
Abstract. The particle self-energy and self-force in a gravita-
tional field are considered. The particle self-action phenomena
in a gravitational field of black holes, in spaces of both the
infinitely thin and finite-thickness cosmic strings, as well as of
a point global monopole are discussed. Some effects related to
particle self-action are covered.

1. Introduction

For the case of flat Minkowski space ± time, 1 the phenom-
enon of self-action for electromagnetic particles has been
thoroughly studied and is described in great detail in reviews
and monographs (see, for instance, the books [1, 2] and the
reviews [3, 4]). The origin of the particle self-force is related to
the inertial properties of the electromagnetic field: radiation
emitted by an accelerated particle carries away momentum,
thus slowing down the particle. In other words, the self-force
is the reaction of radiation. The covariant 4-force of the self-
action of a particle with charge e and a 4-velocity u m in the
Minkowski space ± time is described by the well-known
Dirac ± Lorentz formula

F m
DL �

2e2

3

D2un

ds 2
�d m

n � umun� ; �1�

where d m
n is the Kronecker delta. This force, which has been

thoroughly studied in the relativistic and nonrelativistic
regions [1, 2], may give rise to substantial effects. For
instance, if a charged particle moves in an electromagnetic

field, the self-force has a profound effect on its law of motion.
This leads to a situation in which the particle energy, after the
particle has flown through a region filled by an electromag-
netic field, cannot exceed a certain threshold value deter-
mined by the electromagnetic field [2, æ 76].

Here are the main features of the Dirac ±Lorentz force (1)
in flat space ± time. First, the force is proportional to the
derivative of the particle acceleration and is, therefore, zero
for a particle at rest, moving uniformly, or having a constant
acceleration. Second, the formula for the self-force (1) is valid
for any trajectory followed by the particle and does not
depend on the electromagnetic field.

The description of the self-action effect in general
relativity becomes much more complicated, since in this
theory any type of energy (including fields) generates a
gravitational field. This makes it impossible to obtain in
explicit form the Green function of an electromagnetic field
in an arbitrary external gravitational field, and it becomes
necessary to calculate the Green function for each configura-
tion of the gravitational field. The local expansion of the
Green function of fields in a gravitational field [5] shows that
in addition to the standard terms there appear an infinite
number of additional terms that depend on the external
gravitational field. In space ± time with an even dimension,
the structure of the singularities of the Green function also
changes: in addition to the standard pole part there appears a
logarithmic divergence. Eventually this leads to a violation of
the Huygens principle in the sense that a plane or spherical
light wave propagating in curved space ± time loses its shape
and acquires `tails' [6]. According to the principle of
equivalence, a free particle as a local object tends to move
along a geodesic line. The electromagnetic field linked to the
particle is a nonlocal, extended object, for which a gravita-
tional field is the media in which the field propagates and
scatters. For this reason, in addition to the Dirac ±Lorentz
self-force (1) there appears an additional gravity-induced self-
force which is related both to the electromagnetic field and to
the gravitational field of the particle, since gravitational
radiation also produces a reaction. The first to analyze
electromagnetic self-force for a charged particle in an
arbitrary gravitational field were DeWitt and Brehme [6],
and later Hobbs [7, 8] added his own ideas to their analysis.
The result was the following equation of particle motion with
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allowance for the self-force:

m
Du m

ds
� eF mn

extun �
2e2

3

D2u n

ds 2
�d m

n � u mun�

� e2

3
R n

bu
b�d m

n � u mun� � e2u a
� s

ÿ1
f m� ab 0u

b 0 �s 0� ds 0 : �2�

The first term on the right-hand side of equation (2)
describes the electromagnetic Lorentz force with which the
external field Fext acts on the particle. The second term is the
covariant-generalized expression for the Dirac ±Lorentz
force (1). The third term, introduced by Hobbs [7, 8], appears
because of the local distribution of matter ± energy. Finally,
the last term depends on the entire prehistory of the charge's
motion. The origin of this term is related to the scattering of
the electromagnetic radiation by the gravitational field (on
the curvature) and, as noted earlier, its emergence eventually
leads to violation of the Huygens principle. The integrand
f m� ab 0 , which cannot be obtained in general form, depends on
the space ± time curvature. Since, as we will shortly see, the
function f m� ab 0 satisfies the identity um f

m
� ab 0 � 0, expression (2)

for the self-force retains the requirement that particle velocity
be perpendicular to particle acceleration.

There are substantial differences between the gravity-
induced self-force (2) and the Dirac ±Lorentz self-force (1).
First, the gravity-induced part in equation (2) generally
contains not only a local term but also a nonlocal term that
depends on the entire prehistory of the charge's motion. In
other words, the gravity-induced self-force depends on both
local and global properties of space ± time. Second, it depends
not on the derivative of acceleration but on velocity and,
therefore, may be nonzero, even for a particle at rest.

Let us now briefly discuss the main ideas in deriving
formula (2). The procedure is based on a method first
proposed by Dirac [9] in deriving the particle self-force in
flatMinkowski space ± time. The initial equation is that of the
balance of energy between the particle and the field. In the
absence of external fields of nongravitational origin, the
particle ± field energy balance equation takes the form of a
covariant law of conservation of the total energy ±momen-
tum tensor for a particle and a field:

T mn
;n � 0 ; �3a�

where the energy ±momentum tensor Tmn � T mn
mech � Tmn

el has
two components, namely, the mechanical

T mn
mech�x� � m0

�
g m
� a
ÿ
x; x�s�� gn� bÿx; x�s��

� u a�s�u b�s�d �4�ÿxÿ x�s�� ds�������ÿgp �3b�

and the electromagnetic

T mn
el �x� �

1

4p

�
F maF n

a ÿ
1

4
g mnF abFab

�
: �3c�

Here, g m
� a 0 �x; x 0� is the bivector of parallel transport along the

geodesic line connecting the points x 0 and x.
Then this equation integrates along a world tube of radius

e and length ds surrounding the world line of the particle, and
at the end of the calculations the tube's radius is turned to
zero. Since the left-hand side of equation (3a) is a vector at
point x, wemust first transport in parallel the vector to a point

lying on the world line inside the interval ds, and only after
that can we integrate the resulting biscalar. This procedure
leads to the following equation of motion:

m0
Du m

ds
ds � ÿ lim

e! 0

�
g m �

a 0 �x; x 0�T a 0b 0 dSb 0 : �4�

The left-hand side of the last relationship is connected with
the mechanical part of the energy ±momentum tensor (3b),
while the electromagnetic part (3c) contributes to the right-
hand side.

The first term in the expansion of the right-hand side of
Eqn (4) in powers of e diverges as 1=e. Since the structure of
this term coincides with that of the left-hand side, this
divergence can be removed by defining the `observed' mass
m of a particle as

m � m0 � lim
e! 0

e2

2e
: �5�

The contribution that tends to infinity actually stands for the
contribution from the infinite electromagnetic particle self-
energy. The next terms, which are finite in the limit e! 0,
lead to equation (2) in which the function

fmna 0 � vma 0;n ÿ vna 0; m �6�

is expressed in terms of the bivector vmn 0 determined in turn by
the Feynman vector Green function in the Hadamard form

GF
mn 0 �x; x 0� �

1

�2p�2
�

D1=2

s� i0
gmn 0 � vmn 0 ln �s� i0� � wmn 0

�
:

�7�
Here, s�x; x 0� � s 2=2, s is the interval between the points x
and x 0 along the shortest geodesic line connecting these
points, gmn 0 is the bivector of parallel translation along this
geodesic, and

D�x; x 0� � det
ÿ
s; mn 0 �x; x 0�

�
det
ÿ
gmn 0 �x; x 0�

�
is the Van Vleck ±Morret determinant. The quantities vmn 0
and wmn 0 have no singularities in the coincidence limit as
s! 0. We can directly express fmna 0 in terms of the retarded
vector Green function in the following way:

fmna 0 � 4p�G ret
na 0; m ÿ G ret

ma 0;n� :

Such a representation is more preferable [10] because
expression (7) for the Green function in the Hadamard form
is reasonable only if defined locally. The origin of the
nonlocal term in equation (2) is related to the fact that the
retarded Green function obtained from formula (7) and
needed in the calculation of the right-hand side of Eqn (4),
namely

G ret
mn 0 �x; x 0� �

y�x; x 0�
4p

�
D1=2gmn 0d�s� ÿ vmn 0y�ÿs�

	
;

contains both local and nonlocal contributions. Here, the
function y�x; x 0� is defined in such a way that it is equal to
unity if the event x resides in the causal future of the event x 0,
and is equal to zero otherwise; y�x� is the ordinary step
function.
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A more thorough investigation of the self-action effect in
a local frame of reference has been carried out by Hobbs [7],
who removed some of the inaccuracies in Ref. [6] and
obtained expression (2) with allowance for a local term
proportional to the Ricci tensor. If one employs Einstein
equations, this term can be expressed via the matter ± energy
local distribution.

