
Abstract. The Majorana formula for the probability of spin-
flipping in a time-dependent magnetic field which almost
vanishes at a certain moment is discussed in connection with
the celebrated work by Landau, Zener, and StuÈ ckelberg for
nonadiabatic dynamics in the avoided crossing situation.

In 1932, E Majorana published a paper on the dynamics of
an arbitrary quantum angular momentum in a time-
dependent magnetic field [1]. The paper consists essentially
of two parts: the first dealing with the reduction of the
general problem to that for the spin 1=2, and the second
describing the dynamics of a two-state system in a time-
dependent potential. The first part of the paper, the results
of which were rederived later [2, 3] and attracted much
attention, has been widely commented on (see, e.g., Ref. [4])
and cited in textbooks on quantum mechanics [5]. The
second part is not mentioned often, and one of its results,
the fate of the spin 1/2 in a magnetic field with one
component changing sign linearly with time, has been
virtually neglected. However, the analytical solution of the
latter problem has much in common with the results of
other well-known papers of 1932 dealing with nonadiabatic
transitions in atomic collisions for the so-called avoided
crossing situation [6 ± 9]. The purpose of the present note is
to place Majorana's work in the context of other works [6 ±
9] which are of paramount importance in the theory of low-
energy atomic and molecular collisions. We also take this
opportunity to indicate differences in treating the avoided
crossing problem by Landau [6, 7], Zener [8], and StuÈ ckel-
berg [9], the differences which, we believe, are not reflected
properly in the existing literature on this subject.

The problem of nonadiabatic dynamics for a two-state
one-dimensional system in atomic collisions was treated in
Refs [6 ± 9] under two assumptions. The first concerns the
form of the energy matrix in the avoided crossing region, and
the second the kinetic energy of the nuclei in this region.

The potential energy 2� 2 matrix V (the matrix of the
electronic Hamiltonian) in a region of nonadiabatic coupling
was taken in the form that contains a single coordinate

(interatomic distance) R

V�R� � Ec ÿ F2�Rÿ Rc� a

a Ec ÿ F1�Rÿ Rc�
8>>: 9>>; ; �1�

where Ec, Rc, F1, F2, and a are free R-independent para-
meters. The matrix V completely defines the two-state
problem in adiabatic approximation, since the eigenvalues
of this matrix are identified with the adiabatic potential
curves in the avoided crossing region. Note that the form of
this matrix is consistent with the pattern of narrow avoided
crossing, since away from Rc the spacing between eigenvalues
can be made much larger than the minimum spacing at
R � Rc, which is 2a.

To go beyond adiabatic approximation, one has to
consider the motion of nuclei with a finite, nonzero,
velocity. The assumption about collision velocity, adopted
in papers [6 ± 9], was formulated as the condition that the local
kinetic energy of the nuclei at the center of the avoided
crossing region, at R � Rc, is substantially higher than the
adiabatic splitting 2a:

mv2c
2

4 2a : �2�

Here, m is the reducedmass of two nuclei, and vc is the velocity
of the relative motion at R � Rc. Note that condition (2)
means that the avoided crossing region is not located too close
to the turning points at which the kinetic energy vanishes. The
quantities entering into the interaction matrix in Eqn (1) can
be combined with the velocity entering into the inequality in
Eqn (2) to form a dimensionless ratio

z � 2pa2

�h jF1 ÿ F2j vc ; �3�

which has the sense of the Massey parameter in the avoided
crossing region.

L Landau in his first paper [6] calculated the transition
probability in the near-sudden limit (NS, under condition
z5 1) using the first-order perturbation approach on an
adiabatic basis within the WKB (Wentzel ±Kramers ±Bril-
louin) approximation. The transition probability for a double
passage of the coupling region takes the form

PL;NS
WKB � 4z sin2�FL� ; �4�

whereFL is a certain phase accumulated by the system during
its motion from the avoided crossing region to the turning
points and back. The inequality (2) translates into the
condition FL 4 1. Once PL;NS

WKB is averaged over rapid
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oscillations, it yields the phase-averaged probability
�P L;NS
WKB � 2z.
In his second paper [7], Landau calculated the transition

probability in the near-adiabatic limit (NA, under condition
z4 1) using the perturbation approach on an adiabatic basis
and introducing the analytical continuation of adiabatic PES
into the complex region of internuclear separations R. The
expression for the single-passage transition probability reads

PL;NA
JWKB � C exp�ÿz� ; �5�

where the prefactorC is, according to Landau, presumably of
the order of unity.

Zener [8] considered a single passage for the time-
dependent Hamiltonian

Ĥ�t� � V̂ �R�t�� ;

putting

Rÿ Rc � vct
into Eqn (1). He set up two time-dependent coupled
equations, which describe the nonadiabatic quantum
dynamics of electrons in the avoided crossing region for a
uniform classical motion of the nuclei (the so-called semi-
classical approximation, SC). Two first-order coupled equa-
tions were transformed into one second-order equation, and
the latter was solved in terms of parabolic cylinder functions.
Using the known asymptotics of these functions (from the
`bible' on transcendental functions [10]), Zener found the
accurate transition probability

PZ
SC � exp�ÿz� : �6�

If one ignores Zener's comment [8] that the exponent in
formula (6) differs from that in the Landau formula (5)
(communicated to him by Rosenkewitsch) by a factor of 2p,
one finds that the factorC in Eqn (5) should be unity and that
the exponential form of the transition probability in formula
(5) is valid for any values of z, and not just for z4 1. Actually,
the Zener comment was due to a misunderstanding since
Landau used the character h to represent �h.

