
Abstract. The nature of photocounts arising in detectors ex-
posed to highly coherent laser radiation is discussed. It is shown
that the spatial localization of a photon allowed in quantum
electrodynamics fails to account for the effect observed and
that the Coulomb instability of a low electron flux in a photo-
detector can be the explanation. With detectors utilizing non-
free electrons, namely, electrons bound in atoms, ions,
molecules, etc., weak optical signals can be detected with laser
radiation without photocounts, in other words, at a suppressed
shot noise. A basic scheme for a laser detector using bound
electrons is suggested.

1. Introduction

Detection of light is one of the most fundamental physical
processes playing an important role both in nature and
technology. In nature, this process underlies vision, hence
the ability to perceive the surrounding world. In technology, a
variety of photodetectors is used to quantitatively describe
the process of detection of optical signals and to extend the
spectrum of the received radiation.

Despite considerable progress in the development of
photodetectors, the understanding of fundamental processes
underlying photodetection continues to be based on concepts

dating back more than fifty years ago. This area of research
turned out to be overshadowed by the impressive achieve-
ments of laser physics and has attracted little attention. At the
same time, the creation of highly coherent laser sources
resulted in a certain discordance between the former
approaches to light detection and even turned it into some-
what of a mystery.

The concepts of photocounts and photons as spatially
localized particles are closely interrelated. It is believed that a
photon, a spatially localized particle (corpuscle), is absorbed
when it enters a photodetector and produces a released
electron; the electron spreads in the detector circuit giving
rise to a splash in the electric current, termed the photocount.

These concepts remained practically unaltered for a very
long time despite considerable changes in experimental
physics and electromagnetic field theory. Suffice it to
mention the enormous possibilities offered by the invention
of lasers and the development of such theories as quantum
mechanics and quantum electrodynamics (QED). Today, it is
a well-established fact that quantum laws do operate in
nature. Indeed, quantum electrodynamics is considered the
most accurate physical theory, its corollaries having been
verified to within a large number of significant figures
following the decimal point. However, the concept of
photons in the framework of QED and the concept of
photons as a cause of photocounts are essentially different.
This difference is thoroughly discussed in the present review.

2. Physical nature of photocounts

2.1 The photocount as a physical phenomenon.
The problem of photocounts updated
The physical nature of photocounts (pulses in the external
circuit of a photodetector, with a characteristic length of
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� 10ÿ8 s) had been a subject of research long before laser
sources of radiation appeared [1]. As mentioned in the
Introduction, they were primarily explained as a conse-
quence of the release of an electron (particle) knocked out
by a photon (particle) from the photocathode. The situation
changed with the advent of lasers. Before that, the spectrum
width of optical signals arrived at the cathode of a photo-
detector from thermal and luminescent sources was
� 1012ÿ1015 Hz. In other words, it was much greater than
the characteristic spectral width� 108 Hz of the output signal
from the detector, which is determined by the duration of
current pulses in this signal, i.e., by the photocount length.
The spectra of laser sources are far narrower than 108 Hz; the
record-breaking devices have a spectral width of only 1 Hz.
Switching over to the detection of coherent laser signals has
had practically no effect on the characteristics of the output
signal which still remains a sequence of random pulses or
photocounts of length� 10ÿ8 s. This means that the detection
of a highly coherent signal reveals new frequencies in the
spectrum of the photodetector output signal that could not be
detected in optical signals in the days before the advent of
lasers. The spectrum of a laser signal cannot change as it
propagates through a vacuum which is an essentially linear
medium. The photodetector being the sole source of non-
linearity, the broadening of the signal spectrum during the
detection is unambiguous evidence that the cause of photo-
count occurrence is the detector itself rather than the received
radiation.

The same problem can be formulated in a different way.
The mysterious nature of photocounts mentioned in the
Introduction may be illustrated by the diagram presented in
Fig. 1. The highly coherent radiation fed to the detector input
has a smoothly time-dependent amplitude whose typical
variation time in good lasers measures a few seconds.

There is a sequence of pulses (photocounts) with a
characteristic time on the order of 10ÿ8 s at the detector
output. It is natural to ask what the cause of these
photocounts is? Such a question could not arise in the pre-
laser era because the light emitted from thermal and
luminescent sources was chaotic and provided many causes
for the appearance of photocounts.

There is voluminous literature on photocounts and their
statistics (see, for instance, Refs [2 ± 4]). However, the origin
of photocounts and their nature is mentioned only inciden-
tally [5] or not at all. As a rule, calculations using particular
smoothly time-dependent characteristics of the field are
performed and the result is claimed to refer to a flux of
pulses, i.e., photocounts. But the nature of photocounts and
their causative factors are virtually ignored.

The question posed earlier is understood to have three
possible answers. The majority of researchers believe that

radiation (coherent radiation in particular) contains spatially
localized entities called photons that interact with the cathode
of a photodetector and give rise to photocounts. Indeed, by
photocount statistics is frequently meant photon statistics,
having in mind spatially localized formations mentioned
above. The scientific literature contains discussions of
whether a photon flies after the interaction with a beam-
splitting mirror, and so on.

Other researchers argue that the cause of photocount
occurrence lies in the discrete nature of electrons. It is
supposed that discrete electrons interact with a wave, the
amplitude of which is smoothly time-dependent, and thus
impart their discreteness to the response of the detector to
radiation.

Finally, certain authors relate the appearance of photo-
counts to the so-called `wave packet reduction' characteristic
of quantum-mechanical measurements.

It will be shown in Sections 2.2 ± 2.5 that none of these
hypotheses can be regarded as valid in light of modern
theories. This situation has been analyzed at length in a
series of papers [6] where it is shown that the source of
photocounts is the Coulomb instability of a low electron
flux in the photodetector, induced by the received radiation.
This instability is close to the Wigner instability [7]. Thus,
photocount statistics is not photon statistics; rather, it largely
reflects statistical properties of the breakdown of a low
electron flux into separate bunches. This process is a
manifestation of the instability said. Thus far, this is the sole
approach free from controversy and explaining a wide circle
of phenomena associated with photocounts.

Also, it will be demonstrated that the Coulomb instability
can be avoided by using in photodetectors electrons bound in
atoms, ions, and molecules, instead of free electrons. Light
radiation laser detectors based on this principle have been
proposed (see Section 3).

2.2 Photons from the standpoint
of quantum electrodynamics
2.2.1 What is a photon? We shall address this question in the
framework of modern QED or, to be more precise, based on
the corollaries from the mathematical apparatus of QED.

Theoretical and experimental data are usually interpreted
with reference to other notions, such, for example, as `wave
packet reduction', that supplement the QED mathematical
apparatus. For the time being, we put these additional
notions aside.

It follows fromQED that an important feature of photons
is their multifaceted character or the ability to appear in
different representations. In what follows, two photon
representations are considered: distributed and packet. The
purpose is to clarify to what extent a photon can be regarded
as a spatially localized entity.

2.2.2 Distributed photon representation. For photon descrip-
tion in QED, a large cubic resonator is normally introduced,
in which the modes are plane waves with a discrete set of
eigenfrequencies and wave vectors. From the quantum
standpoint, such a mode is an oscillator and can be in states
with different numbers of photons, as well as in other possible
oscillator states (coherent, squeezed, etc.). When the oscilla-
tor is in a one-photon state, the photon field is uniformly
distributed over the entire cavity volume. Because in field
quantization the volume of a large cubic resonator finally
tends to infinity, the photon field turns out to be uniformly

Smooth action Detector

Pulsed
response

tt

Figure 1. What is the cause of photocounts when a highly coherent signal

enters the detector?
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distributed over the entire infinite space. It is quite clear that
such a photon cannot be the cause of a photocount since it
lacks spatial localization. In a multiphoton state, there is no
photon localization either because the total field of photons is
uniformly distributed over the entire volume of the cavity,
hence over the entire space, following the aforementioned
passage to the limit. It can be concluded that photons
introduced in this way are not localized and cannot account
for photocounts.

Such a procedure of quantization of electromagnetic
fields can be found in any QED textbook and is not described
here. We shall borrow from it only the electric field operator
having the form [8]

E�r; t� � i
���
�h
p

2p

X
l

�
dk

����
o
p

el�k� al�k� exp
�
i�krÿ ckt���H:c:;

�2:1�
in which the summation is over two polarizations el; a

�
l �k�

and al�k� are the densities of the creation and annihilation
operators that obey commutation relation

ai�k� a�j �k0� ÿ a�j �k0� ai�k� � di jd�kÿ k0� ; �2:2�

and H.c. stands for a Hermitian conjugate expression of the
preceding term.

2.2.3 The photon as a wave packet. For the packet representa-
tion [9], the creation and annihilation operators are intro-
duced as follows

A �
X
l�1; 2

�
dk Wl�k� al�k� ;

A� �
X
l�1; 2

�
dk W �

l �k� a �l �k� ; �2:3�

whereWl�k� is a certain normalized spectral function:X
l�1; 2

�
dk
��Wl�k�

��2 � 1 ; �2:4�

which defines the packet spectrum (as shown below); a�l �k�
and al�k� are the densities of the creation and annihilation
operators entering expression (2.1) for the operators of the
free-space electric field. It is easy to see that operators A and
A� obey the commutation relation

�A;A�� � 1 : �2:5�

Accordingly, operators A and A� give rise to a system of
steady states jni, such that

jni � �A
��n����
n!
p j0i ; Aj0i � 0 : �2:6�

An arbitrary state of such a packet can be represented in the
form

jCi �
X1
n� 0

Cnjni : �2:7�

It can be shown that all averages are expressed through a
single function that can be called the shape of the quantum
wave packet. The average value of the electric field in state

(2.7) is given by

E�r; t�� � U�r; t�

�X1
n� 0

���
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�
:

In this expression, the function

U�r; t� � i
���
�h
p

2p

X
l

�
dk

����
o
p

W �
l �k� el�k� exp

�
i�krÿ ckt��

�2:8�
is the above function describing the shape of the wave packet.

