
Abstract. The review examines the dynamics of a special class
of magnetic substances (magnetically ordered crystals) in which
the magnetic atoms do not coincide with the symmetry center
(provided that such a center exists in the crystal). Research into
the magnetoelectric and antiferroelectric interactions in such
magnets has led to a new section in the spin dynamics of both the
electrical and nuclear subsystems. The review is based primarily
on the latest works (2001 ± 2004) done by theoretical physicists
from the Ural region. Several results of the pioneering works
(1988 ± 1990) of Ukrainian physicists, who opened this new
section in spin dynamics, are also discussed. All this research
has made it possible to compare the predicted effects for differ-
ent crystal systems and thus has provided a more meaningful
arrangement of the desired experiments.

1. Introduction

Magnetically ordered substances are lumped together as
magnets irrespectively of the type of their ordering: ferro-
magnetic (FM), antiferromagnetic (AFM), or ferrimagnetic
(FIM). It must be immediately noted that after the well-

known works of Dzyaloshinskii [1] it proved convenient and
to a certain extent even important in the physical and
symmetrical aspects to describe some magnets not in terms
of the magnetizations Mn�r� �n � 1; 2; 3; . . .� of their sub-
lattices, but in terms of the vector of total local magnetization
M�r� and the vectors (or vector) of antiferromagnetism, L�r�.
By way of illustration, for a two-sublattice magnetic sub-
stance �n � 1; 2�, the following relations hold true:

M �M1 �M2 ; �1�
L �M1 ÿM2 : �2�

Small linear oscillations of magnetic moments are
described by spin waves, or magnons. The first theoretical
investigation of spin waves (for ferromagnets) was carried out
more than 70 years ago by F Bloch [2]. Dozens of mono-
graphs and reviews and, possibly, thousands of papers on the
subject have appeared since Bloch's paper was published in
1930. An example is a very thorough book written by the
present authors in collaboration with colleagues [3] that
appeared rather recently (in 2001). However, and this may
seem remarkable, the vast literature contains almost no
mention of an entire section of magnetodynamics. We are
speaking of the dynamic phenomena in magnetic substances
whose crystallochemical structure exhibits the property of
spatial inversion, i.e., has a center of symmetry 1, with the
center implementing a nonidentical permutation of magnetic
atoms (into each other and not into themselves) of the same
position of multiple points.

It is significant that the present review is devoted not to
particular problems of magnetodynamics of secondary
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importance. Instead we focus on new important aspects of the
problem that have not found sufficient coverage in such
problem-oriented review journals as Physics ±Uspekhi.

Here are only three main groups of the above-mentioned
phenomena that are treated in this review.

First, we discuss a new unusual type of spin wave. A
characteristic feature of waves of this kind is that only the
antiferromagnetic vector (or vectors)Loscillates [see Eqn (2)],
while the magnetization vectorM defined by equation (1) is at
rest. In 2001, one of the present authors (E A T) proposed a
special name for such waves, antimagnons (see Ref. [4]). In
contrast to other types of magnons (ferromagnons, quasifer-
romagnons, and quasiantiferromagnons), in which the
components of the vectorM that are capable of being excited
by an alternating magnetic fieldH�t� also belong to the group
of oscillation variables, antimagnons can usually be excited
only by an alternating electric field E�t�. Another character-
istic feature of antimagnons is that their natural frequency
often has an exchange origin; this, however, is true only of
collinear and weakly (relativistically) noncollinear magnetic
structures and, generally speaking, is not true of exchange-
noncollinear structures (see Section 7).

The excitation of antimagnons and sometimes of other
types of magnons (see below) is caused by respective linear (in
the fieldE) magnetoelectric (ME) and antiferroelectric (AFE)
interactions of the following forms

si j kMiLjEk ; �3�
fi j kL1iL2jEk �L1 6� L2� : �4�

The specific form of the tensors si j k and fi j k is determined by
the requirement that expressions (3) and (4) must be invariant
with respect to the symmetry elements of the corresponding
space group of the crystal. The common convention of
summation over the twice repeating indices is applied here.

The static (and quasistatic) ME effect (exposed by
D N Astrov [5] in 1960), i.e., induction of magnetization M
by an electric field, and the inverse effect, namely, induction
of polarization P by a magnetic field, have been studied for a
long time (e.g., see Refs [6, 7] and the review in Ref. [3]).
However, it turned out that the dynamicmanifestations of the
ME interaction (plus the AFE interaction) are much richer
(see the preprint [8]), and the present review is devoted to
precisely these manifestations.

Suppose that one of the two magnetic vectors (M or L) is
at rest and determines the ground state (with the lowest
possible energy) we are interested in. Then an electric field
E�t� / exp �ÿiot� will `sway' the second vector (within the
framework of linear response), with the possibility of the
above purely AFM oscillations, or antimagnons, being
excited in the FM phase.

The second group of phenomena caused byME and AFE
interactions are the waves of antimagnons and other electro-
active spin waves coupled with electromagnetic waves, i.e., a
magnon ± photon resonance in a field E�t� of a certain
frequency.

If we are dealing with antimagnons, both groups of
phenomena belong to a fairly high (exchange) frequency
range (however, see Section 7). But there is also a third, low-
frequency, group of phenomena related to oscillations of M
or L vectors caused by an electric field E�t�. What we have in
mind is the excitation of oscillations of nuclear magnetic
moments in the magnets by a field E�t� of the appropriate
frequency o � on [the nuclear magnetic resonance (NMR)

frequency]. The reason for such excitation is that the
oscillations ofM and L generated by such a field E�t� because
of interaction (3) or (4) contribute to the hyperfine field (to its
permanent and varying parts), thus leading to a new
resonance effect, the nuclear magnetoelectric resonance
(NMER) [8], as it is called. Such excitation of NMR by an
electric field, predicted theoretically in Refs [8, 9], has not so
far been observed in experiments.

A number of other effects related to antimagnons and
their interactions (3) and (4) have been studied (or at least
mentioned as problems) in Ref. [8], with a consistent transfer
from simple cases to more complex ones. It must be noted,
however, that it would, generally speaking, be incorrect to
claim that the research covered in the present review began
with paper [4] published in 2001. Actually, the idea underwent
considerable modifications. The thing is that in 1988 several
articles appeared in leading Soviet physics journals [10 ± 13]
and in a collection of works [14], written by the well-known
Ukrainian physicists D A Yablonskii, V N Krivoruchko,
V V Eremenko et al. These articles contained some of the
main ideas and results we discussed earlier in this review,
which, it would seem, could serve as a good starting point for
the above-mentioned section of the dynamics of magnetic
substances. What was really remarkable and unexpected was
that this did not happen: we know of no works of other
researchers on this topical problem, and Refs [10 ± 14] were
scarcely cited in other works. Here we will not discuss the
reason for this. Suffice it to note that the author of Ref. [4]
`rediscovered' some of the ideas and results almost a decade
later. With the articles that followed, the author of Ref. [4]
and his coauthors were `lucky' only in the sense that the
subject of their research and the methodical approach they
used (which is, of course, not that important) differed from
those used in Refs [10 ± 14], where only antiferromagnetic
structures, such as a-Fe2O3, Cr2O3, orthoferrites, and others
(with four or more magnetic sublattices) were studied.
Contrary to this, the author of Ref. [4] began, as it turned
out, with the simplest ferromagnetic structures with two
magnetic sublattices �n � 2�, and only later did he study
more complicated structures (FM, AFM, FIM) with n > 2.
Moreover, the area of research widened and finally became a
new section of magnetodynamics, which we would like to
describe in this review more or less concisely and in plain
words.

Due to the large volume of material, in citing this or that
original paper we are forced to limit ourselves to its simplest
part (to an extent that will help judge the important aspects of
the topic). For uniaxial crystals, only the easy-axis case is
usually described, although in the works cited the results are
generally given for the easy-plane state, too.

It is advisable to begin our consideration with the simplest
case of a two-sublattice centrally antisymmetric (CAS) ferro-
magnet, although the corresponding paper [4] was not the
first in this area of research.

2. A two-sublattice ferromagnet
with magnetoelectric interaction

2.1 The magnetic structure, the functions describing it,
and their transformation table
Let us examine a two-sublattice ferromagnet with the
coordinates of the magnetic atoms being 1�x; 0; 0� and
2�ÿx; 0; 0�. In Fig. 1, these atoms are depicted as �'s. The
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space symmetry of the corresponding crystal (it is commonly
assumed that the magnetic and chemical unit cells coincide)
may, for one thing, be described by the Fedorov group
Pmmm � D1

2h of a rhombic system. 1 In Fig. 1, this group is
represented by three independent symmetry elements (the
generators of the group): the symmetry center Ð space
inversion 1 Ð and two simple (nonscrew) two-fold axes
2xkX and 2ykY [15]. Being elements of a space group, they
break down into two types according to their permutation
properties (in relation to the selected position of the atoms).
The 2x axis which passes through both atoms permutes each
atom into itself: 2x1 � 1 and 2x2 � 2, and this is known as an
identity permutation. We label such elements by a `plus' sign
in parentheses: 2x � 2x���. The elements 1 and 2y (see Fig. 1)
perform a nonidentity permutation (interchanging of the
atoms):

1�ÿ�1 � 2; 1�ÿ�2 � 1; 2y�ÿ�1 � 2; 2y�ÿ�2 � 1: �5�

To distinguish between these elements from the previous
ones in their permutation properties, we label them with a
`minus' sign in parentheses.

On the whole, allowing for the permutations (5) of the
atoms into positions of multiple points, we can write the
elements adopted as the generators of the symmetry group as
follows:

1�ÿ�2x���2y�ÿ� : �6�
We call this the permutation code of the position of the atoms.
Sometimes the elements with a `plus' or a `minus' sign are said
to be `even' and `odd', respectively [10 ± 14].