Had one gone further and expressed a general phase-
averaged double-passage transition probability �P through
the single-passage transition probability P as

�P � 2P�1ÿ P� ; �7�

one would have found that the Zener result also reproduces
the phase-averaged double-passage Landau formula which
follows from Eqn (4). Therefore, it is customary to call the
expression for the single-passage transition probability

PLZ � exp�ÿz� �8�

the Landau ±Zener formula.
StuÈ ckelberg [9] considered two coupled coordinate-

dependent second-order wave equations with the Hamilto-
nian

Ĥ�R� � T̂�R� �U�R� ;

where T̂�R� is the operator of the kinetic energy of the nuclei,
and Û�R� is an arbitrary matrix potential that is approxi-

mated by V�R� within the avoided crossing region. In using
the WKB approximation, he encountered the problem of the
analytical continuation of the WKB solution across the so-
called Stokes lines. A rather complicated procedure in solving
this problem led to the following expression for double-
passage transition probability P St

WKB in the JWKB approx-
imation:

P St
WKB � 4 exp�ÿz��1ÿ exp�ÿz�� sin2�F St� : �9�

Here, F St is what is now known as the StuÈ ckelberg phase
depending on adiabatic potentials in the region between the
avoided crossing point and turning points. StuÈ ckelberg cited
the Landau work [5] and noted that the results in Ref. [5] are
only correct for z5 1 and that FSt coincides with FL in this
limit. When formula (9) is averaged over the phase (or over
the StuÈ ckelberg oscillations) and is then compared to
expression (7), one recovers the single-passage StuÈ ckelberg
transition probability

P St � exp�ÿz� : �10�

We see that the WKB approximation for the transition
probability derived by StuÈ ckelberg coincides with the accu-
rate semiclassical transition probability found by Zener. This
is expected under the condition formulated in Eqn (2).

In a quite different context, a problem similar to the
narrow avoided crossing was considered by EMajorana who
discussed the dynamic behavior of the spin 1=2 in a time-
dependent magnetic field that almost vanishes at a certain
moment [1]. The Hamiltonian describing the evolution of the
spin in such a situation was taken in the form

Ĥ�t� � g _Bztŝz � gBxŝx ; �11�

where g is the gyromagnetic ratio, and _Bz, Bx are time-
independent parameters. The time-dependent probability
amplitudes of two spin functions were represented as
contour integrals taken over the auxiliary variable. In
particular, the time-dependent survival amplitude f
expressed as a function of the dimensionless time t / t
assumes the form

f �t� �
���
k
p

exp�ÿkp=8�
2�1� i� ���pp

�
L

sk=4iÿ1 exp
�
s2

8i
� st

�
ds ; �12�

where k � gB2
x=��h _Bz�, L is a properly chosen integration

contour, and f is normalized in such a way as to give
j f �t�j2t!ÿ1 � 1. Then, the asymptotic survival probability is
just j f �t�j2t!1, and the nonadiabatic transition probability
(i.e., the probability of spin-flipping with respect to the
asymptotic direction of the magnetic field) becomes
PM � 1ÿ j f �t�j2t!1. The explicit expression for PM reads

PM � exp

�
ÿ pgB2

x

�h _Bz

�
: �13�

Now, the Hamiltonian in Eqn (11) is similar to that
considered by Zener. With proper identifications of the
parameters gBx � a and g _Bz � jF1 ÿ F2jvc, the exponent in
formula (13) can be expressed through PM � exp�ÿz�, which
is the same as PLZ and PSt. Two comments will be
appropriate in connection with expressions (12) and (13).
First, a close inspection of the Majorana integral reveals that
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it is related to the integral representation of the parabolic
cylinder functions; this establishes the connection with the
Zener treatment of the problem. Second, formula (12) was
derived in Ref. [1] without any reference to the properties of
higher transcendental functions; this makes the Majorana
treatment of the problem quite appropriate for incorporation
into advanced textbooks on quantum mechanics as an
exercise problem. Up to now, the standard reference for the
accurate nonadiabatic transition probability in the narrow
avoided crossing case is the Zener paper, which lacks the
conciseness and simplicity normally needed for a textbook.
Since PLZ � P St � PM, it would be appropriate to call the
single-passage transition probability the Landau ±Zener ±
StuÈ ckelberg ±Majorana formula:

PLZStM � exp

�
ÿ 2pa2

�h jF1 ÿ F2j vc

�
: �14�

Unfortunately, the Majorana name is never mentioned in
connection with the formula (14) though his elegant approach
nicely complements the artistic derivation by Landau,
straightforward solution by Zener, and sophisticated treat-
ment by StuÈ ckelberg. One may say that five papers of 1932
laid the foundation of different methods in the theory of
nonadiabatic transitions: expressing the solution as an
integral representation, using the analytical continuation of
classical dynamical quantities into a complex plane, resorting
to well-documented higher transcendental functions, and
understanding the role of the Stokes phenomenon in
quasiclassical analysis of coupled wave equations. Refer-
ences for the appropriate papers can be found in the review
[11] and the collection of papers [12].

We hope that this note will partly rectify historical neglect
of the Majorana contribution [1] to the theory of nonadia-
batic transitions, which, regrettably, is not properly acknowl-
edged in current reference lists, including those [11, 13] by one
of the authors of this paper. Also, our note can be regarded as
a small addition to the impressive description of the
Majorana contribution to theoretical physics, as presented
by Amaldi [14].

We are grateful to L P Pitaevskii who attracted our
attention to the topic discussed in this paper and who became
interested in different approaches to the solution of one of the
problems in the theory of nonadiabatic transitions.
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