
Abstract. The idea of adding extra dimensions to the physical
worldÐ thus making the observable universe a timelike surface
(or brane) embedded in a higher-dimensional space±time Ð is
briefly reviewed, which is believed to hold serious promise for
solving fundamental problems concerning the hierarchy of phys-
ical interactions and the cosmological constant. Brane localiza-
tion of massless gravitons is discussed as a mechanism leading
to the effective four-dimensional Einstein gravity theory on the
brane in the low-energy limit. It is shown that this mechanism is
a corollary of the AdS/CFT correspondence principle well-
known from string theory. Inflation and other cosmological
evolution scenarios induced by the local and nonlocal struc-
tures of the effective action of the gravitational brane are
considered, as are the effects that enable the developing grav-
itational-wave astronomy to be used in the search for extra
dimensions. Finally, a new approach to the cosmological con-
stant and cosmological acceleration problems is discussed,
which involves variable local and nonlocal gravitational `con-
stants' arising in the infrared modifications of the Einstein
theory that incorporate brane-induced gravity models and mod-
els of massive gravitons.

1. Introduction

Today, the modern quantum theory of the microworld and
the theory of the macroworld or cosmology have begun to
overlap both at the fundamental, theoretical level and at the
level of experimental observations. Perhaps the most illus-
trative example of this process is provided by the theory of
cosmological inflation, which, on the one hand, resolves the
known problems of the standard cosmological Big Bang
scenario and, on the other hand, explains details of the
development of the large-scale space ± time structure
observed with an increasingly higher accuracy in spacecraft,
astronomical, and aerostatic experiments during the last
decade. The quantum theory of cosmological perturbations
is fundamentally exploited to predict the formation of the
low-frequency region in the spectrum of microwave cosmic
background or relic radiation.

But the theory of cosmological perturbations is a
semiphenomenological one because it is based on the
quantum theory of physical fields in a curved space ± time
and actually concerns its lowest (in terms of quantization) or
tree-level approximation; it does not explain the origin of the
inflation stage of cosmological expansion. Expansion
mechanisms in the framework of the inflation theory also
remain essentially classical or built up within the framework
of semiphenomenological quantum models. Attempts to
include modern cosmology into the basic physical theory of
high energies lead to the idea of a multidimensional space ±
time, the subject matter of the present review.

The idea of multidimensional space ± time is not new. It
was first suggested by NordstroÈ m in 1914 [1] and forestalled
the formulation of the general relativity theory in the form of
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the scalar gravity theory as a component of the Maxwell
electrodynamics in a five-dimensional space ± time. This idea
was further developed in the works of T Kaluza and O Klein
[2] that laid the foundation of the so-called Kaluza ±Klein
theory. Much later, in the 1980s, the Kaluza ±Klein five-
dimensional approach was extensively applied to the analysis
of multidimensional superstring theories and their phenom-
enology. An important element of this approach was the
qualitative explanation of the fact that extra dimensions (in
the case of their compactification on a certain scale) are
unobservable in the low-energy region lying below this scale.

The concept of multidimensional fundamental space ±
time became actually necessary only in the framework of the
superstring theory, which is now universally accepted to be
the most promising theory of high energies unifying quantum
gravity and gauge field theory. The reason is that the
superstring theory and its low-energy manifestations can be
consistently formulated only in the distinguished dimensions
of the fundamental space ± time,D � 10 andD � 11, whereas
other dimensionalities are simply forbidden. In this situation,
as in the Kaluza ±Klein scenario, the four-dimensionality of
the observable world is achieved by compactification of extra
dimensions on an energy scale unattainable in the framework
of sub-Planckian physics.

Motivation for introducing extra dimensions also comes
from the hierarchy problem in high-energy physics and
cosmology. The problem is to explain the extensive area of
energy desert separating the electroweak interaction scale of
the order of 1 TeV and the Planck scale of quantum gravity,
1019 GeV. The hierarchy problem acquires special importance
in the cosmological context because it reflects a huge gap
(120 orders of magnitude) between the quantum-gravity
Planckian scale and the observed cosmological constant scale.

To clarify the aforesaid, we note that the universe is
characterized by a number of basic cosmological para-
meters, such as the mean matter density r, the anisotropy of
the microwave background DT=T, and the cosmological
density parameter O measured in units of the critical density
of the expanding universe:

r ' 10ÿ29 g cmÿ3 ; �1:1�
DT
T
' 10ÿ5 ; �1:2�

r
rcrit
� O ' 1 : �1:3�

The critical density is expressed in terms of the Hubble
constant H, i.e., the logarithmic derivative of the cosmolo-
gical scale factor a�t� with respect to the observer proper
time t,

rcrit �
3M 2

PH
2

8p
; H � _a

a
; �1:4�

where M 2
P � 1=G is the Planck mass squared, the inverse of

the gravitational constant value.
A most important recent discovery resulting from a

combination of differently designed experiments to observe
supernovae, cosmic microwave anisotropy, and microlensing
is the contemporary cosmological acceleration [3 ± 5] corre-
sponding to the approximately 70% content of the total
matter density in the universe due to a special component
(with the equation of state close to p � ÿr) of a dark energy

interpreted as the effective cosmological constant L:

r � rm � rL ; �1:5�
OL ' 0:73 : �1:6�

The cosmological constant turns out to be immeasurably
smaller than possible values of the vacuum energy for the
known models of the fundamental quantum theory, covering
the range from the electroweak coupling to quantum gravity
and string theory. The density of the vacuum energy is
determined by the energy scale of the respective model; it is
of the order of rEW � 1 TeV4 for the electroweak theory and
rP �M 4

P for quantum gravity with the Planck mass
MP � 1019 GeV. For this reason, the vacuum energy of the
current cosmological expansion falls 56 and 120 orders of
magnitude behind the predictions of these models, respec-
tively:

rL
rEW

� 10ÿ56 ;
rL
rP
� 10ÿ120 : �1:7�

The paradox related to this value of the cosmological
constant (provided, of course, that the observed dark energy
is correctly interpreted as a fundamental constant or the
vacuum energy) lies in the fact that it differs from zero in
spite of its smallness.

The discovery of the cosmological acceleration has
drastically changed the status of the cosmological constant
problem. In the past, all efforts in fundamental physics were
concentrated on the construction of a model with zero
vacuum energy. Now, the correct model must explain a
nonzero value, which, on the one hand, is immeasurably
small in comparison with the vacuum energies of electroweak
interactions, Grand Unification, and Planck gravity but, on
the other hand, actually predominates the total matter density
in the universe. All this reflects the formerly unprecedented
interweaving of problems of fundamental microphysics,
phenomenology, and cosmology. Interestingly, the extra
dimension concept appears to be very fruitful in light of
these problems and also undergoes a radical change that
distinguishes it from the old Kaluza ±Klein approach [6].

The principal difference between the two concepts lies in
the fact that extra space ± time dimensions can be macro-
scopic and even noncompact despite the four-dimensional
nature of the directly observable physical world. The four-
dimensionality is achieved by means of matter localization in
a multidimensional space ± time (in its bulk) on its four-
dimensional submanifolds called branes.1 The resulting
properties of the interaction allow describing such a funda-
mentally multidimensional model in effectively four-dimen-
sional terms.

The dynamics of brane geometry and the brane localiza-
tion of matter constitutes brane cosmology, which has come
to take the place of the traditional cosmology of the four-
dimensional world. It turns out that extra dimensions in the
framework of this concept open up new prospects for the
solution of the hierarchy problem, including modification of
the extent of the energy `desert' lying between the electroweak
coupling and Planck gravity physics, establishment of a closer
relation with the string theory in the form of the so-called

1 In what follows, in the Russian version of this paper, the multidimen-

sional part of space ± time is referred to as `ÑÃÝÇÏ (volume)'. `Bulk' is the
equivalent term widely used in the international English-language litera-
ture.
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AdS/CFT correspondence principle, construction of new
inflation mechanisms in the early universe, and, finally,
development of models for solving the cosmological con-
stant problem encompassing both the hierarchy and cosmo-
logical acceleration.

The present review is designed to briefly discuss this new
trend in high (and, as shown below, ultra-low) energy physics
and cosmology. We start from the comparison of the
Kaluza ±Klein picture and the idea of matter (e.g., graviton)
localization on four-dimensional submanifolds of the space ±
time. Thereafter, we evaluate the size and the number of extra
dimensions consistent with on-going experiments and ensu-
ing from the simplest multidimensional Arkani-Hamed ±
Dimopoulos ±Dvali (ADD)model and demonstrate mechan-
isms underlying changes in fundamental constants of the
theory within the framework of the brane concept.

Next, we consider the mechanism of brane localization of
gravitons in the Randall ± Sundrummodel demonstrating the
consistency of the observed four-dimensional space ± time
with the presence of noncompact extra dimensions. It turns
out that this mechanism is a corollary of the AdS/CFT
correspondence principle well-known from string theory,
implying the duality (equivalence) of the supergravity theory
formulated in the background of the multidimensional anti-
de Sitter space and the conformal field theory in the form of a
supersymmetric Yang ±Mills model at the boundary of this
space.

The discussion of this consistency is followed by the
consideration of the brane effective action in the two-brane
Randall ± Sundrummodel, whose nonlocal nature reflects the
AdS/CFT correspondence principle. We further demonstrate
the inflation scenario on the brane induced by repulsing
branes and associated with the phase transition between
ultra-local and essentially nonlocal phases of the theory.
Applications of the theory are illustrated by potentially
observable effects of gravitational-wave oscillations and
gravitational echo, which may be useful for the study of
extra dimensions by the methods of gravitational-wave
astronomy. The review is concluded by a brief discussion of
brane cosmological models with a variable local gravitational
`constant' and nonlocal modifications of the Einstein theory
that may serve as a new mechanism for the solution of the
cosmological constant problem. The Dvali ±Gabadadze ±
Porrati model and other theories of brane-induced gravity
are considered as potential sources of such modifications.

2. The Kaluza ±Klein picture
and localization of matter

To illustrate the difference between the Kaluza ±Klein (KK)
picture and the concept of matter localization on a brane, we
consider a five-dimensional space ± time of cylindrical form
with the fifth coordinate y compactified to a circle of length
2pL (Fig. 1). The complete set of coordinates covering the
space is denoted as

XA � �x m; y� ; A � 0; 1; 2; 3; 5 ; m � 0; 1; 2; 3 ; �2:1�
ÿ1 < x <1 ; 0 < y < 2pL :

The coordinates x m span a flat four-dimensional space ± time
with the Lorentzian metric Zmn � diag �ÿ1; 1; 1; 1�. The full
metric has the form

ds 2 � Zmn dx
m dxn � dy 2 : �2:2�

The massless scalar field in such a space satisfies the
equation involving the five-dimensional d'Alembertian
&5 � Zmn qm qn � q2y,

&5 f�x; y� � 0 : �2:3�

Its expansion in discrete Fourier harmonics periodic on the
circle and in the continuum of plane waves in the x-space,

fp�x; y� � exp

�
ipmx

m � iny

L

�
; n � 0;�1; . . . ; �2:4�

leads to the massive dispersion equation for the four-
dimensional momentum p m of each nth harmonic:

p2 �m2
n � 0 ; p2 � pm p

m ; �2:5�

m2
n �

n2

L2
: �2:6�

Thus, a massless (from the five-dimensional standpoint)
field is a tower of four-dimensional massive KK-modes with
jnj5 1 built up over the zero massless mode n � 0 and having
discrete mass spectrum (2.6) determined by the compactifica-
tion scale L of the extra dimension.

Evidently, the first massive level of the KK-spectrum
cannot be excited and the corresponding compact dimension
cannot be observed at the energy scale E < 1=L. Therefore,
sufficiently small extra dimensions are invisible for the
observer bounded from above in the energy scale. Because
early multidimensional supergravity theories postulated the
Planckian compactification scale (L � 1=MP � 10ÿ33 cm),
direct observation of extra dimensions was possible only at
the Planckian energy scale (MP � 1019 GeV). This automati-
cally ensured the effective four-dimensionality of the sub-
Planckian physics. Moreover, no massive KK-partners of
ordinary particles of the standard model have thus far been
discovered in modern accelerators, even at 100 GeV. There-
fore, the size of the extra dimension must satisfy the
constraint Lÿ1 > 100 GeV or be smaller than 10ÿ17 cm (in
conventional units of length).

xm

y

Figure 1. Five-dimensional space ± time of the cylindrical type in the

Kaluza ±Klein picture with the fifth coordinate y compactified to a

circle.
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Such a result seems to exclude the possibility of any
multidimensional space ± time with macroscopic extra
dimensions. However, there is a radically different concept
of multidimensionality, besides the standard Kaluza ±Klein
picture, based on the localization of matter on four-
dimensional submanifolds, i.e., branes embedded in a multi-
dimensional bulk. The main difference between this concept
and the Kaluza ±Klein approach consists in the fact that the
ordinary matter fields are localized on branes and are four-
dimensional rather than multidimensional objects at the
fundamental level, whereas the gravitational field freely
lives and propagates in the multidimensional bulk. This
makes it possible to satisfy conditions at which the multi-
dimensional gravitational field is also localized on the brane
and becomes effectively four-dimensional in the low-energy
region in spite of the macroscopic and even infinite extent of
extra dimensions. As a by-product of this set-up, Newton's
gravitational constant G4 (or the Planckian scale of quantum
gravity M 2

P � Gÿ14 ) ceases to be a fundamental quantity and
is now determined by the combination of the fundamental
D-dimensional gravitational constant GD and the scale of an
extra dimension L (it is shown below that it may tend to
infinity).

Such a scheme of matter and gravity localization on the
brane is motivated, on the one hand, by the very first works
in which it was proposed for the fermion matter in the
background of a kink, i.e., a solution of the nonlinear
equation for a self-interacting scalar field that describes a
domain wall [7, 8]. On the other hand, this picture ensues
from the low-energy superstring theory, in which branes
emerge as the bound states (Dp-branes) of open strings.
They are in fact �p� 1�-dimensional time-like surfaces on
which the ends of open strings are localized. The ends of
open strings carry gauge fields that, at the fundamental
level, are �p� 1�-dimensional objects residing on the branes
(Fig. 2). This explains why gauge fields do not live in the
bulk and have no KK-partners.

On the contrary, closed strings, which are known to
describe the spin-2 field, can freely propagate in the bulk
and therefore allow free propagation of 10-dimensional

gravitons. 2 This accounts for the disparate roles of gravity
and matter fields in the new picture of extra dimensions. In
this picture, only the four-dimensional massless graviton has
a tower of massive KK-partners. However, the small
compactification scale L has nothing to do with the fact that
these KK-partners remain invisible in low-energy experi-
ments. The reason is only that the massless zero mode
undergoes localization on the brane, whereas wave packets
ofmassiveKK-partners are expelled into the bulk and outside
the brane. Therefore, they are weakly coupled to four-
dimensional matter. In this way, the compactification scale
and the energy scale below which the theory is effectively
four-dimensional can be made independent.

It turns out that the properties of graviton localization
reflect the so-called AdS/CFT correspondence principle in
the field theory of type IIB superstrings and are essentially
based on the presence of curvature of the multidimensional
bulk (its AdS-character). However, consideration of the
Randall ± Sundrum model, a carrier of these properties,
should be preceded by discussion of a simpler variant, the
ADD model [9] with a flat background space, which allows
formulating simple experimental constraints on the para-
meters of extra dimensions and suggests ways to address the
hierarchy problem both in the sector of matter fields and in
the gravitational sector.

3. The ADD model: size (and number)
of extra dimensions

In the Arkani-Hamed ±Dimopoulos ±Dvali (ADD) model
[9], the four-dimensional gravitational constant

G4 � 1

M 2
P

�3:1�

is not fundamental. On the contrary, fundamental is the
D-dimensional gravitational action

S � 1

16pGD

�
dDX G 1=2 R�GAB� ; D � 4�N ; �3:2�

with the D-dimensional gravitational constant expressed
through the fundamental energy scale of M-theory that is
essentially different from the Planck scaleMP:

GD � 1

MDÿ2 : �3:3�

It is supposed that the D-dimensional gravitational field is
coupled to four-dimensional matter localized on the brane of
the codimension N � Dÿ 4; in this case, the characteristic
size of extra dimensions is finite and equals L.

If one confines oneself to the low-energy approximation,
to which the main contribution is made by zero modes of the
gravitational field unrelated to the additional coordinates y,
the integral over y in multidimensional integral (3.2) is
factored through the internal space volume:�

dDX �
�
dNy

�
d4x � LN

�
d4x : �3:4�

Open string

Closed string
(graviton)

D3-branes

Gauge éelds
on the branes

Am Am

Figure 2. Schematic of a compactification of the multidimensional space ±

time alternative to the Kaluza ±Klein picture. The gauge fields of matter

associated with the ends of open strings are fundamentally four-dimen-
sional objects localized onD3-branes (nonperturbative bound states of the
strings) and have no KK-partners. The graviton, being a low-energy
approximation of a closed string, can propagate in the multidimensional

bulk.

2 The low-energy string theory also contains the dilaton scalar field and the

fields of forms living in a 10-dimensional space. However, they are not

taken into consideration in the present simplified scheme of the relation

between the physics of extra dimensions and the phenomenology of string

D-branes.
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The effective action for the zero mode of the gravitational
field represented by the four-dimensional metric gmn�x� then
takes the form of the Einstein action,

Seff�gmn� � LNMN�2

16p

�
d4x g1=2 R�g� ; �3:5�

with the gravitational constant G4 and the corresponding
Planck mass

G4 � GD

LN
; MP �M�ML�N=2 : �3:6�

Thus, the observed Planckian scale of the gravity theory is a
derivative from the fundamental �D � 4�N�-dimensional
scale and the size of extra dimensions. This property allows us
to radically change the approach to the hierarchy problem
and transfer, e.g., the fundamental gravitational scale from
the Planckian region to a region of substantially lower
energies. For example, the scale of multidimensional gravity
may be chosen in the electroweak interaction region or
slightly above it, M � 1 TeV. It is worth noting that in
accordance with formula (3.6), this requires a rather large
internal space unfeasible in the framework of the standard
Kaluza ±Klein scheme, where it would be necessary to
introduce sufficiently light KK-partners of matter particles
forbidden by modern collider experiments. However, KK-
partners of matter are completely nonexistent in the frame-
work of the concept of brane-localized matter; hence, there is
no such experimental constraint.