The mean square of the field strength, proportional to the
electric energy density, is expressed via the same wave packet
shape:


E2�r; t�� � ��U�r; t���2�X1
n� 0

njCnj2
�
:

It can be shown that the average values of all field strength
powers are expressed through function (2.8).

Consequently, functionU�r; t� describes the field distribu-
tion in any quantum state of the field. For this reason, a
photon in the packet representation is a spatially localized
object. For a one-photon state, function U�r; t� can be
referred to as the photon shape. In the case of a multiphoton
state, however, there is no spatial separation of the packet
into particular one-photon parts: the fields of all the photons
are uniformly distributed in accordance with the function
U�r; t�.

It follows from relation (2.8) that the quantity

i
������
�ho
p

2p
W �

l �k�

is just the Fourier spectrum of the wave packet U�r; t�. It is
known that the length L of the packet and the width Do of its
spectrum obey the condition

Do
L

c
5 1 :

Consequently, the photon length Lphot � L can only be
larger than the characteristic packet length equal to the
coherence length and defined by the relation

Lcoh � c

Do
; i:e:; Lphot 5Lcoh � c

Do
:

Applying this relation to photons generated in highly
coherent lasers, it can be inferred that, at coherence times of
order one second, the photons have an astronomic length on
the order of the distance between the Earth and the Moon.
Evidently, such photons cannot be the cause of photocounts.

Such is the view of photon localization in the context of
QED. It is sometimes assumed that radiation, even a coherent
one, contains some localized objects that are not described by
the QED mathematical apparatus and that it is these objects
that should be called photons. We think that this opinion is
naive. Quantum electrodynamics has a history of more than
half a century, and it is fairly well verified experimentally. It
seems very unlikely that such a theory could overlook certain
localized objects.

2.3 The photoeffect and electron localization
Let us now consider two other opinions according to which
the discreteness of the detector output signal originates from
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the discreteness of the electron itself. The layout of a vacuum1

radiation detector is presented in Fig. 2.

2.3.1 Photoeffect. According to the photoeffect theory, a
plane electromagnetic wave interacts with a plane Bloch
electron wave of the valence band in the semiconductor
making up the cathode. The interaction results in a Bloch
electron wave in the conduction band. Its energy being much
higher than that of the wave in the valence band, this wave
easily penetrates into the vacuum, surmounting the potential
barrier. In other words, the electron is regarded up to this
moment as a wave having no internal spatial localization. 2

Excitation of the electron wave in the conduction band under
the influence of a continuous electromagnetic wave proceeds
continuously; hence, there is no indication of the possibility of
discrete output signals at this stage.

If the description of the electron wave (specifically as a
wave) is extended as far as the anode, there will be no current
splashes, i.e., photocounts because, on the one hand, a
continuous wave cannot produce any splash in the current,
and, on the other hand, photocounts are known to appear just
as the electron flies across the cathode ± anode gap. Hence, if
photocounts did not occur before the wave reached the
anode, they will never occur at all. Certainly, such a
description is in conflict with observations, since the exis-
tence of photocounts is a well-established experimental fact.

2.3.2 Wave packet reduction. An electron wave leaving the
cathode for the vacuum is usually understood as the
probability amplitude of the discovery of a localized electron
in the vicinity of the cathode. Such an interpretation is
supported by the reference to the `wave packet reduction'
that takes place in quantum-mechanical measurements, i.e.,
during the interaction between the microscopic quantum
system and a macroscopic instrument. Because the electron
becomes a randomly localized particle, the photocount arises
naturally as the particle moves across the gap between the
cathode and the anode.

However, such an application of the `wave packet
reduction' concept is irrelevant. Putting aside all ongoing

debates on wave packet reduction, we refer to the opinion of
such a reputable author as von Neumann [10]. He justly
argues that the notion of wave packet reduction is applicable
only when the imaginary surface separating the quantum
system from the device can be transferred as a whole by
including the device or its parts in the quantum system. In so
doing, the picture perceived by the observer must remain
unaltered because the surface separating the quantum system
from the device is an imaginary one and therefore cannot
produce any effect. Von Neumann made many efforts to
demonstrate that such measurements are possible.

However, this is not the case considered in the proposed
explanations of photocounts, which are based on the wave
packet reduction concept. As mentioned above, a shift in the
boundary between a system regarded as a quantum-mechan-
ical one and a `classical' device from the cathode to the anode
substantially changes the picture observed Ð that is, photo-
counts disappear. Therefore, the wave packet reduction, if
any, occurs at a later stage of the interaction between the
quantum system and the instrument.

To summarize, it should be recognized that the current
concepts of optical signal detection do not explain photo-
counts, i.e., discrete responses of a photodetector to a
continuous signal being received.

2.4 The photocounts as a manifestation
of the Coulomb instability of a low electron flux
The above line of reasoning leads to the conclusion that
photocounts need a physical explanation other than a
mysterious transformation of a wave to a particle. It is
assumed in this review that the cause of photocounts is the
Coulomb instability of a low electron flux in the photode-
tector, induced by the received radiation [6]. This instability
facilitates the breakdown of the flux into separate one-
electron bunches that travel from the cathode to the anode
and induce splashes in the electric current in the external
circuit of the detector. The observer perceives these splashes
as photocounts.

2.4.1 Wigner instability. The instability of a low electron flux
is easy to understand in the context of the well-knownWigner
crystallization [7]. It is common knowledge that a low-density
system of electrons breaks down into systematically posi-
tioned one-electron bunches that Wigner called electrons.
Two stages are distinguished in this crystallization. One is the
instability of the uniform or quasi-uniform electron distribu-
tion (referred to as Wigner instability) and the onset of
breakdown into bunches. The other is the Wigner crystal-
lization proper or self-organization of the electron distribu-
tion under the steady-state Wigner conditions.

Electromagnetic radiation that reaches a vacuum detector
makes electrons transfer from the high charge density zone
inside the cathode to the low charge density zone in the
vacuum. Accordingly, this gives rise to a tendency toward the
breakdown of the quasi-uniform electron distribution into
bunches. However, the final stage, i.e., regular crystallization,
is not reached on the whole, hampered by nonstationary
conditions in the detector. The breakdown results only into
more or less chaotic bunches. 3

It is these bunches travelling between the cathode and the
anode that excite chaotic splashes in the current in the

t

Conduction
band

Forbidden
band

Valence
band

Cathode

Radiation

Electron time of êight

AnodejCj2

Figure 2. How is the electron wave leaving the cathode transformed to a

particle?

1 Instabilities similar to those considered below must be manifested in

semiconductor detectors as well. However, their theoretical consideration

is very difficult because of the presence of the medium.
2 It is worthwhile to note that all themain laws governing the photoelectric

effect (inter alia the law that predicts the photoelectric threshold) are

realized at this preliminary stage of the interaction between the wave and

the photocathode. For this reason, the concept of photocounts being

developed below by no means interferes with these manifestations; in fact,

it supplements them.

3 It should be noted, however, that self-organization is possible under

certain special conditions in the electron flux [13].
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external circuit of the detector, being interpreted by the
observer as photocounts. This explanation of photocounts
proposed in our papers [6, 11] is currently the only one free
from serious controversy. Arguments in favor of this opinion
are presented below.

2.4.2 Breakdown of an electron cloud into bunches. In order to
illustrate the breakdown of an electron cloud into bunches at
small electron densities, we considered a system of two-
electrons located in a quadratic potential well and interacting
with each other in conformity with the Coulomb law [12].
Then, the potential energy of the system is given by

U�r1; r2� � b�r 21 � r 22 � �
e 2

jr1 ÿ r2j ;

where r1, r2 are radius vectors of the first and second
electrons, and b is the potential well parameter, the growth
of which is accompanied by the narrowing of the potential
well. The stationary wave functions of the system and the
corresponding energies were calculated by the basis-free
variational method [4, 5, 12]. The results are presented in
Figs 3 and 4. Figure 3 shows the dependence of the energy of
the two-electron cloud on the width of the potential well. The
electron cloud may reside in two states, either with one (curve
1) or two (curve 2) charge density maxima. In a wide potential
well, the energetically most preferable state is that with two
maxima, while in a narrow potential well that with one
maximum. Thus, it is possible to control the electron density
of the system under consideration by varying the parameter of
the potential well and to determine the point in time at which
the electron cloud begins to break down into one-electron

bunches. As the electron density decreases, the cloud breaks
down into two electrons. This confirmsWigner's inference for
the specific conditions of a potential well.

It is understandable that such a breakdown into one-
electron bunches must occur when a low-density electron
wave escapes the cathode and enters the vacuum. However,
Fig. 4 based on the results of calculations shows that such
one-electron bunches are rather smeared-out entities which
are unlikely to produce sharp current pulses resembling
photocounts in the external circuit of a photodetector. This
implies another mechanism responsible for the sharpening of
these bunches.

