
Abstract. This note outlines the principles of the geometrical
optics of inhomogeneous waves whose description necessitates
the use of complex values of the wave vector. Generalizing
geometrical optics to inhomogeneous waves permits including
in its scope the analysis of the diffraction phenomenon.

1. Introduction

It is widely believed that diffraction refers to a purely wave
phenomenon and can therefore be treated only with the use of
wave equations. Wave equations comprise partial differential
equations of order no lower than the second (the order of the
wave equations is normally increased if the spatial dispersion
of the medium is taken into account). Recourse to these
equations requires, as a rule, the use of a cumbersome
mathematical apparatus. A simplified version of the wave
equation appropriate for the analysis of short-wave envelope
evolution was introduced by M A Leontovich in the
investigation of radio wave diffraction on the terrestrial
surface [1] (the parabolic Leontovich equation). However,
analysis of the solutions of the parabolic equation in the
general case of an inhomogeneous anisotropic medium turns
out to be a rather intricate task.

An alternative and, in our view, simpler approach to the
treatment of the diffraction phenomenon involves extending
the notions of a wave vector k and an eikonal

c�r� �
� r

k�r� dr

to include complex values (inhomogeneous waves) [2].
The evolution of short homogeneous waves �Im k � 0�

may be analyzed with the aid of geometrical optics (GO)

equations. Unlike wave equations, these equations are
ordinary differential equations (see, for instance, Ref. [3]).
AugmentingGO to include inhomogeneous waves �Im k 6� 0�
permits including in its scheme the analysis of diffraction
phenomenon as well.

Interest in the problem of inhomogeneous wave evolution
has recently grown in connection with the progress of the
techniques of microwave plasma heating and current genera-
tion in thermonuclear systems. Microwave radiation is
normally injected into such systems in the form of wave
beams. In paper [4], the general scheme of the complex GO
of Ref. [2] (see also Refs [5, 6]) was realized by the example of
the simplest wave beamwith aGaussian intensity distribution
over the beam cross section. It turned out that this system of
ordinary differential equations coincided with the system
derived in the work [7] employing the parabolic equation
formalism. The results of Refs [2, 7] were applied in numerical
codes written to analyze the microwave ± plasma interaction
[8 ± 10].

The aim of the present note is to outline the foundations of
`complex' GOwhich permits considering in its context from a
unified standpoint the entire collection of phenomena
(refraction, focusing ± defocusing, diffraction) that deter-
mine the evolution of short waves.

2. Geometrical (ray) optics

In the investigation of electromagnetic waves their field is
quite often defined on some surface and it is necessary to
extend the field to the entire domain of wave propagation.
Analysis of this problem presents serious difficulties in
general, and therefore different approximations are com-
monly employed in its solution. When the characteristic
wavelength is short in comparison with the dimension of the
system, it is advantageous to resort to the short-wave
quasiclassical approximation, whereby the variable electric
field is described by the spatial dependence

E�r� � E0�r� exp ÿic�r�� ;
where E0 � eE, and e is the unit polarization vector. The
typical scale L of the E0�r�-field amplitude variation is
assumed to be much longer than the wavelength. This
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work is concerned with precisely such waves; it is also
anticipated that the time dependence of the electromagnetic
field will be harmonic, / exp �ÿiot�, and the medium will
be stationary.

We substitute into the wave equation, resulting from the
Maxwell equations, the quasiclassical representation for the
electric field to obtain a hierarchy of equations in powers of
the small parameter 1=�kL�. The zero-order equations are
then algebraic:

ai j�r; k;o�E 0j � 0 ; �1�

where ai j � kikj ÿ di jk2 � �o=c�2ei j, and ei j is the permittivity
tensor. It is believed that this tensor is Hermitian, which is
equivalent to the assumption about the absence of irreversible
processes of wave ±medium energy exchange (dissipation as
well as collisionless resonance interaction between charged
particles and the waves in the case of plasma).