The general conclusions concerning the structure of the
gravity-induced self-force and the nonlocal term in it can be
drawn for conformally flat spaces [8] and in the approxima-
tion of a weak gravitational field and the nonrelativistic
motion of particles [11]. For conformally flat spaces, the
bivector vmn 0 is the gradient of the scalar function:
vmn 0 � F; mn 0 . For this reason fmna 0 � 0, and the nonlocal term
vanishes, too. What remains is the local part of the particle
self-force [8]. Calculations that rely on the approximation of a
weak gravitational field and nonrelativistic particles were
done by the DeWitts [11]. In such an approximation, the
nonlocal equations of motion (2) become local. The reason is
that retardation effects, which lead to nonlocality, in the case
of nonrelativistic motion become unessential [11]. In this case,
in addition to being subjected to theDirac ±Lorentz self-force
(a dot over indicates a time derivative _v � dv=dt)

fDL � 2

3
e2�v

[the nonrelativistic form of expression (1)], a charge is
subjected to the additional gravity-induced self-force

fG � e2
�

xÿ x 0

jxÿ x 0j4 %�x
0� d3x 0 ;

where %�x 0� is the density of matter that generates the weak
gravitational field. The complete equation of motion in this
case has the form

m� _v� HU� � fDL � fG ;

where

U�x� � ÿ
�
%�x 0�
jxÿ x 0j d

3x 0

is the gravitational potential of matter.

2. Self-force and self-energy
in the spaces of black holes

Further investigations dealt with specific spaces and trajec-
tories of particles. A lot of work went into the study of self-
action phenomenon in the Schwarzschild space ± time:

ds 2 � ÿ
�
1ÿ 2M

r

�
dt 2

�
�
1ÿ 2M

r

�ÿ1
dr 2 � r 2�dy2 � sin2 y dj2� ; �8�

the Reissner ±Nordstrom space ± time:

ds 2 � ÿ
�
1ÿ 2M

r
�Q2

r 2

�
dt 2

�
�
1ÿ 2M

r
�Q2

r 2

�ÿ1
dr 2 � r 2�dy2 � sin2 y dj2� ; �9�

and the Kerr space ± time:

ds 2 � ÿ
�
1ÿ 2Mr

S

�
dt 2 � S

D
dr 2 � S dy2

ÿ 4JMr sin2 y
S

dt dj

� sin2 y
�
r 2 � J 2 � 2J 2Mr sin2 y

S

�
dj2 : �10�

Here, S � r 2 � J 2 cos2 y and D � r 2 ÿ 2Mr� J 2, withM,Q,
and J being the mass, charge, and angular momentum of the
black hole, respectively. The element of length (8) describes a
static massive (mass M) black hole formed as a result of the
collapse of a massive body; formula (9) describes a massive
charged (chargeQ) black hole, and, finally, Eqn (10) describes
a massive, stationary, rotating black hole with angular
momentum J. The event horizon of the black hole (8) is the
Schwarzschild radius rS � 2M, that of the Reissner ±Nord-
strom black hole is the quantity rQ �M�

�������������������
M 2 ÿQ2

p
, and

the Kerr black hole possesses an event horizon
rJ�M�

������������������
M 2ÿ J 2
p

. In these spaces, the results of the
DeWitts [11] cannot be applied directly, since the gravita-
tional field is not weak everywhere.

Smith and Will [12] studied the self-force for a charge
particle at rest in the Schwarzschild field. Initially, this
problem was studied by Vilenkin [13] for particles far from a
black hole. In this case, all the terms on the right-hand side of
Eqn (2), except the last one, vanish; the particle is repelled
from the black hole in the radial direction, and the self-force
for a particle at a point with the coordinate r has the form

F r
em �

rSe
2

2r 3

�������������
1ÿ rS

r

r
; jFemj � rSe

2

2r 3
; �11�

where rS � 2M is the Schwarzschild radius of the black hole.
This formula has been obtained both in the local and global
approaches.

The local approach, similar to that used by DeWitt and
Brehme [6], is based on calculating the density of the external
force F m needed to keep the particles in the Schwarzschild
field in equilibrium. This density has the form of a
4-divergence:

F m � Tmn
;n ; �12�

where the energy ±momentum tensor comprises two compo-
nents: the mechanical (3b), and the electromagnetic (3c).
Expression (12) for the force density is then integrated in the
frame of reference of a freely falling observer across a sphere
of radius e surrounding the particle; at the end of calculations,
the radius of the sphere is turned to zero.

When calculating the self-force, we must determine in
explicit form the electromagnetic 4-potential of a particle in
the Schwarzschild field, the potential depending on the
particle's trajectory. Copson [14] found the electromagnetic
potential for a particle at rest at point xp [14]. The zeroth
component of the vector potential has the following form

Apart
0 �x; xp� �

e

rpr

�rÿM��rp ÿM� ÿM 2 cos w
R

;
�13�

R2 � �rÿM�2 � �rp ÿM�2

ÿ 2�rÿM��rp ÿM� cos wÿM 2 sin2 w ;
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where cos w � cos y cos yp � sin y sin yp cos�jÿ jp�. This
potential behaves `incorrectly' at infinity:

A part
0 r!1 �

e

r

rp ÿM

rp
:

At infinite distances from a black hole and a particle,
space ± time becomes plain and the electromagnetic poten-
tial of the particle must be expressed in the Coulomb
form. Potential (13) is of the Coulomb type only if the
particle is far from the black hole in an asymptotically plain
region.

To solve this problem, Linet [15] proposed adding to
expression (13) the solution of the homogeneous equation:

Ahom
0 � eM

rrp
: �14�

In this case, the total potential A0 � Apart
0 � Ahom

0 , or

A0�x; xp� � e

rpr

�rÿM��rp ÿM� ÿM 2 cos w
R

� eM

rrp
�15�

takes the Coulomb form at infinity:

A0

��
r!1�

e

r
; �16�

while on the horizon of the black hole, with r � 2M, it is a
constant quantity

A0

��
r� 2M

� e

rp
: �17�

A charge located on the horizon of a black hole generates an
electric Coulomb field

A0

��
rp � 2M

� e

r
: �18�

Cohen and Wald [16], and Hanni and Ruffini [17] also
obtained an expression for the potential A0 of a charged
particle at rest in the Schwarzschild field, in the form of an
expansion in spherical harmonics and with allowance for the
additional term (14).

To make our exposition complete, it may be beneficial
to present appropriate formulas for other black holes. An
expression for the electrostatic potential of a charged
particle in the space ± time of a Reissner ±Nordstrom black
hole (9) was derived by Leaute and Linet [18] (see also
Ref. [19]):

A0�x; xp� � e

rpr

�rÿM��rp ÿM� ÿ �M 2 ÿQ2� cos w
RQ

� eM

rrp
;

R2
Q � �rÿM�2 � �rp ÿM�2 ÿ 2�rÿM��rp ÿM� cos w

ÿ �M 2 ÿQ2� sin2 w : �19�

Clearly, this potential meets the same conditions (16) ± (18) in
which for the Schwarzschild radius we must take rQ �
M�

�������������������
M 2 ÿQ2

p
.

An expression for the electromagnetic potential of a
particle located on the symmetry axis of a Kerr black hole

(10) was derived by LeÂ auteÂ [20]:

A0�x; xp� � e

�r 2p � J 2�S
�
�rpr� J 2 cos y�

�
�
M� �rÿM��rp ÿM� ÿ �M 2 ÿ J 2� cos y

RJ

�
� J 2�rÿ rp cos y� �rÿM� ÿ �rp ÿM� cos y

RJ

�
;

Aj�x; xp� � ÿ eJ

�r 2p � J 2�
�
sin2 y
S

�
�rpr� J 2 cos y�

�
�
M� �rÿM��rp ÿM� ÿ �M 2 ÿ J 2� cos y

RJ

�
� J 2�rÿ rp cos y� �rÿM� ÿ �rp ÿM� cos y

RJ

�
ÿ RJ � �rÿ rp cos y� �rÿM� ÿ �rp ÿM� cos y

RJ

ÿM�1ÿ cos y�
�
;

R2
J � �rÿM�2 � �rp ÿM�2

ÿ 2�rÿM��rp ÿM� cos yÿ �M 2 ÿ J 2� sin2 y :

If a charge is placed on the horizon of aKerr black hole, i.e., if
we put rp � rJ �M�

������������������
M 2 ÿ J 2
p

, the potential of the charge
will have, in complete agreement with the electromagnetic
potential outside a Kerr ±Newman black hole (see, e.g.,
Ref. [21]), the following nonzero components

A0 � er

S
; Aj � ÿ eJr sin y

S
:

The use of the potential A0 in the form (15) in equation
(12) leads to a particle self-force (11). In deriving the
expression for this force, we must perform an infinite
renormalization of the particle mass, according to which the
observed mass is given by the expression

m � mbare � lim
e! 0

e2

2e
:

The infinite term emerges from the electromagnetic part of
the energy ±momentum tensor.