Possible limitations on the size of extra dimensions ensue
from the gravitational sector (because only gravitons are
allowed to propagate in the multidimensional bulk). These
limitations largely follow from the Cavendish-type experi-
ments conducted to verify Newton's law of attraction
between test masses. This law has been fairly well substan-
tiated within the scope of celestial mechanics but is bounded
from below in the millimeter range. As follows from high-
precision table-top experiments [10], the law of gravitational
attraction has been established down to distances of about
0.2 mm. However, deviations at smaller distances cannot be
experimentally excluded. This means that, unlike collider-
imposed constraints in the framework of the KK-approach,
L < 10ÿ17 cm, we have a much more moderate estimate,

L < 0:2 mm : �3:7�

Estimate (3.7) can be used to impose constraints on the
number of extra dimensions. It follows from (3.6) that the
compactification scale L is expressed through the funda-
mental scaleM and brane codimension N as

L �Mÿ1
�
MP

M

�2=N

' 1032=Nÿ17 cm ; �3:8�

where it is assumed thatM � 1 TeV. Therefore, the following
estimates on L hold for the three lowest codimensions of the
brane:

N � 1 ; L � 1015 cm ;

N � 2 ; L � 10ÿ1 cm ; �3:9�
N � 3 ; L � 10ÿ6 cm :

It is straightforward to see that the first case is altogether
excluded by the findings of celestial and planetary mechanics.

The second case lies in the millimeter range of modern high-
precision experiments [10]. The last case appears to be hardly
attainable in the near future despite rapid progress in the
enhancement of accuracy of experiments designed to verify
the Newtonian law of gravity. In other words, one extra
dimension in the ADD model is already excluded, and the
substantiation of this model with two-dimensional internal
space is currently in order.

4. The Randall ± Sundrum model

In the preceding section, we relaxed the constraint on the size
of extra dimensions by shifting it to the millimeter range.
Here, we demonstrate that it can be actually infinite in the
presence of a nonzero curvature in the bulk. We consider the
Randall ± Sundrum model [11, 12] describing a five-dimen-
sional gravitational field having the cosmological termL5 and
coupled to a four-dimensional brane:

S
�
GAB�X�;c�x�

�
� 1

16pG5

�
d5X G 1=2

�
5R�GAB� ÿ 2L5

�
�
�
d4x g1=2

�
1

8pG5
�K � ÿ s� Lm�gab;c; qc�

�
: �4:1�

The brane has a tension s and is populated by a four-
dimensional matter field c with the Lagrangian
Lm�gab;c; qc� and the induced metric gmn�x�.

From the four-dimensional standpoint, the brane tension
can be regarded as a four-dimensional cosmological term.We
assume that in the coordinates XA � �xm; y�, the brane is a
time-like plane, X 5 � y � 0 (this is the choice of coordinate
gauge, because the brane can always be placed at this point
along the fifth coordinate by a coordinate transformation).
Then, the induced metric gmn�x� � Gmn�x; 0�. We further
assume that the entire five-dimensional space is Z2-sym-
metric with respect to the brane plane, i.e., that the space ±
time on the right of the brane (at y > 0) can be obtained by
mirror reflection of its half-space at y < 0. This property can
be formulated within the normal Gaussian coordinate system
�G5m�X� � 0� as the parity of functions of the remaining
nonzero metric coefficients:

Gmn�x; y� � Gmn�x;ÿy�; G55�x; y� � G55�x;ÿy� � 1 :

In terms of the five-dimensional space, the brane is a delta-
shaped distribution of matter and tension, and therefore the
solution of the corresponding multidimensional Einstein
equations cannot be smooth, that is, derivatives of metric
coefficients normal to the brane undergo a jump. Specifically,
a jump in the trace of the brane extrinsic curvature
approached from the right and the left, �K � �
K�y � 0�� ÿ K�y � 0ÿ�, is nonzero and gives rise to an
additional surface term called the Gibbons ±Hawking action
[13]. The introduction of this term is necessary for the validity
of the variational procedure for the total five-dimensional
action.

The variational procedure leads to the Einstein equations
in the five-dimensional bulk and the Israel matching condi-
tions on the brane surface [14], which are used to express the
jump of the extrinsic brane curvature Kmn as

�K mn ÿ g mnK � � 8pG5S
mn �4:2�
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through the total energy-momentum tensor of the four-
dimensional brane action S mn in (4.1), including both the
contribution of matter, Tmn, and that of tension,

1

2
g1=2 S mn � d

dgmn

�
d4x g1=2

ÿÿs� Lm�gab;c; qc�
�
; �4:3�

S mn � ÿsg mn � Tmn : �4:4�

By virtue of Z2-symmetry, the extrinsic curvatures on the
right and the left of the brane have opposite signs and, in the
normal Gaussian system of coordinates, are given by

Kmn

����
y��0

� ÿ 1

2

dgmn
dy

����
y��0

�4:5�

(this sign convention corresponds to the definition of the
extrinsic curvature as the derivative of the four-dimensional
metric along the normal to the brane directed outside the half-
space y > 0 and inside the half-space y < 0).

It turns out that in the absence of matter on the brane,
there is a simple solution of the complete system of the
Einstein equations and boundary matching conditions in the
form of a piecewise smooth metric,

ds 2 � dy 2 � exp

�
ÿ 2jyj

l

�
Zmn dx

m dxn �4:6�

(where Zmn is the flat Minkowski metric) under the condition
of a fine tuning between the negative five-dimensional
cosmological constant and the positive brane tension:

L5 � ÿ 6

l 2
; s � 3

4pG5l
: �4:7�

Locally, solution (4.6) describes the geometry of the anti-
de Sitter (AdS) space, that is, a homogeneous space with a
constant negative curvature. Globally, it is a gluing of two
Z2-symmetric regions of the AdS space extending in the
PoincareÂ coordinates �xm; y� between the brane y � 0 and
their corresponding horizons y � �1.

A priori, such a construction looks artificial, but it
actually has a sufficiently strong motivation coming from
the string theory in the form of the so-called Horava ±Witten
model [16] that suggests the solution of the problem of chiral
fermions in the field approximation of string theory by means
of compactification of a multidimensional space on an
orbifold. In a simplified five-dimensional analog of this
model, the fifth coordinate y is compactified to a circle of a
finite length 2d and ranges the valuesÿd4 y4 d. The points
d and ÿd are identified, and therefore the points y � 0 and
jyj � d parameterize diametrically opposite points on such a
circle. Furthermore, the pairs of points y and ÿy (and the
corresponding fields in the bulk) are also identified, which
results in an orbifold, i.e., a manifold lacking smoothness at
two fixed points, y � 0 and jyj � d. At these points, two
branes are introduced that can be populated by chiral fermion
matter induced from the multidimensional bulk (Fig. 3).

It turns out that metric (4.6) is a self-consistent solution of
the five-dimensional Einstein equations and the Israel
matching conditions on an orbifold with two branes,
provided their tensions s� coincide up to a sign and are
again fine-tuned to the negative cosmological constant in the
bulk:

s� � ÿsÿ � 3

4pG5l
: �4:8�

Of course, the gravitational action of such a system is given
by expression (4.1) containing two brane surface integrals
with the corresponding tensions s� and jumps of the
extrinsic curvature. A specific case of the one-brane
Randall ± Sundrum model is obtained in the formal limit
as d!1.

4.1 The brane hierarchy problem
Thus, the introduction of the piecewise smooth AdS space is
motivated by the phenomenological Horava ±Witten model.
Moreover, the curved character of the multidimensional
space in this model opens up new prospects for the solution
of the hierarchy problem in the particle phenomenology.
Specifically, it allows the observed scale of electroweak and
other gauge interactions (by analogy to the gravitational
scale) to be made derivative from the properties of an extra
dimension. To show this, a negative-tension brane is
assumed to be populated by the Higgs field H�x� with the
action

Sbrane �
�
d4x g1=2

ÿ
g mn qmH qnHÿ l�H 2 ÿ v 2�2� ; �4:9�

where the parameter v gives the fundamental scale of
spontaneous symmetry breaking. This field is minimally
coupled to the induced metric

gmn � exp

�
ÿ 2jyj

l

�
Zmn ;

depending on the point along the fifth coordinate at which the
brane is localized. Due to the scale factor

a�y� � exp

�
ÿ 2jyj

l

�
; �4:10�

whereby this metric in the five-dimensional bulk differs from
the flat one, the initial field H is not canonically normalized:
the coefficient of its kinetic term in the action is different from
unity.

xm

ÿy

y

y � 0 jyj � d

s� sÿ

Figure 3.The qualitative picture of compactification of the fifth dimension

on an orbifold in the Horava ±Witten model underlying the Randall ±

Sundrum model with two branes having tensions s� of opposite signs.

Z2-identification of points y and ÿy is shown by the dashed line.
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Canonical normalization is restored for the field

�H � exp

�
ÿ jyj

l

�
H ; �4:11�

in terms of which action (4.9) takes the form of aHiggs action,

Sbrane �
�
d4x

ÿÿZmn qm �H qn �Hÿ l� �H 2 ÿ �v 2�2� ; �4:12�

with a different effective scale of symmetry breaking:

�v � exp

�
ÿ jyj

l

�
v : �4:13�

This scale is exponentially small in units of length of the extra
dimension. Therefore, even a small variation of the probe-
brane position in the bulk leads to an exponentially strong
change in the energy scale of the theory from the standpoint of
a four-dimensional observer residing on this brane. This gives
a key to the solution of the hierarchy problem in particle
phenomenology [11], providing additional evidence of the
value of the Randall ± Sundrum model. 3

However, there is an important issue concerning the
gravitational interaction. Specifically, does the effective
theory remain four-dimensional in the gravitational sector
and, if it does, at which distance scale? We see shortly that
this scale is determined by the curvature radius of the AdS
space, l, rather than by the size of the extra dimension, d;
the four-dimensional gravity then remains valid for dis-
tances exceeding l. This property is underlain by the
phenomenon of localization of the zero mode of the
gravitational field, which is discussed in the next subsec-
tion.

4.2 Brane localization of gravitons
The simplest test of the four-dimensionality of a theory in the
gravitational sector consists of checking Newton's law of
attraction between two massive sources localized on a given
brane. For this, we consider an extreme situation of a
noncompact extra dimension �04 jyj <1� and construct a
linearized gravity theory in the background of the Randall ±
Sundrum solution,

gmn � exp

�
ÿ 2jyj

l

�
Zmn � hmn�x; y� ; �4:14�

where hmn�x; y� are the nonzero components of metric
perturbations in the so-called Randall ± Sundrum gauge 4

[12, 17, 19, 20]:

h55 � h5m � 0 ; q mhmn � h m
m � 0 : �4:15�

We first consider the vacuum (in the absence of matter on
the brane) linearized Einstein equations and Israel matching
conditions. In this gauge, they assume the form�

d2

dy 2
ÿ 4

l 2
� &

a2�y�
�
hmn�x; y� � 0 ; �4:16��

d

dy
� 2

l

�
hmn�x; y�

����
y� 0

� 0 ; �4:17�

where& � Zmnqmqn is the four-dimensional d'Alembertian.
We separate the variables in Eqns (4.16) and (4.17) by

expanding metric perturbations with respect to plane four-
dimensional waves,

h�x; y� � 1���
z
p jm�z� exp �ipx� ; p 2 � ÿm2 ; �4:18�

where the coefficient function of the fifth coordinate jm�z� is
written in terms of the new variable

z � �sign y� l exp jyj
l
; jzj5 l ; �4:19�

and the variable separation parameter m plays the role of
mass of the KK-modes of the gravitational field. By virtue of
the linearized Einstein equations for perturbations (4.18),

z 3=2

l 2

�
d2

dz 2
�&ÿ 15

4z 2

�
jm�z� exp �ipx� � 0 ; �4:20�

the square of this mass is an eigenvalue of the stationary
SchroÈ dinger equation�

ÿ d2

dz 2
� 15

4z 2

�
jm�z� � m2jm�z� �4:21�

on the half-line z5 l with the potential

V�z� � 15

4z 2
; �4:22�

which is qualitatively depicted in Fig. 4.
Owing to theZ2-symmetry of the problem, the eigenfunc-

tions are continued evenly to the half-line z4 ÿ l:
jm�ÿz� � jm�z�. This makes it possible to consider the
problem only at z5 l. The boundary condition for the
Sturm ±Liouville problem at z � l emerges from the linear-
ized Israel matching condition and has the form of the
generalized Neumann condition:�

d

dz
� 3

2l

�
jm�z�

����
z� 0

� 0 : �4:23�

A notable property of such a boundary problem is the
presence of a discrete bound level or the zero mode with
m � 0 in its spectrum. Also, the problem contains a contin-
uous spectrum of positive masses that starts from zero
�m > 0�.

It is easy to see that the zero mode

j0�z� �
�
1

l

�1=2�
l

z

�3=2

�4:24�

3We note that this inference is a simplified illustration of themechanism of

an exponential hierarchy between the Planckian and electroweak scales

because only their ratio in the effective theory on the brane is determined

by the brane position in the multidimensional space. Complete derivation

must include analysis of the graviton kinetic term when its coupling to

matter is normalized to unity (see Refs [11, 6] for the details). Outside the

framework of such a derivation, the metric on a homogeneous brane can

always be locally converted to unity by a scale transformation of the

coordinates. The true nonlocal character of this mechanism is demon-

strated in Section 5.1, where it is emphasized that low-energy modes on a

positive-tension brane are shifted to the ultraviolet region on the other

brane.
4 This gauge is actually a combination of the gauge of the normalGaussian

coordinate system and corollaries of a part of the linearized Einstein

equations (constraints) allowing metric perturbations to be chosen as

transverse-traceless ones [20].
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satisfies Eqns (4.21) and (4.23) and can be normalized,

2

�1
l

dz j2
0�z� � 1 ; �4:25�

while massive KK-modes are expressed through the linear
combinations of the second-order Bessel and Neumann
functions

jm�z� �
�
mz

2

�1=2
Y1�ml � J2�mz� ÿ J1�ml �Y2�mz�ÿ

J 2
1 �ml � � Y 2

1 �ml ��1=2 ; �4:26�

and can be normalized to the delta-function in the continuous
spectrum: 5

2

�1
l

dz jm�z�jm 0 �z� � d�mÿm 0� : �4:27�

The appearance of a bound state in the positive potential
(4.22) seems unnatural; nevertheless, it has a qualitative
explanation. The fact is that boundary condition (4.23) can
be simulated in the form of a negative delta-shaped contribu-
tion to this potential at the brane localization point jzj � l. As
a result, it acquires a `volcano'-like form (see Fig. 4) and its
delta-shaped crater becomes a receptacle for the bound zero-
energy level.

The qualitative behaviors of the zero mode and massive
KK-modes are quite different. The zero mode is concentrated
in the vicinity of z � l near the brane, while themassivemodes
recede to infinity along the fifth coordinate in the form of
oscillating standing waves. 6 Moreover, it follows from the
asymptotic form of cylindrical functions of a small argument
that the behavior of modes (4.26) on the brane in the small-

mass region is given by

jm�l� �
�
ml

2

�1=2

; m! 0 : �4:28�

In other words, infrared modes of the continuous Kaluza ±
Klein spectrum, unlike the zero mode, are `expelled' from the
brane (Fig. 5). This phenomenon is called localization of
massless gravitons; it is responsible for the restoration of the
effective four-dimensional gravity theory. The carrier of the
four-dimensional interaction on the brane is a brane-localized
massless graviton. The tower of its massive KK-partners is
weakly coupled to matter on the brane, which accounts for
only weak corrections in the low-energy region due to extra
dimensions [12, 15].

To see this, we consider a nonrelativistic law of attraction
between two particles localized on a brane. It is given by the
Green's function of the four-dimensional Laplacian, i.e., the
spatial part of the operator of the wave equation for five-
dimensional gravitons (4.20),

4D � z3=2

l 2

�
d2

dz2
� 3Dÿ 15

4z2

�
z1=2 ; �4:29�

acting in the bulk spatial coordinates X � �x; y�. (In its turn,
x � xm �m � 1; 2; 3� denotes a set of spatial coordinates on
the brane and 3D � dmn qmqn is the three-dimensional `flat'
Laplacian in these coordinates.) The attraction potential in
question is proportional to the intrabrane (from brane to
brane) Green's function of an elliptic operator in the case
where both its points lie on the brane,

G5D�x; x 0� � G5
1
4D

d�X;X 0�
����
y� y 0 � 0

; �4:30�

and to the five-dimensional coupling constant.
The four-dimensional delta-function in (4.30),

d�X;X 0� � 3d�x; x 0� d�yÿ y 0� � 3d�x; x 0� d�zÿ z 0� z
l
;

�4:31�

V�z�

jzjjzj � l0

Figure 4. Potential of the stationary SchroÈ dinger equation for the

Kaluza ±Klein modes of a five-dimensional graviton as a function of the

modulus of the fifth coordinate, Eqn (4.19). The brane is localized at jzj � l

and the vertical line denotes the negative delta-shaped contribution to the

potential that involves the normalizable zero mode of the massless

graviton localized on the brane.

5 The coefficient 2 in (4.27) effectively takes the contribution of integration

over z4 ÿ l and the Z2-symmetry of the modes into account.
6 The requirement of nonsingularity jm�z� at infinity excludes imaginary

values of the mass and therefore forbids tachyonic modes in the

KK-spectrum with m2 < 0.

1

0
y

jm

j0

Figure 5. Behavior of the massless zero mode of the graviton j0 and its

massive Kaluza ±Klein partners jm �m > 0� as functions of the fifth

coordinate y in the neighborhood of the brane localized at y � 0. The

plots are constructed for the values m � 0:3 and l � 1. For small masses,

the KK-partners of the graviton are expelled into the bulk outside the

brane.
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can be expanded in the complete set of plane waves in the
x-space and the complete set of z-harmonics that includes the
discrete zero mode and the continuous spectrum of massive
modes:

d�zÿ z 0� �
X
m

jm�z�jm�z 0�

� j0�z�j0�z 0� �
�1
0

dm jm�z�jm�z 0� : �4:32�

Substituting this expansion in (4.30) and taking into account
that jm�z� are the eigenfunctions of problem (4.21) leads to

G5D�x; x 0�

� G5l

�2p�3
�
d3p

X
m

exp
ÿ
ip�xÿ x 0��
p2 �m2

jm�z�jm�z 0��������
zz 0
p

����
z� z 0 � l

� ÿ G5

4pr
j2
0�l� ÿ

G5

4pr

�1
0

dm j2
m�l � exp �ÿmr� ; �4:33�

r � jxÿ x 0j :

Furthermore, taking (4.24) and (4.28) into consideration
and integrating over masses in the large-distance asymptotic
regime finally yields

G5D�x; x 0� � ÿ G4

4pr

�
1� l 2

2r 2
� . . .