2.4.3 Mechanism of sharpening of electron bunches. The
Coulomb field is possessed of a focusing ability, although
this property is not obvious. In order to demonstrate it in the
framework of the classical (nonquantum) picture, we con-
sidered two examples of the expansion of charged particle
packets: the radial expansion of a spherically symmetric
Gaussian packet, and the expansion of a cylindrical Gaus-
sian packet distributed along the cylinder axis [6]. It was
shown that such an expansion results in charge density
maxima referred to as catastrophes in the mathematical
literature [14]. Monastyrskii [15] also considered a temporal
progress of the overtaking-type catastrophe resulting from
the Coulomb repulsion in a many-electron packet travelling
in an electron image tube designed to record picosecond laser
pulses.

2.4.4 Expansion of the spherically symmetric Gaussian charge
distribution. The spherically symmetric case is convenient in
that the equation of motion of the charged packet layers is
integrated over a time interval from the beginning of motion
to the onset of overtaking. Due to this, the formation of
electron density maxima can be investigated analytically.
Details of the computation are presented in Appendix 1.
Figure 5 illustrates how the initial Gaussian distribution of
charge density varies with time under the action of its own

E
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b, rel. units

Figure 3. Energies of symmetric and asymmetric states plotted as a

function of the parameter of a quadratic potential well, which is inversely

proportional to the well width.
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Figure 4. Breakdown of an electron cloud into two bunches in a quadratic

potential well.
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Coulomb field. It can be seen that at a certain instant of time
the cloud exhibits, at first sight without any apparent cause,
an infinite charge density maximum. This means that the
electric field of a localized charge possesses some focusing
properties. The physical explanation of this observation is
simple and can be understood from Fig. 6. The electrical field
in the center vanishes by virtue of the charge distribution
symmetry. It is also small at the periphery of the charge
distribution, in accordance with the Coulomb law. Hence,
there is a fieldmaximum on the charge distribution slope. The
charge distribution layers on the slope accelerate and begin to
leave behind the peripheral layers, giving rise to themaximum
(catastrophe) on the distribution slope. The sharp peak in
Fig. 5 has an infinite amplitude. However, this maximum is
finite, even if large, taking into consideration the wave nature
of the electron. It can be assumed that such a focusing
promotes sharpening of the somewhat smeared-out electron
bunches formed as a result of the Wigner instability. Further
computation in the framework of quantum mechanics
actually confirmed this inference (see Section 2.4.6).

2.4.5 Expansion of a charged bunch distributed along the axis
according to the Gaussian law. Only the results of computa-
tions are presented here, as in the spherical case (see papers [6]
for detailed discussion). The picture in Fig. 7 resembles the

spherically symmetric case in that an electron density
maximum develops with time. However, it is possible to
observe the dependence on the transverse distribution size.
It can be seen that the smaller the distribution diameter (i.e.,
the higher the charge density), the earlier the inhomogeneities
are formed. From this follows an important conclusion.With
the electron packet travelling between the electrodes in the
focusing static field of a vacuum device, with high probability
the maximum compression of the electron bunch in the
longitudinal and traverse directions occurs almost simulta-
neously. This, in turn, further promotes sharpening of the
pulse induced by the electron bunch in the external circuit of
the detector.

2.4.6 Longitudinal compression of a one-electron bunch as it
moves in the cathode ± anode field and at the same time in the
Coulomb field of another similar bunch (quantum-mechanical
problem).Many quantum-mechanical problems pertaining to
the motion of wave packets in smoothly varying fields of
different configurations can be resolved by our method
developed in Ref. [16] (see also Appendix 2). In this method,
the wave packet is regarded as a Gaussian one:

C�r; t� � C�t� exp
�
ÿ�q;Fq� � i

�h

�ÿ
p0�t�; q

�� E�t��� : �2:9�
Here, q � rÿ r0�t� and quantities r0�t� and p0�t� obey the
classical Hamilton equations

dr0
dt
� p0

me
;

dp0
dt
� ÿgradU�r0� ; �2:10�

where U�r� is the potential in which the wave packet is
travelling. The real part of the complex matrix F�t� deter-
mines the spatial distribution of the wave function module,
while its imaginary part defines that of the wave function
phase. It is shown in Appendix 2 that a change in matrix F�t�
with time is described by a nonlinear matrix equation of the
Riccati type

i�h
dF

dt
� 2�h2

me
F 2 ÿ 1

2
U 00 ; �2:11�

where U 00 is the matrix of the second derivatives of the
potential energy in the center of the wave packet that emerges
upon the expansion of the potential energy in a Taylor series
in the vicinity of the packet center:

U�r0 � q� � U�r0� �
ÿ
q; gradU�r0�

�� 1

2
�q;U 00q� � . . . :

�2:12�

This method is suitable provided it is possible to neglect
the terms with cubic and higher degrees of smallness in
potential (2.12). It has been shown in Ref. [16] that nonlinear
equation (2.11) is reduced to a system of linear equations and
in many cases can be solved with relative ease. It follows from
Eqn (2.11) that the dynamics of the packet parameters
responsible for its dimensions is determined by the matrix of
the second derivatives of the field potential with respect to the
spatial coordinates at a point corresponding to the packet
center.

This method was applied to follow the passage of an
electron bunch across the interelectrode space. In the one-
dimensional case and a uniform cathode ± anode field
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E � 1=R2

R

Figure 6. Layers at the charge distribution slope leave behind the

peripheral layers, giving rise to a charge density maximum.
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Figure 7. Formation of a charge density maximum in the case of linear

charge distribution.
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�U 00 � 0�, it is possible to integrate Eqn (2.11). Assuming the
parameter F0 to be purely real at the initial point in time, it is
easy to obtain the time dependence of the longitudinal packet
half-width:

a1 � a0

�������������
1� t 2

t 2

r
; �2:13�

where t � ma20=�h is the characteristic packet expansion time,
and a0 is the initial packet half-width. The time of flight of an
electron between the cathode and the anode is on the order of

t0 �
���������
2ml

eU

r
; �2:14�

where l is the distance between the cathode and the anode and
U is the voltage between them. Parameters t and t0 must be of
the same order to prevent substantial expansion of the
electron packet as it travels from the cathode to the anode.
The characteristic size of the packet also exists, so that

A �
������������
2�h2l 2

eUm

4

s
: �2:15�

If the packet were much smaller than the characteristic size
(2.15), it would rapidly and diffusely spread out and produce
no sharp current splash (i.e., a photocount) in the external
circuit of the detector. Therefore, it may be concluded that the
dimension of real packets in vacuum devices is on the order of
the characteristic size. Note also that the characteristic size A
exhibits only weak dependence on the parameters U and l of
the device.

The distance between the cathode and the anode is usually
about 1 cm, and the voltage is approximately 100 V. Hence,
according to formula (2.15), one obtains

A � 6� 10ÿ5 cm : �2:16�

Thus, the characteristic size is rather large, around 1 mm.
Accordingly, the dimensions of the wave packet in a vacuum
photodetector must be greater (or even much greater) than
the characteristic size A, if it is to undergo no substantial
change during the motion from the cathode to the anode.
Moreover, the packet dimensions must be limited from
above Ð that is, they must be significantly smaller than the
characteristic distance between the cathode and the anode to
enable a sharp current pulse to be generated in the external
circuit of the photodetector.

In real conditions, electron wave packets travel not only in
the cathode ± anode field but in each other's Coulomb fields
as well. This situation was also considered using the above
approach. However, equation (2.11) can be solved in this case
only numerically. Figure 8 displays the dependence of the
width of a one-electron bunch on the traversed distance
during its motion in the cathode ± anode field and at the
same time in the field of another similar bunch. It can be seen
that the nonuniform field of the second electron bunch
strongly focuses the travelling bunch, so that its longitudinal
size decreases by several orders of magnitude. Such an
electron bunch can induce a sharp splash in the current
resembling a photocount in the external circuit of the
photodetector.

To sum up, the Coulomb instability of the quasi-uniform
electron distribution is deemed to account for the physical

picture of photocounts observed during the detection of weak
optical signals. At present, this appears to be the sole
noncontradictory explanation for the main features of this
picture.

2.5 The possibilities of experimental examination
of one-electron bunches in vacuum devices
2.5.1 Scattering of pulsed laser radiation by an electron wave
packet. Because the dimensions of an electron packet are
comparable to typical optical wavelengths, the natural way to
observe the packet is its probing by an intense laser pulse and
detecting radiation scattered from it. Let us, therefore,
assume that in the path between the cathode and the anode
an electron packet flies across an intense pulsed laser beam.

In order to estimate the scattered energy, we shall consider
the case where the packet dimensions are significantly smaller
than the lasing wavelength. Then, the intensity of the
scattered radiation (Thomson scattering) is determined in
the dipole approximation as [17]

I � 2e 2a 2

3c 3
; �2:17�

where the acceleration of the packet is

a � eE�t�
m

; �2:18�

and E�t� is the strength of the laser radiation field. This
strength is related to the laser pulse energy W by the
expression

E 2 � 4pW
ctS

; �2:19�

where t is the pulse duration, and S is the cross section of the
beam at the site where it is intersected by the electron packet.
The number of photons scattered by the electron packet
equals

N � tI
�ho
� 4e2�hlW

3m 2c 3S
; �2:20�
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Figure 8. Compression of an electron bunch travelling in the cathode ±

anode field and simultaneously in the field of another charge: ax Ð length

of the electron bunch, and xÐ distance covered by the bunch.
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where e � e2=�hc is the fine-structure constant �e � 1=137�,
and l is the lasing wavelength.