The global approach is based on using the law of energy
conservation: the work that a force does during virtual radial
displacement of a charge is equal to the product of force by
displacement. This energy is transferred to infinity, and an
infinitely remote observer measures the change dM in the
mass of the system, which can be calculated by Carter's
formula [22] through the variation dA of the surface area of
the horizon and the black hole's surface gravity k:

dM � k
8p

dAÿ 1

8p
d
�
G 0

0

�������ÿgp
d3x� 1

16p

�
G mndgmn

�������ÿgp
d3x ;

where Gmn is the Einstein tensor. If the particle moves rather
slowly, the energy is not carried over the horizon and dA � 0.
The last term is also zero, since we are considering the motion
of a test particle against the background of the Schwarzschild
metric. Thus, there remains only one term which, using the
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Einstein equations, we can rewrite as follows:

dM � ÿd
�
T 0
0

�������ÿgp
d3x :

Both approaches give the same result: the total force
needed to keep the particle in the Schwarzschild field in
equilibrium takes the form

F r
em �

rSm

2r 2
ÿ rSe

2

2r 3

�������������
1ÿ rS

r

r
:

The ratio of the particle self-force (the second term) to the
gravitational attractive force (the first term), namely

d � l
r

�������������
1ÿ rS

r

r
;

reaches its maximum at a distance r� � �3=2�rS and has the
maximum value

d � 2

3
���
3
p l

rS
;

where l � e2=m. When the Schwarzschild radius is critical,
rS � 2l=�3 ���

3
p �, the self-force balances the gravitational force

of attraction to the black hole.
When the electromagnetic field is replaced by the massive

vector Proca field, the self-force only changes sign [13] but
remains the same in value (11), and the particle will be
attracted to the black hole. The reason is that the require-
ment that the energy ±momentum tensor be finite on the
horizon of the black hole leads to different boundary
conditions for the 4-potentials of the massless electromag-
netic field and the massive field [23, 24]. The energy ±
momentum tensor (3c) of the electromagnetic field contains
only derivatives of the 4-potential, while the energy ±
momentum tensor of the massive Proca field, namely

T mn
Pr �

1

4p

�
H maH n

a ÿ
1

4
g mnH abHab

ÿm 2
B

�h2

�
B mB n ÿ 1

2
g mnBaB

a
��

;

has terms proportional to the squarem 2
B of the field mass and

containing the 4-potential in explicit form, without deriva-
tives. (Here, Hmn � Bm;n ÿ Bn; m.) This implies that physically
meaningful solutions of the Proca equations must, first,
satisfy the boundary condition B0jr� 2M � 0 on the horizon
of the black hole [13, 23, 24] and, second, the invariant BmB

m

must be finite on the horizon of the black hole. To satisfy
these conditions, wemust add the appropriate solutions of the
homogeneous equation, which do not depend on the field's
mass and which, eventually, change the sign of the particle
self-force. Although the massless limit in the energy ±
momentum tensor has no singularities, this is not the case
with the boundary conditions. For small values of the mass of
the vector field, �mB=�h�ÿ1 4M, and at distances M5 r and
rp 5 �mB=�h�ÿ1, the zeroth component B0 of the vector
potential of the Proca field assumes the following form [13]

B0 � A0 ÿ 2Me

rrp
� Apart

0 �Me

rrp
;

where A0 is the zeroth component of the electromagnetic
potential discussed earlier [see equation (15)]. Thus, on the

horizon of the black hole the potential obtained is zero:
B0jr� 2M � 0, and, in accordance with the `Black Hole No
Hair' theorem, a charge on the horizon of a black hole
generates no field outside the hole, or B0jrp � 2M � 0. The
above formula shows that the term that is the addition to
Copson's solution is independent of the field's mass mB and,
in contrast to the electromagnetic case, has a different sign. At
large distances from the black hole, the Proca field is
described by the superposition of the fields of a point charge
e and a charge e 0 � ÿ2Me=rp beneath the horizon of the
black hole:

B0

��
r!1�

e2

r
ÿ 2Me

rrp
:

The reason for such a difference between massive and
massless vector fields lies in the gauge invariance of the latter.
The potential of the electromagnetic field is unobservable
because of the gauge invariance of the theory. The observa-
bles here are the electric and magnetic fields. On the other
hand, the massive vector Proca field is not gauge invariant, so
that the potential of this field is an observable. Using the
gauge invariance of the electromagnetic field, we can always
guarantee the `correct' behavior of the potential at infinity
and make the field energy density regular on the horizon. The
requirement that the Proca field energy density be finite on
the horizon together with the absence of gauge invariance of
the theory leads to different boundary conditions at infinity,
being independent of the field's mass. Such differences are
closely related to the `Black Hole No Hair' theorem. The
electromagnetic potential generated by a particle residing on
the horizon of a black hole is nonzero and is of exactly
Coulomb form

A0

��
rp � 2M

� e

r
;

and, therefore, a charge crossing the horizon of a black hole
leaves an electric `hair' outside the hole. The situation is
different in the case of a massive Proca field. A charge
crossing the horizon does not leave `hairs' in the outer region
of the field:

B0

��
rp � 2M

� 0 :

In the case of a scalar particle with a scalar charge q and a
minimally coupled massless field, the self-force for the
particle at rest is zero [19, 25 ± 28] both in a Schwarzschild
field and in a Reissner ±Nordstrom field. This is not the case,
however, for a scalar particle moving in a Schwarzschild field
[26] or at rest in a Kerr field [29, 30]. The equations of motion
of a scalar particle are similar to the equation (2) of motion in
electrodynamics [31]. The one thing that we must do is to
replace e 2 with q2=2 and

e2u a f m: ab 0u
b 0 ! q2�g mn � u mun�G;n ;

where G is the scalar Green function.
The scalar potential generated by a scalar charge q placed

at the point xp has the form

V part�x; xp� � ÿ q

R

������������������
rp ÿ 2M

rp

s
: �20�
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At large distances from a black hole �r4 rp�, one finds

V part
��
r!1� ÿ

q

r

������������������
rp ÿ 2M

rp

s
:

A scalar charge located on the horizon of a black hole does
not generate a scalar field outside the hole:V partjrp � 2M � 0, in
accordance with the `Black Hole No Hair' theorem. This is
due to the structure of scalar current [26]. The thing is that for
a scalar charge (spin 0) at rest, the current density has one
component proportional to q=u t � q

�����
gtt
p

, while the t-compo-
nent of the electromagnetic current density (spin 1) is
proportional to eu t=u t � e, and for the tt-component of the
energy density of a tensor (rank 2) field we have
m�u t�2=u t � m=

�����
gtt
p

. Here, gtt is the tt-component of the
metric.

The potential induced by the charge on the horizon of a
black hole, namely

Vpart
��
r� 2M

� ÿ
������������������
rp ÿ 2M

rp

s
q

rp ÿMÿM cos w
;

is not constant, as it is in the case of an electromagnetic field,
but depends on the position of the charge. Eventually, the
potential (20) leads to a zero self-force for a scalar particle at
rest in a Schwarzschild field. If the scalar field is notminimally
coupled, the self-force for a particle at rest is no longer zero
[19, 28]. In this case, there is only the radial component of the
force

F r
sc � x

q2rS
r 3

�������������
1ÿ rS

r

r
; jFscj � x

q2rS
r 3

;

proportional to the nonminimal coupling constant x. Positive
values of x > 0 correspond to the case where the particle is
repelled from the black hole.

Parker [32, 33] calculated the self-force of an atom freely
falling in the Schwarzschild field and found that the force is
zero for an electroneutral atom. The explanation goes as
follows. Earlier we stated that for the `correct' behavior of the
charge potential at infinity, wemust add to Copson's solution
Apart

0 (13) the solution Ahom
0 (14) of the homogeneous

equation. Then the local expansion of the potential near the
charge contains, besides the Coulomb part which can be
obtained from expression (13), an additional term of the form
ÿeKi Dx i, whose origin is related to the fact that the solution
(14) of the homogeneous equation is added. Here, Kr � 1=r 2p ,
while the other components vanish. This term is responsible
not only for the emergence of the particle self-force but also
for supplementary interaction with the nucleus. The self-force
(repulsion) acting on the electron of the atom has the form
fi � e2Ki, while the force of attraction to the nucleus with
charge Z is f 0i � ÿZe2Ki. Thus, the total force acting on the
charge equals Fi � �1ÿ Z�e2Ki or, if the atom has Z 0

electrons, Fi � �Z 0 ÿ Z�e2Ki, and it is zero for an electro-
neutral atom. Thus, in an electroneutral atom the self-force
(repulsion) acting on the electron clouds is balanced by the
additional attraction to the nucleus.

Furthermore, Parker [33] found that the other compo-
nents Ak of the vector potential also contain additional terms
which near the charge have the formÿeLkj Dx j, where the Lkj

quantities form an antisymmetric matrix with constant
coefficients. These terms lead to a situation in which at the
point where the charge is located there emerges a magnetic
field Bi � ÿeEi jkLkj acting on the charge and determining a

force that can be called self-torque, f tj � ÿ2emkLkj, where mk
is the magnetic dipole moment of an electron. By analogy
with the case examined earlier, we conclude that for an
electroneutral atom the self-torque force acting on the
electron clouds is balanced due to interaction with the
nucleus by a force of the same magnitude. Thus, we conclude
that no additional self-forces act on a freely falling electro-
neutral atom. It should be emphasized that the Ki and Lkj

depend only on the global properties of space ± time.
Recently, Linet [34 ± 37] derived an expression for the self-

action potential in spherically symmetric space ± time with an
element of length

ds 2 � ÿN 2�r� dt 2 � B2�r��dr 2 � r 2 dy2 � r 2 sin2 y dj2� :
�21�

The electrostatic self-action potential of a particle at rest
at point rp in the space of a black hole with the surface gravity
k � N 0�rh�=B�rh� assumes the form

U em�rp� � 1

2
e2s
�
a�rp�

�2
; s � 1

a�rh�
�
1ÿ k

a�rh�
�
; �22�

where

a�r� �
�1
r

N�r�
r 2B�r� dr

is the potential of a unit charge residing beneath the horizon,
and rh is the horizon radius of the black hole. The approach
amounts to the following. The electrostatic potential gener-
ated by the charged particle that is outside the horizon of the
black hole (21) is written down as the sum of the solution in
theHadamard form [in the case of a Schwarzschild black hole
this is Eqn (13), and in the case of a Reissner ±Nordstrom
black hole, Eqn (19)] and the solution of the homogeneous
Maxwell equation (equation (14) for a Schwarzschild black
hole). The potential represents a symmetrical function in
relation to the location of the charge and the point from
which the field is observed. The solution of the homogeneous
Maxwell equation is represented in the form esa�r�a�rp�,
where a�r� � A0=e is the potential generated by a unit charge
beneath the horizon of the black hole (outside the black hole
this is simply the centrally symmetric solution of homoge-
neous equations). The proportionality factor s can be found
fromGauss's theorem stating that the flux of a field through a
closed surface gathering round the charge equals 4pe.
Computations of the energy for such a configuration with
allowance for the infinite renormalization of mass lead to
expression (22).