System of equations (1) is solvable when the so-called
dispersion relation

D�r; k;o� � ai j�r; k;o�k � 0 �2�

holds true for the waves.
The dispersion relation may be considered a constraint

imposed on the wave-vector components for the waves of a
given frequency. Owing to this, the modulus of the vector k
becomes direction-dependent. In the short-wave quasiclassi-
cal approximation, the above-formulated problem of extend-
ing the solution of the wave equation reduces to selecting an
analytical dependence k�r� that goes over into the given one
on the `initial' surface S. To this end, we equate to zero the
total spatial derivative of the quantity D with respect to each
of the coordinates:

dD

dxi
� qD

qxi
� qki
qxj

qD
qkj
� 0 : �3�

Here, use was made of the equality

q2c
qxi qxj

� qki
qxj
� qkj

qxi
:

We now consider the procedure for extending the
dependence k�r� from the `initial' surface S. Since the
electromagnetic field is specified on S, it is possible to define
the derivatives of the vectors k with respect to the directions
tangent to S. After that we need to determine �nH�k from
Eqn (3), where n is the vector normal to the surface S. The
complete information about the quantities qki=qxj permits
continuing the dependence k�r� through a distance dr along
any direction. In this case, the surface S goes over into S 0, and
so forth. It is noteworthy, however, that the projection of the
quantity qki=qxj onto the direction of the vector qD=qk enters
in Eqn (3), and it would therefore be natural to continue the
dependence k�r� along precisely this direction. It coincides
with the direction of the group velocity Vgr. Indeed, the
dispersion relation (2) may also be treated as a condition
which defines the frequency o�r; k� of natural (free) waves,
with

qo
qki
� ÿ qD

qki

�
qD
qo

�ÿ1
: �4�

In the continuation of the dependence k�r� along the
direction of the vector qD=qk, the following equalities hold
true:

dki
ds
� ÿ qD

qxi

���� qDqk
����ÿ1 ;

dxi
ds
� qD

qki

���� qDqk
����ÿ1 ;

8>>><>>>: �5�

where s is the distance along the direction of the group
velocity.

When the motion along the above direction takes place
with the group velocity, Eqns (5) take on the form of
conventional equations of ray (geometrical) optics:

dki
dt
� qD

qxi

�
qD
qo

�ÿ1
� ÿ qo

qxi
;

dxi
dt
� ÿ qD

qki

�
qD
qo

�ÿ1
� qo

qki
:

8>>><>>>: �6�

The zero-order equations in the parameter 1=�kL�,
which we are interested in, permit determination of the
dependence k�r� and the electric field polarization charac-
terized by the vector e, but leave the amplitude E arbitrary.
It is defined by the first-order equations. To derive them, we
make the change k! kÿ iH in the quantities ai j�r; k� in
Eqn (1). The operator H should be applied to the slowly
varying quantities k, e, and E. In the first order in 1=�kL�,
we arrive at the system of inhomogeneous algebraic
equations [11, 12]

ai j dE 0j � ifi ; �7�

where dE 0i are corrections to the solutions of the zero-order
equations (1), and

fi � qaik
qkj

ek
qE
qxj
�
�
qaik
qkj

�
qek
qxj
� qek

qkl

qkl
qxj

�

� 1

2

q2aik
qkj qkl

qkl
qxj

ek

�
E :

System of equations (7) is solvable when the condition

eTi fi � 0 �8�

is fulfilled, where eTi is the solution of the system transposed to
Eqn (1):

eTi ai j � 0 :

It is pertinent to note that the tensor ai j�r; k� is Hermitian
in the absence of irreversible processes: ai j�r; k� � a �j i�r; k�.
Then, eTi � e�i .

Simple calculations show that the vector

eTj
qaj k
qki

ek

is parallel to the vector qD=qki, and hence to the group
velocity [see expression (4)]. We continue the dependence
E�r� over the direction of ray propagation to arrive at the

610 A V Timofeev Physics ±Uspekhi 48 (6)



equation

dE

ds
� ÿeTi

�
qaik
qkj

�
qek
qxj
� qek

qkl

qkl
qxj

�
� 1

2

q2aik
qkj qkl

qkl
qxj

ek

�
�
����eTi qaik

qkj
ek

����ÿ1E ; �9�

which should supplement the system of equations (5).
The passage from the spatial derivative to the time

derivative is effected, as for systems (5) and (6), by way of
introducing the factor

ÿ
���� qDqk

�����qDqo
�ÿ1

:

3. `Complex' geometrical optics

The propagation of electromagnetic waves through a nonuni-
form anisotropic medium is accompanied by changes in their
polarization, wave vector (refraction), and diffraction. The
first two phenomena can be analyzed in the framework of
conventional geometrical optics (see the previous section).
Choudhary and Felsen [2] showed that the diffraction
phenomenon may be included in the extended scheme of
geometrical optics which operates on complex values of the
wave vector and describes the evolution of inhomogeneous
waves.