It is known that at the present time the intensity of focused
laser radiation can be as high as I0 � 1021 W cmÿ2 at a pulse
duration of about 10ÿ12 s, i.e., W=S � tI0 � 1016 erg cmÿ2.
The estimation using formula (2.20) indicates that a single
electron wave packet scatters N � 4� 103 photons. This
number being rather high, the scattered radiation can be a
sensitive indicator of the presence of the electron wave
packet. When the dimensions of the packet are smaller
than the laser wavelength, the angular distribution of the
scattered radiation shows dipole behavior. As the wave-
length decreases, the angular distribution of the scattered
radiation progressively deviates from the dipole distribu-
tion, and the difference contains information about the
dimensions and shape of the electron packet. Specifically,
the smaller the laser wavelength, the greater the difference
between the scattering intensities along the laser beam and
perpendicular to it.

2.5.2 Deflection of an electron wave packet from the rectilinear
trajectory by a laser pulse. Let us consider the radiation
pressure exerted by a laser pulse on the electron packet.
Photons being equally scattered by the electron packet in the
forward and backward directions along a laser beam, it may
be assumed that their motion is on the average arrested and
they give their momenta to the electron packet. Because each
photon transfers a momentum �ho=c, the velocity component
of the electron packet, parallel to the laser beam, is equal after
interacting with it to

V � N�ho
mc
� 8pa2�h2W

3m 3c 3S
: �2:21�

The substitution of the W=S ratio from Section 2.5.1 into
formula (2.21) yields

V � 3� 108 cm sÿ1 : �2:22�

In other words, the velocity component of the electron packet
along the laser beam is comparable with its initial velocity.
This means that the electron packet is deflected from its
original direction through an angle of several radians. This
deflection, similar to the scattered light, can be an indicator of
the packet passage through the detector. As the wavelength of
the laser radiation decreases and becomes comparable to or
smaller than the packet dimensions, photons are increasingly
scattered forward and the deflection of the electron packet
also decreases. This decrease may serve as a measure of the
packet dimension.

2.5.3 Electrostatic defocusing of one-electron wave packets.Let
us consider themotion of an electronwave packet towards the
center of a macroscopic spherical electrode with a negative
potential (Fig. 9). The wave packet, having a suféciently high
initial velocity, stops near the spherical electrode and remains
a relatively long time in the strong nonuniform electrostatic
éeld that defocuses it in the transverse direction. Notice that
in the vicinity of the point where the center of the packet came
to rest, the dependence of its potential energy on the
longitudinal and transverse coordinates has the form of a
saddle: the focusing, roughly quadratic potential in the
longitudinal direction, and the defocusing, also approxi-
mately quadratic potential in the transverse direction. Such

a behavior of the potential energy in the vicinity of the stop-
point of the electron packet center determines its subsequent
dynamics.

Calculations revealed [18] that in the case under con-
sideration, the initially microscopic wave packet turns into an
essentially macroscopic one; upon scattering by the potential
of the sphere, the transverse dimensions of the packet rather
rapidly, on a half-meter trajectory, approach about 1 cm.

It is worthwhile to mention a now well-established fact,
namely the possibility for electrons to be in a state with awave
packet of macroscopic dimensions. An example is provided
by the so-called Rydberg atoms, i.e., strongly excited atoms
with a large principal quantum number. As demonstrated by
means of space radiospectroscopy, atoms in the rarefied
interstellar mediummay reside in states with a large principal
quantum number, when the linear dimensions of the electron
cloud are as large as a few millimetres. The Rydberg atoms
obtained under laboratory conditions have a diameter of
about 0.01 mm that is greater than the diameter of a ground-
state atom by a factor of 105.

Experiments designed to substantially widen electron
wave packets might be of primary importance. For example,
it is impossible to say in advance whether a wide wave packet
(� 1 cm) can cause luminescence of the entire screen area it
covers or only a small point on it; it should be recalled that the
energy of the packet is sufficient to emit � 1000 photons.

3. Reception of signals without photocounts.
Laser detection

The main conclusion that follows from the studies on the
nature of photocounts, the results of which were presented
in Section 2, is that photocounts are no absolute phenom-
enon unamenable to any effect. Photocounts result from a
certain type of instability of an electron flux, specifically the
Coulomb instability. This means that this phenomenon can
be avoided by stabilizing the electron system of the
photodetector through one method or another. This is an
important conclusion because the absence of photocounts is
associated with markedly depressed shot noise in the
detector.

4

1

23

ÿ
+

Figure 9. Enlargement of the transverse dimensions of an electron bunch

travelling in a defocusing field: 1Ðsource of electrons, 2Ðmagnetic field

region directing the electrons toward the defocusing electrode, 3 Ð

defocusing electrode, and 4Ð screen.
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3.1 Laser detection. Principle of action
The problem of detecting optical signals by allied optical
means appears to have been first formulated by Bloembergen
[19]. However, this idea had no further serious development.
The sensitivity of schemes for the direct amplification of
optical signals propagating through an amplifying medium
is significantly restricted by noises associated with the
intrinsic spontaneous emission of this medium [20]. It was
shown in Ref. [21] that the signal-to-noise ratio can be
improved by applying nonlinear radiation detectors in
which the transformation of the signal begins from an
absorptive transition.

As shown in Section 2, conventional radiation detectors
are characterized by a strong Coulomb instability of the low
electron flux induced by the signal being detected. This
instability is due to the use of free electrons in such devices.
In other words, their electron system is strongly degenerate. It
is well known that strongly degenerate systems easily
rearrange themselves under the action of external factors
because the process requires only small energy expenditure.
The degeneracy of the electron system in such detectors is
responsible for the breakdown of a low electron flux into
bunches under the effect of the exciting Coulomb interaction.
This prompts the employment of electrons bound in atoms,
ions, or molecules in such devices instead of free electrons,
because they are fairly well stabilized there by strong nuclear
Coulomb fields. This makes impossible any instability
associated with the collective motion of bound electrons in
atomic and molecular particles.

In what follows, we describe a possible scheme for the
detection of weak optical signals using bound electrons [22]. It
is proposed to call this method laser detection because it
extensively utilizes laser radiation.

The basic component of the scheme is a system of three-
level atoms (Fig. 10). It is assumed that the atoms are confined
in a specially constructed optical resonator having the
resonance, signal mode at frequency o of the j0i $ j1i
transition and two resonance modes at frequency O of the
j1i $ j2i transition. In the absence of populations at levels j1i
and j2i, the last two modes are degenerate in frequency and
not coupled to each other (they may differ, for example, in
polarization and have virtually identical spatial distribution).
In this case, one of them (the pump mode) is excited, i.e.,
contains a strong monochromatic pump field established by

an external source. The other mode, hereinafter referred to as
the output mode, is intended to excite the output signal. In the
initial state, i.e., before the arrival of the signal, the output
mode is not excited and contains no field.

The principle of action of the detector is as follows. Before
the arrival of a signal in the signal mode, the atom is out of
resonance with the pump field and does not practically
interact with it, remaining in the state j0i. The arrival of a
signal at frequency o brings about some population to the
level j1i, and the strong pump field induces transitions
between levels j1i and j2i. This results in an oscillating dipole
moment at frequency O that excites the field in the output
mode. The problem is to demonstrate that the output signal
can be substantially stronger than the input one.Moreover, it
is necessary to determine the characteristic building-up time
of the output signal. The study is carried out in the so-called
semiclassical approximation in which intraatomic processes
are considered in the framework of quantum mechanics,
whereas all fields are taken to be classical.

It is worthwhile to emphasize a similarity between laser
and traditional methods employed to detect optical signals.
In either case, an electron becomes excited after the arrival
of the signal to be detected and obtains access to the source
of energy. In a conventional photodetector, such a source is
represented by the constant cathode ± anode field; in the
case of laser detection, the intense laser field serves as the
energy source. The signal being detected in both situations
undergoes frequency transformation. The characteristic
frequency at the output of the traditional detector is on
the order of 108 Hz. Whereas in laser detection, the
characteristic output frequency differs from the frequency
of the signal being detected but falls within the same optical
range.

3.2 Small time of the detector response
to an external signal in the absence of relaxation
Let us first consider a case where the building-up time of the
output signal is smaller than the phase (transverse) relaxation
time of active atoms in the medium.

The state of a three-level atom is subject to change under
the action of three fields: the signal field, the pump field, and
the originally unknown field of the output mode. The field of
the output mode is excited by the polarization current of the
atomic system. Taking into consideration the evolution of the
atoms and the excitation of the output mode leads to a self-
consistent problem, the solution of which permits us to find
the field in the output resonant cavity and determine the
building-up time of the output signal.

3.2.1 Excitation of a cavity field by external current. Cavity
fields in the Coulomb gauge are described by the equations

DAÿ 1

c 2
q2A
qt 2
� ÿ 4p

c
jc ; div gradU � ÿ4pr ; �3:1�

where the eddy current is given by

jc � jÿ 1

4p
grad

qU
qt

:

The resonant cavity contains a set of modes v�r� obeying
equations

Dv� k2v � 0 ; div v � 0 ;

Output
mode

Pump
mode

Signal
mode

Figure 10. Interaction of a three-level system with optical modes during

laser detection of optical signals.
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necessary boundary conditions and being orthonormalized in
the following way:�

dr vk�r� vl�r� � dkl :

The first of equations (3.1) is multiplied by the distribu-
tion vo�r� corresponding to the output mode4 and integrated
over the cavity volume. Further integration by parts yields

�U�t� � O2U�t� � 4pcj�t� ;

where

U�t� �
�
dr vo�r�A�r; t� ; j�t� �

�
dr vo�r� jc�r; t� ; �3:2�

and O is the mode eigenfrequency. It can be shown that the
part of the integral j�t� containing gradU�r� equals zero.
Therefore, it is possible to use the total current instead of the
eddy current in the definition of j�t�.