The set of elements (generators) written in this way in the
single-position case under consideration provides all the
information about the space group �D1

2h� we are interested
in, which is necessary if we want to find (in terms of the
symmetrically arranged vectors M, L, E, etc.) the invariant
form of the thermodynamic potential, the constitutive
tensors, and the like. The elements 1, 2x, and 2y act on the
vectors M, L, and E similar to point-group elements, for
example:

1M �M ; 1L � L ; 2xLy � ÿLy ; 2yLy � Ly : �7�

If, however, we allow for permutations (5), coded in
expression (6) and arising from the need to use a space
symmetry group, we arrive at certain alterations of these
transformations (this is usually associated with an additional
change in sign). For instance, if we allow for relationship (5),
we get, accordingly, 1�ÿ�L � ÿL and 2y�ÿ�Ly � ÿLy. At the
same time, one finds 2x���Ly � ÿLy [as in Eqn (7)], and so
forth, as for an ordinary point group. The components of the
fields E andH are not affected by the permutation.

It is convenient to tabulate what we have just said about
the vectorsM,L,E, andH (see Table 1), in which the numbers
�1 andÿ1 determine whether the sign of the function changes
�ÿ1� or does not change ��1� as the symmetry element acts on
the function.

The axial vectors M and H are transformed in like
manner, but the polar vector E is transformed differently.

Thus, all six dynamical variables �Mx;My;Mz;Lx;Ly;Lz�
that describe the behavior of the magnetic substance occupy
different rows �G1ÿG6� in the table and all transform
differently. This is a very important fact, and it is usually
said in group-theoretical analysis that the variables �Mi;Lj�
break down into one-dimensional irreducible representa-
tions. To each representation, i.e., to each row Gn, there
corresponds a certain magnetic structure (phase) in which in
the ground state only one function out of the all six
components of the row in question is not equal to zero. If we
were to deal with the sublattice variables M1i and M2i

�i � x; y; z�, in each row there would be a linear combination
of these variables.

Thus, it turns out that the vectors M and L are basis
vectors. This is a vivid demonstration of the effectiveness of
using the vectors of antiferromagnetism and total magnetiza-
tion.

Table 1 contains all the information needed to study the
problems we are interested in here: we are able to write
down invariant expressions for the thermodynamic poten-
tial F, for the constitutive tensors determined by the
quantities in Table 1, and so forth.

1 Usually, an international system of notation is used for the symmetry

elements and the symbols of the symmetry group: numbers for symmetry

axes (including the center of symmetry), and letters for symmetry planes.

The same numbers are used to enumerate the atoms in the unit cells, while

letters denote other variables, and both may be present in the formulas at

the same time. Therefore, to avoid confusion, we use bold type for the

symmetry elements (e.g., 1 instead of 1,m instead ofm, etc.). Of course, to

a certain extent this violates the common system of notation andmay draw

unfavorable criticism from the vigilant reader, but we were forced to do

this to make the text easier to read.

2

1

X

�1 2y�ÿ�

2x���

Y

Figure 1. Two sites (denoted by �'s) for position 2i of group Pmmm. Also

shown are the symmetry elements 1, 2x, and 2y Ð the generators of the

group. Note that 1 and 2y permute the atoms 1 and 2, while the axis 2x
passing through the atoms leaves each in place.

Table 1.Transformation of the basis vectorsM andL, position 2i of group
D1

2h.

Gn Dynamical
variables

1�ÿ� 2x��� 2y�ÿ� Static and alternating
éelds

G1

G2

G3

G4

G5

G6

Mx

My

Mz

Lx

Ly

Lz

�1
�1
�1
ÿ1
ÿ1
ÿ1
ÿ1

�1
ÿ1
ÿ1
�1
ÿ1
ÿ1
�1

ÿ1
�1
ÿ1
�1
ÿ1
�1
ÿ1

Hx

Hy

Hz

Ez

Ey

Ex
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Moreover, Table 1 makes it possible to single out the sets
of oscillation spin-wave variables corresponding to indepen-
dent oscillation modes (even before the expression for the
thermodynamic potential and the equations of motion have
been written). Obviously, and we demonstrate this in
Sections 2.2 and 4.2, such an approach simplifies the
calculations substantially. To obtain a set of spin-wave
variables for a phase Gm entering Table 1, we must select in
this table the rows Gn and Gn 0 whose products (pairwise from
the numbers �1 and ÿ1 that are present in these rows) yield
the row Gm. Symbolically, this can be represented as follows
[3, 16]:

Gn � Gn 0 � Gm : �8�
For instance, for the FM structure we are primarily interested
in, namely, the phase G1�Mx�, we find two modes
G23�My;Mz� and G56�Ly;Lz�. Note that, being eigenmodes,
they belong to independent pairs of the oscillation variables
�My;Mz� and �Ly;Lz�. It is these modes that we investigate in
the present review.

2.2 Thermodynamic potential, equations of motion,
and their solution with allowance for ME interaction
Let us first write down the thermodynamic potential density
F�r� for the case of a homogeneousmedium in uniform fields.
Here, we distinguish at once between two types of interaction
in the M, L system: the exchange interaction and the
relativistic interaction [17]. The former is determined solely
by the angles between the magnetic moments proper (but not
by the angles between the magnetic moments and the
crystallographic axes), with the result that invariant expres-
sions for this interaction can consist only of scalar products of
the vectors M and L, including various powers of these
vectors (beginning with the square of a vector). The second
interaction is magnetically anisotropic or relativistic (since its
coefficients must contain a small relativistic parameter v=c,
where v and c are the electron speed in the atom and the speed
of light). Actually, today we know that such a decomposition
of interactions is not always justified (see the literature cited in
Ref. [3]), but here we consider only the simplest case. We also
allow for the interaction with the fields H and E.

Limiting ourselves to the bilinear approximation (in M
and in L) and using Table 1, we find an expression for the
potential density that is invariant under transformations
belonging to Table 1:

F�r� � 1

2

��AMM2 � ALL
2� � �KM1M

2
y � KM2M

2
z �

� �KL1L
2
y � KL2L

2
z�
�ÿMxHx

ÿ 1

2M0

��s1LyEy � s2LzEz�Mx

� �s3MxLx � s4MyLy � s5MzLz�Ex

� �s6MyEy � s7MzEz�Lx

�
: �9�

Here, AM and AL are the parameters of the exchange
interaction, KM1�2� and KL1�2� are the magnetocrystalline
anisotropy constants, and s1; . . . ; s7 are the appropriate
components of the tensor si j k in expression (3).

According to Landau's concept, the phase transition into
a magnetically ordered state usually proceeds along a single
representation. Hence, below we limit ourselves to the
analysis of the phases corresponding to one of the irreducible
representations.

We decided to start with the phase M 0 k X [the represen-
tation G1�M 0

x �]. Hereinafter the `zero' is usually an upper
index and corresponds to the ground state (i.e., the state with
the lowest energy). In the ground state, the other components
ofM and L are equal to zero, provided there are no fields and
no other external interactions:

Mx �M 0
x � 2M0 ; M 0

y �M 0
z � 0 ; L0 � 0 ;

where M0 is the nominal length of the sublattice magnetiza-
tion vector. We simplify the problem by adopting the very
popular equal-modulus model in which it is assumed that
M2

1 �M2
2 �M 2

0 or (in terms ofM and L)

M2 � L2 � �2M0�2 ; LM � 0 : �10�

In the ground state, the quantities contained in Eqn (9)
must obey the following inequalities: AM < 0, AL > 0,
KM1�2� > 0, and KL1�2� > 0. Only then will the FM state of
interest to us withM 0 k X be realized.

In the linear oscillation theory we must then put
M �M 0 � DM and L � L0 � DL, thus separating the
oscillation part from the ground state and isolating in F [see
Eqn (9)] the part F2 that is quadratic in DM and DL, with
allowance for formulas (10). Here, the first equality in
formulas (10) can be used to exclude the first exchange term
(the one with the coefficient AM) from the right-hand side of
expression (9). Moreover, the same relation suggests that the
field component in expression (9) also contributes through
Mx to F2, by virtue of the fact that

Mx � 2M0 ÿ
DM 2

y � DM 2
z � DL2

y � DL2
z

4M0
:

Bearing in mind the aforesaid, we find that F2 breaks
down into two independent parts: the purely ferromagnetic
part

F2M � 1

2

�
KM1 � Hx

2M0

�
DM 2

y �
1

2

�
KM2 � Hx

2M0

�
DM 2

z �11�

(containing only DM), and the purely antiferromagnetic part

F2L � 1

2

�
A1 � Hx

2M0

�
DL2

y �
1

2

�
A2 � Hx

2M0

�
DL2

z

ÿ s1DLyEy ÿ s2DLzEz �12�

(which incorporates only DL), where

A1 � AL ÿ AM � KL1 ; A2 � AL ÿ AM � KL2 :

This result, namely, the separation of the oscillation part F
into two independent parts F2M and F2L, agrees with the
representations G23�My;Mz� and G56�Ly;Lz� for the FM
phase G1�M 0

x �, obtained earlier [on the basis of formula (8)].
Using the relationship F2 � F2M � F2L, we need only

solve the equations of motion with allowance for the electric
field Ey;Ez / exp �ÿiot�. If conditions (10) are met, the
equations of motion are the Landau ±Lifshitz (LL) equa-
tions, which for the two-sublattice cases take the form [18]

_M � g
�
M� qF2

qM
� L� qF2

qL

�
; �13�

_L � g
�
M� qF2

qL
� L� qF2

qM

�
; �14�
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where the dot over indicates a time �t� derivative, and g is the
absolute value of the gyromagnetic ratio. In the linear
approximation, the first equation proves to be an equation
forDMy andDMz, and it can be solved if we take into account
expression (11) for F2M, while the second equation is an
equation for DLy and DLz in which we took into account
expression (12) for F2L.