Calculations of this type have been done in connection
with estimation of the upper limit on the entropy of a black
hole [37 ± 40], with Zaslavskii being the first to make such
estimates [41]. The thing is that when a charged particle
crosses the horizon of a black hole, the self-energy is also
absorbed by the hole, which should lead to a shift in the upper
limit on the black hole's entropy. The following restriction on
the entropy of a black hole has been obtained:

S4 2pml� pe2

k

ÿ
sa�rh� ÿ 1

�
a�rh� ; �23�

which with allowance for formulas (22) yields

S4 2p
�
mlÿ 1

2
e2
�
; �24�
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where m, l, and e are the mass, radius, and charge of the
object, respectively. It is interesting that the known estimate
(24), according to which the upper limit on the entropy is
independent of the parameters of the black hole, is a corollary
of the more profound formula (23) in which the upper limit
depends both on the parameters of the black hole and on the
self-energy.

The self-energy and self-force of an electromagnetic
particle and a scalar particle in the space of a charged
Reissner ±Nordstrom black hole (9) were studied by Zel'ni-
kov and Frolov [19]. They found that the force has only a
radial component and derived expressions of the self-forces of
an electromagnetic particle:

F r
em �

rSe
2

2r 3

������������������������
1ÿ rS

r
�Q2

r 2

r
; jFemj � rSe

2

2r 3
;

and a scalar particle:

F r
sc �

2xq2

r 3

�������������������
M 2 ÿQ2

p ������������������������
1ÿ rS

r
�Q2

r 2

r
;

jFscj � 2xq2

r 3

�������������������
M 2 ÿQ2

p
:

The total energy of a particle at rest in the field of such a black
hole, namely

Eem � mem

������������������������
1ÿ rS

r
�Q2

r 2

r
� e2rS

4r 2
;

is the sum of the rest energy of the particle and its self-energy.
The infinite electromagnetic self-energy of the particle is
removed by the procedure of classical renormalization of
mass:

mem � mbare � e2

2e
:

For a scalar particle we obtain in analogous fashion:

Esc � msc

������������������������
1ÿ rS

r
�Q2

r 2

r
ÿ xq2

�������������������
M 2 ÿQ2

p
r 2

;

where

msc � mbare ÿ q 2

2e
:

Gal'tsov [29, 42] calculated the particle self-force in the
field of a rotating black hole with the Kerr metric for massless
fields of spin 0, 1, and 2, while Leaute and Linet [30]
calculated the same in the particular case of an electromag-
netic field and a particle resided on the symmetry axis.
Gal'tsov's computing method in Ref. [29] is based on using
the radiative Green function (the half-difference of the
retarded and advanced Green functions), which is the part
of the Green function describing radiation. He showed that
the self-force acting on a particle at rest in the Kerr field has
azimuthal components

F sc
j � ÿ

1

3
Jq2M 2 sin2 y

r 4
;

F el
j � ÿ

2

3
Je2M 2 sin2 y

r 4
;

F gr
j � ÿ

8

5
Jm2M 4 sin2 y

r 6

�
1� 3J 2

4M 2
�5 sin2 yÿ 1�

�

for a scalar particle, an electromagnetic particle, and a
massive particle �r4M�, respectively. Here, J is the angular
momentum of the black hole, and q, e, andm are, respectively,
the scalar and electromagnetic charges and the mass of a
particle. A rotating black hole tends to move the particle in
the direction of its rotation. Hence, the rotation of the black
hole slows down due to the total angular momentum
conservation law. This phenomenon, discussed earlier by
Hawking and Hartle [43], became known as tidal friction.

A great many works based on different methods have
been written about the gravitational self-force which emerges
because of the reaction of gravitational radiation. An
approach similar to the one proposed by DeWitt and Brehme
was utilized by Mino et al. [44] in the first approximation in
the test-particle mass, i.e., in the approximation of a weak
gravitational field. The researchers obtained the following
equation of motion of a particle with allowance for the self-
force:

m
Du a

ds
� ÿm

�
1

2
u au bu gu d � g abu gu d ÿ 1

2
g adu bu g

ÿ 1

4
u ag bgu d ÿ 1

4
g adg bg

�
cbg;d

ÿ
x�s�� ; �25�

where

cmn

ÿ
x�s�� � �2m � sz

�1
ds 0 vmna 0b 0

ÿ
x�s�; x�s 0�� u a 0 �s 0� u b 0 �s 0� ;

�26�

with the upper and lower signs corresponding to the retarded
and advanced boundary conditions, respectively. The quan-
tity cmn describes the `tail' part of the perturbation of the
metric gmn � Zmn � hmn:

cmn�x� � hmn�x� ÿ 1

2
gmn�x�h�x� ;

the perturbation induced by a point particle moving along a
trajectory z a�s�. The complete solution is the sum of the `tail'
part c�v� mn and the local part c�u� mn. As in the case of the
electromagnetic self-force (2), the `tail' part of the perturba-
tion of the metric is determined by the logarithmic part of the
Green function

G mna 0b 0
F �x; x 0�

� 1

�2p�2
�
u mna 0b 0

s� i0
� v mna 0b 0 ln �s� i0� � w mna 0b 0

�
:

For the Schwarzschild space ± time, there is also a
different method of calculating self-forces, developed in
Refs [45 ± 51]. The method is based on renormalization of
each term in the orbital angular momentum expansion of the
potential. The renormalization amounts to subtracting the
necessary number of terms in the asymptotic expansion at
high orbital angular momenta.

Recently, Quinn and Wald [10] and Quinn [31] developed
an axiomatic approach. The basic `axiom of comparison' [10]
can be formulated as follows. The difference in the self-forces
of two particles carrying equal charges e and having the same
accelerations is the ordinary Lorentz force generated by the
(appropriately defined) difference in the electromagnetic
fields of the particles. Actually, such an axiom is needed to
avoid divergence, commonly removed by classical renormal-
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ization of mass. The results obtained by such an approach
agree with those of DeWitt and Brehme [6], and Mino et al.
[44]. Note, however, that the methods used in Refs [6, 10, 31,
44] make it possible to obtain only the general structure of the
particle self-force, which nevertheless is important for under-
standing the nature of self-action phenomenon.

3. Self-force and self-energy
in topological defect spaces

In this section, we discuss the self-action effect in spaces of
topological defects. Most fully topological defects, their
emergence, evolution, and interaction are described in the
monograph [53] and the reviews [53, 54]. The aspects that
have been studied so far are those of self-action in the space of
an infinitely thin cosmic string [53, 55], in the space of a
cosmic string with a finite cross section [56, 57], and in the
space of a point global monopole [58].

We begin with the space ± time of an infinitely thin cosmic
string [53, 55] with the metric

ds 2 � ÿdt 2 � dr 2 � r 2

n 2
dj2 � dz 2 ; 04j4 2p : �27�

Such space ± time is described by a singular curvature tensor
[54]. The parameter n is related to the linear mass m of the
string by the formula nÿ1 � 1ÿ 4m [53]. This situation is of
interest in that the space ± time is locally flat and in
consequence the emerging particle self-force is only deter-
mined by the singular structure of the manifold. Linet [59, 60]
and Smith [61] were the first to examine the self-force in the
space ± time of an infinitely thin cosmic string, and both used
the following approach.

Let us consider a particle that carries a charge e and is at
rest at a distance r from the string. In this case, the equation
for the zeroth component of the vector potential has the form

DA0 � ÿ 4pe��������
g �3�

p d�rÿ r 0� d�jÿ j 0� d�zÿ z 0� ;

where �x 0;j 0; z 0� are the coordinates of the particle,
g�3� � r 2=n 2 is the determinant of the three-dimensional
spatial part of the string's metric, and D � gikHiHk is the
three-dimensional Beltrami operator. Thus, the component
A0 is proportional to the scalar Green function of a three-
dimensional Laplace operator in a conical space:

A0�x� � 4peGn�x; x 0� :
The potential, energy, and force of self-action are

determined through the limit of coincidence for the renorma-
lized Green function as follows:

F�x� � 4peG ren
n �x; x� ; �28a�

U�x� � 1

2
eF�x� ; �28b�

F�x� � ÿHHU�x� : �28c�

For renormalization and removal of divergences it is
enough to subtract from the exact Green function the Green
function GM�x; x 0� in the Minkowski space ± time, which can
be obtained from the Green function in the conical space by
passage to the limit n! 1:

GM�x; x 0� � Gn� 1�x; x 0� :

Thus, one obtains

G ren
n �x; x 0� � Gn�x; x 0� ÿ Gn� 1�x; x 0� :

Since in our case space ± time is flat everywhere, the
Feynman Green function can be expressed in explicit form
as [62]:

Gn�x; x 0� � in 2

8p2rr 0
sinh nZ

sinh Z
�
cosh nZÿ cos �Dj�� ; �29�

where

cosh Z � 1� 1

2rr 0
�ÿDt 2 � Dz 2 � Dr 2� ;

and Dx � xÿ x 0.
The square of interval (27) can be reduced by a simple

transformation of the angular variable j � nf to the
appropriate expression for the Minkowski space ± time.
Although formally the element of length in this case appears
to be the element of length of the Minkowski space ± time, all
information about the presence of a string is contained in the
boundary conditions: the Green functions are periodic in the
angular variablefwith a period of 2p=n. If we now go back to
the variablej, theGreen functions are periodic in the variable
j with a period of 2p, but then the metric coefficients differ
from such coefficients for the Minkowski space ± time. For
this reason, the resulting Green function differs from that in
the Minkowski space ± time.