Furthermore, the field amplitude U�t� is assumed to be a
slowly varying function of time in which a negative-frequency
part is distinguished:

U �ÿ��t� � u�t� exp �ÿiOt� :

Then, neglecting the second derivative of the amplitude u�t�
with respect to time, the equation of excitation of the output
mode takes the form

u�t� � 2pic
O

j 0�t� ; �3:3�

where j 0�t� is the amplitude of the negative-frequency part of
the current j�t�:

j �ÿ��t� � j 0�t� exp �ÿiOt� ;

which is also considered to be a slowly varying function of
time.

Thus, the field amplitude in the output mode can be found
knowing the current that excites this mode; it is constituted by
the elementary currents of individual atoms interacting with
the three fields.

3.2.2 Dynamics of active atoms under the effect of three fields.
Because we are going to take into account phase (or
transverse) relaxation in what follows, the state of the three-
level atoms interacting with the fields of the three modes will
be described by the density matrix

r � r0j0ih0j � r01j0ih1j � r02j0ih2j
� r10j1ih0j � r1j1ih1j � r12j1ih2j
� r20j2ih0j � r21j2ih1j � r2j2ih2j : �3:4�

The evolution of a three-level atom interacting with the
fields of the three modes is governed by the Hamiltonian

H�t� � H0 � V�t� ; �3:5�

where

H0 � �hoj1ih1j � �h�o� O�j2ih2j ; �3:6�

W�t� � V�t�
�h
� �aj2ih1j exp �ÿiO0t� � a �j1ih2j exp �iO0t�

�
� �g�t�j2ih1j exp �ÿiOt� � g��t�j1ih2j exp �iOt��
� �bj1ih0j exp �ÿio0t� � b �j0ih1j exp �io0t�

�
; �3:7�

andO0 ando0 are the frequencies of the pump and the signal,
respectively (considered below is the resonance case when
O0 � O, and o0 � o).

The first and the second terms in V�t� describe the
interactions of the atom with the pump and output modes,
respectively. The third term in V�t� describes the interaction
between the atom and the signal field to be detected at
frequency o0 equalling the resonant frequency o of the
j0i ! j1i transition. Because the field amplitude of the
output mode, proportional to g�t�, slowly varies with time,
this field is not monochromatic. Its average frequency is fixed
at a level of O.

In the interaction representation, the density matrix obeys
the equation

qr
qt
� ÿi�Wi; r� ; �3:8�

where

Wi�t� � exp

�
iH0t

�h

�
W�t� exp

�
ÿ iH0t

�h

�
� �z�t�j2ih1j � z��t�j1ih2j�� �bj1ih0j � b �j0ih1j� ; �3:9�

z�t� � a� g�t� ; a � ÿ ieOur
�hc

;
�3:10�

b � ÿ ieouiri
�hc

; g�t� � ÿ ieOuo�t�ro
�hc

are the quantities that describe the interaction between the
atom and the field modes; u, ui, and uo�t� are the negative-
frequency amplitudes of the vector potential of the pump,
signal, and output modes, respectively, and

r � v�0� r21 ; ri � vi�0� r10 ; ro � vo�0� r21 �3:11�

are the projections of matrix elements of the electron
coordinate r on the amplitudes v, vi, and vo of the normalized
pump, signal, and output modes at the point of atomic
location, i.e., at the origin of the coordinates (where due to
mode normalization one finds v 2 � 1=V, whereV is the mode
volume).

The atomic current density operator is defined in the
following way:

J�r; q� � e

m
p d�rÿ q� :

For the current responsible for the transition j1i $ j2i in the
interaction representation, the following equation holds:

j�r; t� � e

m

ÿh2jp d�rÿ q�j1i� exp �iOt�j2ih1j �H:c:4 Hereinafter, indices o (out) and i (in) refer to the output and the signal

modes, respectively; quantities referring to the pumpmode have no index.
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In the dipole approximation, the polarization current j�t�
exciting the output mode assumes the form

j�t� � n

�
dr vo�r� j�r; t�

� e

m
nvo�0�h2jpj1i exp �iOt�j2ih1j �H:c:

� ienOr0 exp �iOt�j2ih1j �H:c:;

where n is the number of active atoms, r0 � vo�0�r21, and r21 is
the matrix element of the electron coordinate for the
transition j2i ! j1i.

The average excitation current of the output mode at the
point in time t is equal to

h j�t�� � Sp
ÿ
j�t� r�t�� � ienO

ÿ
ror12 exp �iOt�

ÿ r �or
�
12 exp �ÿiOt�

�
; �3:12�

where r12�t� is the element of the atomic density matrix, the
only one essential for the determination of the current.

3.2.3 The field of the output mode. We have been considering
the case when the time of signal reception is smaller than the
phase relaxation time; consequently, the relaxation can be
disregarded at all. Then, it follows from Eqn (3.8) for the
density matrix elements that

r0�t� � r0�0� ÿ i

� t

0

dt1
ÿ
b �r�01�t1� ÿ br01�t1�

�
;

r01�t� � r01�0� ÿ i

� t

0

dt1
ÿ
b �r1�t1� ÿ b �r0�t1� ÿ zr02�t1�

�
;

r02�t� � r02�0� ÿ i

� t

0

dt1
ÿ
b �r12�t1� ÿ z �r01�t1�

�
;
�3:13�

r1�t� � r1�0� ÿ i

� t

0

dt1
ÿ
br01�t1� ÿ b �r�01�t1�

� z �r�12�t1� ÿ zr12�t1�
�
;

r12�t� � r12�0� ÿ i

� t

0

dt1
ÿ
br02�t1� � z �r2�t1� ÿ z �r1�t1�

�
;

r2�t� � r2�0� ÿ i

� t

0

dt1
ÿ
zr12�t1� ÿ z �r�12�t1�

�
:

Let us assume that the signal being detected is a weak one,
and the population of the lower level varies insignificantly
over the entire time interval of interest and remains close to
unity. Then, the element r12�t� of the density matrix appears
in the third order of the perturbation theory:

r12�t� � ijbj2t
� t

0

dt1 t1
ÿ
a � � g ��t1�

�
: �3:14�

Therefore, in accordance with relationships (3.3), (3.12),
and (3.14), the field of the output mode is described by the
equation

_u�t� � ÿ2piecnr �o jbj2t
� t

0

dt1 t1
ÿ
a� g�t1�

�
:

In order to go over from u�t� to g�t�, let us multiply this
equation, in accordance with formulas (3.10), by ÿieOro=�hc:

_g � ÿx 2t

� t

0

dt1 t1�a� g�t1�
�
; �3:15�

where

x 2 � 2p
�hc

e2Oo2njroj2jrij2juij2 ; �3:16�

and e is the fine-structure constant. Taking into account that

juij2 � 2p�hc 2N

o
;

where N is the number of photons in the signal mode, the
following expression is obtained for x 2:

x 2 � �2p�2e2v 2ov 2i jr21j2jr10j2oOc 2nN : �3:17�

The division of Eqn (3.14) by t and differentiation of the
resulting equality with respect to t yield the equation

t�gÿ _g� x 2t 3g� x 2t 3a � 0 : �3:18�

The general solution of equation (3.18) is written down as

g�t� � ÿa� A sin
xt 2

2
� B cos

xt 2

2
; �3:19�

which can be verified by the direct substitution of expression
(3.15) into this equation. Because at the instant of time when
the signal appears, g�0� � 0 and g�t�=t��

t� 0
� 0 [as can be seen,

for instance, from Eqn (3.9)], then A � 0 and B � a. There-
fore, the response of the system to the incoming signal is
described by the relationship

_g�t� � ÿa
�
1ÿ cos

xt 2

2

�
: �3:20�

This means that after the arrival of the external signal, i.e.,
after producing the field ui, the field in the output mode builds
up over time t � ����������

2p=x
p

to a value roughly equal to the pump
field that is much greater than the signal field. This
characteristic response time t of the detector must be smaller
than or equal to the phase relaxation time t0. The quantity x

2

can be represented in the form

x 2 �
�
e 2

�hc

�2 �2pc�4jroj2jrij2
ViliVolo

Nn ; �3:21�

where n is the number of atoms interacting with the modes,N
is the number of photons in the signal mode, Vi, Vo are the
volumes of the signal and output modes, and li, lo are the
wavelengths of the signal and the output radiation, respec-
tively. Assuming that t � t0, formula (3.21) determines the
minimal number of photons that must be emitted in the signal
mode to ensure that the field amplitude in the output mode
could reach its maximum value during the detection time on
the order of t0. In other words, this parameter evaluates the
sensitivity of the scheme under consideration with respect to
the magnitude of the signal being received.

3.2.4 Estimates. In what follows, it is assumed that the phase
relaxation time amounts to t � 10ÿ8 s. Evidently, such a time
of transverse relaxation can be reached by cooling the active
medium to the liquid-nitrogen temperature.

If x 2 � �2p�2=t 40 and the number of photons in the signal
mode equals

N � VoloVili
�2p�2e2c 4jr12j2jr01j2nt 40

; �3:22�
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where e is the fine-structure constant, the field in the output
mode builds up to its maximum value in a time t0. For the
purpose of estimation, the transverse dimensions of the mode
are taken to be on the order of the wavelength l, and its
longitudinal size on the order of 102l. The dimensions of the
twomodes are roughly identical. Asmentioned above, time t0
is approximately 10ÿ8 s. The concentration of active atoms
amounts to n0 � 5� 1019 cmÿ3, and their total number
n � n0V. The matrix elements are estimated as
jrj2 � 2� 10ÿ19 cm2 [35]. Then, in accordance with formula
(3.21), if the number of photons in the signal mode is
N � 10ÿ8, the field in the output mode reaches its maximum
value in a time t0 � 10ÿ8 s. As mentioned above, the
maximum field in the output mode is approximately equal
to the field in the pump mode. The pump mode can contain,
say, ten photons. Consequently, the energy gain of the signal
may be very high. Certainly, the realization of such sensitiv-
ities would require serious experimental efforts and theore-
tical analysis of the quantum nature of the signal being
detected.