�
; r4 l ; �4:34�

where G4 plays the role of the effective four-dimensional
gravitational constant:

G4 � G5

l
: �4:35�

It can be concluded that up to small corrections caused by
the contribution of massive KK-modes, the attraction
between bodies on a brane in the large-distance region
�r4 l� is governed by the four-dimensional Newton law. In
this case, as with the ADD model in (3.6), the effective
gravitational constant is given by a combination of the
fundamental five-dimensional constant and the extra-dimen-
sion scale. The role of this extra dimension is played, as
mentioned earlier, by the cosmological radius of the five-
dimensional AdS geometry. These properties are guaranteed
by two important aspects of the AdS bulk in the Randall ±
Sundrum model, i.e., brane localization of the graviton zero
mode and pushing its light KK-partners outside the brane.
The zero mode reproduces the four-dimensional law, while
the smallness of the amplitudes of light massive modes (4.28)
accounts for their small contribution despite the continuity of
their spectra and the absence of a gap separating them from
the discrete massless state m � 0 [12, 15].

4.3 The role of radion
A similar situation is realized with the relativistic interaction
law. As in the previous formulas, the retarded five-dimen-
sional brane-to-brane propagator of the problem in (4.16)
and (4.17) is essentially given by the four-dimensional
propagator with small corrections,

D ret�X;X 0�
���
y� y 0 � 0

� 1

l

1

&4
d�x; x 0�

���ret ; �xÿ x 0�2 4 l 2 :

�4:36�

But in the relativistic region, the tensor structure of gravita-
tional potentials acquires importance, and they no longer
reduce to its Newton 00-component.

The retarded potential arising from the redistribution of
matter Tmn on the brane is obtained by the action of the four-
dimensional propagator on the right-hand side of the Israel
matching conditions in the presence of matter,�

d

dy
� 2

l

�
hmn�x; y�

����
y� 0

� ÿ8pG5

�
Tmn ÿ 1

3
ZmnT

�
�4:37�

(a solution of the wave problem with the Neumann boundary
condition at the time-like boundary of a five-dimensional
space). With (4.36) taken into account in the long-wave
approximation, this implies that

hmn�x� ' ÿ16pG4
1

&

�
Tmn ÿ 1

3
ZmnT

�
�x� : �4:38�

This cannot be a correct generally relativistic law of
gravitational wave emission because the coefficient 1=3 on
the right-hand side of the equation is wrong. In the four-
dimensional Einstein gravity, this coefficient equals 1=2.

As shown in Refs [17, 18], such a discrepancy is resolved if
it is borne in mind that this metric is not induced on the brane
and the left-hand side of boundary condition (4.37) must
contain a metric in the normal Gaussian system of coordinates
hNG
mn �x; y� instead of the metric hmn�x; y� in Randall ± Sun-

drum gauge (4.15). In this gauge, the brane is not the plane
y � 0 and its embedding in the �xm; y� space is given by a set of
a scalar field (radion)P�x�,

y � P�x� ; �4:39�

and a vector field xm�x� (which distinguishes the four-
dimensional coordinates on the brane from coordinates in
the bulk). Hence [17],

hNG
mn �x; y� � hmn�x; y� � 2

l
Zmna

2�y�P�x�

� l qmqnP�x� � a2�y� �qmxn � qnxm��x� : �4:40�

Substituting expression (4.40), instead of hmn�x; y�, into the
left-hand side of Eqn (4.37) and calculating the trace,
owing to the tracelessness of hmn, we obtain the equation
for P�x�:

&P�x� � 8pG5

6
T�x� : �4:41�

This equation indicates that the radion field responsible for
brane embedding in the bulk is determined by the trace of the
matter stress tensor that `bends' the brane.

Equation (4.40) implies that the brane-induced metric
differs from (4.38) by the conformal term

2

l
Zmn a

2�y�P�x�

and by a set of pure-gauge terms of the form qmxn � qnxm. The
latter can be eliminated by the proper choice of the four-
dimensional system of coordinates, whereas the right-hand
side of the equation for hNG

mn �x; y� is modified, due to the
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conformal term with radion field (4.41), by an additional
contribution:

hNG
mn �x; y� � hmn�x; y� � 8pG5

3l
a2�y� Zmn

1

& T�x� : �4:42�

Therefore, the right-hand side of the equation for the induced
metric h ind

mn �x� � hNG
mn �x; 0� acquires the generally relativistic

combination of the energy-momentum tensor and its trace
with the coefficient 1=2:

h ind
mn �x� ' ÿ16pG4

1

&

�
Tmn ÿ 1

2
ZmnT

�
�x� : �4:43�

It is easy to show that the conservation law for the matter
stress tensor (which holds in the zero-mode approximation
because the leakage of matter into the bulk is mediated by
massiveKK-modes) ensures the harmonic gauge of themetric
in this equation:

qnh ind
mn ÿ

1

2
qmh ind � 0 :

Thus, the radion contribution restores the correct four-
dimensional law of propagation of long-wave gravitational
waves emitted by matter on the brane. Evidently, this law, by
analogy to Newton's law, holds for wavelengths larger than
the AdS background scale l.

4.4 The AdS/CFT correspondence principle
and graviton localization
Localization of gravitons in the Randall ± Sundrum model is
a manifestation of the so-called AdS/CFT correspondence
principle in string theory [22 ± 24]. This principle establishes a
duality relation (equivalence) between the theories formu-
lated in the bulk and on its boundary and in the opposite
coupling (weak and strong) regimes, respectively [21].
Specifically, a remarkable property of this duality is that the
semiclassical weakly coupled theory in a multidimensional
bulk gives rise on its boundary to a quantum theory in the
strong coupling regime.

The AdS/CFT correspondence was suggested as a
hypothesis for the IIB supergravity theory in a ten-dimen-
sional space (which is a direct product AdS5 � S5 of the five-
dimensional anti-de Sitter space and the five dimensional
sphere) and for the four-dimensional conformally invariant
U�N� Yang ±Mills theory with extended N � 4 supersym-
metry defined on the four-dimensional boundary of AdS5.
Parameters of these two theories including five-dimensional
gravitational G5 and cosmological L5 � ÿ6=l 2 constants on
the supergravity side and the 't Hooft constant l � g 2

YMN on
the Yang ±Mills theory side (with the coupling constant gYM)
in the limit of large l and N are related by

l 3

G5
� 2N 2

p
; l � g 2

YMN �
�
l

ls

�4

; l!1 ; N!1
�4:44�

(ls is the string length in the IIB superstring theory that
generates the ten-dimensional supergravity in the field-
theory limit).

It can be seen that limit (4.44) establishes a correspon-
dence between the low-energy small-curvature regime in the
supergravity theory L5 � ÿ6=l 2 ! 0 and the nonperturba-

tive strong coupling regime l!1 in conformal field theory.
The quantitative verification of this correspondence is very
difficult due to its nonperturbative nature and was originally
performed in the framework of the perturbation theory only
for a distinguished class of supersymmetry-protected correla-
tors. For this reason, the present discussion is confined to the
demonstration that the tree approximation for a multidimen-
sional theory in the bulk can give rise to essentially quantum
contributions of the dual theory formulated on the boundary;
specifically, it may involve the phenomenon of graviton
localization on the brane (interpreted as the boundary of the
AdS bulk).

For this purpose, the AdS/CFT correspondence should be
formulated in terms of the effective action induced on the
brane (the boundary of a multidimensional space) and
obtained by integration over fields in the bulk. For simpli-
city, we work in the Euclidean variant of the theory linked to
the theory in the Lorentzian space ± time by the standard
Wick rotation7 such that the Lorentzian and Euclidean
actions are related by the transformation iSL � ÿSE.

The effective action as a functional of the four-dimen-
sional metric gmn�x� is derived from the five-dimensional
theory with the action S5

�
GAB�X�

�
by means of functional

integration over a class of five-dimensional metrics GAB�X�
that induce the following four-dimensional metric on the
boundary of the five-dimensional manifold qM5:

exp
ÿÿSeff

�
gmn�x�

��
�
�
DGAB�X� exp

ÿÿS5

�
GAB�X�

������
Gmn�qM5�� gmn�x�

: �4:45�

In the tree-level approximation, this action reduces to the
five-dimensional action

Seff�gmn� � S5

�
GAB�gmn�

��O

�
1

N 2

�
; �4:46�

calculated at the solution GAB�gmn� of the classical gravita-
tional equations of motion in the bulk with the boundary
conditions at the boundary in the form of the fixed induced
metric:

dS5�GAB�
dGAB�X� � 0 ; �4:47�

Gmn�qM5� � gmn�x� : �4:48�

According to (4.44), 1=N 2 � G5=l
3 ! 0 plays the role of the

Planck constant of the semiclassical expansion.
It follows from the AdS/CFT hypothesis that the result of

the calculations is the functional

S5

�
GAB�gmn�

� � G4�gmn� : �4:49�

This functional is the quantum effective action of the four-
dimensional theory whose qualitative structure begins with
the Einstein term incorporating the effective gravitational

7 Consideration of the AdS/CFT correspondence in the Euclidean space is

dictated by the fact that it is based on the Graham±Fefferman mathema-

tical construction for the reconstruction of the solution of the Einstein

equations in the bulk from the metric asymtptotics near its boundary

(being moved to conformal infinity), which is also originally formulated

and strictly proven in the Euclidean signature [25].
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constant G4 and the typical loop logarithmic contribution
quadratic in the curvature:

G4�gmn� �
�
d4x g1=2

�
ÿ 1

16pG4
R� bRmn ln

&

m2
R mn � . . .

�
;

�4:50�

with a certain specific value of the ultraviolet cut-off m 2 and
beta function b related to the conformal anomaly of the
theory.

An essential feature of correspondence (4.49) is that the
ultraviolet-finite tree functional proves to be equal to the
quantum effective action of the local theory that requires
renormalization and shows an explicit cut-off dependence. It
turns out that its ultraviolet divergences on the right-hand
side of relation (4.49) are regulated by the position of the four-
dimensional boundary tending to infinity of the five-dimen-
sional AdS space. In other words, the infrared cut-off in tree
supergravity ensures ultraviolet renormalization of the
quantum conformal theory at the boundary. Such a duality
of ultraviolet ± infrared renormalizations is achieved by
introducing a number of counterterms that are responsible
for graviton localization in the Randall ± Sundrum model. In
the bosonic sector of the theory, it occurs as is schematically
described below.

The AdS/CFT correspondence can be formulated in the
effective action language as the equality

exp
ÿÿWSUGRA�gmn�

� � exp
ÿÿWCFT�gmn�

� �4:51�

of two different generating functionals [22, 23]:

exp
ÿÿWSUGRA�gmn�

�
�
�
DGAB exp

ÿÿSgrav�GAB�
�����

Gmn! gmn; y!ÿ1
; �4:52�

exp
ÿÿWCFT�gmn�

� � �Df exp
ÿÿSCFT�f; gmn�

�
: �4:53�

Functionals (4.52) and (4.53) are defined, respectively, for
the gravitational theory in the asymptotically de Sitter bulk
M5 [parameterized by PoincareÂ coordinates XA � �x m; y�]
and for the conformal field theory on its boundary

qM5 : y � const! ÿ1 ; �4:54�

parameterized by the coordinates x m. The four-dimensional
conformalYang ±Mills field denoted symbolically byf `lives'
in the backgroundmetric gmn�x� at boundary (4.54). The same
metric serves as the boundary condition for a class of five-
dimensional metrics over which the integration is performed
in (4.52).

The action of the field f � Am at the boundary (bosonic
part of the supersymmetric model) is constructed in accor-
dance with the standard rules of generally covariant minimal
coupling to the metric,

SCFT�f; gmn� � 1

4g 2
YM

�
qM5

d4x g1=2 TrF 2
mn ; �4:55�

whereas the gravitational action in the bulk requires a more
sophisticated procedure dictated by the infrared properties of
the AdS space. The fact is that at the tree level, upon
substitution in the Einstein ±Hilbert action (with the Gib-

bons ±Hawking surface term) in accordance with (4.46),

S5�GAB� � ÿ 1

16pG5

�
M5

d5X G 1=2

�
5R�GAB� � 12

l 2

�

ÿ 1

8pG5

�
qM5

d4x g1=2K ; �4:56�

the solution of the Einstein equations with the given induced
metric on the boundary already leads to infinities as the
boundary is moved to the asymptotic region of the AdS bulk.

For elimination of the infinities, the complete gravita-
tional action in (4.52),

Sgrav�GAB� � S5�GAB� � S1�gmn� � S2�gmn� � S E
3 �gmn� ; �4:57�

must contain, besides (4.56), a set of three counterterms Ð
functions of themetric induced at the boundary, of the zeroth,
first, and second order in the curvature [25 ± 27]:

S1�gmn� � 3

8pG5l

�
qM5

d4x g1=2 ; �4:58�

S2�gmn� � l

32pG5

�
qM5

d4x g1=2R ; �4:59�

S E
3 �gmn� � ÿ ln E

l 3

64pG5

�
qM5

d4x g1=2
�
R2

mn ÿ
1

3
R2

�
: �4:60�

Counterterm (4.60) explicitly contains a logarithmically
divergent factor ln E! ÿ1 corresponding to the displace-
ment of the boundary to infinity:

E! 0 $ y! ÿ1 ; �4:61�
while its coefficient coincides, owing to relations (4.44), with
the beta function in the N � 4 SU�N� superconformal
Yang ±Mills field theory (also defined by the conformal
anomaly of the model) [28]:

l 3

64pG5
� N 2

32p2
� bCFT : �4:62�

It is important that the coefficient in cosmological term
(4.58) coincides with half the brane tension in Randall ±
Sundrum model (4.7), s=2, and the coefficient in Einstein
term (4.59) is determined by the effective four-dimensional
gravitational constant (4.35), 1=32pG4.

We now apply the AdS/CFT duality relation (4.51) to the
Randall ± Sundrum quantum model. In the quantum version
of thismodel, the entire five-dimensional volume is divided by
the brane into two half-spaces, M5 �M�

5 [Mÿ
5 , with the

five-dimensional metrics G�AB that induce the same four-
dimensional metric G�mn�qM�

5 � � gmn�x� on the brane
S � qM�

5 (the boundary between them) (Fig. 6). We note
that unlike the background Randall ± Sundrum solution, the
quantum metrics G�AB, as independently integrated fields, do
not satisfy the Z2-symmetry condition.

The complete gravitational action in Randall ± Sundrum
model (4.1) is the sum of five-dimensional Hilbert ± Einstein
actions (4.56) on these half-spaces S5�G�AB� and the four-
dimensional action of the brane that consists of the term with
tension written as the doubled value of the counterterm
2S1�gmn� in (4.58):

SRS�GAB� � S5�G�AB� � S5�GÿAB� � 2S1�gmn� : �4:63�
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(We do not include the brane matter action here. In what
follows, it always enters the complete effective action
additively and is not involved in integration over the five-
dimensional metric.)

Thus, the effective brane action in the Randall ± Sundrum
model is defined by the functional integral

exp
ÿÿSeff

�
gmn�x�

��
�
�
DG�AB DGÿAB exp

ÿÿSRS

�
GAB�X�

������
G�mn�S�� gmn�x�

:

�4:64�

Because action (4.63) is the sum of the contributions of two
half-spaces, the complete metric integral is factored into the
product of two identical integrals over metrics G�AB that
account for the effective Z2-symmetry:�

DG�AB DGÿAB exp
ÿÿS5�G�AB� ÿ S5�GÿAB�

�
�
��

DGAB exp
ÿÿS5�GAB�

��2

: �4:65�

The squared integral in (4.65) is taken over a class of five-
dimensional metrics with the fixed induced metric at the
boundary of the asymptotically AdS space; this exactly
corresponds to the statement of the problem in the formula-
tion of the AdS/CFT correspondence. Therefore, in accor-
dance with (4.51) ± (4.53), integral (4.65) is expressed in terms
of the effective action of the conformal field theory:�

DGAB exp
ÿÿS5�GAB�

�
� exp �S1 � S2 � S3�

�
DGAB exp

ÿÿSgrav�GAB�
�

� exp �S1 � S2 � S3 ÿW E
CFT� : �4:66�

By taking the square of this expression in (4.65) and
substituting the result in (4.64), it can be shown that the
contributions of the four-dimensional cosmological term 2S1

cancel each other and the effective brane action takes the form

Seff � ÿ2S2 � 2W E
CFT ÿ 2S3 : �4:67�

In accordance with (4.59), the contribution of the counter-
term ÿ2S2 to (4.67) gives rise to the exactly Einsteinian term
with the effective gravitational constant in (4.35). As regards
the effective action of the superconformal Yang ±Mills field,
it contains neither cosmological nor Einsteinian terms owing
to supersymmetry; in the low-energy region of small curva-
tures, it starts with the logarithmically divergent term
�E! 0�,

2W E
CFT

�
gmn�x�

�
�
�
d4x g1=2

�
2bCFT Rmn

ÿÿ ln E� ln �l 2&��R mn � . . .
�
;

�4:68�
quadratic in the Ricci tensor and accompanied by a logarith-
mically nonlocal form factor. The coefficient at this term is
determined either by the beta function or by the conformal
anomaly of the theory, Eqn (4.62), and coincides with the
coefficient in counterterm (4.60).

Consequently, if the ultraviolet regularization parameter E
in (4.68) is identified with the infrared regularization para-
meter in (4.60), the difference 2W E

CFT ÿ 2S3 entering (4.67) is
finite. In this case, the effective brane action of the Randall ±
Sundrum model in the low-energy region assumes the final
form8

Seff

�
gmn�x�

�
�
�
d4x g1=2

�
ÿ 1

16pG4
R� l 2

32pG4
Rmn ln �l 2&�R mn � . . .

�
:

�4:69�
To conclude, the Randall ± Sundrummodel characterized

by constants �G5; l � is dual to the four-dimensional Einstein
gravity with Newton's constant G4 � G5=l coupled to a
regularized superconformal field theory. This finding con-
firms the localization of the massless graviton in the five-
dimensional Randall ± Sundrummodel: its effective action on
a brane in the long-wave region (or small-curvature region)
reproduces the four-dimensional Einstein theory with effec-
tive constant (4.35) (in the absence of a cosmological term)
and short-distance corrections noticeable in the scale range
1=

�����
&
p

5 l. It can be shown that the nonlocal logarithmic
corrections in (4.69) give rise to the corrections for Newton's
law obtained in (4.34) by taking KK-modes of the five-
dimensional model into consideration [18].

