar curvature R � Rmng

mn.
The affine connection is called locally trivial if in the

neighborhood of every point one can choose the coordinate
system in which all components of the connection are zero.
We now formulate two important theorems.

Theorem 1. For the local triviality of an affine connection, it
is necessary and sufficient that its torsion and curvature tensors
are equal to zero on M.

The proof of this theorem is reduced to an analysis of
the transformation rule for the affine connection compo-
nents in (A.2). If the symmetric part of the connection
components is equal to zero in the new coordinate system,
then the system of differential equations for the transition
functions appears. The local integrability condition for this
system of equations is provided by the vanishing of the
curvature tensor.

A more thorough statement is proven in [99].
Theorem 2. If for a given affine geometry the torsion,

nonmetricity, and curvature tensors are equal to zero on the
whole manifold, then this manifold is isometric either to the
whole (pseudo-)Euclidean space Rm or to the quotient space
Rm=G, where G is a discreet transformation group acting
freely.

In the last theorem, we suppose that both the metric and
affine connection are given on a manifold.
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The Riemann ±Cartan geometry defined by the metric
and torsion provides the basis for the geometric theory of
defects. In the analysis of such models, it is more convenient
to introduce the Cartan variables: the vielbein and SO�m�
connection instead of the metric and torsion. We assume here
that a metric on a manifold is positive definite. If a metric
were not positive definite, then theSO�p; q� connectionwould
appear, where p� q � m.

For a Riemannian metric, the orthonormal vielbein
em

i�x�, i � 1; . . . ;m, is defined by the system of quadratic
equations

gmn � em
ien

jdi j ; �A:16�

where di j is the Kronecker symbol. This relation uniquely
defines a metric for a given vielbein. Conversely, system of
equations (A.16) defines the vielbein for a given metric up to
local SO�m� rotations. We distinguish Greek and Latin
indices because different transformation groups act on
them. From definition (A.16), we see that e � det em

i 6� 0.
Components of the inverse vielbein emi, e

m
ien

i � dm
n , can be

considered components of m orthonormal vector fields
ei � emi qm on a manifoldM with respect to the metric g,

�ei; ej� � emie
n
j gmn � di j :

Components of the vielbein em
i definem orthonormal 1-forms

ei � dxmem
i on a manifold.

It is known that any manifold M can be equipped with a
Riemannian metric (see, e.g., [100]). At the same time, the
global existence of a vielbein provides, in particular, an
orientation of M. Thus a vielbein may exist globally only on
orientable manifolds. There are also other topological
restrictions for the global existence of a vielbein that we do
not discuss here.

The coordinate basis qm of the tangent space at every point
of M is called holonomic. Components of tensors of an
arbitrary type may also be considered with respect to the
unholonomic basis ei of tangent spaces defined by the
vielbein. For example, a vector field has the components

X � X mqm � X iei ; Xi � X mem
i :

We always assume that the transformation of Greek indices
into Latin ones and vice versa is performed with the help of
the vielbein.

We now define the SO�m� connection omi
j�x�. This is the

name of the connection of the principal fiber bundle with the
structure Lie group SO�m� and the baseM. If the Riemann ±
Cartan geometry is given onM and a vielbein is defined, then
we can define the SO�m� connection by the relation

Hmen
i � qmeni ÿ Gmn

rer
i � en

jom j
i � 0 : �A:17�

We see that under coordinate changes, the components of
om j

i transform as a covector field in the Greek index. Thus,
they define a 1-form onM. For a given vielbein, this relation
provides a one-to-one correspondence between components
of the connections Gmn

r and om j
i. The SO�m� connection

defines covariant derivatives for components of tensor fields
relative to an unholonomic basis. For example,

HmX
i � qmXi � Xjom j

i ; HmXi � qmXi ÿ om i
jXj : �A:18�

The covariant derivative is naturally defined for a tensor field
with both Greek and Latin indices. Taking the covariant
derivative of Eqn (A.16) leads to the antisymmetry of the
components: om

i j � ÿom
j i. This means that the 1-form

dxmom j
i takes values in the Lie algebra so (m), and this

indeed corresponds to an SO�m� connection.
In the general case of an affine geometry, the Cartan

variables can also be defined by relations (A.16) and (A.17).
For this, we have to replace the Kronecker symbol on the
right-hand side of (A.16) with an arbitrary nondegenerate
symmetric matrix Zij. In this case, relation (A.17) defines a
linear GL�m;R� connection. In the Riemann ±Cartan geo-
metry with the Lorentzian-signature metric, we would have
the Lorentz SO�1;mÿ 1� connection.