It was estimated that the number of spurious photons in
the signal mode at frequency o (resulting, for example, from
the nonresonant Rayleigh scattering or from the nonresonant
Raman scattering) is at least two orders of magnitude smaller
than the above N value.

One important note is in order. It was implicitly assumed
in relationship (3.13) that all active ions are located at the
same place of the resonant cavity. However, modes in optical
resonators are known to be spatially distributed and, in
particular, their phase varies from one point to another. In
this case, the output and pump modes may be in phase at
some points, and out of phase in another. In the event of
uniform spatial distribution in the cavity, the evolving active
ions follow the phase of the pump mode and can excite the
output mode in one place but suppress the existing excitation
in another. This accounts for the very weak overall interac-
tion between the modes. For this reason, the distribution of
active ions should not be uniform. They must be present only
at those places of the cavity where the output and pump
modes are in phase.

The aforesaid is illustrated by a simple example. Let us
consider a dielectric cylindrical resonator (Fig. 11), with the
output and pump modes assumed to be the so-called
`whispering gallery' modes, i.e., modes sliding around the
circumference of the cylindrical surface of the cavity. The
fields of such modes are described by the high-order Bessel
functions.

For the sake of certainty, let the output mode be described
by the distribution (j is the field point azimuth)

Emn�r;j� � Jm�amnr� sinmj :

By virtue of the boundary condition, the following
relation must be fulfilled at the cylindrical surface:

amnrc � rmn ;

where rmn is the nth root of the Bessel function derivative
J 0m�rmn� � 0. Evidently, the phase of this field depends on the
azimuth. By analogy, let the pump mode be described by a
similar distribution with other values of m and n. The
resonant frequencies of these modes may coincide at certain
selected values of m and n.

If the cavity diameter is taken, for certainty, to be 100 mm
and its height 10 mm, it is easy to show that the output mode

with indices m � 314 and n � 1 and the pump mode with
indices m 0 � 325 and n 0 � 0 are degenerate, i.e., have
identical resonant frequencies (corresponding to a wave-
length on the order of 1 mm).

It is clear that the volume of the resonator adjoining its
cylindrical surface will be divided into Dm � m 0 ÿm
�11 � 325ÿ 314� sectors (see Fig. 11). In one half of each
sector, the modes are in-phase, and in the other half out of
phase. Active ions must be distributed only where the output
and pumpmodes are in-phase (i.e., as shown in Fig. 11). Also,
it should be borne in mind that the sign of the output mode
varies with the radius; therefore, the depth of the ion
distribution must not be larger than

D � rc ÿ rm 0

am1
� rc

�
1ÿ rm 0

rm1

�
:

Given the above parameters of the resonant cavity, D is
roughly 1.7 mm; at a greater depth, the output mode changes
sign and turns out to be out of phase with the pump mode.
The distribution of active ions shown in Fig. 11 ensures
effective interaction between the modes. Certainly, it is only
one possible variant of resonant cavities for the laser
detection of weak optical signals.

3.2.5 Summary.We have demonstrated the possibility of laser
detection of optical signals, at least in the absence of phase
relaxation. It can be seen that the schemes proposed are very
sensitive ones.

3.3 Large time of the detector response to the external
signal. Consideration of phase relaxation
It will be shown in this section that phase relaxation time T,
i.e., the time of the coherent interaction between the atom and
the field, plays an important role in signal reception (such
relaxation is also referred to as transverse). At long phase

Figure 11. A resonant cavity for laser detection of optical signals; active

atoms must be located in shaded areas where the pump and output modes

are in-phase.
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relaxation times, the complete reception of a (pulsed) signal
may take time t which is smaller than T. This case has been
considered in Section 3.2 (see also Refs [21, 22]). At small
phase relaxation times, the reverse situation prevails Ð that
is, the time t of signal reception may be greater than T. We
therefore consider below a case where the signal reception
takes much more time than the phase relaxation time [22].

3.3.1 Dynamics of active atoms in phase relaxation. Phase
relaxation is taken into account as usual, by matching the
solutions together on separate coherence intervals where
relaxation is insignificant. In this case, at the beginning of
each interval, all nondiagonal elements of the density matrix
of active atoms are set to zero, and all its diagonal elements
are assumed to be continuous during the passage from one
interval to another. In other words, phase relaxation is
concentrated on an infinitely small time interval between
separate coherence intervals. Also, it should be noted that
only active atoms, not fields, undergo phase relaxation.
Relaxation times for the fields are supposed to be much
greater than all characteristic times of the problem in
question.

Let us consider the solution to the system of equations
(3.13) at nonzero initial diagonal elements

r0�0� � �r0 6� 0 ; r1�0� � �r1 6� 0 ; r2�0� � �r2 6� 0 ;

assuming that they change insignificantly on the coherence
time interval. Then, one finds

r12�t� � ÿi�z ���r2 ÿ �r1�t ; r01�t� � ÿib ���r1 ÿ �r0�t �3:23�

and

Dr1 � ÿjbj2��r1 ÿ �r0�t 2 � j�zj2��r2 ÿ �r1�t 2 ; �3:24�
Dr2 � ÿj�zj2��r2 ÿ �r1�t 2 ; Dr0 � ÿjbj2��r1 ÿ �r0�t 2 ;

where the over-bar indicates quantities practically constant
on the coherence interval and slowly varying on time intervals
much larger than the characteristic coherence time T. For the
diagonal elements of the density matrix, it is possible to
introduce so-called slow or smoothed derivatives

dr0
dt
� jbj2T�r1 ÿ r0� ;

dr2
dt
� ÿ��z�t���2T�r2 ÿ r1� ;

�3:25�
dr1
dt
� ÿjbj2T�r1 ÿ r0� �

��z�t���2T�r2 ÿ r1� :

3.3.2 Excitation current of the cavity. The atomic current
density is proportional to the electron momentum:

J�r; q� � e

m
p d�rÿ q� :

Accordingly, for the current of the j1i $ j2i transition in the
interaction representation, one has

j�r; t� � e

m

ÿh2jp d�rÿ q�j1i� exp �iOt�j2ih1j �H:c:

The average current of the j1i $ j2i transition is equal to

j�r; t�� � e

m

ÿh2jp d�rÿ q�j1i�r12�t� exp �iOt� � c:c:; �3:26�

where c.c. is the complex conjugate term. This means that
r12�t� is the sole important element of the density matrix to
determine the current exciting the output mode.

Using Eqn (3.26) for the atomic transition current and the
solution of Eqn (3.23), it is possible to calculate the amplitude
of the negative-frequency part of the current:

j 0 � ie

m
h1jp d�rÿ q�j2i�z��r2 ÿ �r1�t :

Taking into consideration that

pnl � imOnlrnl �n > l � ;

and integrating over r in accordance with expressions (3.2)
lead to the result

j 0�t� � enOr �o�z��r2 ÿ �r1�t ; �3:27�

where it was taken into account that the cavity contains n
identical active atoms.

3.3.3 The output mode field. According to formulas (3.3) and
(3.27), the increment of the negative-frequency part of the
field amplitude on the coherence interval is equal to

Du � ipnecr �o �z��r1 ÿ �r2�T 2 :

We multiply this relationship by ÿieOro=�hc to go over to g
and introduce for g the smoothed derivative

_g�t� � S��r2 ÿ �r1�
ÿ
a� g�t�� ;

where

S � pejroj2cOTn
�
e � e 2

�hc

�
: �3:28�

Since a � const, we arrive at the equation

_z�t� � S��r2 ÿ �r1�z : �3:29�

This yields the following expression for z:

z�t� � z0 exp
�
ÿS
� t 00

t 0
dt1
ÿ
�r1�t1� ÿ �r2�t1�

��
: �3:30�

Notice that the integral in formula (3.30) can be extended
over the time interval between the arrival of the signal to the
system and a given point in time due to additivity of the
exponents coming from individual coherence intervals:

z�t� � a exp
�
ÿS
� t

0

dt1
ÿ
�r1�t1� ÿ �r2�t1�

��
: �3:31�

Hence, the solution sought is given by

g�t� � ÿa
�
1ÿ exp

�
S

� t

0

dt1
ÿ
r2�t1� ÿ r1�t1�

���
: �3:32�

3.3.4 Population dynamics at active levels and the output field.
System of equations (3.25) can now be represented as

dr0
dt
� B�r1 ÿ r0� ;

dr2
dt
� ÿAZ�r2 ÿ r1� ; �3:33�

dr1
dt
� ÿB�r1 ÿ r0� � AZ�r2 ÿ r1� ;
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where

B � jbj2T ; A � jaj2T ; Z � jzj2T : �3:34�

The quantities A and B, having dimension [sÿ1], equal

A � 2pejrj2NcOT ; B � 2pejrij2NicoT ; �3:35�

where N and Ni are the numbers of photons in the pump and
signal modes, respectively. The quantity Z�t� equalling

Z�t� � exp

�
ÿ2S

� t

0

dt1
ÿ
r1�t1� ÿ r2�t1�

��
is, in accordance with formula (3.32), a measure of excitation
of the output mode; atZ � 0, the output mode turns out to be
excited up to the level of a pump mode.