5. The two-brane Randall ± Sundrum model

Today, the AdS/CFT correspondence principle is a hypoth-
esis that is very difficult to verify because of the nonperturba-
tive nature of the problem in the strong coupling region. As
noted above, the AdS/CFT principle was first suggested
based on purely algebraic symmetry considerations [21] and
verified in the framework of the perturbation theory for the
lowest correlation functions protected by supersymmetry
from radiation corrections [29]. In recent years, this principle

8 We recall that in this section, we work with the Euclidean signature,

which accounts for the negative scalar curvature coefficient in the

Euclidean action.

y�yÿ

�M�
5 ;G

�
AB�

qM�; gmn
�Mÿ

5 ;G
ÿ
AB�

Figure 6.The picture of five-dimensional space ± time in a quantumvariant

of the Randall ± Sundrum model. The five-dimensional bulk M5 �
M�

5 [Mÿ
5 is divided by the brane S � qM�

5 into two half-spaces with

independent five-dimensional metrics G�AB that induce the same four-

dimensional metric G�mn�qM�
5 � � gmn�x� on the brane, the argument of the

effective brane action.
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has been confirmed using exactly solvable string models in a
plane-wave metric [30] and a special class of composite
operators forming an integrable system [31].

In any case, the status of the AdS/CFT correspondence
principle and the scope of its applicability remain to be
clarified. For this reason, we disregard it in this section and
instead reproduce the results of the preceding section by
means of direct calculations in the framework of the
perturbation theory in powers of the space ± time curvature.
Specifically, we consider the effective brane action in the two-
brane Randall ± Sundrum model, compute it in the form of a
covariant curvature expansion, and demonstrate that at a
finite interbrane distance, this model generates, in the low-
energy limit, a gravitational theory of the Brans ±Dicke type;
this theory suggests an inflation mechanism with a nonmini-
mally coupled inflaton, i.e., a radion field describing inter-
brane distance dynamics. We show that this model is rich in
phase transitions as branes are moving apart, and this process
may be associated with the evolution of the early and modern
universe (from the standpoint of the brane paradigm in
cosmology).

We recall that in accordance with this paradigm, our
observable low-energy world is a four-dimensional brane
embedded in a multidimensional space with macroscopic
extra dimensions. Details of this embedding and interactions
of the brane with other potential brane worlds govern the
evolution of our universe. Brane localization of massless
gravitons and restoration of the four-dimensional Einstein
gravity theory eliminate themain contradiction that existed in
the framework of the old Kaluza ±Klein picture, that is, the
impossibility of observing extra dimensions.

5.1 Effective action in the two-brane model
We consider the two-brane Randall ± Sundrum model briefly
described in Section 4. The action of this model is given by

S
�
GAB�X�

�
� 1

16pG5

�
d5X G 1=2

ÿ
5R�G� ÿ 2L5

�
�
X
I

�
SI

d4x g1=2
�

1

8pG5
�K � ÿ sI

�
; �5:1�

where the index I � � labels two branes with tensions s� and
�K � is a jump of the extrinsic curvature trace in the Gibbons ±
Hawking surface term associated with either side of each
brane.

We recall that the branes are localized at antipodal points
of a circle in the fifth dimension parameterized by the fifth
coordinate:

y � y� ; y� � 0 ; jyÿj � d :

Z2-symmetry identifies points y and ÿy on the circle and
leaves the points y� fixed. When brane tensions are chosen
depending on the negative cosmological �L5 � ÿ6=l 2� and
the five-dimensional gravitational �G5� constants in agree-
ment with (4.7) and (4.8), this model (in the absence of matter
on the branes and in the bulk) allows a solution with AdS
metric (4.6) in the bulk and the conformally flat metric
a2�y��Zmn on both branes.

The metric on the negative-tension brane contains the
scale factor a2�d � � exp �ÿ2d=l �, which, as mentioned ear-
lier, allows solving the hierarchy problem [11]. With a proper
fine tuning of brane tensions (4.7) and (4.8), this solution

exists for an arbitrary distance d between the branes; the two
conformally flat branes remain in equilibrium.

We now consider the case where the brane-induced
negative-tension metrics differ from the background values
by small perturbations,

g�mn�x� � a2�Zmn � h�mn�x� ; �5:2�

a� � 1 ; aÿ � exp

�
ÿ 2d

l

�
� a ; �5:3�

which induce a perturbed solution of the Einstein equations in
the bulk,

ds 2 � dy 2 � exp

�
ÿ 2jyj

l

�
Zmn dx

m dxn � hAB�x; y� dxA dxB :

�5:4�

We then calculate the tree-level effective action on the branes
in the quadratic approximation in h�mn�x�. This can be
achieved by solving a linearized variant of boundary value
problem (4.47), (4.48) generalized to the case of two
boundaries with metrics (5.2) and by substituting this
solution into five-dimensional action (5.1) in the above
approximation.

The resulting action is invariant under two four-dimen-
sional differomorphisms on the branes that in the linearized
approximation amount to the transformations of metric
perturbations

h�mn ! h�mn � qmx
�
n � qnx

�
m �5:5�

with two independent vector fields x�m � x�m �x�. Conse-
quently, the action can be expressed in terms of tensor
invariants of the transformations or linearized Ricci tensors
for h�mn�x�,

R�mn �
1

2
�ÿ&hmn � qlqmhln � qlqnhlm ÿ qmqnh�� ; �5:6�

on the flat four-dimensional background of both branes. The
result obtained with the help of this procedure in [32] or by
functional integration of the effective four-dimensional
equations of motion for metric perturbations on the branes
[20] is given by the space ± time integral of a nonlocal 2� 2
quadratic form:

Seff�g�mn� �
1

16pG4

�
d4x

�
RT

mn
2F�&�
l 2&2

Rmn ÿ 1

6
RT 2F1�&�

l 2&2
R

�
:

�5:7�

Here, G4 is the effective four-dimensional gravitational
constant �G4 � G5=l �, and Rmn and RT

mn are two-dimensional
columns

Rmn �
R�mn�x�
Rÿmn�x�

" #
�5:8�

and rows

RT
mn �

�
R�mn�x� Rÿmn�x�

� �5:9�

of Ricci curvatures associated with the two branes.
The nonlocal form factors in Eqn (5.7) are 2� 2 matrix-

valued functions of the d'Alembertian& � Zmnqmqn acting on
the curvatures and expressed through the fundamental
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operator

F�&� � ÿ 1

J�2 Yÿ2 ÿ Jÿ2 Y�2

�
�����
&
p

z�u��zÿ� ÿ 2

p

ÿ 2

p

�����
&
p

zÿuÿ�z��

264
375 ; �5:10�

which is constructed in terms of the basis functions of the
variable z > 0 [replacing the fifth coordinate y in accordance
with (4.19)]

u��z� � Y�1 J2
ÿ
z
�����
&
p �ÿ J�1 Y2

ÿ
z
�����
&
p �

; �5:11�
J�n � Jn

ÿ
z�

�����
&
p �

; Y�n � Yn
ÿ
z�

�����
&
p �

: �5:12�
These functions are in turn composed of cylindrical Bessel, Jn,
and Neumann, Yn, n � 1; 2 functions of z

�����
&
p

. 9 The second
form factor is given by

F1�&� � 2F�&� ÿ l 2& diag

�
ÿ 1

2
;

1

2a2

�
: �5:13�

Zero modes (basis functions) of nonlocal operators
correspond to propagating modes of the theory. For exam-
ple, in the transverse-traceless (graviton) sector, the modes
vn�x� � vn mn�x� are determined by the properties of the
operator F�&�. They can be represented as a pair of two-
dimensional columns, whose dimensionality corresponds to
the number of branes,

vn�x� � v�n �x�
vÿn �x�
� �

; �5:14�

and the modes satisfy the equation

F�&� vn � 0 : �5:15�
The condition of the existence of null vectors of the

matrix-valued operator

detF�&� � 0 �5:16�
serves to determine masses mn of the propagating modes,

�&ÿm2
n� vn�x� � 0 ; �5:17�

which are therefore the roots & � m2
n of characteristic

equation (5.16). For operator (5.10), this equation has the
form

detF�&� �&�Yÿ1 J�1 ÿ Y�1 J
ÿ
1 � � 0 �5:18�

and gives the discrete spectrum of KK-modes in the theory 10

starting from a massless mode with& � m2
0 � 0. In this case,

the KK-mass spectrum is discrete because the fifth dimension
is compact.

Equation (5.18) guarantees the existence of a massless
graviton in the theory spectrum, and its localization on the
positive-tension brane means the restoration of the four-
dimensional Einstein gravity in the low-energy region. This
can be demonstrated by considering the long-wave limit for
nonlocal form factors in effective action (5.7) satisfying the
constraints

l
�����
&
p

5 1 ;
l
�����
&
p

a
5 1 : �5:19�

The first condition defines the low-energy region on the
positive-tension brane (the so-called Planckian brane) and
the second a similar region on the other brane. (It should be
borne in mind that the energy of physical modes on branes is
determined using their four-dimensional metric:����������������

gmn
� qmqn

p � �����
&
p

=a�.)
The results of analysis reported in Ref. [20] illustrate the

difficulty of the description of the low-energy theory in terms
of two fields. The difficulty occurs because the low-energy
region on the Planckian brane, S�, corresponds to high
energies on Sÿ, especially in the limit of infinite interbrane
distance a � exp �ÿd=l � ! 0. We therefore postpone the
discussion of the two-field effective action until Section 5.4,
where gravitational-wave effects frommatter sources on both
branes are considered. In the meantime, we turn to the
reduced effective action in terms of a single metric field of
the Planckian brane. This gives us the opportunity to
explicitly demonstrate the restoration of the four-dimen-
sional Brans ±Dicke theory on the brane (the Einstein theory
nonminimally coupled to an additional scalar field), freely
analyze the limit as a! 0, and show the realization of the
AdS/CFT correspondence in this limit.

5.2 Local and nonlocal phases of the model
We consider the reduction of the brane effective action
obtained by averaging over the degrees of freedom on the
positive-tension brane (or functional integration over its four-
dimensional metric). The use of this procedure is justified by
the simple fact that the brane is invisible for an observer
residing on the Planckian brane.

In the tree limit, the reduction Seff�g�mn� ! Sred�g�mn� is
equivalent to the elimination of fields on the negative brane
in terms of the fields on the positive-tension brane,

Sred�g�mn� � Seff

�
g�mn; g

ÿ
mn�g�mn�

�
; gÿmn � gÿmn�g�mn� ; �5:20�

as the solution of their corresponding equations of motion

dSeff�g�mn�
dgÿmn�x�

� 0 : �5:21�

The result of such reduction is given below for two energy
regions, one corresponding to (5.19) and the other to the case
of a large distance between the branes when the second
inequality in (5.19) is violated.

For a small or finite interbrane distance in the energy
region (5.19), the reduced action is given by

Sred�gmn;j� �
�
d4x g1=2

��
1

16pG4
ÿ 1

12
j2

�
R

� 1

2
j&j� l 2 K�j�

32pG4
C 2

mnab

�
�5:22�

9 We note that functions (5.11) are basis functions of the operator of

gravitational perturbations (4.20) satisfying the linearized Israel matching

conditions on the corresponding branes. The function u��z� coincides with
eigenfunction (4.26) up to normalization when

�����
&
p

is identified with its

value on the mass shell, the KK-mode mass m.
10 We note that the left-hand side of Eqn (5.18) is the Wronskian of

harmonics u��z� in (5.11). Its equality to zero means a linear dependence

of these two functions or the existence of a harmonic in the space of the

fifth coordinate that at the same time satisfies homogeneous boundary

conditions on both branes and is a physical mode in the two-brane

Randall ± Sundrum model.
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in terms of the induced metric g�mn � gmn, the additional scalar
field j�x�, and the local coefficient function of this field at the
squared Weyl tensor

K�j� � 1

4

�
ln

1

a2
ÿ �1ÿ a2� ÿ 1

2
�1ÿ a2�2

�
a2� 4pG4j2=3

: �5:23�

The scalar field j�x� emerges from Eqn (5.3) as a result of
promoting the modular variable in the model, i.e., the
parameter of the interbrane distance d [or a � exp �ÿd=l �],
to a dynamical field in accordance with the relation

j�x� �
������������

3

4pG4

r
exp

�
ÿ d

l
�P�x�

l

�
; �5:24�

where P�x� is the local four-dimensional radion field
describing the deviation of brane embedding in the Ran-
dall ± Sundrum system of coordinates from y � y� to
y � y� ÿP�x� (see the discussion in Section 4.3 and
Refs [33, 20]). 11 Clearly, action (5.22) represents the Einstein
gravity theory nonminimally coupled to the scalar j of the
Brans ±Dicke type that describes the local x-dependent
interbrane distance and short-distance corrections in terms
of the squaredWeyl tensorC 2

mnab with local (butj-dependent)
coefficient (5.23).

For a larger interbrane distance corresponding to the
high-energy region on the invisible brane,

l
�����
&
p

5 1 ;
l
�����
&
p

a
4 1 ; �5:25�

reduced action (5.20) has a different form [20],

Sred�gmn� � 1

16pG4

�
d4x g1=2

�
R� l 2

2
Cmnab k�&�C mnab

�
;

�5:26�
k�&� � 1

4

�
ln

4

l 2�ÿ&� ÿ C

�
; �5:27�

where C is the Euler constant. The radion decouples from
gravity, and the quadratic Weyl term becomes nonlocal, with
a logarithmic form factor characteristic of the AdS/CFT
correspondence phenomenon, an imitation of quantum
logarithms of the conformal field theory on the brane by the
tree (super)gravity action calculated in the bulk.

Transition from local phase (5.22) to nonlocal one (5.26)
represents a renormalization-group flow (AdS-flow) inter-
polating between the limits of small and large interbrane
distances. The scalar field j, starting from the value

j �
�

3

4pG4

�1=2

; �5:28�

i.e., from the point of coincident branes a � 1 at which the
effective Planck mass [the overall coefficient at the scalar
curvature in (5.22)] vanishes, tends to zero as the branes
recede from each other, because a! 0 as d!1.

The field condensate j is given by a coefficient function
K�j� that looks like an effective potential of the Coleman ±

Weinberg type, logarithmic in G4j2 � j2=M 2
P, Eqn (5.23). It

further delocalizes into the logarithmic form factor k�&� of
the quadratic Weyl term. The leading logarithmic term in the
coefficient function

K�j� � 1

4
ln

M 2
P

j2
; j! 0 ; �5:29�

does not grow infinitely but is instead saturated by the
logarithm of the gravitational radiation scale characterized
by space ± time inhomogeneity of the Weyl tensor, i.e., the
logarithmic nonlocality of the form factor

k�&� � 1

4
ln

4

l 2&
: �5:30�

The physics of this transition is obvious: the tower of massive
KK-modes that are infinitely heavy at the initial point of
coincident branes becomes very light as a! 0. Its spectrum
becomes practically continuous and its cumulative effect is
expressed in the form of a logarithmic nonlocality character-
istic of the AdS/CFT correspondence.

5.3 Scenario of diverging branes and brane inflation
An interesting question is whether a given AdS-flow can be
realized at the dynamical level as a physical process of branes
receding (or moving together) and have valuable cosmologi-
cal applications. One dynamical mechanism was proposed in
Ref. [33] by introducing a weak detuning between brane
tensions (4.7) and (4.8), resulting in the appearance of a
small positive cosmological term [34] in effective action
(5.22); this term can generate brane inflation [35 ± 37, 23, 24].

If the excess part of the Planckian brane tension is denoted
by se,

s � 3

4pG5l
� se ; �5:31�

the metric ± radion part of action (5.22) takes the form

Seff�gmn;j�

�
�
d4x g1=2

��
1

16pG4
ÿ 1

12
j2

�
R� 1

2
j&jÿ se

�
�5:32�

(we here omit the contribution of Weyl corrections). In this
form, the model does not contain a good scalar potential that
could directly generate radion evolution by making it roll
down from the potential wall, e.g., induce inflation. But a
nonminimal curvature coupling of the field j allows infla-
tionary applications of this model.

To analyze the inflationary applications, we pass to the
Einstein parameterization of the action in terms of a new
conformally equivalent metric and a new scalar field ��gmn;f�
[38]:

gmn � cosh2
��

4pG4

3

�1=2

f
�

�gmn ; �5:33�

j �
�

3

4pG4

�1=2

tanh

��
4pG4

3

�1=2

f
�
: �5:34�

In this parameterization, the infinite range of variation of the
new scalar field, jfj <1, covers the range of changes of the
radion field j, jjj4 �3=4pG4�1=2, or a4 1, in which the
effective j-dependent gravitational constant in action (5.32)

11 The radion field P�x� is absent from the initial two-brane action (5.7)

only because it was put there on its mass shell &P� lR=6 � 0. The

expression for the effective action outside the radion mass shell given in

Ref. [20] contains its kinetic term that leads, in terms of field j�x�, to
Eqn (5.22).
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is positive: 12

1

16pG4�j� �
1

16pG4
ÿ 1

12
j2 : �5:35�

This guarantees stability of the theory in the new variables.
In the Einstein parameterization, unlike in the initial one,

the action describes a theory with a minimally coupled field f
that has a monotonically growing potential [due to the
conformal factor relating the two metrics in (5.33)]:

�Seff��gmn;f� �
�
d4x �g 1=2

�
1

16pG4

�R� 1

2
f �&fÿ V�f�

�
;

�5:36�

V�f� � se cosh
4

��
4pG4

3

�1=2

f
�
: �5:37�

The positive minimum of the potential V�f� at f � 0
corresponds to infinite interbrane distance, whereas the
infinite value of V�f� describes the coincident brane limit
with (5.28). This means that the branes repulse each other,
that is, they recede as the radion field rolls down the potential
barrier. The visible brane with the excessive positive tension is
curved and, in the slow roll-down regime, has a quasi-de Sitter
geometry embedded in the five-dimensional AdS-space. At
large initial values of f (small interbrane distance), this
potential may prove too steep for the slow-roll regime, but it
can maintain a power-law inflation. In contrast, at small f
(f5

����������������
3=4pG4

p
, large distance), the slow roll-down condi-

tions are fairly well satisfied.
Thus, the radion mode in such a two-brane model may be

a candidate for the role of the inflation-generating inflaton.
Moreover, at a later stage �V�0� � se�, the residual cosmolo-
gical constant can be interpreted as dark energy responsible
for the current cosmological acceleration.

Unfortunately, such a model has a number of drawbacks.
One of them is unfavorable conditions for the reheating of the
universe as it comes out of the inflation stage; these conditions
are attributable to the overlapping of the inflation and
cosmological acceleration stages that leave no room for the
oscillatory stage in the inflaton evolution [39]. Another
problem is related to the impossibility of extrapolating the
phase of local effective action (5.22) to large interbrane
distances where the AdS/CFT correspondence principle
comes into force and the action becomes a purely Einsteinian
one with small nonlocal corrections (5.26). Perhaps this phase
transition may be helpful in solving the problem of exiting the
inflation and reheating the universe, but it requires a more
detailed study.