Following paper [2] we illustrate this approach by the
example of two-dimensional waves propagating through an
isotropic medium with a permittivity e. Such waves are
described by the Helmholtz equation

DF�
�
o
c

�2

eF � 0 : �10�

Here, F�x; y� is the only nonzero component of the Hertz
vector (the z-component).

The wave vector and the eikonal will be considered to be
complex: k � Re k� i Im k. When Im k 6� 0, an imaginary
part appears in the dispersion relation, even in the absence of
irreversible processes of wave ±medium energy exchange:

D � ReD� i ImD

� ÿ�Re k�2 � �Im k�2 �
�
o
c

�2

eÿ 2iRe k Im k � 0 : �11�

To continue the dependence k�r�, as in the previous
section, we need to equate the gradient (11) to zero. The real
part of the equation thus obtained is of the form

H�ReD� � ÿ2�Re kH�Re k�
�
o
c

�2

He

� 2�Im kH� Im k � 0 : �12�

This equation shows that the real part of the wave vector
changes not only due to medium nonuniformity (the second
term) which manifests itself, in particular, in wave refraction,
but also due to the inhomogeneity of the waves themselves
(the third term). The latter effect should be considered the
manifestation of diffraction.

Let us compare these considerations with the results of
analysis of the same process performed with the aid of a

parabolic equation. To derive the parabolic equation, in
Eqn (10) we put

F�r� � exp �iky�F�x; y� ;

where k � �o=c�e, and F�x; y� is the slowly varying `envel-
ope'. In this case, for the function F we obtain the (parabolic)
equation

qF
qy
ÿ i

2k

q2F
qx 2
� 0 :

The automodel solution of this equation, which describes
the evolution of a wave beam with the Gaussian amplitude
distribution

F�x; y� � 1

�yÿ ia�1=2
exp

�
ikx 2

2�yÿ ia�
�

�13�

on the `initial' surface y � 0, is well known.
The wave vector corresponding to this solution is given by

the expression

k � k

�
x�y� ia�
y 2 � a 2

; 0; 1ÿ x 2�y 2 ÿ a 2 � 2iay�
2�y 2 � a 2�2

�
: �14�

It shows that in the y � 0 plane the vector Re k is parallel to
the 0Y-axis throughout the entire beam cross section.
However, since q�Im k�2=qx > 0 for the Gaussian distribu-
tion, in accordance with expressions (13) and (14) it forms a
vector fan directed away from the axis, thus leading to beam
expansion. For y4 a, in the sector x=y4 1=

�����
ak
p

, in which the
beam is mainly concentrated, it asymptotically turns into a
radially diverging beam.

One can conceive a non-Gaussian wave beam, in a certain
domain of which the condition q�Im k�2=qx < 0 is satisfied.
In this domain, the beam will converge rather than diverge. If
the amplitude decreases by a simple exponential law
Im k � const in the transverse direction, this law will remain
unchanged. Therefore, the evolution of inhomogeneous
waves may be rather complicated and not reduced merely to
the smoothing of the amplitude distribution.