It follows from Eqns (3.33) that time-dependent changes
in Z�t� are determined by parameters A, B, and S. Therefore,
their approximate values for practically realized media need
to be known for estimating Z�t�. It should be noted that the
parameters A and B are proportional to the number of
photons in the pump and signal modes, respectively, and
can vary under experimental conditions. The number of
photons in the pump mode is taken to be 100; this number
must not be too high to avoid strong nonlinear nonresonance
phenomena in the medium. The number of photons in the
signal mode is assumed to be unity in order to demonstrate
the high sensitivity of the device being considered.

3.3.5 Estimates. Parameter S is proportional to the number of
active atoms in themedium filling the cavity. In experiment, it
has a given value. For the purpose of estimation, the active
medium is chosen to be neodymium-doped garnet [23] in
which the active ion density measures � 2� 1019 cmÿ3 and
jr21j2 � 2� 10ÿ19 cm2. The volumes of all three modes are
roughly identical, amounting to � 103l3 � 10ÿ9 cm3. In this
case, one has

A � 4� 104 sÿ1 ; B � 4� 102 sÿ1 ; S � 2� 1012 sÿ1 :

Putting

r0 � r1 ÿ r0 ; r00 � r2 ÿ r1 :

in the system of equations (3.33), we then reduce this system
to two equations

dr0

dt
� ÿ2Br0 � AZr00 ;

dr00

dt
� Br0 ÿ 2AZr00

with

Z�t� � exp

�
2S

� t

0

dt1 r00�t1�
�
:

For our purposes, it is sufficient to consider only the initial
time interval in which the ground-state amplitude remains
virtually unaltered, i.e., r0�t� � ÿ1 � const. Then, in the
second equation, it is sufficient to take into account only the
first term on the right-hand side. Indeed, the second termmay
become roughly equal to the first one over the time 1=2A
(� 10ÿ5 s) at Z � 1. Meanwhile, Z�t� will practically vanish
much sooner. Actually, one obtains at the initial stage that

r00 � ÿBt ; Z�t� � exp �ÿSBt 2� :

Thus, Z�t� diminishes according to the Gaussian law with
the characteristic time

t � 1�������
SB
p � 3� 10ÿ8 s ;

during this time, the quantity r0 changes only by 10ÿ7.
It may be concluded that under the influence of a weak

signal the output mode is excited up to the level of the pump
mode during the time t. This means that the scheme
considered possesses large gain. In the presence of relaxa-
tion, the detection process is virtually the same as in its
absence (see Section 3.2). Naturally, the detector's response
time to a signal in the presence of relaxation is slightly greater
than in its absence.

4. Conclusions

The discussion of the nature of photocounts in the first part of
this review has demonstrated that they are caused by the
instability of a low electron flux induced in a photodetector by
the received radiation. This explains the main properties of
photocounts.

The possible scheme of detecting optical signals with laser
tools as described in Section 3 appears to withstand the effect
of phase relaxation processes in the medium. It is shown that
such schemes can be highly sensitive.

The most remarkable feature of the discussed laser
detection schemes is their ability to fix portions of energy
equivalent to small fractions of a quantum of the radiation
being received. Practical realization of this ability may
radically change the situation in the quantum theory of
measurements.

Another important property of laser detectors is their
ability to record weak optical signals without photocounts
because electron excitation is distributed in them over many
active atoms possessing electron subsystems well stabilized by
a strong Coulomb nuclear field. This means that shot noises
in laser detectors are strongly suppressed. The physical nature
of these noises is quite different from that in conventional
radiation detectors.
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the development of the research presented; it was easy and
gratifying to work with them. The study was supported by the
Russian Foundation for Basic Research (grants Nos 98-02-
16671 and 01-02-17479).

5. Appendices

Appendix 1. Spherically symmetric expansion
of an electron bunch
Let a spherically symmetric distribution of the charge density
s�r� be given initially, while the bunch is at rest Ð that is, the
velocities at all points of the bunch are zero. Then, the electric
field E�R� on a sphere with radius R is given by

E�R� � Q�R�
R2

; �A1:1�
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where Q�R� is the total charge enclosed by this sphere:

Q�R� � 4p
�R
0

dr r 2s�r� : �A1:2�

It should be pointed out that prior to the onset of overtaking,
the quantityQ�R� is a constant, i.e.,Q�R� � Q�R0� ifR0 is the
initial value of R. Therefore, the law of motion for charges
lying on the sphere of radius R has the form

m �R � eQ�R0�
R2

: �A1:3�

Also suppose that, in addition, the charge distribution is
Gaussian at the initial moment:

s�r� � Q0

p3=2r 30
exp

�
ÿ r 2

r 20

�
; �A1:4�

where Q0 is the total distributed charge. Then, integration of
this equation yields the dependence��

r�rÿ r0�
�1=2 � r0 ln

�rÿ r0�1=2 � r 1=2

r 1=2
0

��
r0

I�r0�
�1=2

� t ;

�A1:5�

where

r � R

r0
; r0 �

R0

r0
; t � t

t0
; �A1:6�

t0 �
�
m

e

r 30
Q0

�1=2

; I�r0� �
4

p1=2

� r0

0

dr r2 exp �ÿr2� : �A1:7�

Let us now investigate how the charge density s�R� varies
with time. It should be noted that up to the onset of
overtaking, the total charge enclosed in a thin spherical
layer of thickness dR is conserved in the course of time.
Hence, the equality

s�R�R2 dR � s�R0�R2
0 dR0

is satisfied or

s�R� � s�R0� R
2
0

R2

dR0

dR
: �A1:8�

It follows from this relationship that the charge density may
be regarded as infinite only if the derivative dR0=dR becomes
infinite, too, or if dR=dR0 vanishes (which is the same).

The derivative dR0=dR can be found by differentiating the
relation (A1.5) with respect to R0:

_R � rÿ 1

2

�
�rÿ 1�

�
�
rÿ 1

r

�1=2

ln
��rÿ 1�1=2 � r1=2

�� 3ÿ R0Q

Q
: �A1:9�

The dependence of R on R0 was calculated with a computer
and theR-dependent charge density was found from relations
(A1.8) and (A1.9). This dependence for different time instants
is displayed in Fig. 6.

At a point where the derivative dR=dR0 vanishes for the
first time, the dependence R�R0� has an inflection and can be

represented in the form

R�R0� � B� e�R0 ÿ A�3 � . . . ; �A1:10�

where A and B are certain constants. Then, R0 depends on R
as follows:

R0�R� � A�
�
Rÿ B

e

�1=3

: �A1:11�

The derivative dR=dR0 near this point takes the form

dR

dR0
� 3e�R0 ÿ A�2 � 3e1=2�Rÿ B�2=3 : �A1:12�

Thus, theR-dependence of the charge density in the vicinity of
the point where it becomes infinite can be represented as

s�R� � 1

3
s�A�eÿ1=2

�
A

B

�2

�Rÿ B�ÿ2=3 : �A1:13�

It can be seen that initiallyR and R0 are identical. Thereafter,
the bunch begins to expand and the charges on the charge
distribution slope have the highest velocities and, conse-
quently, are displaced the largest distances. As a result, the
preceding layers overtake the following ones. For example,
displacements at R0 � 1:5 are considerably greater than that
atR0 � 2:0 [6]. For t � 2:77, the values ofR corresponding to
1:5 < R < 2:0 become equalized, which implies the beginning
of overtaking and an increase in the charge density until it
becomes infinite. Figure 4 demonstrates the formation of a
maximum in the charge density distribution and its sharpen-
ing with time near R � 3:65. The peak density at t � 2:77 is
almost four orders of magnitude greater than at the center of
the distribution. It tends to infinity if electron wave properties
are disregarded.

Appendix 2. Movement of an electron wave packet
in an electromagnetic field
It has been shown in this review that isolated electron wave
packets in vacuum photodetectors, such as photomultipliers,
have a relatively large size and, thus, can be observed with
the help of modern technical means. It has also emerged
from the discussion of the nature and mechanisms of
formation of such wave packets that their possible cause is
the Coulomb instability of a quasi-uniform low-density
electron flux.

In this context, it is of interest to consider movements of
electron wave packets in electromagnetic fields of a suffi-
ciently general form on the sole condition (always fulfilled in
the aforementioned devices) that the characteristic size of the
spatial variations of these fields be substantially larger than
the characteristic size of the packets. In this case, the fields
inside the packet and in its immediate neighborhood can be
expanded in a series and in the calculations made we take into
account only the terms of the zero, first, and second orders
with respect to displacements of the points of the packet from
its center. It turns out that in this approximation the center of
the packet moves along a classical trajectory, and the matrix
of its parameters obeys a Riccati-type matrix equation. In
what follows, the derivation of this equation is described, its
properties are discussed, and a simple example of the packet
motion in a uniform magnetic field is considered. Special
cases of this equation are dealt with in Refs [6, 9, 10].
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The Hamiltonian that describes the wave packet motion
has the following form

H � 1

2m

�
pÿ e

c
A�r�

�2

� eU�r� ;

where p, r are the momentum and the coordinate of the
electron, and A�r; t�,U�r; t� are the vector and the scalar field
potentials, respectively, that are actually the given functions
of the coordinates and time. This Hamiltonian is known to
yield ordinary classical equations of motion for a point
electron:

_r � 1

m

�
pÿ e

c
A�r�

�
;

�A2:1�
_p � ÿ 1

2m
grad

�
pÿ e

c
A�r�

�2

ÿ e gradU�r� ;

which, in the Newtonian representation, take the form

m�r � eE�r; t� � e

c

�
_r�H�r; t�

�
;

where E�r; t� and H�r; t� are the electric and the magnetic
fields, respectively, so that