Substituting Green function (29) into equations (28), we
arrive at the following expressions for the particle self-energy
and self-force:

U em�r� � e2

2r
L0�n� ; F em

r �r� �
e2

2r 2
L0�n� ; �30�

where

L0�n� � 1

p

�1
0

n coth �nx� ÿ coth �x�
sinh �x� dx : �31�

Numerical calculations done by Smith [61] exhibit an almost
perfect linear dependence of L0�n� on n. For a small angle
deficit, jnÿ 1j5 1, this dependence takes the form

L0�n� � p
8
�nÿ 1� ; �32�

with the result that the charged particle is repelled from the
string in the transverse direction by a force

F em
r � pe2

16r 2
�nÿ 1� : �33�

The electromagnetic self-force in the space of an
infinitely thin string for an arbitrary particle trajectory has
been studied in Refs [63 ± 65]. The following approach was
utilized in calculating the self-force. Consider a particle
carrying a charge e and moving along a trajectory x m�t 0�
with a 4-velocity u m�t 0�. First, we derive an expression for
the 4-potential Am generated by the particle at the point of
observation x m (Fig. 1a). Next, we place a certain fictitious
particle with charge e and velocity u m at this point and
calculate the Lorentz 4-force F m � eF mnun acting on it
(Fig. 1b). Then we place the fictitious charge on the particle's
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trajectory: xm ! x m�t� and u m ! u m�t�. Thus, the fictitious
charge constitutes simply the initial particle at a later moment
t in time. To find the self-force, we direct the two particles
toward each other, i.e., we pass to the limit t! t 0 (Fig. 1c). A
well-known fact of the general theory of Green's functions in
curved space ± time (e.g., see Ref. [5, p. 170 of the Russian
edition]) is that the retarded Green function has two
components: the local, and the nonlocal. The local compo-
nent proportional to the delta-function d�s� of the square of
the interval between the points x m�t� and xm�t 0� determines
(after renormalization of mass) the local part of the self-force,
i.e., the Dirac ± Lorentz force and the matter ± energy con-
tribution [see Eqn (2)]. The nonlocal part of the Green
function, which is proportional to y�ÿs�, yields the nonlocal
part of the self-force.

In the particular case of a particle at rest, it was found that
the increase in the parameter L0�n� with the angle deficit n is
related to the increase in the numberN of closed geodesics on
the cone, whose number is the integer part of n=2:

N �
�
n
2

�
: �34�

For the case of a supermassive string �n!1, and m! 1=4�,
the following estimate was given [65]:

L0 � n
p
ln

2n
p
:

In this limit, the exact field equations lead to the metric of
cylindrical space ± time [66]. The case of supermassive cosmic
strings has also been discussed in the context of topological
inflation [67 ± 73].

Linet [60] studied a more general situation and calculated
the self-force for both an electrically charged particle and
particles that are charges of massive scalar or vector fields. In
such cases, the self-energy has the form

U�r� � e
q2

2r
L�n;mr� ;

where

L�n;mr� � n sin �pn�
p

�1
0

exp �ÿ2mr cosh x�
cos �pn� ÿ cosh �2nx�

dx

cosh �x� ;

q is the charge of the particle related to the scalar and vector
massive or massless fields, and e equals ÿ1 for a scalar field,
and �1 for a vector field.

Thus, a particle interacting with a scalar field is attracted
to the string, while a particle interacting with a vector field
(massive or massless) is repelled from the string. The
difference is due to the form of the interaction term in the
scalar field Lagrangian [74]. The particle self-energy in this
situation is defined as

U�x� � e
q

2
F�x� :

In the case of an electromagnetic field (q � e, m � 0, and
e � �1) we arrive at formula (30). Note that in deriving
formulas (30) we must take into account an identity that
holds for n < 2:�1

0

n sin �pn�
cos �pn� ÿ cosh �2nx�

dx

cosh �x�

�
�1
0

n coth �nx� ÿ coth �x�
sinh �x� dx :

The particle self-energy for the case of massless fields is
inversely proportional to the distance to the string [the first
formula in Eqn (30)], while in the massive case [60] it is
represented by the following exponential dependence

U�x� � e
mnq2

4
���
p
p cot

�
pn
2

�
exp �ÿ2mr�
�mr�3=2

; mr4 1 :

The gravitational self-force for an uncharged test particle
of massm has been calculated by Smith [61] and Gal'tsov [75]
in an approximation linear in the Newtonian constant of
gravitation G. The researchers found that the particle is

a

e

e

t0

x

t

�xm; un�

�x m�t0�; un�t0��

Am

b

e

e

t0

x

t

�xm; un�

�xm�t0�; un�t0��

F m � eF mnun

c

t0

t

t! t0

x

t

�xm�t0�; un�t0��

�xm�t�; un�t��
F m�t�

e

e

Figure 1. A schematic of the procedure for calculating the particle self-

force. (a) First, we find the electromagnetic potential at the point where the

test charge is located. (b) Then, we calculate the Lorentz force acting on

the test charge. (c) Finally, we place a test particle on the mechanical

trajectory, i.e., assume it is the initial particle at a later moment in time,

and direct the two particles toward each other.
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attracted to the string with a force

F gr
r �r� � ÿ

m 2

2r 2
L0�n� : �35�

The opposite signs in formula (35) and in the expression for
the self-force in the electromagnetic case [the second formula
in Eqn (30)] can be explained by the fact that gravitational
charges (masses) are always attracted, while electromagnetic
like charges are always repelled.

The electromagnetic and gravitational self-forces for a
particle at rest in the space ± time of a cosmic dispiration
(dislocation plus disclination) [76 ± 78] were studied by
De Lorenci and Moreira [79]. This space ± time can be
obtained from the Minkowski space ± time by identifying the
cylindrical coordinates according to the following rule

�t; r;f;Z� �
�
t; r;f� 2p

n
; Z� 2pk

�
:

The parameters n and k describe a disclination and disloca-
tion, respectively. In the new coordinates j � fn,
z � Zÿ knf, the element of length takes the form

ds 2 � ÿdt 2 � dr 2 � r 2

n 2
dj2 � �dz� k dj�2 ;

z 2 �ÿ1;�1� ; 04j4 2p :

The researchers arrived at the following expressions for self-
energy:

U em � e2

2r
L�n; k� ; U gr � ÿm 2

2r
L�n; k� ;

where the function L�n; k� is expressed in terms of the
coincidence limit of the renormalized scalar Green function:

L�n; k� � ÿ ln 2

p

ÿ 2
X1
n� 1

�1
0

x2 ÿ p2�4n2=n2 ÿ 1��
x2 � p2�2n=n� 1�2��x2 � p2�2n=nÿ 1�2�

� dx�����������������������������������������������
cosh2 �x=2� � �pnk=r�2

q :

It should be emphasized that L�n; k� can be either positive
or negative [79], i.e., the particle self-force may have different
signs at different distances from the string. The natural scale
of distance in this space is the dislocation parameter k. As
expected, in the case of an infinitely small disclination (or at
great distances from the string), k=r5 1, the above expression
for self-energy is reduced to expression (31) for the space of an
infinitely thin string: L�n; k� ! L0�n�. In the opposite situa-
tionwhere the disclination prevails (or at small distances from
the string), k=r4 1, we get

L�n; k� � ÿ ln 2

p
:

Thus, when disclination prevails or when the distances from
the string are small, the self-energy is independent of the
parameters of the string. The situation is exactly the opposite
for an infinitely thin string; precisely, the electromagnetic self-
force attracts the particle, while the gravitational self-force
repels it.

Although the space ± time of string is locally flat, the self-
force can still be obtained by the method used by the
DeWitts [11] in the case of weak gravitational fields. In our
situation, the small angle deficit acts as the parameter
characterizing the weakness of the gravitational field.
Boisseau et al. [80] did such calculations and obtained the
following formula (in the first approximation in the New-
tonian constant of gravitation G):

U em�x� � pe2

4

�
2T 0

0 ÿ T 1
1 ÿ T 2

2 ÿ T 3
3

r�x; x 0� d2x 0 ; �36�

where r�x; x 0� is the Euclidean distance in the plane
perpendicular to the string, and Tm

n is the string's energy ±
momentum tensor. For an infinitely thin string, when

T 0
0 � T 1

1 � md �2��x 0� ; T 2
2 � T 3

3 � 0 ;

equation (36) yields the well-known expression for the
electromagnetic self-energy [see formula (33)]:

U em � pe2m
4r
� pe2�nÿ 1�

16r
:

The electromagnetic self-force in the space of many
cosmic strings has been studied in Refs [81 ± 87]. The results
are valid for three-dimensional spaces with a metric
�a; b; c � 1; 2�

ds 2 � ÿdt 2 � gab�xc� dxa dxb ;

and for four-dimensional spaces with the interval

ds 2 � ÿdt 2 � dz 2 � gab�xc� dxa dxb :

The spatial part can be effectively reduced to two dimensions
by a special choice of current density

J m�xc� � ÿJ t�xc�; 0; 0; Jz�xc�� :
Since two-dimensional Riemannian surfaces are confor-

mally flat, we can introduce coordinates in terms of which one
obtains

gab � exp
�ÿO�xc�� dab :

Bezerra de Mello et al. [81] calculated the linear energy
density U and the linear self-force density ~F for a steady
current flowing along the string through the point �x 1

1 ; x
2
1 �:

J m�xc� � �J t; 0; 0; Jz� d�x
1 ÿ x 1

1 � d�x 2 ÿ x 2
1 ����������

g�x�p :

The researchers also found that

U � ÿ 1

2
O�J t2 � Jz2� ;

~F � 1

2
exp

�
O
2

�
HHO�J t2 ÿ Jz2� :

For the multiconical space formed by N parallel strings,
Staruszkiewicz [88], Letelier [89], and Deser et al. [90] arrived
at the following expressions with the conformal factor

O �
XN
k� 1

2�1ÿ nÿ1k � ln jxÿ xkj
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for the particle self-energy and self-force:

U � ÿ�J t2 � Jz2�
XN
k� 1

�1ÿ nÿ1k � ln jxÿ xkj ; �37a�

~F � exp

�
O
2

�
�J t2 ÿ Jz2�

XN
k� 1

�1ÿ nÿ1k �
nk

jxÿ xkj ; �37b�

where

nk � xÿ xk
jxÿ xkj :

Thus, the self-energy (37a) is an additive quantity, while the
self-force (37b) is not additive due to its dependence on the
conformal factor.