Generally, for inhomogeneous waves �Im k 6� 0� in an
arbitrary medium, the problem of electromagnetic field
extension from the `initial' surface S to the entire domain
accessible to propagation is a natural generalization of the
problem considered in the previous section. We put Im k 6� 0
in expression (3) and separate the real and imaginary parts to
obtain

q
qxi

ReD� q
qxj

Re ki
q
qkj

ReDÿ q
qxj

Im ki
q
qkj

ImD � 0 ;

q
qxi

ImD� q
qxj

Im ki
q
qkj

ReD� q
qxj

Re ki
q
qkj

ImD � 0 :

8>>><>>>:
�15�

Broadly speaking, the directions HReD and H ImD do
not coincide. That is why to continue the dependence k�r�
from the `initial' surface S use should be made of the overall
procedure described in the previous section. We emphasize,
however, that although the generalization of the notion of
group velocity to the case of inhomogeneous waves is
nonexistent, it is quite frequently employed when
jRe kj4 jIm kj. We assume this condition to be fulfilled and
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expand D�k� in terms of Im k correct to second order to
obtain

D�k� � D�Re k� ÿ 1

2
Im ki Im kj

q2D
qRe ki qRe kj

� i Im ki
qD

qRe ki
� 0 : �16�

From the condition that the imaginary part of expression
(16) is equal to zero it follows that the propagation direction
of a weakly inhomogeneous wave �jRe kj4 jIm kj� is close to
the direction in which its amplitude remains constant [5]. In
isotropic mediaVgr k k, and therefore the constant phase lines
and constant amplitude lines should intersect at an angle close
to the right one. In the simplest case of waves described by the
Helmholtz equation, these lines are orthogonal for arbitrary
values of Im k [see expression (11)].

We have considered the procedure of extending the
complex wave vector. To continue the amplitude factor
E�r�, advantage should be taken of relationship (9) with
complex values of k, e, and E.

In equations (15), as in equalities (5), the quantity D may
be replaced with the frequency o defined by relationship (2)
(see the note at the end of the previous section).

4. Generalized geometrical optics
of Gaussian wave beams

Electromagnetic waves are quite often injected into experi-
mental devices in the form of narrow wave beams. In the
analysis of such beams, the complex eikonal is conveniently
expanded into a power series of deflections from the beam
axis:

c�r� � c�s� � ki�s�xi �
1

2
Ki j�s�xixj : �17�

Here, the following notation was introduced:

xj �
ÿ
xi ÿ xi�s�

��di j ÿ lilj� ; l � qD=qk
jqD=qkj

is a unit vector tangent to the beam axis, and s is the distance
along the axis. The beam axis is defined as the ray trajectory
corresponding to the highest intensity.

In an anisotropic medium, the group velocity and wave
vector directions may not coincide, and therefore a term
linear in xi is present in expansion (17). The real part of the
quantities Ki j characterizes the curvature of the beam
wavefront, which may be related, for instance, to its
focusing, while the imaginary part describes the intensity
distribution over the beam cross section.Wave beams with an
intensity distribution defined by expression (17) are termed
Gaussian or Gaussian-like. Gaussian beams owe their spatial
boundedness to the fact that Im ki � xj Im Ki j 6� 0 off the axis.

The task of extending the electromagnetic field from the
initial surface S, which was discussed in the previous sections,
necessitates consideration of the set of ray trajectories. In the
case of a Gaussian beam, it will suffice to consider only one
axial ray trajectory as well as the evolution of the quantities
Ki j along it. Knowing them is sufficient to describe the ray
trajectories passing in the vicinity of the beam axis. The
scheme of geometrical optics was augmented with the
inclusion of the equations for the Ki j quantities in Ref. [4].

The Ki j quantities have the significance of on-axis
derivatives of the wave vector:

Ki j � qki
qxj

����
x� 0

:

The equation for them is derived by setting equal to zero the
total second spatial derivative of the dispersion relation:�

qD
qkk

q
qxk

�
Ki j � ÿ q2D

qxi qxj
ÿ Kik

q2D
qxj qkk

ÿ Kjk
q2D

qxi qkk
ÿ KikKjl

q2D
qkk qkl

:

This equation can be represented as the directional derivative
along the traveling direction of rays and can supplement the
system of equations (5):

d

ds
Ki j � ÿ

���� qDqk
����ÿ1� q2D

qxi qxj
� Kik

q2D
qxj qkk

� Kjk
q2D

qxi qkk
� KikKjl

q2D
qkk qkl

�
: �18�

Here, the derivatives of the quantity D are calculated on the
beam axis and are therefore real, unlike the quantities Ki j.
Since both the quantity D and the derivatives dD=dxi vanish
in the ray trajectories, by multiplying Eqn (18) into the factor

ÿ
���� qDqk

�����qDqo
�ÿ1

it is possible to move from the spatial derivative in this
equation to the temporal one. In doing so, the quantity S in
Eqn (18) is replaced by the frequency.