E�r; t� � ÿ 1

c

qA�r; t�
qt

ÿ gradU�r; t� ; H�r; t� � rotA�r; t� :

Let us consider the motion of an electron wave packet in
an electromagnetic field, when the characteristic size of field
inhomogeneity markedly exceeds the packet dimensions. For
this purpose, the solution of the SchroÈ dinger equation should
be sought in the form of a Guassian wave packet:

C�r; t� � C exp

�
ÿ�q;Fq� � i

�h

�
p0�t�q� E�t��� ;

C �
��

2

p

�3

detReF�0�
�1=4

;
�A2:2�

where F�t� is the complex symmetric 3� 3 matrix,
q � rÿ r0�t�, and the parameters r0�t� and p0�t� describe the
motion of the wave packet center. In case of the Coulomb
gauge, namely

divA�r; t� � 0 ; DU�r; t� � 0 ;

the SchroÈ dinger equation has the form

i�h
qC
qt
�
�

1

2m
p2 � eU�r� ÿ e

mc
A�r�p� e 2

2mc 2
A2�r�

�
C :

�A2:3�

The substitution of the wave packet (A2.2) into this equation,
followed by its division by the same relationship (A2.2), yields
the expression

i�h
�ÿ�q; _Fq� � 2�_r0;Fq� � � _p0qÿ p_r0 � _E ��

on the left-hand side of the SchroÈ dinger equation; this
expression contains q-independent and linear terms as well
as terms quadratic in q. Taking into consideration the
expansions for the scalar and vector potentials

U�r� � U�r0� � �qHH�U�r0� � 1

2!
�qHH�2U�r0� � . . . ;

A�r� � A�r0� � �qHH�A�r0� � 1

2!
�qHH�2A�r0� � . . . ;

the right-hand side of the SchroÈ dinger equation can also be
represented as the sum of the q-independent, linear and
quadratic in q terms. The collection of terms that do not
contain q gives an equation that defines the function E�t�:

_E � 1

2m
p20 ÿ eU�r0� ÿ e 2

2mc 2
A2�r0� ÿ �h2

m
SpF :

Similarly, collecting terms of the first order with respect to
q gives the Hamiltonian equations (A2.1) for the parameters
r0�t�, p0�t�. It means that the center of the wave packet moves
along the classical trajectory. The terms of a second-order
smallness in q yield

ÿ i�h�q; _Fq� � 2�h2

m
�q;F 2q� � 1

2
e�qHH�2U�r0�

ÿ 2ie�h

mc

��qHH�A�r0��Fq
ÿ e

2mc

�
p0 ÿ

e

c
A�r0�

���qHH�2 A�r0��� e 2

2mc 2
��qHH�A�r0��2 :

By reducing all the terms in this expression to the standard
form

�q;Mq� ;

where M is a certain 3� 3 matrix, we obtain the following
nonlinear equation of the Riccati type for the matrix F:

i�h
qF
qt
� 2�h2

m
F 2 � ie�h

mc

�
d
ÿ
A�r0�

�
F� FdT

ÿ
A�r0�

��
ÿ e 2

2mc 2
�
d
ÿ
A�r0�

�
dT
ÿ
A�r0�

��
ÿ 1

2
eD2U�r0� � e

2c

ÿ
_r0 D2A�r0�

�
; �A2:4�

where d
ÿ
A�r0�

�
,D2A�r0�,D2U�r0� are the matrices defined by

spatial derivatives of the potentials with respect to compo-
nents of r0:

d
ÿ
A�r0�

� �
qAx

qx
qAy

qx
qAz

qx
qAx

qy
qAy

qy
qAz

qy
qAx

qz
qAy

qz
qAz

qz

0BBBBBB@

1CCCCCCA ;

D2A�r0� �

q2A
qx 2

q2A
qx qy

q2A
qx qz

q2A
qy qx

q2A
qy 2

q2A
qy qz

q2A
qz qx

q2A
qz qy

q2A
qz 2

0BBBBBBB@

1CCCCCCCA ;

D2U�r0� �

q2U
qx 2

q2U
qx qy

q2U
qx qz

q2U
qy qx

q2U
qy 2

q2U
qy qz

q2U
qz qx

q2U
qz qy

q2U
qz 2

0BBBBBBB@

1CCCCCCCA :

These matrices are the time functions because r0 � r0�t�, in
conformity with equation (A2.1).
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The introduction of a new matrix F instead of F, namely

F � m

2�h
F ; F � 2�h

m
F ;

leads to

i _F � F2 � ie

mc

ÿ
d�A�F� FdT�A��ÿ e

m
D2U

ÿ e 2

m 2c 2
ÿ
d�A� dT�A��� e

mc
�_r0D2A� : �A2:5�

Notice that we may do away with the Coulomb gauge of
the potentials. For this, the vector potential A�r0� in the last
term of Eqn (A2.5) must be substituted by its eddy, i.e.,
transverse, part A?�r0�

ÿ
divA�r0� � 0

�
.

Although the matrix equation (A2.5) of the Riccati type is
nonlinear, it can be reduced (for an arbitrary n� n dimen-
sion) to a set of linear equations. For this, a system of such
equations

dX

dt
� A1X� A2Y ;

dY

dt
� A3X� A4Y �A2:6�

should be considered, where X, Y are the n-component
vectors, and Ai are the n� n matrices (arbitrary time
functions). System (A2.6) has n linearly independent solu-
tions that can be regarded as columns of the matrices X̂, Ŷ. It
is demanded that initially matrix Ŷ be unit and matrix X̂ be
coincident with F�0� � F0. The solution of system (A2.6)
under the boundary conditions said (which is not always
simple) leads to n� n-matricesX�t� andY�t�. These matrices,
in the same way as vectors X, Y, satisfy equations (A2.6).
Matrix F�t� is defined by the equality

F�t� � X�t�Yÿ1�t� ; �A2:7�
evidently, this matrix has an initial value equal to F0.
Differentiating this expression with respect to time and
making use of Eqn (A2.6) convinces us that the matrix F�t�
obeys the equation

_F � ÿFA3F� A1Fÿ FA4 � A2 ; �A2:8�

i.e., a nonlinear matrix equation of the Riccati type. In this
way, having found the solutions of the linear system (A2.6), it
is possible to solve the nonlinear matrix equation (A2.8) with
the help of relationship (A2.7).

It is easy to see that Eqn (A2.5) forF represents equations
of the (A2.8) type; indeed, it converts into (A2.8) at n � 3 and

A1 � e

mc
d�A� ;

A2 � i

�
e

m
D2U� e 2

m 2c 2
ÿ
d�A� dT�A��ÿ e

mc
�_r0 D2A�

�
;

A3 � ÿiI ; A4 � ÿ e

mc
dT�A� :

It can be proven that the solution of Eqn (A2.7) for the matrix
F�t� remains invariably symmetric, provided the initial
matrix F0 is symmetric, too.

Let us consider, by way of illustration, the motion of a
wave packet in a longitudinal, uniform, and constant,
magnetic field described by the vector potential

A�r� � 1

2
H�ÿy; x; 0� ÿ

divA�r� � 0
�
:

In this case, we have

d
ÿ
A�r0�

� � 1

2
H

0 1 0
ÿ1 0 0
0 0 0

 !
and D2A�r0� � D2U�r0� � 0. It can be seen that the longi-
tudinal distribution of the packet behaves as in a free space.
For the transverse components, there is equation

i _�F � �F2 � iO�s �F� �FsT� ÿ O2I ; �A2:9�

where �F is the 2� 2 matrix, and

s � 0 1
ÿ1 0

� �
;

and O � eH=2mc is the Larmor precession frequency.
In a special case, when the wave packet is axially

symmetric about its rectilinear trajectory, matrix �F can be
proportional to the identity matrix:

�F � OW�t�I ;
while

t � Ot ; I � 1 0
0 1

� �
;

andW�t� obeys the equation
W 0 � i�1ÿW 2� ;

where the prime denotes differentiation with respect to t. This
equation has the solution

W�t� � �1�W0� exp �iOt� ÿ �1ÿW0� exp �ÿiOt�
�1�W0� exp �iOt� � �1ÿW0� exp �ÿiOt� ;

whereW0 is the initial value ofW�t�. The real part ofW�t� is
given by

ReW�t� � W1

�cosOtÿW2 sinOt�2 �W 2
1 sin

2 Ot
;

where W1, W2 are the real and the imaginary parts of W0,
respectively. Thus, the transverse dimensions of the wave
packet oscillate with the double Larmor frequency. The
maximum and minimum values of ReW�t� equal W1 and
�1�W 2

2 �=W1, respectively. When W0 is unity, then the
solution is stationary Ð that is, a wave packet of the
transverse size

d � 2

�������
�hc

eH

r
�

��������
2�h

mO

r
retains its dimensions when travelling in a longitudinal
magnetic field. There is another, less symmetric solution of
Eqn (A2.9) that describes wave packets flattened in the
transverse direction:

�F � O 1� Z iZ
iZ 1ÿ Z

� �
;

where Z is the arbitrary complex number �jZj < 1�. This
solution can be simplified by rotating the axes through the
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angle j=2, where j � argZ:

�F 0 � O
1� jZj ijZj
ijZj 1ÿ jZj

� �
;

whence the flatness is immediately apparent.
To conclude, the evolution of the wave packet in an

electromagnetic field of a sufficiently general form is
described by the nonlinear matrix equations, either (A2.4) or
(A2.5), of the Riccati type. These equations are applicable to
the description of the evolution of wave packets in a broad
class of vacuum devices.
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