2.2.1 The magnetoactive ferromagnon mode C23�DMy;DMz�
in the C1�M 0

x � phase. Ferromagnons. The solutions of
equation (13) differ in no way from the solutions for an
ordinary (single-sublattice) rhombic ferromagnet (e.g., see
Ref. [3]) and are ferromagnetic spin waves with a natural
frequency (their gap)

oM � g
�������������������������������������������������������������������
�2M0KM1 �Hx��2M0KM2 �Hx�

p
: �15�

Another name for these waves is homogeneous ferromag-
nons. Since expression (11) for F2M does not contain ME
interactions, ferromagnons do not interact with the electric
field E�t�. They are excited by an alternating magnetic field
H�t� ? X, whose frequency is close to oM.

2.2.2 The electroactive antimagnon mode C56�DLy;DLz� in the
ferromagnetic C1�M 0

x � phase. The fact that our magnetic
substance constitutes a two-sublattice one suggests that
there is one more branch of spin waves that represent
oscillations of the vector L (2), with the total local FM vector
M (1) remaining constant. 2 Here, equation (14), together with
expression (12), yields

DLi � bi jEj �i; j � y; z� ; �16�
where bi j is the electric antimagnon susceptibility with the
following nonzero components

byy � s1
2M0

2M0A2 �Hx
b�o� ; bzz � s2

2M0

2M0A1 �Hx
b�o� ;

bzy � is1
2gM0o
o2

L

b�o� ; byz � ÿ
s2
s1

bzy ; �17�

b�o� � o2
L

o2
L ÿ o2

:

The quantity

o2
L � g2�2M0A1 �Hx��2M0A2 �Hx� �18�

determines the frequency of antimagnon resonance (the
homogeneous case) which is an addition to ferromagnon
resonance corresponding to frequency (15) (see Fig. 2). As
Fig. 2b and formulas (16) and (17) clearly show, for the vector
L � DL there is elliptic (for the rhombic case) precession
about the axisX kM 0, similar to the precession for the vector
DM �MÿM 0 (Fig. 2a).

2.3 Spatial dispersion. Heat losses due to antimagnon
excitation by field E�t�
Spatial dispersion (the dependence ofoM andoL on the wave
vector k) can also be taken into account by introducing
inhomogeneous terms into the initial potential F (9), terms
with spatial derivatives of M and L. Note that the following

result has been obtained for small k's [8]:

oM�k� � oM�0� �DMk2 ; �19�
oL�k� � oL�0� �DLk

2 ;

where oM�0� � oM is the FM resonance frequency (15),
oL�0� � oL is the antimagnon resonance frequency (18),
while DM and DL are constants. In both cases, the dispersion
law is quadratic and, generally, DM and DL are matrices of
rhombic symmetry.

As for the minimum frequency (the gap in the spectrum),
here the situation is quite different: oM usually resides in the
microwave frequency range, while oL [the exchange interac-
tion contributes the most to this frequency; see formula (18)]
usually lands in the optical (IR or, possibly, the submilli-
meter) range. Moreover, one must not forget that ferromag-
nons are excited by a magnetic field, while antimagnons are
excited by an electric field.

In analyzing resonance phenomena in the field E � E�t�,
one must bear in mind heat losses Q due to antimagnon
excitation. To evaluate these losses, it is convenient to first
represent the ME interaction [the last two terms in F (9)] as
ÿPyEy ÿ PzEz, where Py � s1Ly and Pz � s2Lz are the
components of the vector P of effective polarization related
to L.

Absorption can then be written in the well-known form
[19]

Q � ÿP dE

dt
; �20�

where the line above the right-hand side indicates averaging
over the time t4 2p=o.

Let Ez � 0. The cofactors in the quadratic expression (20)
must be taken in the real-valued form, for example:

RePy�t� � 1

2
s1
�
byyEy exp �ÿiot� � b�yyE

�
y exp �iot�

�
:

Reasoning in a similar manner, we arrive at ReEy, with the
result that

QEy
� 1

4
s1io�b �yy ÿ byy�jEyj2 � 1

2
s1ob

00
yyjEyj2 :2 What we mean here is that the entire vector M, and not only its length

jMj, is constant.

Ferromagnon

M2

M1

DM

a

Antimagnon

M2

b

M1

L

Figure 2. Two types of precession of vectors M1 and M2: (a) the

ferromagnon type DM �MÿM 0, and (b) the antimagnon type DL � L.
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Here, to obtain the imaginary part of the susceptibility b we
must take dissipation into account in Eqn (17). In the simplest
case, this is achieved through the substitution o! o� iG
(G is the half-width of the resonance curve).

Similar results are also obtained for Ez 6� 0 and Ey � 0.
But if Ez 6� 0 and Ey 6� 0, the contributions of the compo-
nents Ey and Ez mix in a nonadditive way.

2.4 Transfer to tetragonal symmetry
The above results can be extended to some tetragonal
magnets Ð one must only make sure that a four-fold axis,
either 4��� or 4�ÿ�, which complements the rhombic group
Pmmm �D1

2h� to the respective tetragonal group, is directed
along the symmetry axis 2 � 2��� in such a way that the
following condition is satisfied:

42j ��� � 2j��� : �21�
In tetragonal crystals, the symmetry axis 4 is usually

assumed to be the coordinate Z-axis, so that in code (6) it is
advisable to perform a cyclic permutation of the coordinates:

x! z! y! x : �22�
Then the code assumes the form 1�ÿ�2x�ÿ�2z���, and adding
to it 4z��� or 4z�ÿ� according to Eqn (21), we arrive at two
tetragonal groups with the following position codes:

I: 1�ÿ�2x�ÿ�4z��� ; II: 1�ÿ�2x�ÿ�4z�ÿ� : �23�

Clearly, the bilinear thermodynamic potential F can be
used in the previous form (9), but two additional conditions
must be added: first, the cyclic permutation (22) must be
taken into account and, second, the coefficients must be
corrected so that they incorporate the fact that F is invariant
with respect to the symmetry axes 4z��� and 4z�ÿ�. This leads
to A1 � A2 � AL ÿ AM � KL � J, since the anisotropy con-
stants in the tetragonal case are equal: KL1 � KL2 � KL.

Here, the antimagnon resonance frequency (18) (in the
geometry similar to that used in Section 2.2.2) assumes the
form oL � g�2M0J�Hz�.

As for the ME constants s1 and s2, in contrast to the
situation examined in the previous sections (the group D1

2h),
they prove to be coupled, and this coupling is different for the
cases I and II in Eqn (23):

s1 � s2 � s for I �4���� ; �24�
s1 � ÿs2 � s for II �4�ÿ�� :

Bearing in mind the aforesaid, we can easily write down
the remaining appropriate formulas from Section 2.2, as
applied to the tetragonal case. But since the system is now
cylindrically symmetric (in the bilinear approximation), it is
convenient to employ the circularly polarized variables
L� � Lx � iLy and E� � Ex � iEy.

For both cases in Eqn (23), the results in terms of these
variables have the form

I: L� � b�E� ; II: L� � b�E� ; �25�

where the upper (lower) indices ��� on the right-hand sides
correspond to the upper (lower) indices on the left-hand sides,
and

b� �
2sgM0

oL � o
: �26�

Thus, the difference between the cases of positions 4z��� and
4z�ÿ� is that antimagnon resonance for the Lÿ oscillations is
excited by a circularly polarized field Eÿ or E� for 4z��� and
4z�ÿ�, respectively.

2.5 Coupled antimagnon±electromagnetic waves
If we consider the field E in the ME interaction to be the
electric field in an electromagnetic wave, it is the cause for
coupling between antimagnons and the electromagnetic
waves (light), thus leading to changes in the optical character-
istics of matter. As a first approximation, we can ignore the
spatial dispersion of antimagnons and assume in formula (19)
that

oL�k� � oL�0� � oL : �27�

Next, we take into account relationships (22) and (24) and
represent the ME interaction [the last two terms on the right-
hand side of equation (9)] in the form

FME � ÿs�P�Eÿ � PÿE�� ;

where P� and Pÿ are the effective polarizations caused by the
electric field E� of the electromagnetic wave through the
L� oscillations:

P� � sL� ; Pÿ � sLÿ for I ; �28�
P� � sLÿ ; Pÿ � sL� for II :

The field E� for waves with the wave vector k k Z satisfies the
wave equation [3, 8]

n2E� � D��E�� : �29�

Here, n � kc=o is the refractive index, and D� is the
generalized induction [3]

D� � e?E� � 4pP� ; �30�

where P� has been defined in Eqn (28), and L� in Eqns (25)
and (26); e? is the transverse permittivity. If we ignore spatial
dispersion of antimagnons, equations (25) ± (30) yield

n2� � e? � 4psb� for 4z��� ; �31�
n2� � e? � 4psb� for 4z�ÿ� : �32�
The difference n2� ÿ n2ÿ determines Faraday rotation of

the polarization plane (e.g., see Ref. [20, p. 96]) of electro-
magnetic waves (light), caused by the interaction of these
waves and antimagnons. As a result, taking equations (31),
(32), and (26) into account, we find that the Faraday angle per
unit length travelled by the wave for the cases 4��� and 4�ÿ�
equals

j1 �
1

2
�k� ÿ kÿ� � � 4ps2gM0o2

cn�o2
L ÿ o2� : �33�

The results for 4��� and 4�ÿ� differ only in sign [a `plus' and
`minus', respectively, in formula (33)]. The effect has a
resonance at the frequency

o � oL � g�2M0J�Hz� ;
which can be attained by varying the external magnetic field
Hz.
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Allowing for antimagnon dissipation [this is done by
replacing o with o� iG in formula (33)] results in the
function j1 becoming complex-valued. This means that an
electromagnetic wave that is linearly polarized at the input at
frequencieso � oL acquires, in addition toFaraday rotation,
ellipticity related to what is known as dichroism [20]. Both the
Faraday rotation and dichroism undergo a rapid change near
the resonance frequency. Here, of course, one must bear in
mind that this singularity is proportional to the square of the
small parameter s.