In the particular case of a single string �N � 1�, an
expression for the self-force of the current flowing parallel
to the string was obtained by Bezerra de Mello et al. [91]:

~F � �J t2 ÿ Jz2��nÿ 1� q

r2
;

where r � njxj1=n. Formally, this force coincides with the
interaction force of two currents in the Minkowski space ±
time: J m, and the `induced' current J m

ind � �nÿ 1�J m=2. The
sign of the force depends on the sign of the square of the
4-current: a spacelike current is attracted, while a timelike
current is repelled.

In the case of a nontrivial inner structure of the current
(the presence of nonzeromoments), in addition to the induced
current there will be induced moments [82, 83]. The self-
energy of an electric dipole moment coincides with the
interaction energy of the dipole d and the induced dipole
moment

dind � ÿ 1

24
�n 2 ÿ 1�d :

For a magnetic moment l and a quadrupole momentDab, we
have, respectively

l ind � ÿ
1

24
�n 2 ÿ 1� l ; Dab

ind �
1

1440
�11� n 2��n 2 ÿ 1�Dab :

The inner structure of the current also leads to the emergence
of a moment of self-force [83].

The above expression for the self-force diverges as the
particle approaches the string, and the reason lies in the
adopted cosmic string model. One can expect that the
presence of a nontrivial inner structure will lead to a
substantial modification of the picture in hand. Such
calculations were done in Ref. [92] for a cosmic string with a
constant substance density E inside it [56, 57]. The metric of
the space ± time of such a string is determined by the following
relations

ds 2in � ÿdt 2 � dr2 � r2o
E 2

sin2
�
Er
ro

�
dj2 � dz 2 �38a�

in the inner �r4ro� region of the string, and

ds 2out � ÿdt 2 � dr 2 � r 2

n 2
dj2 � dz 2 �38b�

in the outer �r5 ro� region, where ro and ro are the radii of the
string in the respective coordinates.

The condition for the C 1-continuity of the metric
coefficients on the string's surface leads to the following
relationships

ro
ro
� tan E

E
; cos E � 1

n
:

The parameter E is determined in terms of the `energy' radius
of the string, r� � 1=

��������
8pEp

:

ro
r�
� E :

Since in the absence of an angle deficit the particle self-energy
and self-force disappear, it is convenient to single out the
factor

e2

2ro

n 2 ÿ 1

n
;

i.e., write down the self-energy U and the height Umax of the
energy barrier of a charged particle in the following form:

U � e2

2ro

n 2 ÿ 1

n
U�n;R� ; �39a�

Umax � e2

2ro

n 2 ÿ 1

n
Umax�n� : �39b�

The height of the energy barrier is determined by the value of
self-energy at the center of the string, i.e., where this energy is
at its maximum. The results of a numerical analysis of U�n;R�
as a function ofR � r=ro are shown in Fig. 2, and Umax�n� as a
function of E in Fig. 3.

Figure 4 depicts the dependences of the self-energy of a
charged particle on the proper distance D to the string, with
the distance measured in units of the string radius ro, for
spaces formed by an infinitely thin string and a string with a
finite cross section. At a distance equal to two string
diameters, the energy values almost coincide. Only inside the
string do these values differ significantly.

The self-force repelling the particle from the string has
only a radial component. The quantity Fr as a function of R,
defined by the expression

Fr � e2

2r 2o

n 2 ÿ 1

n
Fr�n;R� ; �40�
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Figure 2. Dependence of the self-energy U on the particle position

R � r=ro. The cone parameter E � 0:1.
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is depicted in Fig. 5. Near the string's surface, at R � 1, the
force diverges logarithmically according to the law

Fr � ÿ e2

2r 2o

n 2 ÿ 1

8
ln jRÿ 1j ; �41�

but the work against self-forces remains finite and is equal
to the barrier height Umax. Such divergence is probably
caused by the chosen string model: the metric shows up as
C 1-smooth, and the curvature experiences a discontinuity at

the string's surface (inside the string, the space ± time has
constant curvature, while outside the string it is flat). The
barrier height for a string with the Grand Unification
parameters is Umax � 2:8� 105 GeV.

Examining the problem of calculating the particle self-
energy in the space ± time of a string with a finite cross section
is important in the context of the string catalysis of baryonic
decay [93 ± 99]. The point is that the self-force prevents the
penetration of the inner region of the string by particles, and
only in that region may baryonic decay take place. Perkins
and Davis [98] studied this problem from the qualitative
angle. A detailed description of a study of the electromag-
netic self-force in the space ± time of a string with a finite cross
section can be found in Ref. [92]. The situation can be
expected to be the same (qualitatively) with a string posses-
sing a different inner structure.

The electromagnetic and gravitational self-action poten-
tials for a charged particle in the field of a point global
monopole with an element of length �04y4 p and
04j4 2p�

ds 2 � ÿdt 2 � aÿ2 dr 2 � r 2�dy2 � sin2 y dj2� �42�

were studied by Bezerra de Mello and Furtado [100]. The
parameter a is related to the scale Z characterizing sponta-
neous symmetry breaking by the formula a2 � 1ÿ 8pZ2 [58].
This space is curved, in contrast to the space formed by an
infinitely thin string. The approach used in the calculations
was the same as in Refs [59 ± 61]. The Green function was
renormalized by subtracting the Green function of the
Minkowski space ± time. The resulting electromagnetic and
gravitational self-action potentials have the following form:

U em�r� � e2

2r
S�a� ; U gr�r� � ÿm2

2r
S�a� ; �43�

where

S�a� �
X1
l� 0

�
2l� 1����������������������������

a2 � 4l�l� 1�p ÿ 1

�
:

When the solid-angle deficit is small, j1ÿ aj5 1, the last
expression yields

S�a� � p
8
�1ÿ a� :

Thus, as in the case of an infinitely thin string, the
electromagnetic self-force repels the particle, while the
gravitational self-force attracts it.

Earlier this method was employed in calculating the self-
force of a particle in the field of a strong plane Bondi ±
Pirani ±Robinson gravitational wave [101], which in group
coordinates is described by the interval

ds 2 � ÿ2 du dv� A�u��dx 2�2 � B�u��dx 3�2 ÿ C�u� dx 2 dx 3 :

The wave propagates with the speed of light along the x1 axis;
u � �tÿ x1�= ���

2
p

and v � �t� x1�= ���
2
p

are, respectively, the
`retarded' and `advanced' times. Despite the fact that the
Green function has a nonzero nonlocal component and the
space ± time is not conformally flat, the resulting self-force
proves to be completely local for any particle's trajectory
[102]. This can be explained by the structure of the nonlocal
part of the Green function. The quantity vmn 0 in expression (6)
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Figure 3.Dependence of themaximum self-energy Umax (barrier height) on

E. For E4 0:1, the function Umax � 0:39.
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Figure 4. Self-energies of a particle in the space ± time of a `thick' cosmic

string, U (heavy curve), and of a particle in the space ± time of an infinitely

thin string, Uthin (light curve), as functions of the proper distance D. The

cone parameter E � 0:1.
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Figure 5. Self-force Fr of a charged particle in the space ± time of a Gott ±

Hiscock string as a function of the particle position R � rp=ro. The cone
parameter E � 0:1.
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depends only on one coordinate u and has the following
structure: vma 0 � dumd

u 0
a 0v�u�. Clearly, in this case fmna 0 � 0 and,

indeed, the nonlocal part of the self-force vanishes.
The gravity-induced self-force may be the cause of several

interesting effects. Since in the string's space ± time it is non-
zero for a particle at rest and takes the form of the Coulomb
interaction of the charge e with a fictitious charge
e 0 � eL0�n�=2 [see Eqn (30)] located on the string, particles
are scattered by the string, with the scattering cross section
being proportional to the Rutherford cross section (here, e is
the energy of the colliding particle):

dsself � 1

4
L2
0�n� dsR �

1

4
L2
0�n�

�
e2

2e

�2
cos �y=2�
sin3 �y=2� dy : �44�

A similar effect occurs in the space ± time of a global
monopole, where in calculating the cross section we need
only replace L0�n� with S�a� from formulas (43). Other types
of cross sections have also been obtained (see Refs [95, 103,
104]).