Also, it should be borne in mind that the introduction of
an additional ultra-small tension se in Eqn (5.31) comparable
to the contemporary dark energy scale raises the problem of
superfine tuning and thus necessitates consideration of
alternative mechanisms of brane dynamics. Interestingly, the
mechanism of brane repulsion can also be based on the
presence of the Weyl term in the ultralocal and nonlocal
phases of the theory, Eqns (5.22) and (5.26). When the brane
universe is filled with gravitational radiation, this term may
be positive and, for small distances, give rise to the interbrane

potential

ÿ l 2

32pG4
K�j�C 2

mnab : �5:38�

In the case of coincident branes �a � 1�, this potential has a
maximum because the coefficient K�j� given by Eqn (5.23) is
strictly positive. However, the repulsive force between the
branes is very small and vanishes at a � 1 because the
behavior of K�j� at the brane junction point is given by13

K�j� � �1ÿ a2�3
12

:

Unfortunately, this potential for C 2
mnab > 0 is negative and as

such cannot maintain inflation even though it realizes
interbrane interaction in the presence of gravitational radia-
tion on the brane.

5.4 Gravitational-wave oscillations and massive gravitons
We consider the effects of gravitational massiveKK-modes in
the two-brane Randall ± Sundrum model in the presence of
matter on both the visible (Planckian) and the `invisible'
branes [40]. For example, one such effect allows the second
brane to be seen by the methods of gravitational-wave
astronomy. This is the sole possible way to directly observe
a multidimensional space in the framework of the brane
concept that forbids light propagation in extra dimensions.
This method is based on the effect of gravitational oscillations
analogous to neutrino oscillations and unavoidable in any
other model involving quanta of different masses.

Gravitational radiation from brane-localized sources
detected by an observer residing, e.g., on the Planckian
brane, can be investigated using the formalism of the two-
brane effective action developed in Section 5. Further
discussion is confined to the transverse-traceless components
of gravitational perturbations h�mn�x� describing radiation
from covariantly conserved sources on the corresponding
branes, S�. Then, action (5.7) quadratic in fields can be
rewritten in the 2� 2 quadratic form

Seff�h�mn� �
�
d4x

�
1

32pG4
hT

F�&�
l 2

h� 1

2
hTT

�
; �5:39�

in terms of two-dimensional columns of metric perturbations
and the energy-momentum tensors T�mn�x� of brane-localized
matter sources

h � h��x�
hÿ�x�
� �

; T � T��x�
Tÿ�x�
� �

: �5:40�

The superscript `T' indicates transposition of columns into
rows (hereinafter, tensor indices are omitted).

The kernel of quadratic form (5.39) is given by nonlocal
operator (5.10) that enters only the transverse traceless sector
of the model. [The overall power of the d'Alembertian &
differs from (5.10) because the action is expressed directly in
terms of metric perturbations rather than of linearized Ricci
curvatures (5.6).]

The linear equations for the gravitational potentials h�x�
following from this action can be solved in terms of the

13 Interestingly, expression (5.23) is the logarithmic term ln �1=a 2�with the
first two terms in the Taylor series subtracted at the point a 2 � 1.

12 The instability region a > 1 can be excluded from this consideration

because its boundary a � 1 corresponds to the coincident brane limit.
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retarded Green's function of the operator F�&�:
h�x� � ÿ8pG4l

2 Gret�&�T�x� ; �5:41�
F�&�Gret�&� � I : �5:42�

Here, the Green's function is represented in thematrix-valued
operator form as a function of &. For this function, it is
possible to write the spectral decomposition in standard
Green's functions of a massless graviton and its massive
KK-partners whose masses are given by Eqn (5.16):

G�&� �
X
n� 0

vnv
T
n

&ÿm 2
n

: �5:43�

The isotopic structure of residues at the poles & � m 2
n in

Eqn (5.43) is determined by the direct product of polarization
functions of the basis functions v�x� of the operator F�&�
that satisfy Eqn (5.15). In the two-brane problem, they are
two-dimensional columns vn in the expression for the basis
function in the form

vn�x� � �2p 0�ÿ1=2 exp �ipx� vn ; p 2 �m 2 � 0 :

These columns are null vectors of the operator matrix F�m 2
n �,

F�m 2
n � vn � 0 ; �5:44�

and satisfy the normalization conditions [40]

vTn
dF�m 2�
dm 2

vn

����
m 2 �m 2

n

� 1 : �5:45�

We are interested in gravitational radiation at low
frequencies and large distances from the sources when it
is possible to use the low-energy limit on the Planckian
brane l

�����
&
p

5 1, but the operator argument l
�����
&
p

=a can
assume any value by virtue of the smallness of the
parameter a � exp �ÿd=l � (large interbrane distances). In
this limit, due to the known small-argument asymptotic
form of the Bessel functions, operator (5.10) has the
approximate form [20]

F�&� � l 2&

2

1 Jÿ12 �l
�����
&
p

=a�

Jÿ12 �l
�����
&
p

=a� ÿ 2

l
�����
&
p

a

J1�l
�����
&
p

=a�
J2�l

�����
&
p

=a�

264
375: �5:46�

In accordance with Eqn (5.16), expression (5.46) in the
above approximation �a5 1� immediately yields the mass
spectrum of KK-modes (determined by the roots of the first-
order Bessel function) and their polarization vectors:

v0 �
���
2
p

l

1
a2

� �
; m0 � 0 ; �5:47�

vn �
���
2
p

a

l

Jÿ12 � jn�
ÿ1

� �
; mn � a

l
jn ; J1� jn� � 0 ; n > 0 :

�5:48�

These expressions are used here to construct the Green's
function (5.43) and find gravitational radiation from the local
sources on the branes.

We confine ourselves to the observation of a gravitational
signal from two distributed sources T� on the `visible' brane
S�. For simplicity, we consider only frequencies below the
mass threshold of the second massive mode m2. Then, only

the first two terms in spectral expansion (5.43), with n � 0 and
n � 1, contribute to the signal. Using the structure v0;1 in
(5.48), we find the expression for this signal

h��x� � ÿ16pG4
1

&

����
ret

ÿ
T��x� � a2Tÿ�x��

ÿ 16pG4
1

&ÿm 2
1

����
ret

�
a2

J 2
T��x� ÿ a2

J Tÿ�x�
�
; �5:49�

where J � J2�lm1=a� ' 0:403.
We now consider local astrophysical sources at the point

x � 0 on both branes with equal intensities and frequencies:

T��t; x� � m exp �ÿiot� d�x� : �5:50�

If the frequency of the source exceeds the mass threshold of
the first massive mode �o > m1�, then both modes, massive
and massless, become excited and produce long-distance
gravitational waves. At a distance r from the source, its
signal on each brane consists of the superposition of
spherical waves of massless and massive quanta. Such a
superposition on the brane S� is given by the sum of
contributions from the sources on S� and Sÿ,

h��T�� � A exp �ÿiot�

�
�
exp �ior� � a2

J 2
exp

�
i�o2 ÿm 2

1 �1=2r
��

; �5:51�
h��Tÿ� � Aa2 exp �ÿiot�

�
�
exp �ior� ÿ 1

J exp
�
i�o2 ÿm 2

1 �1=2r
��

; �5:52�

whereA � 4G4m=r is the amplitude of the massless wave from
source (5.50).

The amplitudes detected by gravitational-wave interfe-
rometers depend on the absolute values of expressions (5.51)
and (5.52):

��h��T���� � A��1ÿ 4a2J 2

�J 2 � a2�2 sin2
pr
L

�1=2
; �5:53�

��h��Tÿ��� � Aÿ�1� 4J
�J ÿ 1�2 sin2

pr
L

�1=2
: �5:54�

It can be seen that they are modulated over the radial variable
by oscillations with the wavelength

L � 2p
�
oÿ

������������������
o2 ÿm 2

1

q �ÿ1
' 2p

m1
; �5:55�

where the approximate equality corresponds to m1 5o.
The coefficients of amplitudes (5.53) and (5.54) are given

by the expressions

A� �
�
1� a2

J 2

�2

A � A ; �5:56�

Aÿ �
�
1

J ÿ 1

�
a2A � 2:2a2A ; �5:57�

valid in the limit a5 1.
Thus, the amplitudes of waves from both sources undergo

oscillations, although to different degrees. These oscillations
result from the interference of field quantum waves with
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different masses analogous to neutrino oscillations. This
phenomenon parametrically depends on the distance
between the branes, i.e., the radion, and corresponds to
what actually deserves the name radiation-induced gravita-
tional oscillations (RIGOs). The oscillating part of the
amplitude of a gravitational wave from T �, (5.53), is
suppressed in the range of large interbrane distances by the
small factor a 2 5 1. In contrast, oscillations of the amplitude
of a signal from T ÿ in (5.54) are comparable with the signal
itself regardless of the distance between the branes.

For RIGOs to be assessed, it should be borne in mind that
the length of these oscillations in terms of the curvature radius
l of the AdS space and the scale factor a of the hidden brane is
given by

L � 2p
j1

l

a
� 1:6

l

a
; �5:58�

where j1 � 3:831 is the first root of J1. In other words, the
oscillation length is inversely proportional to a.

On the other hand, oscillations become observable
when their length is comparable to the shoulder length of
the gravitational-wave detector. For earth-based LIGO-
type interferometers, such a requirement corresponds to
L � 103 m. By combining this parameter with the maximum
curvature radius of the AdS space l estimated from Cavend-
ish-type table-top experiments in the submillimeter range
(l4 10ÿ4 m) [10], it is possible to find the upper limit of the
scale factor for the hidden brane, a4 10ÿ6, at which
oscillations become observable. Unfortunately, substitution
of this value into the ratio of amplitudes (5.56) and (5.57)
gives the estimate

Aÿ
A� 4 10ÿ14 : �5:59�

This means that the amplitude of a wave coming from the
source on the hidden brane undergoing sufficiently long and
detectable oscillations is markedly suppressed in comparison
with that of a gravitational wave from the analogous source
on the Planckian brane.

If a strongly oscillating wave is to compare with a weakly
oscillating signal emitted by matter on the brane being
considered, it must be generated by a source 14 orders of
magnitude more powerful. Evidently, this makes RIGO
detection impracticable in the near future. Nevertheless, it
was suggested in [40] that brane compactification mechan-
isms inM-theory may give rise to a large condensate of gauge
superpartners Z on the hidden brane [41], which determines
the quadrupole moment of cosmic strings m � Z2 [42]. This
can lead to the production of strong gravitational waves on
the hidden brane readily compensating for the effect of
suppressive factor (5.59).

In principle, the RIGO-effect is a common feature of all
multidimensional models because they always involve ampli-
tude modulation of gravitational waves composed of a
mixture of massless and massive modes. In traditional extra-
dimension models, the mass of the first KK-mode is so large
that it can never be produced by an astrophysical source nor
can it lead to macroscopic oscillations.

In contrast, the geometry of curved extra dimensions
allows KK-modes to lie so low that they may undergo
observable oscillations. By way of example, gravitational
waves from sources on the hidden brane lead to strong
oscillations in our world. It appears reasonable to suggest,

without postulating strong sources on the hidden brane, the
existence of other mechanisms combining small KK-masses
and strong modification of gravitational signals in models
with extra dimensions. One of such models is that of the
gravitational echo effect, which specifically colors gravita-
tional radiation from a source on our brane due to its
reflection in the bulk [43].

5.5 The gravitational echo effect
In this section, we consider specific features of the relativistic
propagation of a signal in space ± time with a compact fifth
coordinate. This problem is interesting from the standpoint of
gravitational-wave astronomy as a tool for searching for
extra dimensions. We show that the compactness of extra
dimensions and the presence of an alternative brane give rise
to the gravitational echo phenomenon [43] that modifies the
retarded potentials of (quasi)point-like sources in a peculiar
way.

For simplicity, we consider a flat five-dimensional space ±
time with the fifth coordinate ranging within finite limits
0 < y < L that can be identified with two branes, as in the
Randall ± Sundrum model. (In all other aspects, the model
under consideration bears more likeness to the ADD model
with the extra dimension size L.) We impose the Neumann
boundary conditions on the branes to simulate the Israel
matching conditions. Moreover, the tensor and gauge
structures of gravitational perturbations are omitted under
the assumption that their equations of motion have the form
of equations of a massless scalar field. This simplification
does not affect propagation patterns of relativistic signals in a
five-dimensional space having time-like boundaries.

Thus, the five-dimensional field F�X � coupled to the
source J�X � with the five-dimensional gravitational constant
satisfies the equation

&5 F�X � � ÿG5 J�X � �5:60�
in the five-dimensional space and the Neumann boundary
conditions

qyF�X �
���
y� 0
� qyF�X �

��
y�L
� 0 : �5:61�

on the branes.
For a brane-localized source, J�X � � j �x� d�y�, the

solution of the problem on the same brane

F�X �
���
y� 0
� G5

�
d4x 0D�xÿ x 0� j �x 0� �5:62�

is given by the interbrane propagator

D�x� � ÿ 1

&5
d�X �

���
y� 0

; �5:63�

which can be constructed from the five-dimensional propa-
gator in a boundless infinite space,

D5�X � � ÿ 1

&5
d�X � � i

8p2
1ÿ�X �2�3=2 ; �5:64�

by the image-based method. 14

14Here,X 2 � ÿ�x 0�2 � x2 � y 2 is the Lorentzian interval, and the rule for

bypassing singularities during integration of the Green's function kernel is

given by the boundary conditions for physical time x 0 (it is formulated

below for the retarded Green's function).
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As shown in Ref. [43] for the Neumann boundary
conditions, the answer obtained with the image-based
method has the form of the sum of contributions from the
source and its images localized at an infinite sequence of
points Xn:

D�x� � 2
X1

n�ÿ1
D5�Xÿ Xn�

���
X��x; 0�

; �5:65�

Xn � �0; 2nL� ; �Xÿ Xn�2 � x 2 � 4n2L2 : �5:66�

(This is also substantiated in [43] in terms of the KK-
representation and momentum representation.)

In the region of large intervals, �xÿ x 0�2 4L2, the sum
in (5.66) can be replaced by an integral, calculating which
gives

D�x; x 0� ' i

8p2L

� �1
ÿ1

dy
1ÿ�xÿ x 0�2 � y 2

�3=2
� i

4p2L
1

�xÿ x 0�2 ; �5:67�

and thus leads to the restoration of the four-dimensional
Green's function [see Eqn (4.36), in which the role of the
effective size of the extra dimension is played by l ]. Practically
speaking, this method amounts to obtaining the Green's
function in a space from the Green's function in the space
whose dimension is raised by one. In particular, it allows
finding Newton's potential on the brane produced by a point-
like source at the origin of spatial coordinates by integrating
Eqn (5.65) over time.

Integration of (5.65) by means of the Wick rotation to
x 4 � ix 0 gives

V�r� � G5

�1
ÿ1

dx 0 D�x; x 0�

� 1

2p2
X1

n�ÿ1

1

r 2 � 4n2L2
; r 2 � x2 ; �5:68�

or

V�r� � G4

4pr

�
1� 2

exp �pr=L� ÿ 1

�
; �5:69�

where G4 is the four-dimensional gravitational constant
[cf. Eqn (4.35)]:

G4 � G5

L
: �5:70�

It is clear that at large distances �r4L�, this result
reproduces the ordinary Newton potential with the
Yukawa-type corrections in the four-dimensional world.
At small distances, it turns into the five-dimensional law
1=r 2.

Unlike Newton's potential, the retarded potential from
a source on the brane is derived from (5.62) by substitut-
ing the retarded propagator D ret�xÿ x 0�. This can be
done, term by term, in the sum in (5.65) using the kernel
of the five-dimensional retarded Green's function obtained
from the imaginary part of the Feynman propagator
[which follows from (5.64)] by means of the ie-prescrip-

tion X 2 ! X 2 � ie [43]:

D ret
5 �r; t� �

1

4p2
Re

i

�r 2 ÿ t 2 � ie�3=2

� ÿ 1

4p2r
q
qr

y�tÿ r�
�t 2 ÿ r 2�1=2

: �5:71�

The result is

D ret�t; x� � ÿ 1

2p2
X1

n�ÿ1

1

r

q
qr

y
ÿ
tÿ �r 2 � 4n2L2�1=2�
�t 2 ÿ r 2 ÿ 4n2L2�1=2

; �5:72�

which is essentially different from the four-dimensional case
in two respects. First, the retarded Green's function (5.71) is
supported inside the entire future light cone of the point-like
source at r � 0, t � 0 (which corresponds to the absence of the
Huygens principle in an odd-dimensional space ± time). For
this reason, the sum in (5.72) involves the contributions of all
images of the original source belonging to the inside of the
light cone of the observation point. Second, the retarded
function has a root singularity on the light cone.

We consider the retarded potential from a brane source

J�x; y� � f �t� d �3��x� d�y� �5:73�

with an arbitrary time dependence f �t�. Taking (5.72) into
consideration, we have

F�t; r� � ÿ G5

2p2

�
X1

n�ÿ1

1

rn

q
qrn

� tÿrn

ÿ1
dt 0

f �t 0�ÿ�tÿ t 0�2 ÿ r 2n
�1=2 ����

rn ��r 2�4n2L2�1=2
:

�5:74�
In particular, for the function f �t� describing a constant-
amplitude pulse of finite duration T ,

f �t� � y�t� ÿ y�tÿ T � ; �5:75�

expression (5.74) takes the following form after integration
over time:

F�t; x� � G5t

16p2L3
y�tÿ r� I�a; b� ÿ �t! tÿ T � : �5:76�

The function I�a; b� of the parameters

a � �t
2 ÿ r 2�1=2

2L
; b � r

2L
�5:77�

is given by the finite sum

I�a; b� �
X�a�

n�ÿ�a�

1

�b2 � n2��a2 ÿ n2�1=2
; m < a ; �5:78�

where �a� denotes the integer part of a.
We first discuss the contribution of the front edge of the

pulse, i.e., the first term in Eqn (5.75). When t reaches the
radius r at which the observer is localized, the observer begins
to receive a signal encoded in the first term of Eqn (5.76).
Because this term contains the integer part of the parameter a
�n � �a��, its contribution is a discontinuous function of time.
Each time the parameter a becomes an integer, a new pair of
terms at n � ��a� appears in sum (5.78) and the answer suffers
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a jump. This corresponds to the arrival of signals from new
images at y � �2�a�L.

Moreover, the signals are singular [have the form
�aÿ �a��ÿ1=2] directly at a � �a� in correspondence with the
singularity structure of the retarded Green's function in five
dimensions. This singularity is not very strong and can be
smoothed by averaging over time intervals between consecu-
tive singular peaks. In the course of time, more and more new
signals of the gravitational echo come from the new images of
the source. As a result, the signal detected on the brane
assumes the form of a sequence of singular peaks. Evidently,
the observer's detector is unable to resolve individual peaks.
Therefore, it is reasonable to average them over time as
described in the paragraphs below.