It is also worth noting that magneto-optical effects caused
by ME interaction in multisublattice antiferromagnets
(nonreciprocal rotation of the plane of polarization of light,
for one thing) have been thoroughly studied in experiments
(e.g., see Refs [21, 22]), while what we examined was the FM
phase. In Section 4.3.1, we will discuss the dynamics of the
four-sublattice a-Fe2O3 and Cr2O3 antiferromagnets with the
ME interaction taken into account.

3. A two-sublattice antiferromagnet
with magnetoelectric interaction.
Quasiantiferromagnons and their excitation
by an electric field

The existence of the above phenomena is related to a not
infrequent feature of the position of multiple points
occupied by magnetic atoms. The symmetry center 1 must
not be a closed element for this position or, in other words,
it must not permute the atoms in an identical manner, i.e.,
1 � 1�ÿ� in the notation adopted here. We have discussed
the properties of the simplest FM structure for this case: the
presence of a new type of spin wave, or antimagnons which
correspond only to the oscillations of the AFM L vector
and are excited not by a magnetic field (as ordinary
magnons are) but only by an electric field E�t� at
frequencies of an exchange origin.

But what will happen if the magnetic moments in a two-
fold position are ordered not in a ferromagnetic way (as
happened above) but in an antiferromagnetic way? Suppose
that we are examining a typical antiferromagnet, the phase
G6�L0

z� from Table 1, in which L0 kZ �L0
z � 2M0� and

M0 � 0 (of course, other AFM phases, such as G4�L0
x� or

G5�L0
y�, can also be analyzed, but the result will be the

same). The general form of the thermodynamic potential
remains almost the same [see Eqn (9)]. Only the ME
interaction and the relationship between the exchange
constants will change �AM > 0 and AL < 0�. Table 1
suggests that in AFM phases, including G6, there are no
antimagnons, since otherwise rule (8) will not be satisfied. It
might be well to point out that here this is essentially related
to the fact that the magnetic substance is of the two-
sublattice type. The reader will recall that in Refs [10 ± 12,
14] only four-sublattice antiferromagnets were examined,
and for these the above statement is invalid.

At the same time, rule (8) applied to the ground AFM
state G6�L0

z� from Table 1 yields

G2�My� � G4�Lx� � G1�Mx� � G5�Ly� � G6�L0
z� ;

i.e., there are two quasiantiferro-modes, G24�My;Lx� and
G15�Mx;Ly�, each of which contains one component of the
M vector. As noted earlier, antimagnons, i.e., oscillations in
whichM does not take part, are not present in two-sublattice
AFM phases. The magnetoelectric terms in the potential F

become

ÿ s1
L0
z

2M0
MxEz ÿ s2

L0
z

2M0
MzEx

� ÿs1MxEz ÿ s2MzEx ; �34�

where the factors L0
z=�2M0� � 1 were introduced only to

verify the invariance of F. From Eqn (34) we see that, say,
for G15 theME interaction, i.e., the term with s1, incorporates
only one oscillation variable �Mx� of one of the G15�Mx;Ly�
modes, which thus can only be excited by an electric field
E k Z.

Combining what we have stated above, we can easily find
the linear response ofMx to Ez / exp �ÿiot� from Eqn (13):

Mx � s1�2gM0�2KL2

o2
EK ÿ o2

Ez ;

where

o2
EK � 2g 2HEHK �35�

determines the exchange-relativistic frequency of the quasian-
tiferro-mode G15, which incorporates the exchange field

HE � 2M0�AM ÿ AL � KM1�

[with the anisotropic correction; see Eqn (9)] and themagnetic
anisotropy field HK � 4M0KL2. Both modes G15 and G24 can
be excited by an alternating magnetic field [H�t� k Z and
H�t� k Y, respectively], but we will focus only on the first
mode, since it also can be excited by an electric field E k Z,
and this excitation occurs at very low frequencies (in the
microwave range), much lower than the frequencies at which
antimagnons are excited.

Thus, even quasiantiferromagnons may be electroactive,
provided that the appropriate thermodynamic potential
contains the ME interaction covering the variables of this
mode.

4. Tetragonal and other four-sublattice
antiferromagnets, magnetoelectric
and antiferroelectric phenomena

4.1 Introductory remarks, thermodynamic potential,
and the equations of motion. Tetragonal antiferromagnets
In Sections 2 and 3, we used the simplest two-sublattice model
(FM and AFM) to examine a number of new dynamical
phenomena related to the ME and AFE interactions.
Unfortunately, we were unable to indicate the specific
magnetic substances in which experimenters should look
for these predicted phenomena. But such magnets do
exist (trirutiles, rare-earth phosphates, vanadates, etc. [10,
14, 23 ± 27]), although they belong to more complicated
n-sublattice structures �n5 4�. So far no experiments reveal-
ing the presence of such phenomena have been conducted.
Nevertheless, we would like to point out the specific
substances and the features of the effects predicted in them
in order to indicate the area in which the experimenters
should look for these effects.

First, we should mention tetragonal four-sublattice
antiferromagnets with the trirutile structure: space group
P42=mnm �D14

4h�, magnetic-atoms position 4e (Fe, Cr, V, etc.)

May, 2005 New physical phenomena caused by magnetoelectric and antiferroelectric interactions in magnets 437



in which the symmetry center 1 permutes each atom in a
nonidentical manner (into each other and not into itself) [3,
25, 27]. In addition to this property of the position of
magnetic atoms, notice that among trirutiles there are easy-
axis structures and easy-plane antiferromagnets. Among the
first is Fe2TeO6 (TN � 217 K) which has proved to be the
simplest substance (see Ref. [26]) to demonstrate some of the
properties of trirutiles we are interested in. Other trirutiles,
including the easy-plane trirutiles Cr2TeO6, Cr2WO6, and
V2WO6, have been examined in Refs [25, 27].

In the single-position antiferromagnet in question, the
four sublattice magnetizations Mn �n � 1, 2, 3, 4� can deter-
mine, in addition to the vector of total local magnetizationM,
three more AFM-basis vectors La, Lb, and Lc:

M �M1 �M2 �M3 �M4 ;

La �M1 �M2 ÿM3 ÿM4 ; �36�
Lb �M1 ÿM2 �M3 ÿM4 ;

Lc �M1 ÿM2 ÿM3 �M4 :

For the generators of the group D14
4h, it has proved

convenient to take the elements 1, 21x, and 42z, and combine
them to arrive at the position code by specifying their
permutation properties in the following form

1
1ÿ2
3ÿ4

� �
21x

1ÿ4
2ÿ3

� �
42z

1ÿ3
2ÿ4

� �
: �37�

Here, dashes connect the atom numbers that are permuted by
the respective symmetry element. Position code (37) makes it
possible to build a table of transformations of all the
components of basis vectors (36), similar to Table 1. Such a
table takes into account not only the point transformations of
the components of the vectors in formulas (36) (rotations and
reflections) but also the permutation of atoms. We will not
build such a table here, but it does differ from Table 1. The
difference emerges because the table is based on that of the
rhombic crystal for the group Pnmm which is a subgroup of
P42=mnm if the former is complemented up to the latter with
the element 42z (see Ref. [23]).We note only that, according to
Eqns (36) and (37), two vectors in formulas (36), M and La,
are centrally symmetric (CS), while the other two, Lb and Lc,
are centrally antisymmetric (CAS) vectors. What this means
is that the thermodynamic potential F may contain in
addition to an ME interaction si j kMiLbjEk (or MiLcjEk) of
type (3) also an AFE interaction fi j kLaiLbjEk (or LaiLcjEk) of
type (4) [10 ± 14] with coefficients that ensure the invariance of
these expressions with respect to the elements (generators) of
group (37).

The existence of anAFE interaction in a system of four (or
more) basis vectors (in which at least three are antiferromag-
netic vectors) is the reason for additional phenomena
(compared to the characteristic phenomena involving two-
sublatticemagnets) related to the interaction ofmagnonswith
an alternating electric field E�t�. This is true even for those
magnetic substances where there can be no static ME effect,
because such an effect would be forbidden according to
symmetry considerations (a well-known example, which
however refers to another crystal system, is the absence of a
staticME effect in hematite). The new dynamical phenomena
in magnetic substances with four sublattices (instead of two)
also manifest themselves in NMR and in the region of
coupled magnon-electromagnetic waves. The possibilities of

exciting magnons by the E�t� field become more numerous:
not only antimagnons can be excited, but in some cases even
low-frequency (exchange-relativistic or even purely relativis-
tic) magnons can be excited.

The phenomena proved to be so numerous that because of
the space allocated to the present review we are able to
mention only a small fraction of the new dynamical phenom-
ena caused by the field E�t�. What is important is that the
prediction of these phenomena refers to specific substances
(as it does in Refs [10 ± 14]) that have been studied in other
areas of the physics of magnetic phenomena, so that there is
hope that in the future these phenomena will be discovered in
experiments.