Everett [103] calculated the scalar-particle scattering cross
section per unit length of a string with a finite cross section ro:

ds
dy dl

� p�h

2p?

1

ln2 �p?ro=�h�
: �45�

Here, p? is the component of particle momentum that is
transverse in relation to the string. This cross section emerges
when the particles directly interact with a string having a non-
zero cross section and is independent of the coupling
constant. Everett [103] considered a model interaction of
scalar particles with a scalar field inside the string. Perkins et
al. [97] obtained a similar expression for the scattering of
charged fermions interacting with the magnetic field inside
the string. Using these results, Vilenkin [53] arrived at an
expression for energy losses of a string moving with a velocity
v through a medium:

dE

dl dt
� �hnv 2

ln2 �p?ro=�h�
;

where n is the particle number density.
The cross section for particle scattering by a string,

calculated by Alford and Wilczek [95] and de Sousa Gerbert
and Jackiw [104] and found to be identical to the Aharonov ±
Bohm cross section [105]

ds
dy dl

� �h

2pp?
sin2 �pa�
sin2 �y=2� ; �46�

leads to the following formula for energy losses:

dE

dl dt
� 2�hnv 2������������������������

1ÿ �v 2=c 2�p ;

where a � eF=2p is the field flux in units of magnetic flux
quantum.

The reason for such interaction consists in the following.
As shown by Alford and Wilczek [95], the strings that appear
in field models as a result of spontaneous symmetry breaking
contain a magnetic field inside them, while in the outer region
of the string the field is transferred into pure gauge without a
magnetic field. Thus, the configuration of the fields is
identical to that of a solenoid [105], which leads to such a
formula for the scattering cross section.

Neither scattering cross section (45) or (46) is related to
the conical structure of space ± time; rather, both are caused
either by the specific distribution of the fields generating the
string or by the particle ± field interaction inside the string. In
the calculations of the above-mentioned cross sections, it was
assumed that the space ± time is of the Minkowski type. On
the other hand, the origin of the scattering cross section (44) is
directly related to the conical structure of space ± time.

Acceleration caused by the particle self-force results, as is
known, in emission of electromagnetic waves. Indeed, the
self-energy of a particle in the field of a monopole can be
expressed in the form of Coulomb interaction of a particle
carrying a charge e1 � e with a fictitious particle carrying a
charge e2 � eS�a�=2 located at the monopole center (43). For
an infinitely thin string (30), the fictitious charge is
e2 � eL0�n�=2. Coulomb-type interaction gives rise to brems-
strahlung [2]. For the ultrarelativistic case [2, æ 74], we have
the following expression for the energy emitted in the course
of motion:

E � pe41e
2
2g

2

4m 2r3
;

where g and r are the relativistic factor and the impact
parameter, respectively.

At the same time, in the space ± time of topological defects
there exists another process of emission of electromagnetic
waves, which is related to self-forces rather than to accelera-
tion. As shown by a number of researchers (e.g., see
Refs [106 ± 112]), particles in the space ± time of a cosmic
string emit radiation even when they move along geodesic
lines. Such a process is forbidden in Minkowski space ± time
but is allowed in the cosmic-string space ± time. The research-
ers thoroughly studied these phenomena against the back-
ground of the space ± time of an infinitely thin cosmic string.
In Ref. [113], similar phenomena were studied for a charged
particle in the field of a different topological defect, namely, a
point global monopole described by the metric (42). For the
ultrarelativistically moving particles, the energy emitted
because of self-force is much lower than the energy emitted
as a particle moves along a geodesic line [113].

Let us turn to the quantum phenomena associated with
self-action effects. Several general remarks must be made if
we are dealing with quantum phenomena in a gravitational
field. A satisfactory theory combining the theory of relativity
and quantum theory has yet to be created. Certain progress
has been made in the theory of strings (e.g., see the review
article byMarshakov [114]), where it is shown that in the low-
energy limit we can arrive at Einstein's theory of relativity.
For this reason, a semiclassical theory of gravitation is under
intense development. Within this theory, all fields except
gravitational ones are quantized fields (see the monographs
[5, 42, 115 ± 117]). The semiclassical approximation breaks
down when the characteristic scale of a gravitational field, 2

lgr, becomes comparable to the Planck length lP ��������������
G�h=c 3

p � 10ÿ33 cm [118]. On such scales, the full quantum
theory of gravitation is required.

All the ideas expressed below concern the semiclassical
theory of gravitation. From the viewpoint of quantum field
theory, all matter fields must be quantized, i.e., representable

2 The characteristic scale of a gravitational field is defined in such a way

that the characteristic components of the curvature tensor obey the

relationship jR a
bmnj � lÿ2gr .
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by the assemblage of elementary excitations. The dynamics of
these excitations is described by single-particle equations. The
characteristic scale in these equations is the Compton
wavelength of the particles, lC � �h=mc. On scales larger than
this length, we can speak of excitations as of particles. The
requirement that the theory of relativity be generally covar-
iant leads to a situation in which all the equations must be
invariant under coordinate transformations belonging to the
PoincareÂ group. By replacing partial derivatives with covar-
iant derivatives, we can easily obtain covariant general-
izations of the equations for the scalar and vector particles,
while the Fock ± Iwanenko coefficients make it possible to
covariantly generalize the Dirac equation of a spin-1=2
particle. When the equations are covariantly generalized, we
are still free to add terms that vanish as the gravitational field
disappears. For instance, the requirement that the equations
for a scalar particle be conformally invariant leads to a
situation in which a term proportional to the scalar curvature
Rmust be added to the equation [119].

If the characteristic scale on which the gravitational field
varies is comparable to the Compton wavelength, so that
lgr � lC, the effect of pair production from a vacuum is made
possible. In these conditions, the tidal interaction `tears apart'
a virtual pair which becomes a real pair. The best-known
effect in the semiclassical theory of gravitation is theHawking
effect [120] which became known as `evaporation of black
holes'. After collapse has finished, there appears a uniform
flux of particles with an effective temperature

T � �hk
2pckB

;

where kB is the Boltzmann constant, and k is the surface
gravity. In the static case, one has

T � �hc3

8pGMkB
;

where M is the mass of the black hole. Thus, a black hole is
not really black Ð it emits radiation with a Planck spectrum.

When the radius of curvature of the gravitational field is
large compared to the Compton wavelength of the particles,
particle production can be ignored. A gravitational field
manifests itself in that the vacuum averages of fluctuations
of quantum fields become nonvanishing. This leads to a
manifestation of the vacuum polarization effect [5, 42, 115 ±
117]. Within the semiclassical theory of gravitation, all these
phenomena must be taken into account by the Einstein
equations. Instead of the classical energy ±momentum
tensor we must take the energy ±momentum tensor with
quantum corrections. The corresponding equations are
known as the semiclassical Einstein equations. Effect of
particle production becomes important when the gravita-
tional field is strong, i.e., when the characteristic size of
variation of the gravitational field becomes comparable to
the Planck length. It must also be noted that the semiclassical
theory of gravitation, built in this manner, is unrenormaliz-
able. The counterterms needed in order to remove the
emerging divergences have a structure that is quadratic in
curvature, which does not agree with the structure of the
initial Lagrangian. For this reason, the renormalized one-
loop Einstein equations contain higher derivatives of the
metric. A more profound treatment of these aspects can be
found in the monographs [5, 21, 42, 115 ± 117].

The gravity-induced self-force leads to various quantum
phenomena. Since a particle carries additional self-energy
even when at rest, we must take into account the effect of this
energy on the particle's state. The additional self-energy may
influence not only the states of scattered particles Ð it may
even lead to bound states. The question of the presence of
bound states in the spectrum of nonrelativistic zero-spin
particles has been examined in Ref. [121], and for relativistic
particles with spin 0 or 1=2 in Ref. [122].

Since the electromagnetic (33) and gravitational (35) self-
forces have the same structure, we can examine their
combined effect on a quantum particle. The presence or
absence of bound states is determined by the sign of the
quantity Z � �e2 ÿm2�=�h. For positive Z (when repulsive
forces prevail over attractive forces), there are no bound
states. Conversely, for negative Z (when attractive forces
prevail over repulsive forces), say in the case of a massive
uncharged particle, bound states exist. For a spin-1=2
particle, the spectrum determined by the localized solutions
of the Dirac equation �U � Zc�h=r��

gm�x�eHm �m

�h
�U

�
C � 0

takes the form

EN;M � �
����������������
m2 � p23

q �
1ÿ m2

m2 � p23

Z 2

�N� ������������������������
n2M 2 � Z 2
p �2

�1=2
;

�47�

where N is the principal quantum number, N � 0; 1; . . . ; and
M is the total orbital angular momentum (half-integral),
M � n� 1=2, n � 0;�1; . . . . The quantity p3 is the longi-
tudinal (along the string) component of the momentum. In
the case of a spin-0 relativistic scalar particle, whose wave
function satisfies the Klein ±Gordon equation�

&ÿ �m�U�2	C � 0 ;

the spectrum has a similar structure, but N must be replaced
with N� 1=2, and M with n, n � 0;�1; . . . [total orbital
angular momentum (integral)]:

EN; n ��
����������������
m2 � p23

q
�
�
1ÿ m2

m2 � p23

Z 2ÿ
N� 1=2� ���������������������

n2n2 � Z 2
p �2 �1=2: �48�

In the nonrelativistic limit c!1 �Z!1 and m!1�, we
arrive at the following value for the energy of bound states
(without the rest energy):

EN; n � ÿ m�e2 ÿ Gm2�2
2�h2
ÿ
N� 1=2� njnj�2 ;

in complete agreement with the results of Ref. [121].
At p3 � 0, n � 1, and Z � ÿGmm0, the spectrum

obtained coincides with the spectrum of the bound states of
an electron with mass m placed in a Newtonian gravitational
field of mass m0 [123, 124]. Note the dramatic difference in
the nature of spectrum (47) and that obtained in Refs [123,
124]. In the case of flat space, we have only attraction
between the electron and the mass m0, which leads to the
bound states discussed in Refs [123, 124]. For this reason,
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Z is always negative, Z � ÿGmm0. In the space ± time of a
cosmic string, as is well known (see Ref. [53]), there is no
Newtonian interaction between the string and the particle.
The origin of spectra (47) and (48) is related to a specific
particle ± string interaction, namely, self-action. Both the
mass and the charge lead to such interaction. There are no
bound states if the electromagnetic (repulsive) self-force
prevails over gravitational (attractive) particle self-force. In
the opposite case, bound states appear, since the total self-
force becomes attractive.