Because of late-time restoration of the four-dimensional
signal (as contributions from a large number of images
accumulate), it is necessary to first find the asymptotic form
of sum (5.78) at a4 1, as was done in Ref. [43], and then
average it over the time interval between the peaks. In the last
singular term �n � �a�� and the subleading term in the aÿ1=2 of
the asymptotic form, this procedure amounts to taking
averages of the form


ÿ
aÿ �a��ÿ1=2� � � �a��1

�a�

daÿ
aÿ �a��1=2 � 2 ; �5:79�


ÿ
aÿ �a� � 1

�1=2� � � �a��1
�a�

da
ÿ
aÿ �a� � 1�1=2 � 2

3
�23=2 ÿ 1� :

�5:80�

Hence,



I�a; b�� � p

b
coth �pb�
�a2 � b2�1=2

ÿ 23=2

a1=2�a2 � b2�
25=2 ÿ 5

3
; a4 1 ;

�5:81�

which, by virtue of (5.76), finally gives

F�t; x�� � V�r� y�tÿ r� ÿ G4

3p2t

�
L2

t 2 ÿ r 2

�1=4

��25=2 ÿ 5� y�tÿ r� ÿ �t! tÿ T � ; t 2 ÿ r 2 4L2 ; �5:82�

where V�r� is exactly the Newton potential (5.69), the
subtracted term at tÿ T describes the contribution of the
back front of pulse (5.68), and the second term represents
corrections due to the contribution of echo signals from a
large number of images. 15

At t > T� r, signals from both the forefront and the back
front of the pulse reach the observer, which leads to the
cancellation of the first Newtonian term. In four dimensions,
this would result in the absence of a signal at t > T� r (the
observer would see only the passage of the finite pulse of
length T with a delay r). A more interesting situation takes
place in five dimensions; specifically, the entire area inside the
light cone contributes to the signal, which never vanishes
abruptly. Even after the burning candle dies, its fading light
continues to reach the observer, coming from progressively
more distant images of the source. The `tail' of the signal
originates from the second term in Eqn (5.82) and at later

times t4 r and t4T assumes the following form that decays
in accordance with a power-like law:



F�t; x��

tail
� �25=2 ÿ 5� G4

2p2
L1=2 T

t 5=2
: �5:83�

It is essential that at t4 r, the tail signal is independent of the
distance from the source.

Another interesting effect is the distortion of the signal
front edge. At r < t < r� T, when the back front of the pulse
has not yet reached the observer, the second term in (5.82) is
responsible, due to its negative sign, for the partial screening
of the purely four-dimensional part of the signal (its resultant
form is represented in Fig. 7). The correction for F0�t; x� �
G4=4pr has the form


F�t; x�� ' F0�t; x� � F1�t; x� ; �5:84�

F1�t; x� � ÿ 2

3p
25=2 ÿ 5

a1=2�t� F0�t; x� ; �5:85�
r < t < r� T ; a�t�4 1 ;

where the parameter a�t� � �t 2 ÿ r 2�1=2=2L has the meaning
of the number of peaks that have already passed through the
observer by the moment of observation t. (We disregard the
difference of a from �a� at a4 1.)

The number a�t� is assumed to be sufficiently large in
order to guarantee formation of the four-dimensional part
[the first term in (5.85)]. At the same time, it should be small
enough to ensure the relation t � r. The minimal value of a�t�
is eventually determined by the resolving power of the
observer's detector. It must not necessarily recognize a single
peak but must be able to resolve the time interval between the
arrival of the front edge and the moment of observation t. A
similar situation takes place at the back front: the tail signal
for a t value close to r� T largely depends on the number of
peaks that come up immediately after the initial source ceases
to emit the signal [43].

A similar computation of the retarded potential from a
periodic source of frequency o

f �t� � exp �iot� �5:86�
15 We note that this contribution arises from the subleading term in aÿ1=2

of the asymptotic form that contains averaging (5.80).

Figure 7. Typical shape of a signal: forefront screening and tail signal

following the back front.
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is much simpler. The calculation of the integral in Eqn (5.74)
using the formula� tÿr

ÿ1

dt 0 exp �iot 0����������������������������
�tÿ t 0�2 ÿ r 2

q � ÿip
2

exp �iot�H �2�0 �or� �5:87�

gives a sum that can also be reduced to an integral in the limit
oL5 1 [43].

As a result, the leading contribution

F�r; t� ' F0�r; t� � G4

8pr
exp

ÿ
io�tÿ r�� �5:88�

turns out to be a four-dimensional retarded spherical wave,
and the correction for it in the region of large distances
�or4 1� has the form

F1�r; t� � L

�������
2o
pr

r
exp

�
ip
4

�
F0�r; t� : �5:89�

We note the phase shift of this expression with respect to
the four-dimensional signal in (5.88). Now, amplitude (5.89)
also depends on the signal frequency. These two factors
allow the effect of extra dimension to be distinguished from
the purely four-dimensional part of the signal. In other
words, the five-dimensionality of space ± time is manifest as
the frequency-dependent enhancement of the amplitude��F0�r; t� � F1�r; t�

�� of the signal from a periodic source.
Thus, there are at least two potentially observable effects

of the compact fifth dimension, viz. residual luminosity from
a source having a finite lifetime T and enhancement of the
signal amplitude from a periodic source. In the four-
dimensional theory, the residual luminosity is nonexistent in
principle; therefore, its observation would give clear evidence
in support of the reality of extra dimensions. The relative
magnitude of this effect with respect to the Newton's
potential amplitude at a distance r from the source
F0�t; r� � G4=4pr at a time instant t5 r is limited by the
estimate

Ftail

F0
� L1=2T

r 3=2
: �5:90�

The effect of enhancement of periodic signal (5.89)
involves a phase shift, which can also be used in observa-
tions. In accordance with Eqn (5.89), the relative value of this
effect behaves as

F1

F0
� L�����

lr
p ; �5:91�

in terms of the signal wavelength l � 2p=o (the speed of light
in our units is c � 1).

The effects of residual luminosity from the source and
amplification of the periodic signal suggest the possibility, in
principle, of observing extra dimensions by the methods of
gravitational-wave astronomy, although these effects are very
weak. Estimates obtained for the LIGO and LISA detectors
(based on the data in [44, 45]) can be interpreted as follows.
For the LISA interferometer operated in the frequency range
10ÿ4ÿ1Hz, a source (e.g., supernova explosion) some 10Mps
from the earth producing a signal of duration T � 104 s
(associated with the lower boundary of the frequency range)
would give, in accordance with (5.90), Ftail=F0 � 10ÿ25,
assuming the scale L � 10ÿ1 cm for the size of the extra

dimension. The LIGO detector operates at higher frequencies
(1ÿ 104 Hz) and is therefore more suitable for the observa-
tion of the periodic signal amplification effect. For the
radiation frequency o � 100 Hz (e.g., from a binary stellar
system located 10 Mps from the earth), the estimate
F1=F0 � 10ÿ18 can be found from (5.91).

Thus, the resultant effect is too small to be experimentally
observed either at present or in the near future. It should be
noted, however, that tail radiation (5.83) at later times is
independent of the distance from the source. This implies the
feasibility of a collective effect due to the superposition of a
large number of different sources. The resulting signal is then
proportional to the number of sources in our part of the
universe and can be distinguished in agreement with the
characteristic decay law tÿ5=2.

There is another time scale interval that can hopefully be
employed for the detection of extra dimensions. It corre-
sponds to (5.84), (5.85), i.e., the region of transition from the
moment of arrival of the front edge signal at t � r to later
times t > r. In this regime, the value of r is significantly
higher, allowing a large number a�t� of signal peaks to be
generated. This number must be large enough to guarantee
the formation of a four-dimensional signal (5.84). (It should
be recalled that this signal is completely restored at infinite t
as the cumulative effect of an infinite number of source
images.) However, the number a�t� must not be so large as
to enable a gravitational antenna to resolve the interval
Dt � tÿ r between the arrival of the front edge and the
moment of observation.

The correction for the four-dimensional part of signal
(5.85) is suppressed by the factor aÿ1=2�t�. It follows from
(5.77) that the lower limit of a�t� is related to the time-
resolving power of the gravitational antenna, Dt � tÿ r, as
amin � �Dt=L�1=2�r=L�1=2. This gives aÿ1=2min �t� � 10ÿ8 (at the
frequencyo � Dtÿ1 � 104 Hz inherent in the LIGOdetector)
and thus improves previous estimates and opens up some new
prospects for gravitational-wave astronomy of extra dimen-
sions.

6. The cosmological constant problem
and brane cosmology

In this section, we return to the problems of the cosmological
constant and cosmological acceleration that provided (as
mentioned in Section 1) strong motivation for the study of
brane models with extra dimensions. The solution of these
problems actually embraces the scope of possible mechanisms
extending far beyond the brane concept.We therefore confine
ourselves to the consideration of only one type of these
mechanisms represented by a set of modifications of the
Einstein theory in the far infrared region characterized by
the horizon scale (inverse Hubble constant):

1

H0
� 1028 cm � �10ÿ33 eV�ÿ1 :

Once again, the class of infrared modifications is broader
than the possibilities of the brane paradigm. Therefore, we
first dwell on these modifications in the framework of the
simplest brane models and then briefly discuss the general
nonlocal mechanism of a new solution of the cosmological
constant problem based on a partial violation of brane
graviton localization. In this case, a low-energy graviton
proves to be metastable, which leads to the modification of
the theory not only in the small-distance region but also in the
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region of ultralarge scales comparable to the cosmological
horizon.

6.1 New mechanism of the small cosmological constant
What is the new solution to the cosmological constant
problem? It should be recalled that the crux of the problem
is in the huge discrepancy between the very low mean density
of energy in the universe, E � 10ÿ29 g cmÿ3 � �10ÿ5 eV�4,
which generates (in accordance with the Einstein equations)
the current cosmological acceleration with the Hubble
constant H0,

H 2
0 � GE ; �6:1�

and the vacuum energy scale of all fundamental field theory
models, from the electroweak theory E � �1 TeV�4 to
quantum gravity E � �1019 GeV�4.

Former attempts to address the problem aimed at
constructing models with zero vacuum energy were largely
based on supersymmetry forbidding renormalization of the
cosmological constant. The mechanism underlying such
models based on mutual annihilation of the contributions
from particles and their superpartners ceases to work in a
phase with spontaneously broken supersymmetry [46] and
loses sense in the framework of the cosmological acceleration
phenomenon, in which the effective value of the cosmological
constant is very small but differs from zero.

An alternative solution of the problem should probably be
sought in the scalar curvature sector rather than in the
cosmological term sector of the Einstein ±Hilbert action.
The smallness of H 2

0 may ensue from the smallness of the
proportionality coefficient, i.e., the gravitational constant G,
and not from the small value of E. In other words, the small
value of the Hubble constant in cosmological acceleration is
attributable to the vacuum energy being weakly gravitating
rather than to it being too small. What distinguishes the
vacuum energy from other local sources of the gravitational
field at distance scalesmuch smaller than cosmological ones is
the degree of space ± time homogeneity E. It is supposed that
the vacuum energy does not cluster, is practically homo-
geneous at the horizon scale

HE
E � H0 ; �6:2�

and gravitates with its long-distance gravitational constant
GLD 5GP, which is much smaller than the Planck constant
determining `everyday' gravitational physics at the scale of
galaxies, planetary systems, Cavendish-type submillimeter
experiments, etc.:

H 2
0 � GLDE5GPE :

This idea, probably formulated for the first time in
Ref. [47], implies that the fundamental constant in the
Einstein equations should be promoted to the level of a
nonlocal operator, which, for the sake of covariance, can be
regarded as a function of the d'Alembertian interpolating
between the Planckian scale of the gravitational constant and
its long-distance value, 16

G! G�&� ; GP > G�&� > GLD : �6:3�

We note that the mechanism of a scale-dependent
gravitational constant in the form of nonlocality is not the
sole one. The notion of scale includes not only the degree of
space ± time inhomogeneity but also the field amplitude. For
this reason, the infraredmodification of the theory can also be
based on the gravitational `constant', analogous to (5.35),
locally dependent on distinguished physical fields, a variety of
the so-called quintessence [46, 49].

Such a mechanism is realized, for example, in brane
cosmological models of the Randall ± Sundrum type. How-
ever, it is less universal, being dependent on the behavior of a
specific quintessence field. In contrast, the nonlocal substitu-
tion mechanism in (6.3) leads to the modified Einstein
equations

Rmn ÿ 1

2
gmnR � 8pG�&�Tmn ; �6:4�

in which the gravitational strength of the matter source
Tmn � Tmn�x� is determined, regardless of its field content, by
the character of the inhomogeneous x-dependence. There-
fore, consideration of nonlocal modifications like (6.3) and
(6.4) should be preceded by a discussion of the cosmological
application of the Randall ± Sundrum model with a variable
local gravitational constant; it is to be followed by an
examination of the Dvali ±Gabadadze ± Porrati model [50],
which suggests both the cosmological acceleration mechan-
ism and the aforementioned nonlocal mechanism.

6.2 Brane cosmology of the Randall ± Sundrum model
Brane cosmological models are described by the elegant
formalism of effective four-dimensional equations of motion
that fairly well discriminates between a part of dynamic
quantities formulated in terms of local fields on the brane
and objects showing nonlocal field dependence in a multi-
dimensional bulk [51]. We confine ourselves to the case of a
vacuum bulk populated only by the contribution of the
cosmological constant.

We recall that for the five-dimensional brane system in
(4.1), the four-dimensional Lagrangian of matter and metric
on the brane generates, as a source in five-dimensional
Einstein equations, the total surface stress tensor that
includes both the brane tension itself and the contributions
of matter and possible invariants of intrinsic curvature (4.3).
These equations form the boundary value problem

RAB ÿ 1

2
GAB R

�5� � ÿL5 GAB ; �6:5�

Kmn ÿ Kgmn � 4pG5Smn ; �6:6�

where Israel matching conditions (4.2) take account of the
Z2-symmetry of the five-dimensional metric.

Components of five-dimensional Einstein equation (6.5)
confined to the brane contain metric derivatives, up to the
second order inclusive, tangential and normal to the brane. In
accordance with Israel matching equations (6.6), the normal
first-order derivative is expressed through another brane
object, the brane stress tensor. Only the normal second-
order derivative remains undefined and requires the solution
of equations in the bulk.

It turns out that this contribution can be explicitly
disentangled and separated from the remaining part, which
can be formulated in closed four-dimensional terms. This is
achieved by the projection of Eqn (6.5) on the brane surface
and the use of the Gauss ±Codazzi equations. These equa-

16 The idea of a scale-dependent gravitational constant was also suggested

in Ref. [48], but it was not formulated there in terms of a nonlocal

operator.

566 A O Barvinsky Physics ±Uspekhi 48 (6)



tions allow decomposing the projections of the five-dimen-
sional curvature tensor into the sum of the four-dimensional
curvature tensor and a quadratic expression in the extrinsic
curvature Kmn (and covariant derivatives of Kmn). The
substitution of the extrinsic curvature in terms of the brane
stress tensor gives the equation

Rmn ÿ 1

2
gmn R � ÿ 1

2
gmn L5 � �8pG5�2 Pmn ÿ Emn ; �6:7�

where all Ricci curvatures are constructed from the brane
metric. It has the form of the usual Einstein equation with a
nontrivial source on the right-hand side containing the
cosmological term, along with a quadratic combination of
the stress tensor Pmn and mixed projection of the five-
dimensional Weyl tensor 5CACBD (on the brane and its
normal nA):

Pmn � ÿ 1

4
SmaS

a
n �

1

12
SSmn � 1

8

�
S 2
ab ÿ

1

3
S 2

�
gmn ; �6:8�

Emn � 5CAmBn n
AnB : �6:9�

It is the Weyl term that contains nonlocal information
about the bulk that can be comprehensively found only by
solving five-dimensional equations. It is shown below,
however, that symmetry considerations can substantially
simplify the structure of this term and establish asymptotic
regimes in which its contribution is inessential. Its general
properties include tracelessness and the transformation law

E m
m � 0 ; �6:10�

H mEmn � �8pG5�2 HmPmn ; �6:11�
dictated by the transverse character of the Einstein tensor in
(6.7). Therefore, when the right-hand side of (6.11) vanishes,
the traceless symmetric tensor Emn plays the role of conserved
radiation energy ±momentum tensor. That is why it is usually
called the contribution of dark radiation.

As a consequence of the Codazzi equation
H nKnm ÿ HmK � 5R5m in the absence of energy flow from the
brane into the bulk �T5m � 0�, in view of (6.6), the conserva-
tion law for the total stress tensor (4.3) is also satisfied,

H mSmn � 0 ; �6:12�

which essentially decouples the equations of brane matter
dynamics and dark radiation dynamics.

The nonreducible (traceless) character of the dark radia-
tion tensor suggests that it does not contribute to the
cosmological term in effective equations (6.7). We note that
only half of the five-dimensional cosmological constant
contributes to this term; however, in a model with brane
tension (4.4) on the right-hand side of Eqn (6.7), it is
supplemented due to s and becomes

ÿ 1

2
gmn L5 � �8pG5�2 Pmn � ÿLeff

4 gmn � . . . ; �6:13�

Leff
4 �

1

2
L5 � �8pG5s�2

12
: �6:14�

In particular, for the tension s � 3=�4pG5l � in the Randall ±
Sundrum model with the negative cosmological constant
�L5 � ÿ6=l 2�, its effective four-dimensional cosmological
constant is zero, Leff

4 � 0; in the absence of dark radiation,

this guarantees the existence of a flat brane in the piecewise
smooth AdS bulk.

The contribution of the Weyl term can be analyzed in a
cosmological problem by explicitly solving the five-dimen-
sional Einstein equations and Israel matching conditions. For
this, the metric in the bulk should be taken in the form
reflecting homogeneity of the problem with respect to the
brane spatial coordinates and other time-like sections
y � const:

ds 2 � ÿN 2�t; y� dt 2 � a2�t; y� gi j dx i dx j � b2�t; y� dy 2 :

�6:15�

Here, a�t; y� is the scale factor of these sections with the
spatial metric gi j of constant positive, negative, or zero
curvature �k � �1; 0�, N�t; y� is the lapse function, and
b�t; y� is the `pace' function for the fifth coordinate.

We assume that the brane is located at y � 0 and, for the
respective values of the parameter k, describes the spatially
closed, open, and flat Friedmann universe. Assuming the
presence of matter on the brane with the stress tensor of a
spatially homogeneous ideal fluid,

T m
n � diag �ÿr; p; p; p� ; �6:16�

it can be shown that the Einstein equations in the bulk have
the integral of motion [52]

�a 0�2
a2b2

ÿ � _a�
2

a2N 2
ÿ k

a2
� L5

6
� C
a 4
� 0 ; �6:17�

where the prime denotes differentiation with respect to the
fifth coordinate �a 0 � qya� and C is the integration constant.
The existence of integral (6.17) is due to the absence of a
matter flow from the brane into the bulk �T5m � 0�.