Thus, going to the theory, we write down the expression
for the thermodynamic potential (per unit volume in the
homogeneous state).We are talking about Fe2TeO6, but if the
ME and AFE interactions are ignored, the following
expression can also be used to describe other trirutiles and,
in particular, easy-plane states [26]:

F � 1

2
AMM2 � 1

2

X
n

AnL
2
n �

1

2
KM�M 2

x �M 2
y �

� 1

2

X
n

Kn�L2
nx � L2

ny� � r�LbxLcy � LbyLcx�

� p�MxLay �MyLax� ; n � a; b; c: �38�

For an easy-axis antiferromagnet (Fe2TeO6) with the
structure L0

b �jL0
bj � 4M0�, the terms

ÿ 1

4M0
L0
bz

�
s�MxEx �MyEy� � f �LaxEy � LayEx�

� �39�
for theME andAFE interactions, respectively, must be added
to the right-hand side of equation (38) [the common factor
L0
bz=4M0 � 1 is introduced once again for the sole purpose of

verifying the invariance of expression (39)]. For each of the
other structures, we must write out the interactions inherent
in it (interactions that incorporate the variables of the
respective modes).

According to expression (38), the state with L0
b k Z is

stable for Ab < 0, AM > 0, Aa > 0, Ac > 0, KM > 0, and
Kn > 0. Here, we adopt the equal-modulus model
M2

n �M 2
0 , which corresponds to the conditions

M2 �
X
n

L2
n � �4M0�2 ;

MLa � LbLc � 0 ; �40�
MLb � LaLc � 0 ;

MLc � LaLb � 0 ;

and the LL equations of motion [18, 25, 27]:

_M � g
�
M� qF

qM
� La � qF

qLa
� Lb � qF

qLb
� Lc � qF

qLc

�
;

_La � g
�
M� qF

qLa
� La � qF

qM
� Lb � qF

qLc
� Lc � qF

qLb

�
;

_Lb � g
�
M� qF

qLb
� La � qF

qLc
� Lb � qF

qM
� Lc � qF

qLa

�
;
�41�

_Lc � g
�
M� qF

qLc
� La � qF

qLb
� Lb � qF

qLa
� Lc � qF

qM

�
:
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This system will be examined in Section 4.2, and conditions
(40) actually follow from it.

4.2 Oscillation modes, solution of equations,
and natural frequencies
Using the rules of transformation of the basis vectors (36), we
immediately see that for the AFM phase with the CAS basis
vector L0

b k Z (this vector corresponds to Fe2TeO6) there
must be spin-wave representations with the oscillation
variables

�a�Mx; Lay; Lby; Lcx ; �42�
�b�My; Lax; Lbx; Lcy ; �43�

which are related to each other via the symmetry axis 42z.
Therefore, it is enough to solve the problem in question (to
determine the spectrum, susceptibility, etc.) for one of these
representations. We chose (a).

Let us isolate in expression (38) a quadratic form in the
variables (42):

F2 � 1

2
eAMM 2

x �
1

2
eAaL

2
ay �

1

2
eAcL

2
cx �

1

2
KbL

2
by

� pMxLay � rLbyLcx ÿ sMxEx�t� ÿ fLayEx�t� ÿMxHx�t� ;
�44�

where we have also allowed for the respective parts of theME
and AFE interactions from formula (39) as well as the
Zeeman energy in the alternating magnetic field Hx�t� and
introduced the notation

eAa � Aa ÿ Ab � Ka ; eAM � AM ÿ Ab � KM ;

eAc � Ac ÿ Ab � Kc :

Of course, we would like to have taken into account a
constant magnetic field H0 k Z, but this usually leads to
substantial complications in the solution of the problem.
The thing is that the phase L0

bz in question does not contain
the vector M0 generated by the field H0, i.e., this will be a
different phase, which means that, generally speaking, in this
case one should find themodes anew, instead of Eqns (42) and
(43). 3

The relevant equations from set (41) combined with
formula (44) form the following system

_Mx � ÿo0
qF2

qLby
� ÿo0�KbLby � rLcx� ;

_Lby � o0
qF2

qMx
� o0

� eAMMx � pLay ÿ
ÿ
sEx�t� �Hx�t�

��
;

_Lcx � ÿo0
qF2

qLay
� ÿo0� eAaLay � pMx ÿ fEx� ;

�45�

_Lay � o0
qF2

qLcx
� o0� eAcLcx � rLby� ;

where o0 � g4M0. Clearly, in accordance with the number of
variables (four), the system of equations (45) must produce
two oscillation modes.

In the exchange approximation �r � p � 0�, system of
equations (45) falls apart into two independent systems
involving the first two and the last two equations, with the
second system yielding an exchange mode with a frequency

oE � oca � o0

�����������eAa
eAc

q
�46�

and the following components of the oscillating AFM
vectors:

Lay � o2
0

o2
E ÿ o2

f eAcEx ; Lcx � ÿi oeAc

Lay :

The observable quantity in this mode is the x-component of
the polarization vector:

Px � ÿ qFAFE

qEx
� K?Ex ;

where

K? � o2
0

o2
E ÿ o2

f 2 eAc : �47�

However, here we are more interested in the other mode, the
one generated by the field Ex, or the exchange-relativistic
mode which corresponds to the system of the first two
equations in set (45) with the variables Mx and Lby. In this
mode, the variables Lcx and Lay follow Mx and Lby in a
quasiequilibrium manner. Minimizing F (38) in Lcx and Lay,
we find that the thermodynamic potential depends only on
Mx and Lby, and then the equations of motion for these
variables (with allowance for the field terms) yield the
following expression for the corresponding quasiantiferro-
mode:

Mx � �a0Ex � w0Hx� o2
AK

o2
AK ÿ o2

; �48�

where a0 � s= eAM and w0 � 1= eAM are the respective static
magnetoelectric and magnetic susceptibilities, and

oAK � o0

�������������eAMKb

q
�49�

[cf. expression (35)].
Formula (48) determines the quasiantiferro-resonances of

the acoustic mode with frequency (49) both in an electric field
Ex�t� and in amagnetic fieldHx�t�: the first is to be detected in
the antinode of E�t�, and the second in the antinode of H�t�.
In this case, jExj � jHxj, and the ratio of the absolute values
of the respective magnetizations is determined by the ratio of
the static magnetoelectric and magnetic susceptibilities:

ME
a

Mh
x

� a0
w0
: �50�

As for the exchange mode, which emerges because of the
last two equations in set (45), the terms with p and r have very
little effect on its frequency, since at this frequency
�oE 4oAK� the variables Mx and Lby remain practically at
their equilibrium values, i.e., close to zero. Actually, of
course, the relativistic constants p 6� 0 and r 6� 0 ensure the
weak coupling of the exchange and quasiantiferromagnetic

3 This is not true for the equal-modulus model, where wk � 0, and for this

reason M0 � 0 even after the field H0 k L0
b k Z has been applied. As a

result, the problem with the fieldH � Hz can easily be solved. Here, in the

term ÿHzMz one must take into account the third equal-modulus

condition in Eqn (40). Note that Krivoruchko and Yablonskii [11] took

into consideration the role that a nonzero field H0 plays in the respective

problem for hematite.
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modes [see Eqns (45) and (46)], somewhat renormalizing their
frequencies and generating the respective poles, e.g., the
exchange pole on the quasiantiferro-mode, with a small
intensity, however.

Notice that similar results have been obtained for other
tetragonal four-sublattice antiferromagnets, in particular, for
rare-earth phosphates of the TbPO4 and HoPO4 type, and
vanadates of theGdVO4 andTbVO4 type, which have theD 19

4h

group (the zirconium structure) [3].
Since the characteristics of various magnetic substances

vary within a broad range (a0 � 10ÿ2ÿ10ÿ5 and
w0 � 10ÿ3ÿ10ÿ5 in the centimeter ± gram± second system of
units), a situation in which ME resonance will be comparable
in intensity, according to relationship (50), with AFM
resonance is quite possible [8].

The respective results for the spin-wave representation in
formula (43) can be obtained from Eqns (44) ± (50) via the
substitutions x$ y and o! ÿo.

Unfortunately, we were unable to find in the scientific
literature any data concerning a specific antiferromagnet for
which both susceptibilities (with close enough values) are
known from experiments. The problem is quite intriguing,
especially if we note that here we are speaking of an AFM
resonance in an electric field at a fairly low frequency. From
the viewpoint of the search for such antiferromagnets, most
promising among tetragonal antiferromagnets are, in addi-
tion to trirutiles (not necessarily Fe2TeO6), the aforemen-
tioned phosphates and vanadates in which the magnetic rare-
earth ions occupy the four-fold position 4af2xg (the expres-
sion inside the braces indicates the local symmetry of the
position). As for the other crystal systems, we would like to
point out Cr2O3 and a-Fe2O3 (rhombohedral crystals) which
have been thoroughly studied theoretically in Refs [10 ± 14].
Unfortunately, experimental data on the magnetic suscept-
ibilities and corresponding ME coupling constants (espe-
cially, the AFE constants) are not usually given together.
Despite the fact that the effects associated with AFE
interaction and discussed in the present review were discov-
ered rather long ago (in 1988), so far no relevant experiments
have been conducted in this area of research.

Many theoretical predictions of such effects are known
today [8, 10 ± 14, 25]. We discussed the main physical
phenomena in Section 1 using a simple two-sublattice
model, so we would like to finalize this section by only
indicating the phenomena related to ME and AFE interac-
tions solely in multisublattice antiferromagnets �n � 4�. Due
to its popularity and simplicity, of greatest interest here from
the viewpoint of principal questions is the case of hematite
(a-Fe2O3) [11, 14]. The thing is that in the ground state
hematite possesses a structure described by such a centrally
symmetric basis vector as La in formulas (36), so that
1La � La. However, when we allow for all four basis
vectors, which is required by dynamics, the two remaining
vectors Lb; c are CAS vectors (although the numbering of
atoms may be different [8] from that in trirutiles, this is not
really important in the sense that this does not introduce new
phenomena Ð the numbering of atoms can be changed [8]).
Fortunately, Krivoruchko and Yablonskii in their paper [11]
provided almost everything that we want to know about
hematite, and there is no need to go into further details about
that paper. However, in Section 4.3 we present some results
for rhombohedral antiferromagnets, so that we can compare
them to the results for tetragonal antiferromagnets (the easy-
axis case).