Equation (18), in combination with the equations of
conventional geometrical optics (5), make up a system which
completely defines the spatial evolution of Gaussian beams.

It is pertinent to note that Eqn (18) was first obtained by
Bernshtein and Fridlend [11], who analyzed with its aid the
evolution of uniform wave fields and therefore the quantities
Ki j were assumed in Ref. [11] to be real. Under this
assumption, it is possible to investigate the effects of wave
beam focusing ± defocusing with the aid of Eqn (18). As noted
in Ref. [4], owing to the specific character of the spatial
dependence of Gaussian wave beams their evolution can also
be analyzed with the aid of equation (18) in which the Ki j
quantities should be taken to be complex.

To be precise, only those Ki j quantities of the entire set are
complex which define the transverse spatial structure of the
Gaussian beam. At the same time, the quantities

dki
ds
� lj

dki
dxj

characterizing the variation of the wave vector on the beam
axis should be real in the absence of irreversible processes.
This last proposition is not evident, because equation (18) at
first glance links all the Ki j quantities. From this equation,
however, for the derivative

d

ds

�
dki
ds

�
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it is possible to obtain the following expression

d2ki
ds 2
� ÿ

���� dDdk
����ÿ1�L̂ qD

qxi
� dki

ds
L̂

���� qDqk
����� ; �19�

where the operator L̂ is defined as

L̂ � q
qs
� dki

ds

q
qki

:

From expression (19) it follows that the quantities dki=ds
make up a closed collection, and since Im dki=ds � 0 at the
initial point of a ray trajectory in accordance with the
equations of geometrical optics, this relation will subse-
quently be fulfilled as well.

The electric field amplitude on the axis of a Gaussian
beam can be found from the condition that the beam energy
flux is constant:

VgrW � const ;

where

W �
�
dS? w

(the integral is taken over the beam cross section), and

w � 1

8p
eie
�
j

q
qo

oei jjE j2

is the energy density. Simple calculations yield

W � 1

16p
eie
�
j

q
qo

oei jjE j2 1

�K11K22 ÿ K 2
12�1=2

;

where

K11 � h1ih1j Im Ki j ;

K12 � h1ih2 j Im Ki j ;

K22 � h2ih2j Im Ki j ;

and the vectors h1 and h2 in combination with vector l make
up an orthonormal triad.

TheGaussian wave beam is a convenient object to analyze
with the aid of a parabolic equation. The Gaussian distribu-
tion of electric field is described by the simplest (largest-scale)
solution of the parabolic equation [see, for instance, expres-
sion (13)].

In the case of an arbitrary nonuniform anisotropic
medium, the use of the parabolic equation turns out to be
rather arduous. Pereverzev [7] produced the system of
equations for the parameters of the simplest solution of the
parabolic equation, the system equivalent to equation (18).
Propagation of the Gaussian beam in a nonuniform aniso-
tropic medium was considered in detail by Permitin and
Smirnov [13]. The even simpler case of a uniform isotropic
medium was discussed in the previous section. The Gaussian
beam in such a medium is characterized by a single parameter

Kxx � k

yÿ ia
; where k � o

c

��
e
p

[see expression (13)].

It is easily seen that this expression satisfies Eqn (18).
Indeed, D � ÿk2x ÿ k2y � k2 in the case under consideration
and equation (18) takes on the form

dKxx
dy
� ÿ K 2

xx

k
:

Therefore, the above-discussed approaches to the investi-
gation of Gaussian beam evolution are equivalent.

5. Conclusion

The foregoing consideration reveals that the dispersion
relation derived as the solvability condition of the system of
Maxwell equations contains all the information about the
spatial structure of short-wave electromagnetic waves. This
information may be extracted with recourse to the GO
formalism. Generalizing GO to inhomogeneous waves char-
acterized by a complex wave vector permits us to take into
account the diffraction phenomenon.

This work was supported by the RF Ministry of
Education Program ``Support of Leading Scientific
Schools'' under Grant No. 2024.2003.2.
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