One of the matching conditions in (6.6),

a 0

ab

����
y� 0

� ÿ 4pG5

3
r ; �6:18�

allows finding a 0 on the brane. The substitution of this
expression in (6.17) leads to the equation for the scale factor
of the cosmological brane containing only brane quantities. It
has the form of the generalized Friedmann equation for the
Hubble constant H of the brane metric,

H 2 � k

a2
� Leff

4

3
� 8pG eff

4 �r�
3

r� C
a 4

; �6:19�

H � _a

Na

����
y� 0

; �6:20�

with the effective cosmological constant (6.14), with the
gravitational constant locally depending on the density,

G eff
4 �r� �

4pG 2
5 s

3

�
1� r

2s

�
; �6:21�

and with the contribution of dark radiation. The dark
radiation density decreases inversely proportionally to the
fourth power of the scale factor; hence, it is inessential at the
late stages of expansion.

The comparison with the 00-component of Eqn (6.7)
indicates that dark radiation corresponds to the Weyl
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contribution E00 � ÿ3C=a 4, whereas the quantity P00 �
�r� s�2=12 contributes to cosmological term (6.13) and gives
rise to a matter source with a variable cosmological constant.
It can be shown that dark radiation determines the deviation
of geometry in the bulk from the purely (anti)-de Sitter one. In
fact, the constant C plays the role of a Schwarzschild mass in
the five-dimensional static Schwarzschild ± (anti-)de Sitter
solution with a moving spherical brane [53].

Thus, brane cosmology with a nonzero brane tension
realizes the idea of a scale-dependent gravitational constant
that can be very high at large positive matter densities and
decreases in the course of expansion. Indeed, in accordance
with the conservation law for the stress tensor of matter (6.16)
[a corollary of (6.12)],

_r� 3�r� p� _a

a
� 0 ; �6:22�

the density r decreases with cosmological expansion for a
broad class of the equations of state (e.g., r � 1=a3�1�w� for
p � wr,w5 ÿ 1). At later stages, the generalized Friedmann
equation is converted to an equation of the standard model
with an asymptotic value of the gravitational constant,
G eff

4 �r� ! G eff
4 �0�, and the effective cosmological constant.

The phenomenology of the above model and its general-
izations, including effects of graviton radiation from the
brane into the bulk, are of great interest and have been
studied in a number of works [54, 55]. However, in the
context of the cosmological constant problem, this model
reflects the old approach to its solution because it is actually
based on a fine tuning of the five-dimensional vacuum energy
L5. The cosmological acceleration in this model is supported
by the mechanism that is discussed, with all its drawbacks, in
Section 7. This model should be treated as a high-energy
modification of the Einstein theory, probably inadequate for
the description of the contemporary accelerating universe.
Below, we therefore consider a different model that appears
to have a better chance to play the role of infrared
modifications of the Einstein theory. It is the Dvali ±
Gabadadze ± Porrati (DGP) model [50].

6.3 The brane-induced gravity model
and cosmological acceleration
The action of theDGPmodel does not involve a cosmological
term in the bulk or on the brane. Instead of the brane tension,
it contains the four-dimensional Einstein term with the
gravitational constant G4 essentially different from the five-
dimensional constant G5:

SDGP

�
GAB�X�;c�x�

� � 1

16pG5

�
d5XG 1=2R5�GAB�

�
�
d4x g1=2

� �K �
8pG5

� R�gmn�
16pG4

� Lm�gab;c; qc�
�
: �6:23�

Such a term can be induced at the fundamental level by
quantum effects in the bulk; therefore, the DGPmodel and its
modifications are usually called brane-induced gravity mod-
els.

The model in question is interesting in that it suggests a
simple mechanism of cosmological acceleration. Qualita-
tively, it is as follows. The DGP-brane tension contains the
Einstein tensor

Smn � ÿ 1

8pG4

�
Rmn ÿ 1

2
gmnR

�
� Tmn : �6:24�

Therefore, in the absence of matter on the brane �Tmn � 0�,
effective equation (6.7) becomes quadratic in the Einstein
tensor and, under the assumption of smallness of the Weyl
contribution, allows a `self-accelerating' solution.

Indeed, the use of the de Sitter ansatz for the metric with
the effective Hubble constant H,

Rmn � 3H 2gmn ;

gives

Pmn � ÿ3
�

H 2

16pG4

�2

gmn :

For Emn 5 �G5=G4�2H 4gmn, the equation becomes

H 2 ÿ L2H 4 � 0 ;

i.e., gives rise to the de Sitter stagewith theHubble constant at
the scale of the DGP model, H � Lÿ1, with

L � G5

2G4
� M 2

P

2M 3
5

� 1

m
: �6:25�

Identification of the DGP scale with the current size of the
universe horizon L � 1028 cm allows interpreting this phase
of evolution as cosmological acceleration.

Such a conclusion can be substantiated by once again
using cosmological ansatz for metric (6.15) and integral of
motion (6.17). In the presence of the induced Einstein term,
the matching condition on the brane is modified by the four-
dimensional curvature,

a 0

ab

����
y� 0

� ÿ 8pG5

3
r� 2L

�
H 2 � k

a2

�
: �6:26�

Its substitution in Eqn (6.17) leads to the new Friedmann
equation [56]

Em

����������������������������
H 2 � k

a2
ÿ C
a 4

r
� H 2 � k

a2
ÿ 8pG4

3
r ; �6:27�

where E � �1 is the sign factor, E � sign a 0.
For later stages of the cosmological acceleration

�a!1�, the contribution of dark radiation tends to zero,
C=a 4 ! 0, which results in essential simplification of the
equation,�����������������

H 2 � k

a2

r
� Em

2
�

����������������������������
8pG4

3
r�m 2

4

r
: �6:28�

This indicates that the evolution in the DGP model begins at
largematter densities � r4m2=G4 � �MP m�2� from the phase
of the standard four-dimensional Friedmann model:

H 2 � k

a2
' 8pG4

3
r : �6:29�

If the matter density decreases much below the DGP scale

r � �MP m�2 ; �6:30�

the evolution critically depends on the initial conditions, i.e.,
the sign of the normal derivative of the scale factor

E � sign

�
H 2 � k

a2
ÿ 8pG4r

3

�
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[see matching condition (6.26)]. For the negative sign, the
brane universe enters the so-called five-dimensional dynamical
phase with the Hubble constant tending to zero in accordance
with the law

H 2 � k

a2
'
�
4pG5

3
r
�2

! 0 ;
�6:31�

H 2 � k

a2
<

8pG4

3
r :

Finally, for the positive sign, the universe enters the
cosmological acceleration phase at late times with the
asymptotic value of the Hubble constant at the DGP scale
[56, 57]:

H 2 � k

a2
' m2 � 16pG4

3
r! m2 : �6:32�

On the background of this acceleration, low-density matter
gravitates with Newton's constant, which is twice as large as
the fundamental constant G4.

7. Infrared modifications of the Einstein theory

The DGP model is an infrared modification of the Einstein
theory characterized by two energy scales: Planckian, MP �
1019 GeV, and cosmological, m � 10ÿ33 eV. The transition
between them in cosmological evolution occurs in the
intermediate submillimeter region (6.30):

�mMP�1=2 � 10ÿ3 eV � �10ÿ2 cm�ÿ1 :

Therefore, the DGP model does not seemingly contradict the
current table-top experiments of the Cavendish type. Unfor-
tunately, the real situation for this model is more complicated
and less favorable because it contains a sufficiently low
strong-coupling scale at which nonlinear corrections for the
Einstein theory may contradict gravitational experiments at
significantly larger distances [58, 59]. The strong coupling
problem does not appear tomanifest itself in the cosmological
context because the corresponding nonlinear equations are
local, but it emerges in full in spatially inhomogeneous
processes.

To analyze the problem, it is necessary to go beyond the
framework of the cosmological ansatz and consider generic
fields. Naturally, the nonlinearity makes this impossible to do
in the context of an exact theory but not in the framework of
the perturbation theory on a flat background: the flat
background solution of the DGP model, unlike the Ran-
dall ± Sundrum model, is quite admissible. It turns out that
with such an approach, the model exhibits a nonlocal
gravitational `constant' mechanism of type (6.3), (6.4). We
first consider a realization of this mechanism in the general
form and thereafter demonstrate it by the example of the
DGP model.

The idea of replacing the gravitational function with a
nonlocal operator GP ! G�&�, a function of the covariant
d'Alembertian & � gabHaHb, implies, according to [47],
modification of the left-hand side of the Einstein equations

M 2�&�
16p

�
Rmn ÿ 1

2
gmnR

�
� 1

2
Tmn ; �7:1�

where the nonlocal Planck mass is a function of the
dimensionless combination of d'Alembertian and an addi-

tional length scale L interpolating between the Planck
constant for small-size matter sources (smaller than L) and
the long-distance constant GLD � G�0�:

1

G�&� �M 2�&� �M 2
P

ÿ
1� F�L2&�� : �7:2�

If the function of z � L2& satisfies the conditions F�z� ! 0
at z4 1 and F�z� ! F�0�4 1 as z! 0, the infrared
modifications are insignificantly small for the processes
varying in space faster than 1=L; vice versa, they are large
for slower processes at wavelengths of the order of L or
longer.

The straightforward problem with a set-up of this type
arises from the fact that for any nontrivial operatorF�L2& �,
the left-hand side of Eqn (7.1) does not satisfy the Bianchi
identities and cannot be obtained by varying a covariant
action. Specifically, a naive attempt to modify the gravita-
tional action in accordance with

M 2
P

�
dx g1=2R!

�
dx g1=2M 2�&�R �M 2�0�

�
dx g1=2R

�7:3�

makes no sense because, as a result of integration by parts, the
action of the covariant d'Alembertian (leftward) selects its
zero mode and the nonlocal operator in all regimes reduces to
its infrared valueM 2

P�0�.
The noncovariance problem can be circumvented by

resorting to the weak-field approximation, where Eqn (7.1)
is understood only as the first linear term of the perturbation
expansion in powers of the curvature. Its left-hand side must
include terms higher than linear in the curvatures, while the
nonlocal gravitational action SNL�gmn� must generate mod-
ified equations in agreement with

dSNL�g�
dgmn�x� �

M 2�&�
16p

g1=2
�
R mn ÿ 1

2
g mnR

�
�O�R2

mn� : �7:4�

To obtain the leading term SNL�gmn�, Eqn (7.4) should be
functionally integrated in the explicit form [60] using the
technique of covariant curvature expansion [61]. This method
allows converting the noncovariant expansion in powers of
gravitational excitations hmn into a series with respect to the
space ± time curvature and its derivatives with covariant
nonlocal coefficients.

The starting point is the expansion of the Ricci tensor

Rmn � ÿ 1

2
&hmn � 1

2
�HmFn � HnFm� �O�h2mn� ; �7:5�

where

Fm � Hlhml ÿ 1

2
Hmh

is the linearized de Donder ± Fock gauge. Expansion (7.5) can
be solved by iterations with respect to hmn in the form of a
nonlocal expansion in powers of the curvature starting from

hmn � ÿ 2

& Rmn � Hm fn � Hn fm �O�R2
mn� : �7:6�

Here, Hm fn � Hn fm reflects the gauge freedom in the solution
stemming from the terms with the harmonic gauge in (7.5).
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The result of functional integration of Eqn (7.4) is a
nonlocal action [60] starting from the squared curvature:

SNL�gmn�

� ÿ 1

16p

�
dx g1=2

��
R mnÿ 1

2
g mnR

�
M 2�&�

& Rmn�O�R 3
mn�
�
:

�7:7�
Interestingly, in the simplest case where M 2�&� �
M 2

P � const, action (7.7) must reproduce the Einstein ±
Hilbert action; at first sight, this looks unnatural because
the action contains no term linear in the curvature.

This apparent paradox is explained by the fact that the
Einstein action in an asymptotically flat space with the
asymptotic metric

gmn � dmn � hmn ; hmn � O

�
1

jxj2
�
; jxj ! 1 ;

involves the Gibbons ±Hawking surface integral over space ±
time infinity:

SE�gmn� � ÿM 2
P

16p

�
dx g1=2R�g�

�M 2
P

16p

�
jxj!1

dsm �qnhmn ÿ qmh� : �7:8�

The surface integral can be transformed into a bulk
integral of the linear part in hmn of the scalar curvature
q m�qnhmn ÿ qmh� and can then be covariantly expanded in
powers of the curvature using Eqn (7.6). Up to and including
quadratic terms, such an expansion has the form [60]�
jxj!1

dsm �qnhmn ÿ qmh�

�
�
dx g1=2

�
Rÿ

�
R mn ÿ 1

2
g mnR

�
1

& Rmn � . . .

�
: �7:9�

Its substitution in Eqn (7.8) cancels the linear Ricci scalar
terms, while the quadratic terms reproduce expression (7.7)
with the numerical coefficient M 2�&� �M 2

P, which may be
taken outside the integrand. The result is a nonlocal form of
the localEinstein action [33, 20, 60]. That its expansion begins
with the curvature squared is in line with the massless spin-2
theory. The nonlocality of expression (7.7) is less trivial, being
the payment for the explicit covariance of this expansion, in
contrast to the local but explicitly noncovariant action in hmn
for the symmetric spin-2 tensor field.

The question is to what extent the infraredmodification in
(7.7) can be regarded as a universal one. Evidently, in general,
operator coefficients at the squares of the Ricci scalar and
tensor can be different and the sought generalization takes the
form

SNL�gmn� � ÿ 1

16p

�
dx g1=2

�
�
R mn M

2
1 �&�
& Rmn ÿ 1

2
R

M 2
2 �&�
& R�O�R 3

mn�
�
; �7:10�

where the two nonlocal Planck `masses' tend to a common
limit MP only in the high-energy region �&4 1=L�. More-
over, in the infrared limit of the theory, polarizations of the
spin-2 field may exist along with additional degrees of

freedom that are not taken into account in this expression.
However, one can integrate over them under the natural
assumption that the additional degrees of freedom do not
directly interact with matter fields. The result is just addi-
tional contributions to M 2

1 �&� and M 2
2 �&� [as is the case

with the radion field in Section 5; see the footnote after
Eqn (5.4)]. The reduction is possible in practically all cases
except for the impossibility of expressing the additional fields
in terms of the metric from their equations of motion, i.e.,
when the additional fields enter the action in the linear form
and play the role of Lagrangian multipliers at certain
combinations of metric degrees of freedom. It is shown
below that this occurs in infrared modifications of the
Einstein theory such as the Pauli ± Fierz theory and the
DGP model.

7.1 The Pauli ± Fierz model
and the van Damm±Veltman ±Zakharov problem
The simplest infrared modification of the Einstein theory is
the Pauli ± Fierz model of a free massive tensor field. It is
described by the quadratic part of Einstein action (7.8)
modified by a noncovariant mass term on the flat space
background:

Smass�gmn� � ÿM 2
P

16p

�
d4x

�
m2

4
h2mn ÿ

m2

4
h2
�
; �7:11�

hmn � gmn ÿ Zmn ; h � Zmnhmn : �7:12�

This is the sole combination ofmass terms that guarantees the
absence of ghosts in the theory.

In the presence of the conserved matter sources, the linear
equations of motion in the Pauli ± Fierz model are

Rmn ÿ 1

2
ZmnR�

m2

2
�hmn ÿ Zmnh� � 8pG4Tmn ; �7:13�

where Rmn denotes the linear part of the Ricci tensor in the
graviton field. Differentiating this equation and taking the
linearized Bianchi identity and conservation of Tmn into
account yield the `gauge' for hmn:

q m�hmn ÿ Zmnh� � 0 ; �7:14�

which implies the vanishing of the linearized Ricci scalar,

R � q mqnhmn ÿ&h � 0 : �7:15�

(We note that Eqn (7.15) is satisfied even in the presence of a
nonvanishing trace of the matter stress tensor.) As a result,
the gravitational field generated by a matter source becomes

hmn � ÿ 16pG4

&ÿm2

�
Tmn ÿ 1

3
ZmnT

�
� qmxn � qnxm �7:16�

up to longitudinal terms making no contribution to the
interaction with conserved sources. 17

It is essential that the tensor nature of the massive
graviton propagator in Eqn (7.16) is different from the case

17 Because the Pauli ± Fierz theory is not gauge invariant, the longitudinal

part is fixed and determined by the vector

xm � ÿ
8pG4

3m2

1

&ÿm2
qmT .
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of Einstein's general relativity theory, that is, the trace of Tmn

enters the general relativity theory with the coefficient 1=2
and the Pauli ± Fierz model with the coefficient 1=3. This
discrepancy is preserved in the vanishing mass limit and
underlies the so-called van Damm±Veltman ±Zakharov
problem [62] according to which the massless limit of the
Pauli ± Fierz model does not correspond to the Einstein
theory of the massless graviton. Such a situation is phenom-
enologically unacceptable because, for an arbitrarily small
graviton mass, it leads to a wrong deflection of light beams in
the sun's field and abnormal movement of the perihelium of
Mercury.

The root cause of the problem lies in the additional
longitudinal degree of freedom absent in the Einstein theory
and present in the Pauli ± Fierz model irrespective of the
graviton mass value. From the standpoint of the general
scheme of infrared modifications of the theory, this degree of
freedom must enter Eqn (7.10) in the form of a Lagrangian
multiplier responsible for additional equation (7.15).Without
this degree of freedom, the effective equations following from
action (7.10) do not reproduce the tensor structure of (7.16)
regardless of the choice of the operatorsM 2

1 �&� andM 2
2 �&�.

Indeed, it is easy to see that action (7.10) leads to the linear
gravitational potential of the form

hmn � ÿ 16p
M 2

1 �&�&
�
Tmn ÿ 1

2
a�&� ZmnT

�
� qmxn � qnxm ;

�7:17�

where the operator coefficient

a�&� � 2M 2
2 �&� ÿM 2

1 �&�
3M 2

2 �&� ÿ 2M 2
1 �&�

�7:18�

takes the Pauli ± Fierz numerical value aPF � 2=3 only in the
singular limit M 2

1 �&� ! 0. It is equally easy to see that the
inclusion of (7.15) with the Lagrangian multiplier into (7.10)
improves the situation and leads to the correct retarded
potential (7.16) with the choice of nonlocal operators

M 2
1 �&� �M 2

1 �&� �
1

G4

&ÿm2

& : �7:19�

7.2 The Dvali ±Gabadadze ±Porrati model
and the strong coupling problem
The situation in the DGP model is analogous to that in the
Pauli ± Fierz model with the more infrared-soft mass term
�m2 ! m

���������ÿ&p �, where the role of m is played by the scale in
(6.25). To demonstrate this, an effective brane action is
constructed by integrating over fields in the bulk in
Eqn (6.23). For this, it is necessary, as was done in Section 5,
to expand the initial action in gravitational perturbations,

GAB�X � � ZAB �HAB�X � ; �7:20�

solve the linear equations for HAB�X � in the bulk with the
fixed boundary conditions on the brane, and substitute the
result into the action quadratic in fields. For this purpose, a
system of coordinates should be used in which the brane
position is fixed by a constant value of the fifth coordinate
X 5 � y � 0.