4.3 Rhombohedral antiferromagnets:
hematite and chromite
Hematite (a-Fe2O3) and chromite (Cr2O3) are the most
thoroughly studied antiferromagnets belonging to the rhom-
bohedral crystal system: the space group is R3c � D 6

3d, and
the magnetic Fe3� and Cr3� ions occupy the four-fold
position 4cf3zg. If we number these ions in a certain manner
(the same for both cases), instead of the vectors Mn

�n � 1; 2; 3; 4� we can introduce their linear combinations
(36) which coincide closely with those for trirutiles. What is
important is that here, in contrast to the commonly adopted
system of atomic numbering [4], the atomic numbers 2 and 4
are permuted here. As a result, the centrally symmetric vector
La corresponds to the ground state of hematite, while the
CAS vector Lc corresponds to the ground state of chromite.
Therefore, in hematite there is static weak ferromagnetism
(WFM) and no staticME effect. On the other hand, chromite
exhibits an ME effect but no WFM. However, in the
dynamical case, where there may be oscillations of vectors
[see formula (42)] that do not belong to the ground state, these
oscillations can be excited by an electric field due to either an
ME interaction of type (3) or an AFE interaction (4). If the
ground state is centrally symmetric (being determined by
vector La, as it is in hematite), the electric field
E�t� / exp �ÿiot� in the linear approximation excites oscilla-
tions of a CAS vector Lb or Lc.

Here, the AFE interaction (4) plays an active dynamical
role. On the contrary, in a CAS state (e.g., defined by the
vector Lc, as in chromite) the field E�t� excites oscillations of
the centrally symmetric vector M or La thanks to the ME or
AFE interaction, respectively. Moreover, the vector M may,
of course, also be excited by the alternating magnetic field
H�t� / exp �ÿiot� as a result of the Zeeman interaction
MH�t�.

Next, one should write down the thermodynamic
potential F in terms of the equal-modulus phenomenology
adopted here �M2

n �M 2
0 � const� or the Hamiltonian, as in

the Krivoruchko ±Yablonskii approach [11] in which the
dynamical properties of the system are described on the
basis of quantum equations of motion. If we ignore purely
quantum phenomena, such as, say, covering zero-oscillation
energy, both approaches for the spectrum and the amplitude
of oscillations yield the same results corresponding to the
LL equations (41) (e.g., see Refs [28 ± 30]). A number of
misprints have been discovered in Ref. [11], and so to verify
the results we used an approach described in detail in
Ref. [3] and employed in Sections 4.1 and 4.2. Here, of
course, we base our reasoning on the requirement that F is
invariant under the transformations of the space group
R3c � D 6

3d, and express F and the ME and AFE interac-
tions (3) and (4) in the form of a series in dynamic
variables (36).

Krivoruchko and Yablonskii [11] showed that, as in the
case of antiferromagnetic trirutiles, the dynamical properties
of rhombohedral antiferromagnets strongly depend on
whether the fundamental vector in formulas (36), which
determines the ground state, is centrally symmetric or
centrally antisymmetric. As noted earlier, in hematite and
chromite these vectors are La and Lc, respectively. It is
advisable to compare these properties with those of trirutiles
(we again have in mind easy-axis states).

4.3.1 Hematite. In hematite below the Morin point in the
L0
a k Z state, there are two independent spin-wave representa-
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tions

G1�Mx;Lay;Lbx;Lcy� ; �51�
G2�My;Lax;Lby;Lcx� : �52�

These representations correspond to the following thermo-
dynamic potential density (the expression allows for the ME
and AFE interactions):

F � 1

2
A1L

2
a �

1

2
A2L

2
b �

1

2
A3L

2
c �

1

2
A0M

2

ÿ 1

2
K1L

2
az �

1

2
K2L

2
bz �

1

2
K3L

2
cz �

1

2
K0M

2
z

� d�MyLax ÿMxLay� � d 0�LbxLcy ÿ LbyLcx�
� Ex�R2Lbx � R3Lcy� � Ey�R2Lby ÿ R3Lcx� ÿMH�t� ;

�53�

where A1 < 0 and A2; 3; 0 > 0, while E�t� ? Z and H�t� ? Z
are the fields that excite transverse oscillations. In contrast to
Ref. [11], here we introduced constants similar to those used
in Sections 4.1 and 4.2 and related to the constants from
Ref. [11] by the following formulas: Hei � 4M0Ai and
He0 � 4M0A0 for exchange, HAi � 4M0Ki and HA0 �
4M0K0 for magnetic (relativistic) anisotropy �i � 1; 2; 3�,
and, finally, HD � 4M0d and HD 0 � 4M0d

0 for the
exchange-relativistic Dzyaloshinskii constants. Clearly, the
thermodynamic potential density F (53) falls apart into two
independent parts corresponding to spin-wave representa-
tions (51) and (52). Similarly, there are two independent
systems of LL equations (or, as in Ref. [11], two systems of
quantum-mechanical equations of motion).

Below, we present the approximate results for the natural
frequencies and the susceptibilities (the case of homogeneous
oscillations). Since the centrally symmetric vectors (La and
M) and the CAS vectors (Lb and Lc) participate, respectively,
in the acoustic oscillation modes and the exchange oscillation
modes, the form of the field terms in F (53) suggests that the
exchange modes and the acoustic modes can be excited by
alternating electric and magnetic fields, respectively.

For the exchangemodes, we first findLcy,Lbx andLcx,Lby

as well as the exchange frequencies o01 and o02. Then we
evaluate the corresponding components of the polarization
vector P � ÿqF=qE � K̂?E:

Px � ÿ�R2Lbx � R3Lcy� ; Py � R2Lby � R3Lcx ;

Px � K?Ex ; Py � K?Ey ;
�54�

where K? is the electric susceptibility equal to

K? � o2
0

R 2
3 �A2 ÿ A1� � R 2

2 �A3 ÿ A1�
o2

E ÿ o2
; �55�

and oE is a frequency given by the formulas

oE � oE1 � oE2

� o0

��A3 ÿ A1 � K1��A2 ÿ A1 � K1� ÿ d 0 2
�1=2

; �56�
o0 � g4M0 :

Notice that here R2 and R3 are antiferromagnetoelectric
exchange-relativistic constants. Moreover, from expression
(55) it follows that the absorption intensity related to P is
exchange-enhanced by the presence of the appropriate
exchange factors.

Reasoning in a similar manner, we can find the two
acoustic modes with the variables Mx, Lay and My, Lax,
which are frequency degenerate: 4

oA1 � oA2 � oAK � o0

�
K1�ÿA1 � AM � K1�

	1=2
: �57�

The degeneracy is removed by applying a constant
magnetic field H k Z [11]. The amplitudes equal
Mx � w?�o�Hx and My � w?�o�Hy, where w?�o� is the
magnetic susceptibility defined as

w?�o� �
o2

0K1

o2
AK ÿ o2

: �58�

Unfortunately, the structure of trirutile with L0
a k Z, with

which it would be advisable to compare the above results for
hematite, so far has not been realized in experiments, which
means one is left with theoretical formulas. This case for
trirutile was not considered above, but the result can be taken
from Ref. [27]. The expression for exchange modes, given in
that paper, coincides with Eqn (54), but instead of formula
(55) we have

K? � o2
0

f 21
eAc � f 22

eAb

o 2
E ÿ o2

;

where eAb � Ab ÿ Aa and eAc � Ac ÿ Aa, while f1 and f2 are
AFE coupling constants [from an expression of type (4)].
What is important is that these constants are purely
relativistic, in contrast to the exchange-relativistic para-
meters R2 and R3 which are present in formula (55) for
hematite. Actually, the difference amounts to this.

But if we turn to acoustic modes, in the adopted
approximation which ignores anisotropy in the basis plane,
no difference from formulas (57) and (64) emerges (to within
the distinction in notation).

4.3.2 Chromite. In contrast to hematite, Cr2O3 has a ground
state with the CAS vectorL0

c k Z. Here, the potentialF can be
derived from expression (53) via the substitutionsA1 ! ÿA1,
A3 ! ÿA3, and K3 ! ÿK3 < 0. Moreover, the AFE interac-
tion in Eqn (53) is replaced with a combination of AFE and
ME interactions, with the following respective terms

R3�ExLay ÿ EyLax� ÿ r3�EyMy � ExMx� ; �59�

where the term with R3 represents the AFE interaction, and
the term with r3 the ME interaction.

4.3.3 Acoustic modes. If we allow for the conditions d5A and
K5A, from the LL equations we find the acoustic-mode
frequencies of the corresponding transverse oscillations of
�Mx;Lcy� and �My;Lcx�:

oAK1 � oAK2 � oAK � o0

��A0 � A3� ~K3

�1=2
; �60�

where eK3 is the effective anisotropy constant, which by order
of magnitude is purely relativistic:

eK3 � K3 ÿ d 0 2�A2 � A3�ÿ1 :

4 These expressions (e.g., see Ref. [3]) known from many old papers were

not given in Ref. [11].
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Here, magnetization holds the contribution of two terms: the
Zeeman term with the magnetic susceptibility

w? � wxx�o� � wyy�o� �
o2

0
eK3

o2
AK ÿ o2

;

and the magnetoelectric term [caused by the ME interaction;
the term with r3 in expression (59)]. Here, first one finds M?
from the LL equations, and then expression (59) is used to
determine the effective electric polarization P? � K?�o�E?.
In the latter case, the result is as follows

K?�o� � o2
0r

2
3
eK3�o2

AK ÿ o2�ÿ1 :

By comparing the susceptibilities w?�o� and K?�o�, we
find that the ratio of the intensities of the ME and AFM
resonances (i.e., when P?�o� is excited by the field E?, and
M? byH?) is determined by the AFE constant r3.