Here are some numerical estimates. The energy scale of
the spectrum obtained, which characterizes the distance
between energy levels, is the quantity

Escale � Z 2mc2 :

For an electrically neutral particle, one finds

Escale � L2
0

�
Gm2

�hc

�2

mc2 � L2
0

�
m

mP

�4

mc2

� 0:2� 10ÿ96
�

L0

LGUT
0

�2�
m

me

�5

�eV� :

Here, LGUT
0 � �p=8� � 10ÿ6 is the characteristic value of the

parameter L0 in the GrandUnification Theory,mP �
�����������
�hc=G

p
is the Planck mass, and me is the electron mass.

Thus, the spectrum obtained is practically continuous for
elementary particles. One should expect a distinctive effect for
very massive particles. For instance, the energy scale Escale is
1 eV for a particle with the mass m � 60mP � 10ÿ3 g.

4. Conclusions

Since the phenomenon of self-action of a particle in a
gravitational field has been covered fairly thoroughly in this
review, several quantitative aspects should bementioned. The
field of a point particle is a nonlocal object which `feels' not
only local properties of space ± time but also its global
properties. For this reason, the phenomenon of self-action
of a particle in a gravitational field has several distinctive
features. Below we list only the main features.

Self-force in general depends on the throughout history
of the particle's motion. In some situations, the particle self-
force is local, say in the case of a weak gravitational field,
where retardation can be ignored, or on certain particle
trajectories. It is noteworthy that the self-force may be finite
even for a particle at rest. Qualitatively, this is quite
understandable. If the gravitational field is inhomogeneous,
then even for a particle at rest the effect of self-field on the
particle is inhomogeneous, too. In the absence of a
gravitational field, the origin of self-action is different: self-
action is caused by the reaction of the radiation emitted by
the particle. For such an effect to occur, the particle must be
accelerated.

Particle self-force also emerges when the gravitational
field is localized within an area (even of infinitesimal size),
such as an infinitely thin cosmic string. It is interesting that
here the Newtonian potential of the string is zero: the
particle does not `feel' the string, but still there occurs
specific interaction carried by the nonlocal object, the
particle's field.

The present work was partially supported by the Russian
Foundation for Basic Research (grant No. 05-02-17344).

5. Appendix.
Definitions of the main quantities and concepts

In the present review we adopted the so-called geometric
system of units, in which the Newtonian constant of
gravitation and the speed of light are set equal to unity:
G � c � 1. Where it was necessary, we introduced these
constants explicitly. The mass of a black hole is denoted as
M, while m, e, and q stand for the mass, electric charge, and
scalar charge of a particle, respectively.

The surface gravity k of a black hole characterizes the
strength of the gravitational field near the surface of the black
hole. Here is the exact definition of k [125]:

k2 � ÿ 1

2
�H mwn��Hmwn� ;

where all quantities are calculated on the hole's horizon, and
wm is the Killing field normal to the horizon of the black hole.
If we introduce the acceleration a m of the orbit wn, namely

a m � wnHnwm

ÿwawa
;

we can rewrite the above definition of the surface gravity as
follows:

k � lim �Va� ;

where a � �a mam�1=2, V � �ÿwmwm�1=2, and lim stands for
movement toward the horizon of the black hole. For the
static case, the surface gravity can be shown to represent the
force needed in order to keep a unit mass at rest on the
horizon of the black hole. (Obviously, a local force a becomes
infinite.) This explains the name chosen for k. For the charged
Kerr ±Newman black hole, i.e., a black hole of mass M,
charge Q, and angular momentum J, the surface gravity has
the form

k � �M 2 ÿ J 2 ÿQ2�1=2
2M
�
M� �M 2 ÿ J 2 ÿQ2�1=2�ÿQ2

:

Space ± time is described by an element of length

ds 2 � gmn dx
m dxn ;

where gmn is the space ± time metric. The metric signature
corresponds to the following choice of signs in theMinkowski
metric: Zmn � diag �ÿ1;�1;�1;�1�. The indices denoted by
the Greek letters a; b; . . . ; incorporate time, in contrast to
those denoted by Latin letters i; j; . . . . The covariant
derivative of the vector vm, denoted by a semicolon, takes
the form

v m
;n � qnvm � Gm

anv
a ;

Dvm

ds
� unHnv

m :

Here, un � dxn=ds is a tangent vector. A partial derivative is
denoted by a comma: qnv m � vm;n.

A bivector of parallel translation g m
� a 0 �x; x 0� is a two-point

object, i.e., a vector defined both at the point x and at the
point x 0 by the relationship

v m�x� � g m
� a 0 �x; x 0� v a 0 �x 0� ;
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where the vector vm at the point x is obtained from the vector
v a 0 at the point x 0 through parallel transport along a geodesic.
The interested reader will find a detailed discussion of this
object in the monographs [5, 116]. The need to use a parallel
transport bivector in expression (3b) can be explained by the
fact that only scalars can be integrated, while
gm
� a 0 �x; x 0� u a 0 �x 0� is a scalar at the point x 0, and a vector at

the point x.
The Riemann, Ricci, and Einstein tensors as well as the

scalar curvature are defined in the standard manner:

R a
� bgd � qgGa

bd ÿ qdGa
bg � Ga

gsG
s
bd ÿ Ga

dsG
s
bg ;

Rbd � R a
� bad ; Gbd � Rbd ÿ 1

2
gbdR ; R � R b

b :

A scalar field f in the theory of relativity obeys the
covariantly generalized Klein ±Gordon ±Fock equation�

&ÿm2

�h2
ÿ xR

�
f � 0 ;

where & � g mnHmHn is the four-dimensional Beltrami opera-
tor, and x is the nonminimal coupling constant. At x � 1=6,
the field equation becomes conformally invariant, while at
x � 0 the field is called minimally coupled.

If a massless scalar field has a source characterized by a
charge q, it obeys the equation

�&ÿ xR�f � ÿ4p j ;

where the scalar current has the form

j � q

�
d �4�
ÿ
xÿ x�s�� ds�������ÿgp :

The `Black Hole No Hair' theorem. What this theorem
means is that after the collapse stage has been finalized, an
external observer can measure only four quantities character-
izing the black hole: mass M, electric charge Q, magnetic
charge Qm, and angular momentum J. Each of these
quantities J A Wheeler aptly named `hair'.

A massive body falling on a black hole disturbs the
spherically symmetric Schwarzschild space ± time, and the
further evolution of the black hole is related to the emission
of radiation modes. In Refs [126, 127] and [128, 129], it was
shown that for electromagnetic and gravitational fields
respectively, all radiation modes with orbital angular
momenta higher than the field's spin are emitted. After all
radiation modes have been emitted, the space ± time again
becomes the Schwarzschild space ± time, but with a different
mass. Later, this result was obtained in a different way in
Refs [23, 24], and a detailed description of this problem can be
found in the monograph [21]. At present, it is proved that the
theorem is true not for all fields (e.g., see the review [130]). For
instance, a self-consistent treatment ofYang ±Mills fields and
the Einstein equations has shown that a spherically symmetric
solution of the equations is not only described by conserved
quantities such as mass, charge, and angular momentum, but
also characterized by the presence of a short-range external
non-Abelian field.

Topological defects appear as a result of phase transitions
in various field models. There are four types of defects:
monopoles, cosmic strings, domain walls, and textures, as
well as their hybrid compounds. Here, we will mention only

the first two. Because of the unusual equation of state of
matter inside these objects, space ± time also acquires extra-
ordinary properties. In the purest form this manifests itself
when one considers structureless topological defects, i.e., a
point monopole and an infinitely thin string. The space ± time
of a straight, infinitely thin cosmic string with the metric (27)
is everywhere locally flat except for the string itself, where the
curvature becomes delta-like:

Rr
�
j
� rj � Rr

�r � Rj
� j � �nÿ 1� d�r�

r
:

Globally, space ± time has a plane-angle deficit. The section
t � const and z � const is a conical space. The strings that
appear in theGrandUnification Theory, where all the known
interactions are united into one interaction, have the follow-
ing parameters: ro � 10ÿ29 cm, and nÿ 1 � 10ÿ6.

In contrast to the space ± time of a cosmic string, the
space ± time of a point global monopole with themetric (42) is
curved:

Ryj
� � yj � Ry

�y � Rj
� j �

1ÿ a2

a2r
;

and has a solid-angle deficit. A detailed description of the
theory of topological defects can be found in the monograph
[52] and the reviews [53, 54].
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