Fixing the coordinate gauge in the bulk is achieved by
adding a term quadratic in the linearized de Donder ± Fock
gauge conditions to action (6.23), which breaks gauge

invariance:

Sgauge�HAB� � ÿM 3
5

16p
1

2

�
d5X ZABFAFB ; �7:21�

FA � qBHAB ÿ 1

2
qAH : �7:22�

In this gauge, the equations of motion in the bulk assume the
simplest form and give rise to the boundary value problem

&5HAB�X � � 0 ; �7:23�
HAB�x; y�

���
y� 0
� hAB�x� ; �7:24�

hAB�x� �
ÿ
hmn�x�;Nm�x�; h55�x�

�
:

The solution of problem (7.23), (7.24) is simpler compared
to the Randall ± Sundrummodel with the curved background
because&5 �&� q2y on the flat background. This solution,
nonsingular at the infinity of the five-dimensional volume,
can be written in the elegant, simple form

HAB�x; y� � exp �ÿyD� hAB�x� ; �7:25�

in terms of the auxiliary operator

D �
���������
ÿ&
p

: �7:26�

(We treat the case of Lorentzian space ± time as the analytic
continuation from the Euclidean field theory in which the
operator& is negative definite, and henceHAB�x; y� vanishes
as y!1.)

Substituting the thus obtained solution into the five-
dimensional part of the DGP-action in (6.23) (with the five-
dimensional curvature and the Gibbons ±Hawking surface
integral) and taking gauge term (7.21) into consideration
leads to [58]

S5�GAB� � Sgauge�HAB� � M 2
4

16p
m

4

�
d4x

�
�
ÿ~h mnD~hmn � 1

2
~hD~h� ~hDh55 ÿ 1

2
h55Dh55

�
; �7:27�

where m � 2M 3
5 =M

2
4 is the DGP gauge (6.25) and ~hmn is the

combination of perturbation of the brane-inducedmetric and
the shift functions in the fifth dimension G5m � Nm:

~hmn � hmn � 1

D
�qmNn � qnNm� : �7:28�

We note that combination (7.28) is gauge invariant under
four-dimensional transformations

dxhmn � qmxn � qnxm ; dxNm � ÿDxm ; dxh55 � 0 ; �7:29�

which, in their turn, are residual gauge transformations on the
brane,

dXHAB � qAXB � qBXA

with the vector field

Xm�x; y� � exp �ÿyD� xm�x� ; X 5�x; y� � 0 �7:30�

leaving de Donder gauge (7.22) invariant and not displacing
the brane from y � 0.
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Thus, as expected, the effective action (7.27) induced from
the bulk proves to be an invariant of four-dimensional
transformations, but this invariance is actually realized with
the use of Stueckelberg fieldsNm that are normally introduced
by hand for covariantization of a gauge-noninvariant action.
It was shown above that these fields can be eliminated in
terms of metric variables by varying (7.27) with respect to Nm

and thereafter substituted into the action.
These procedures lead to

Nm � 1

D

�
qnhmn ÿ 1

2
qmhÿ 1

2
qmh55

�
�7:31�

and an explicitly invariant expression for ~hmn in terms of the
linearized Ricci tensor:

~hmn � ÿ2 1

& Rmn � qmqn
& h55 : �7:32�

Their substitution yields

S5 � Sgauge � M 2
4

16p
m

�
d4x

�
�
ÿR mn D

&2
Rmn � 1

2
R

D
&2

Rÿ R
D
& h55

�
; �7:33�

where the variable h55 cannot be eliminated in terms of the
metric (this situation was discussed earlier).

Adding (7.33) to the four-dimensional part of the DGP
action rewritten in nonlocal form (7.7) eventually gives the
quadratic part of the effective action on the brane,

S eff
DGP�gmn� � ÿ

M 2
4

16p

�
dx g1=2

�
��

R mn ÿ 1

2
g mnR

�
&ÿmD

&2
Rmn �mPR

�
; �7:34�

where the Lagrangian multiplier in front of the scalar
curvature P is related to the h55 component of the five-
dimensional metric as

h55 � ÿ2DP : �7:35�

The variable P was introduced in [58] as the longitudinal
part of a function of the five-dimensional displacement:
Nm � qmP�N 0m. It parameterizes brane bending as a five-
dimensional diffeomorphism with the vector field

XA�x; y� � dA5 exp �ÿyD�P�x� ; dXH55 � 2 qyX5

that does not break the de Donder gauge in the bulk but
displaces the brane by X�x; 0� � P�x� and therefore is not a
symmetry of the action. The diffeomorphism does not
manifest itself locally in the bulk, and all its effect is reduced
to the contribution on the brane that starts from the local
term mPR in the perturbation theory.

Thus, the DGPmodel on the brane is effectively described
in the linear approximation by the Pauli ± Fierz model with
nonlocal mass term (7.33) generated from the bulk. Expres-
sion (7.33) is actually a covariant completion of the Pauli ±
Fierz term (7.11) with the nonlocal mass

�������
mD
p

. 18 The

gravitational potential from a matter source in this model
has the form analogous to (7.17):

hmn � ÿ16pG4
1

&ÿmD

�
Tmn ÿ 1

3
ZmnT

�
� qmxn � qnxm :

�7:36�

The long-distance action ofmatter on the brane in (7.36) is
determined by the propagator that coincides with the four-
dimensional one in the small-interval region �jxj5L � 1=m,
j&j4m2�. In contrast, in the region of ultralarge distances,
the long-distance action becomes five-dimensional:

1

&ÿmD
d�x�

' ÿ 1

�2p�4m

�
d4p

exp �ipx������
p2

p � ÿ 2

m

1

�2p�5
�
d5p

exp �ipx�
p2 � p25

� 2

m

1

&5
d �5��X �

���
y� 0

; jxj4 1

m
: �7:37�

This phenomenon is usually interpreted as gravitational
leakage into the bulk: a four-dimensional graviton is
metastable and decays with the lifetime L � 1=m.

Unlike in the Randall ± Sundrum model, localization of a
four-dimensional graviton on the brane is not absolute,
similarly to the first brane model by Gregory ±Rubakov ±
Sibiryakov (GRS) [65], where the law of gravity and
propagation of gravitational waves on the brane are
generally relativistic in four dimensions only at intermediate
distances and become five-dimensional at ultra-large dis-
tances. However, the GRS model suffers from ghost states
with negative energy [66 ± 68], whereas the DGP model is
ghost-free (similarly to the Pauli ± Fierz theory). Another
property of gravitational potential (7.36) is its tensor
dependence on Tmn: it does not coincide with the generally
relativistic theory and corresponds to the Pauli ± Fierz theory
at all distance scales. It is noteworthy that the kinematic
variable of brane embedding in the bulk, P, is here
analogous to the radion mode discussed in Section 4 in the
context of the Randall ± Sundrum model, where it ensures
restoration of the correct tensor law (4.42), (4.43). However,
the radion mode is unable to do the same in the DGP model,
and the theory suffers from the van Damm±Veltman ±
Zakharov problem [62].

It turns out that the van Damm±Veltman ±Zakharov
problem is directly related to another difficulty intrinsic in the
DGP model, that is, the presence of a rather low strong-
coupling energy scale. As shown above, from the standpoint
of cosmological evolution, the transition between the Einstein
gravity phase and its infrared regime in the DGP model
occurs in submillimeter range (6.30),

Lcross �
�����������
mMP

p
; �7:38�

or at the length scale Lÿ1cross � 10ÿ2 cm.
However, in the perturbation theory that we have to use

for the description of nonlocal processes, the analysis of
higher-order quantities and their contribution to quantum
effects acquires importance. In higher orders, the brane
vibration mode P gives rise to composite operators
composed of powers of P, Nn, hmn and their derivatives
that are suppressed by the inverse powers of MP and m [69].
Their contribution becomes large at the strong coupling

18 Covariant structures of the type such as the realization of the nonlocal

cosmological `constant' are also discussed in the renormalization theory

context in Refs [63, 64].
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scale [58]

Lstrong � �m2MP�1=3 � �103 km�ÿ1 ; �7:39�

which is much below the submillimeter scale: Lstrong 5Lcross.
The cause is that the kinetic term of the vibrational modeP in
(7.34), having the form M 2

Pm �PR� �M 2
Pm �qP qh�, origi-

nates exclusively from its mixing with the metric field and is
small due to the smallness of m.

As a result, theP-mode acquires a kinetic term of the form
M 2

Pm
2�qP�2 upon diagonalization of the full kinetic term.

Transition to the canonically normalized variable P̂,
P � P̂=�mMP�, gives rise to negative powers of the small
variable m of increasingly higher order in the expansion in
powers of P. Therefore, the composite operators of higher
dimensions prove to be suppressed by factors having the form
1=Mp

P m
q, i.e., become essential at the energy scale

Lp; q � �Mp
P m

q�1=� p�q�. As is shown by analysis in Ref. [58],
the lowest scale occurs at the cubic term in P and is given by
expression (7.39). A similar situation takes place in the
nonlinear Pauli ± Fierz model (with the full Einstein term in
the massless part of the action): the strong coupling scale in it
equals �m 4MP�1=5 [69]. 19

Thus, the DGP model is characterized by the appearance
of the hierarchy of length scales corresponding to the horizon
scale, strong coupling scale, the scale of transition to the
infrared phase, and finally the Planckian scale of quantum
gravity,

L4Lstrong 4Lcross 4LP : �7:40�
The brane vibration mode begins to strongly interact at
distances below Lstrong � 1000 km and violates agreement
with the data of Cavendish-type experiments and celestial
mechanics.

On the whole, the entire Einstein theory in which the
cosmological phase occurs at Lcross, in this hierarchy, falls out
of the applicability range of the perturbation theory with
wavelengths larger than Lstrong. Actually, quantum effects of
the vibrational mode become strong at this scale, and the
DGP model in the infrared region becomes sensitive to its
ultraviolet behavior, which impairs its predictive value out-
side the framework of the fundamental theory.

8. Conclusion: problems and prospects

The physics of extra dimensions and brane cosmology
suggests many new interesting mechanisms for the solution
of the hierarchy problem, cosmological constant problem,
and cosmological acceleration problem. These areas of
research open up new opportunities for the semiphenomeno-
logical approach to the creation of a unified field theory,
which is probably also approached from the fundamental side
in the framework of string theory. Evidently, both fields come
in contact via the AdS/CFT correspondence mechanism,
which explains localization of a massless graviton on a
brane and restoration of the Einstein theory of gravity in the
brane world.

The Randall ± Sundrum model, brane-induced gravity
models, and other models of infrared modification of the
Einstein theory remain too simple for a consistent explana-
tion of the main fundamental problems in the early and late
universe, but their combinations can help to describe it more
realistically. In particular, the problem of restoration of the
Einstein theory phase in the DGP model [with the correct
four-dimensional tensor structure of the propagator in (7.36)]
can be resolved by means of its synthesis with the Randall ±
Sundrum model.

When a brane has tension along with the Einstein term
and the bulk has the negative cosmological constant related to
the tension by expression (4.7), the gravitational potential in
the range where the linear analysis is valid �&5L2

strong� is
realized in form (7.17) with the operator functions [72]

M 2
1 �&� �M 2

4

�
1�mK1�lD�

DK2�lD�
�
; �8:1�

a�&� � 2

2� lm
� 2

3

lm

2� lm

�
1� K1�lD�

lDK2�lD�
�
; �8:2�

in terms of Macdonald functions of the first and the second
orders K1; 2�x� and the curvature radius l of the background
AdS bulk. In the range of distances 1=m4 1=D4 l, the
gravitational potential describes the four-dimensional gen-
erally relativistic gravity law with a�&� ' 1 and the effective
Planck mass [72]

M 2
P �M 2

4

�
1� l

2L

�
'M 2

4 : �8:3�

In other words, in the case of the horizon scale hierarchy
and the bulk curvature radius 1=m � L4 l, such a model
contains the Einstein gravity phase that does not suffer from
the van Damm±Veltman ±Zakharov problem. In fact, this is
a generalization of the well-known result that such a problem
is nonexistent for the free massive spin-2 field on the (A)dS-
space background [73, 74] with the cosmological constant L
in the limit m2=L! 0. Unfortunately, the synthesis of the
Dvali ±Gabadadze ± Porrati and Randall ± Sundrum models
does not solve the problem of the low strong-coupling scale
and the presence of ghost instabilities as shown in a broad
class of models with nonfactorable geometry in the bulk and
the induced Einstein term on one of the branes [68].
Specifically, the self-accelerating branch of the cosmological
solution in the DGP model, Eqn (6.32), is unstable with
respect to perturbations of the vibrational modeP, which is a
ghost mode on the background of the (quasi)-de Sitter
solution [58, 79].

Another feasible generalization consists in an increase in
the number of extra dimensions in the DGPmodel (brane co-
dimension in the bulk) from 1 to N � Dÿ 45 2 as dictated
by the simplest ADDmodel (3.9) and can be realized in string
theory [76, 77]. This generalization may be of value because it
appears to contain an interesting qualitative mechanism for
the solution of the cosmological constant problem [78]. When
the vacuum energy on the brane becomes larger than the
gravity scale in the bulk, E4M 4

D (where GD � �MD�2ÿN is
the D-dimensional gravitational constant), it gives rise to an
inflation of the brane world with the Hubble constant
decreasing with the growth of E at N > 2:

H 2 �M 2
D

�
M 4

D

E
�1=�Nÿ2�

: �8:4�

19 At the classical level, the strong coupling problem and the van Damm±

Veltman ±Zakharov problem in the nonlinear Pauli ± Fierz model can

probably be overcome by taking nonlinear terms into consideration [70].

However, at the quantum level, the theory retains the strong coupling scale

[71] that can at maximum be raised to �m2MP�1=3 by including higher-

order operators [69].
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(Interestingly, this formula interpolates between the usual
four-dimensional Friedmann evolution lawH 2 � E atN � 0,
the evolution lawH � E in the five-dimensional DGP model,
and the inverse dependence for N > 2.)

In the DGP model, the infrared modification scale
analogous to (6.25) is

L � M4

M 2
D

: �8:5�

A valuable property of this model is that the propagator in
retarded potential (7.17) has the correct four-dimensional
tensor structure with a � 1 at intermediate distances
1=MD 5 jxj5L, for which the four-dimensional law of
gravity is realized. It turns out, however, that the scalar
sector of the metric on the brane contains a ghost of a
tachyonic nature, whose negative contribution to the residue
of the propagator restores its normal tensor nature [67]. The
presence of tachyons and ghosts suggests classical and
quantum instabilities, which questions the applicability of
the model as a candidate for the consistent infrared modifica-
tion of the Einstein theory [67].

Two approaches were proposed to circumvent this
difficulty. It turns out that brane models with the codimen-
sion greater than one show an interesting phenomenon of
infrared ± ultraviolet mixing because the brane-to-brane
propagator (the inverse of the quadratic part of the effective
brane action) is singular and requires regularization [79].
Regularization of an ultraviolet nature essentially affects the
behavior of the resultant effective theory in the infrared
region.

In Ref. [67], regularization was carried out using the
higher derivatives in the action that made the D-dimensional
gravity in the bulk soft in the ultraviolet limit. An alternative
approach was applied in [80], where regularization was in the
form of brane smearing. (Moreover, the scalar of the four-
dimensional curvature on the brane was replaced by the
D-dimensional scalar, which is not forbidden by covariance
considerations even though it looks somewhat unnatural
from the geometric standpoint.) As a result, the DGP model
proved to be free from ghosts and tachyons and its five-
dimensional version even acquired the strong coupling scale
Lstrong � �M 7

5m
2�1=9 substantially larger than (7.39) [81].

In another variant of the DGP model, with N5 2, the
treatment of the poles of the Green's function from brane to
brane was different from that in Ref. [67] and equivalent to a
different choice of boundary conditions for the Green's
function [82]. This resulted in the restoration of unitarity in
the spectral representation of the propagator: the contribu-
tion of the ghost tachyon found in Ref. [67] was taken into
consideration not via the standard Wick rotation from
Euclidean theory but in the sense of the principal value,
which does not make a nonunitary negative contribution to
the spectral density (which appears to be an analog of the
Lee and Wick prescription in the local field theory with
ghosts [83]).

In this case, the propagator lost analyticity in the complex
plane of the four-dimensionalmomentum, which signified the
loss of causality. However, the loss of causality showed up
only at the horizon scale L �M4=M

2
D; therefore, this

property remained acceptable from the standpoint of obser-
vable physics of intermediate distances. (We note that the idea
of acausality in the form of fixing the asymptotically de Sitter
boundary conditions in the remote future was suggested in

[47] as a constituent part of an infrared modification of the
Einstein theory with a nonlocal gravitational `constant'.)

It is straightforward to see that brane models of the
universe with large-size extra dimensions have far-reaching
prospects for further development. It is worthwhile to note in
conclusion that brane models, in spite of their exotic
character, can greatly contribute to the explanation of the
problems of the contemporary universe either by themselves
or by prompting novel mechanisms beyond the framework of
the brane concept proper. In particular, we note the
mechanism of Lorentz invariance violation that can lead, for
example, to the infrared modification of the Einstein theory
by introducing a Lorentz-noninvariant mass term.

As shown in Ref. [84], such a variant of the Pauli ± Fierz
theory allows circumventing the ghost problem as well as the
low strong-coupling scale problem and the van Damm±
Veltman ±Zakharov problem. In this model, the nonpertur-
bative scale proves to be equal to Lstrong �

������������
mMP

p
and

consistent, despite hierarchy (7.40), with the submillimeter
scale of the infrared ± ultraviolet transition in the cosmologi-
cal evolution of the DGP model, Lcross � Lÿ1cross �
�0:1 mm�ÿ1, such that its Einsteinian phase falls into the
region of applicability of the perturbation theory. Another
promising mechanism of infrared modification is represented
by the so-called ghost condensation model [85] that can also
include cosmological acceleration (albeit by the introduction
of a residual cosmological term), demonstrates the Lorentz
invariance violation [86], and may be treated as the Higgs
gravity phase.

Collectively, these make the subject of brane physics and
cosmology interminably attractive and potentially able to
shed new light on some of the unsolved riddles of the early,
contemporary, and future universe.
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