4.3.4 Exchange modes. The exchange modes are determined
by the transverse oscillations of �Lax;Lby� and �Lay;Lbx�; and
again, one vector must be centrally symmetric, and the other
centrally antisymmetric. The natural frequency of an
exchange mode (atH0 � 0) is given by the formula

o2
E1 � o2

E2 � o2
E � g2�4M0�2

��A1 ÿ A3��A2 ÿ A3�
� �A1 � A2 ÿ 2A3�K3

� d 0�d 0 � 2d��A0 ÿ A3��A2 ÿ A3�ÿ1
�
:

However, the variables (60) which enter into the acoustic
modes are mixed into these oscillations by interactions of the
Dzyaloshinskii type (the term with coefficients d and d 0), but
at the same exchange frequency oE. As a result, in this
(exchange) frequency range, the following susceptibilities are
nonzero:

wxx�o� � wyy�o� � w? �
o2

0d
0 2�A2 ÿ A3�ÿ1
o2

E ÿ o2
; �61�

Kxx�o� � Kyy�o� � K? � R2
3o

2
0�A2 ÿ A3�
o2

E ÿ o2
: �62�

Actually, the magnetic susceptibility w? (61) is related to the
Zeeman energy. It contributes to the exchange mode due to
the Dzyaloshinskii interaction [in this case the term with d 0 in
formula (53)] which generates an exchange pole for the
acoustic-mode variables, too. Here, the magnetic contribu-
tion will, probably, be small compared to the antiferroelectric
contribution, since

w?�o�
K?�o� �

d 0 2

�A2 ÿ A3�2R2
3

:

Indeed, according to the estimates made by Krivoruchko and
Yablonskii [11], one has

d 0 2

�A2 ÿ A3�2
� HA

HE
� 10ÿ4 ; R2

3 � 10ÿ3 :

Thus, the conditions needed for detecting exchangemodes
in Cr2O3 by electric-field absorption are more favorable than
those by magnetic-field absorption.

Finally, comparing formulas (47) (Fe2TeO6) and (62)
(Cr2O3), we find that

K?�Fe2TeO6�
K?�Cr2O3� �

f 2

R2
3

: �63�

Since f andR3 are, respectively, the relativistic and exchange-
relativistic constants with f5R3, formula (63) implies that
the intensity of an exchange AFE resonance for Cr2O3 is,
probably, higher than that for Fe2TeO6, so that we can expect
that the observation of this effect in the first compoundwill be
easier than in the second compound (incidentally, their NeÂ el
points do not differ very much: they are 310 and 290 K,
respectively).

The ever increasing volume of the present review makes it
impossible to discuss and compare the results of the work of
the Ukrainian researchers and the researchers from the Ural
region with other magnetic substances, such as orthoferrites
(cf. Refs [12] and [24]).

5. Antimagnons in ferrimagnets

The theoretical aspects of a behavior of antimagnons in the
tetragonal Mn2Sb ferrimagnet have been thoroughly studied
in a recent paper byMirsaev andTurov [25]. Therefore, in this
section we discuss two-position ferrimagnets only briefly,
with the focus on the features that make these ferrimagnets
different from those examined in Section 4 (single-position
ferromagnets and antiferromagnets).

5.1 The crystallochemical and magnetic structures
of the Mn2Sb ferrimagnet
The unit cell of the intermetallic Mn2Sb compound (Curie
point TC � 550 K) contains two pairs of magnetic Mn ions
which occupy the positions a (MnI) and c (MnII) (Fig. 3). A
characteristic feature is that in each pair the ions are coupled
through the symmetry center [26, 31], i.e., the criterion of
existence of electroactive antimagnons is true for both pairs.

The tetragonal Mn2Sb ferrimagnet has a lattice whose
symmetry is described by the P4=nmm �D7

4h� group. The
neutron diffraction research done by Wilkinson et al. [31]
has shown that the exchange magnetic structure of this
compound consists of (001) planes that incorporate MnI
and MnII atoms belonging to different positions and, there-
fore, having different magnetic moments.

Figure 3 shows that the atoms from the positions a
1�0; 0; 1=2� and 2�1=2; 1=2; 1=2� and the positions c
3�0; 1=2; 1=2� z� and 4�1=2; 0; 1=2ÿ z� are indeed related to
each other (within their limits) through the symmetry center
1. At temperatures ranging from 240 K to TC � 550 K, the
atomic magnetic moments of Mn2Sb are parallel to the
crystallographic axis 4 (easy axis), while in the temperature
interval from 0 to 240 K they are at right angles to the c-axis
(easy plane) [26].

Depicted in Fig. 3 is a unit cell incorporating a group of
atoms consisting of three layers, MnII ±MnI ±MnII (four
atoms per unit cell), which repeat themselves along theZ-axis.
Within an each group of this kind, the total magnetic moment
is nonzero, since the magnetic moments of MnI (position a)
and MnII (position c) are different and amount to
2:13� 0:20mB and 3:87� 0:40mB, respectively [31]. The
magnetic moments of the MnI and MnII layers are antipar-
allel in the easy-axis and easy-plane states, which is a
characteristic feature of ferrimagnets. In the paper [26], both
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orientation states were consistently examined, but here we
give only a few results pertaining to the easy-axis state.

It has proven convenient to consider the four-sublattice
exchange magnetic structure of Mn2Sb with the magnetiza-
tions Mn �n � 1; 2; 3; 4� a collection of two-sublattice sub-
systems a and c with basis vectorsMx of ferromagnetism and
Lx of antiferromagnetism �x � a; c�:

Ma �M1 �M2 ; La �M1 ÿM2 ;

Mc �M3 �M4 ; Lc �M3 ÿM4 :

Figure 3 also depicts the independent elements of the
crystallographic space symmetry Ð the symmetry center 1,
the four-fold symmetry axis 4 k Z, and the diagonal binary
symmetry axis 2d k �110� Ð which can be considered the
generators of group P4=nmm. In terms of these symmetry
elements, the type of each position can be coded by indicating
how they interchange the ions: into themselves �1$ 1, 2$ 2
and 3$ 3, 4$ 4� or into each other �1$ 2 and 3$ 4�.
Accordingly, the symmetry element is labelled with a `plus' or
`minus' sign in parentheses. Figure 3 clearly shows that the
following permutation codes correspond to the positions in
question: �a� 1�ÿ�4z�ÿ�2d���, and �c� 1�ÿ�4z���2d�ÿ�.

Note that if instead of the 2d axis we use the binary axis
21x � 2d4z (which is also displayed in the figure), for both
positions it turns out that 21x � 2x�ÿ�, and the codes a and c
differ only in the sign in front of the 4z axis (`minus' or `plus').
We note once again that here we are dealing only with the

permutation properties of the symmetry elements in relation
to a chosen position, irrespective of the type of the exchange
magnetic structure (ferromagnetic, ferrimagnetic, or antifer-
romagnetic). Thus, for antimagnons (excited by an electric
field) to exist, the condition 1 � 1�ÿ� must be met, which in
the present case, as noted earlier, holds for both positions.

5.2 Oscillation modes and thermodynamic potential
The calculation of the natural oscillation frequencies gets
much simpler if for the ground state (phase) in questionwe are
able to establish how the dynamical (oscillation) variables are
divided into what is known as spin-wave representations for
this phase [8, 23, 25].

For this wemust once again build, as we did earlier, a table
of transformations (see Table 2) for the rhombic subgroup
Pmmn of the true tetragonal group P4=nmm (the four
columns to the left of the double vertical line), to which we
must add the rules of the transformations of the same
variables caused by the symmetry axes 4z��� and 4z�ÿ�. Let
us now examine only the spin-wave representations (oscilla-
tion modes) for the easy-axis phase, where
Ma #"Mc k H k Z. As before, using Table 2 and rule (8), we
establish how the oscillation variables DMxi, DLxj �x � a; c;
i; j � x; y� are divided into modes. For both positions, we get
the same spin-wave representations:G12�DMxx;DMxy� for the
two ferromagnetic modes, and G45�DLxx;DLxy� for the two
antimagnon modes. Further symmetry considerations that
allow for the symmetry axes 4z��� �x � c� and 4z�ÿ� �x � a�
show that the modes G12 and G45 remain independent in the
tetragonal case, too. What remains is to use Table 2 and write
out the invariant expression for the thermodynamic potential
F. Then, isolating in this expression the quadratic form in the
respective oscillation variables for each mode, we must solve
equation (41). Here, we allow for the equal-modulus condi-
tions jM1j � jM2j �Ma and jM3j � jM4j �Mc or, putting it
differently, the conditions

M2
x � L2

x � �2Mx�2 ; MxLx � 0 �x � a; c� :

As a result, for the part of F that is quadratic in the
homogeneous oscillations Lxx and Lxy and corresponds to
antimagnon modes, we have

F2 � 1

2
eAa�L2

ax � L2
ay� �

1

2
eAc�L2

cx � L2
cy�

� l�LaxLcx ÿ LayLcy�
ÿDa�ExLax ÿ EyLay� ÿDc�ExLcx � EyLcy� : �64�

Table 2.Rules of transformations of theM, L,H, and E vectors, positions
a and c, group D7

4h.