We consider local rotations with a matrix Sj
i�x� 2 SO�m�

to show that the components om j
i do define an SO�m�

connection in the Riemann ±Cartan geometry. By defini-
tion, the components of vector fields and 1-forms transform
under local rotations according to the rule

X 0i � X jSj
i ; X 0i � Sÿ1i jXj : �A:19�

In order that covariant derivatives (A.18) have the tensor
transformation rule under local rotations, it is necessary and
sufficient that the components of the SO�m� connection
transform according to the rule

o 0mi
j � Sÿ1i komk

lSl
j � qmSÿ1i kSk

j : �A:20�

This is the transformation law for the SO�m� connection,
indeed. The same transformation law follows from definition
(A.17) if the vielbein em

i transforms as a vector with respect to
the index i, and the Christoffel symbols remain unchanged.

Of course, we can introduce the metrical and SO�m�
connections on M in an independent way. If we require
afterwards that the SO�m� connection act on tensor field
components relative to an unholonomic basis defined by the
vielbein, we obtain a one-to-one correspondence between the
components of the connections (A.17).

We now express the components of the metric connection
Gmn

r through the vielbein em
i andSO�m� connectionom j

i with
the help of relation (A.17) and substitute them into the
definitions of torsion (A.5) and curvature (A.15). As a
result, we obtain expressions for torsion and curvature in
terms of the Cartan variables,

Tmn
i � qmen i ÿ em

jon j
i ÿ �m$ n� ; �A:21�

Rmn j
i � qmon j

i ÿ om j
konk

i ÿ �m$ n� ; �A:22�
where

Tmn
i � Tmn

rer
i ; Rm n j

i � Rmnr
serjes

i :

Torsion (A.21) and curvature (A.22) are 2-forms on the
manifold M with values in the vector space and Lie algebra
so (3), respectively.

An SO�m� connection om j
i is called locally trivial if every

point has a neighborhood containing this point such that

om j
i � qmSÿ1j kSk

i : �A:23�

Obviously, after local rotation with the matrix Sÿ1j i, all
components of the connection become zero. This connection
is also called a pure gauge. One can easily verify that the
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curvature of a locally trivial connection identically vanishes.
The inverse statement is also valid.

Theorem 3. An SO�m� connection is locally trivial if and
only if its curvature form is identically zero on M.

This theorem is valid for any structure Lie group. The
proof is reduced to an analysis of transformation rule (A.20).
If the left-hand side of this equation is zero, then we have a
system of equations for the field Sj

i�x� for which vanishing of
curvature tensor is the local integrability condition.

The space with zero curvature tensor Rmnj
i � 0 is called

the space of absolute parallelism because the parallel
displacement of a vector does not depend on the path
connecting two fixed points of the manifold.

We can perform a local SO�m� rotation for the locally
trivial SO�m� connection such that it becomes zero:om j

i � 0.
Then, the zero-torsion equality becomes

qmen i ÿ qnem i � 0 :

This equation is the local integrability condition for the
system of equations

qm y i � em
i �A:24�

for m functions y i�x�. A solution of this system of equations
yields the transition functions toCartesian coordinates. Thus,
the equalities of curvature and torsion tensors to zero are the
necessary and sufficient conditions for the existence of the
fields Sj

i�x� and y i�x�, i.e., the existence of such a local
rotation and coordinate system where the connection
vanishes and the metric becomes Euclidean. We note that
equality of the torsion tensor to zero alone is not enough for
the existence of a Cartesian coordinate system.

Three-dimensional space is considered in the geometric
theory of defects. We make two remarks concerning this. In
lower dimensions, the algebraic structure of the curvature
tensor with all lowered indexes becomes much simpler. In two
dimensions, the full curvature tensor in the Riemann ±Cartan
geometry is in the one-to-one correspondence with its scalar
curvature:

Ri j k l � 1

2
�di kdj l ÿ di l dj k�R :

In three dimensional space, the full curvature tensor is in the
one-to-one correspondence with its Ricci tensor

Ri j k l � di kRj l ÿ di lRj k ÿ dj kRi l � dj lRi k

ÿ 1

2
�di kdj l ÿ di ldj k�R : �A:25�

These formulas are also correct for nonzero torsion.
Concluding this appendix, we write the identity that is

valid in the Riemann ±Cartan geometry in an arbitrary
number of dimensions:

R�e;o� � 1

4
Ti j kT

i j k ÿ 1

2
Ti j kT

k i j

ÿ TiT
i ÿ 2

e
qm�eT m� � eR�e�; e � det em

i : �A:26�

The Riemannian scalar curvature on the right-hand side of
this equality is constructed only from the vielbein for zero
torsion.
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