Gi H, E,
M, L

1�ÿ� 2x�ÿ� 2y�ÿ� 4z�ÿ�
�a�

4z���
�c�

G1 Mx,Hx �1 �1 ÿ1 My, Hy

G2 My,Hy �1 ÿ1 �1 ÿMx, ÿHx

G3 Mz,Hz �1 ÿ1 ÿ1 Mz, Hz

G4 Lx, Ey ÿ1 ÿ1 �1 ÿLy, ÿEx Ly, ÿEx

G5 Ly, Ex ÿ1 �1 ÿ1 Lx, Ey ÿLx, Ey

Lz ÿ1 �1 �1 ÿLz Lz

Ez ÿ1 ÿ1 ÿ1 Ly, ÿEx

X

21x

Z

Y

1

3

2

2d

4

4

Figure 3. Unit cell of Mn2Sb. Depicted are the positions of the magnetic

ions MnI (black circles) and MnII (black rectangles) and the symmetry

elements, the generators of group P4=nmm �D7
4h�: the symmetry center 1

(open circles) and the rotational axis 4 k Z and 2d k �110�; also shown is

the rotational axis 21x. Represented is the magnetic structure of the easy-

axis type:M1 ""M2 #"M3 ""M4 k Z k 4.
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Here, eAa and eAc are the exchange constants that have been
renormalized once more, but now by the interposition
exchange interaction B, by the single-position Ka; c and the
interposition Kac anisotropies, and by the external field
H kM0 k Z �M0 �M0

a �M0
c�:

eAa � Aa � Ka � �Bÿ Kac�2Mc ÿHz

2Ma
;

eAc � Ac � Kc � �Bÿ Kac�2Ma �Hz

2Mc
:

The quadratic form inMxx andMxy, which determines the
ferromagnonmodes, separates from expression (64) (there are
no common terms). For these components, we arrive at well-
known results (e.g., similar to those given inRef. [3]) which we
will not consider here, since ferromagnon modes are not
excited by an electric field.

5.3 Natural antimagnon frequencies
To find the oscillation frequencies and the amplitude of
antimagnons excited by an alternating electric field
Ex; y�t� / exp �ÿiot�, we employ LL equations of the types
(13) and (14) for each position x � a; c.

From the LL equation (14) it follows that the purely
antiferromagnetic mode G45�Lxx;Lxy� of the phase G3�Mxz�
withM0

a #"M0
c k Z is described by the equations

_Lxx � GLxx � ÿgM 0
xz

qF2

qLxy
;

�65�
_Lxy � GLxy � gM 0

xz
qF2

qLxx
�x � a; c� ;

into which we have introduced the damping parameter G in
the simplest way (according to Bloch), and we have assumed
that Ga � Gc � G. The full solution of these equations can be
found in Ref. [26]. In the same paper, the phase transitions in
temperature and fieldH are examined, and so is their effect on
the spectrum. Here, however, we are interested in the phase
transitions between easy-axis and easy-plane states or, to put
it differently, in the region of stability of the easy-axis state.
This state is temperature-stable in the interval from 240 K to
TC � 550 K, which corresponds to the condition

4KaM
2
a � 4KcM

2
c � 8KacMaMc > 0

in a fieldH k Z with the field strengthHz in the interval from
0 toHB1 � 2B�Mc ÿMa�.

For such field strengthsHz and temperaturesT, equations
(65) yield antimagnons with the frequencies o1 and o2 given
by the following relations

o2
1; 2 �

1

2

�
o2

c � o2
a � 2o2

l � �oc � oa�
������������������������������������
�oc ÿ oa�2 � 4o2

l

q �
;

where

oc � g
��Ac � Kc�2Mc � �B� Kac�2Ma �Hz

�
;

oa � g
��Aa � Ka�2Ma � �B� Kac�2Mc ÿHz

�
;

o2
l � 4g2l2MaMc :

The appropriate formulas for the frequencies in the easy-
plane state can be found in Ref. [26].

The interposition coupling of the a and c antimagnons is
characterized by the relativistic coupling parameter l5Ax.

At l � 0 in expression (64), o1 � oa and o2 � oc are the
frequencies of two independent antimagnons, separately for
each position a and c (incidentally, both frequencies depend
throughB on the exchange interaction between the positions).
The parameter l governs the weak coupling between these
antimagnons. We believe it would be interesting to do an
experimental investigation of the dependence of the o1 and
o2 frequencies of the Mn2Sb ferrimagnet on the strength Hz

of the external magnetic field.

6. NMR excitation by an electric field
in two-sublattice ferromagnets

In all the magnetic structures (phases) and orientation states
mentioned earlier, the buildup of Mn oscillations brought
about by an alternating electric field E�t� at low frequencies
o � on (where on is the NMR frequency) leads, as a result of
ME and AFE interactions, to one more (low-frequency)
phenomenon: nuclear magnetoelectric resonance. Here, if
(as is often the case) the frequency indicated is low compared
to natural frequencies of oscillations of the electron sub-
system (the magnon frequency omag), jonj5omag, the
oscillations follow in a quasiequilibrium manner the oscilla-
tions of the field E�t� (see Ref. [8, p. 67]).

The excitation of nuclear spins by an electric field occurs
because of hyperfine (HF) interaction. In the simplest model
of such an interaction, which we also apply here, it is assumed
that the nuclear spin interacts only with its parent atom (the
nuclear magnetization mn interacts only with the inherent
electron magnetizationMn).

Let us consider a magnetic substance with two single-
position magnetic sublattices. We introduce the vectors of
nuclear magnetization m and antiferromagnetism l in the
same way as we earlier introduced the vectorsM (1) and L (2)
for the electron subsystem (we note the obvious fact that the
transformation properties of the vectorsm andM, as well as l
and L are the same). In this case, the HF interaction can be
written as follows:

F�m1M1 �m2M2� � 1

2
F�mM� lL� : �66�

Here, we have denoted the HF interaction parameter by F (in
contrast to the notation commonly used in the literature [29])
to distinguish it from the exchange parameters introduced
earlier. It is also assumed that F is a scalar (HF interaction is
purely isotropic).

We study only the FM phase with M1 ""M2 kMkHkZ
(representation G3�Mz� in Table 1). In contrast to the FM
structure M k H k X �G1�Mx�� discussed in Section 2.1, here
themagnetizationM0 is directed along the odd symmetry axis
2z�ÿ�, which simplifies the oscillation part of the ME
interaction. For the thermodynamic potential density we
must take F (9), where, in accordance with Table 1 and rule
(8), the following substitutions in the energy of second-order
magnetic anisotropy must be made: My !Mx, and
Mz !My. However, to simplify matters we ignore this
energy, and from the exchange energy (the terms with AL

and AM), bearing in mind the equal-modulus property (10),
we exclude the termwithM2, which renormalizes the constant
AL, i.e., leads to the substitution AL ! fAL � AL ÿ AM

�AM < 0�.
In accordance with the results of Section 2 and bearing

in mind the above remarks, we can write down the
thermodynamic potential of the electron ± nuclear system
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as follows:

F � 1

2
fALL

2 ÿ �mz �Mz�Hz � 1

2
F�Mm� Ll�

ÿM 0
z �sLLx � sllx�Ez

2M0
�M 0

z � 2M0� : �67�

In addition to taking into account the ME interaction for the
electron subsystem (the term with sL), we have allowed for a
similar interaction between the nuclear spins and the field
E�t� through the same electron subsystem (the term with sl).
Moreover, F also incorporates the HF interaction (66)
between these subsystems.

The NMER problem is solved on the basis of a system of
two LL equations for m1 and m2. After we have gone over to
the variables m and l, these equations acquire the forms (13),
(14) with the substitution M;L; g! m; l;ÿgn (the nuclear
gyromagnetic ratio, in contrast to the similar ratio for the
electron system, can be either positive or negative for different
nuclei). In the linear approximation in the oscillation
variables with the field Ez / exp �ÿiot� and without an
alternating magnetic field H�t�, one of these equations yields
the free precession of vector m about the constant field
H 0

nz � Hz ÿ FM0, which allows for the hyperfine field
Hn � ÿFM0 (being usually negative).

The second LL equation considered here determines the
lx and ly oscillations caused by the field E�t�. Here, we must
allow for two channels of action of E�t� on the variables.
First, through the term with sl in expression (67), the field
Ez directly causes the component lx to oscillate (which
means that the component ly will oscillate, too). Second,
due to the term with sL in expression (67), the electric field,
as noted earlier, will `sway' Lx, which, in turn, again causes
lx to oscillate [through the HF interaction (66) that enters
into F (67)].

In conditions of quasiequilibrium coupling betweenL and
E�t� (mentioned earlier), the quantities Lj can be found from
the conditions qF=qLx � 0 and qF=qLy � 0, which yield

Lx � sLEz ÿ Flx=2eA ; Ly � ÿ F

2 eA lx : �68�

If we allow for Eqn (68), the system of LL equations for lx
and ly becomes closed. Solving it, we find the sought
quantities with allowance for both channels of action of the
field E�t� on the nuclear subsystem:

lx � wn�o�
�
sl ÿ F

2 eA sL

�
Ez ; ly � i

o
on

lx ;

where

wn�o� � wn0
o2

n

o2
n ÿ o2

is the dynamic, and wn0 the static NMR susceptibilities, and
on � gn�Hz ÿ FM0� is the NMER frequency which differs
from the ordinary NMR frequency by the presence of a small
correction of order

wn0F
2

4 eA � F

4 eA mn

M0
5 1

(mn is the absolute value of the nuclear magnetization), which
is not taken into account here.

According to expression (67), the excitation of L oscilla-
tions by an electric field is equivalent to the excitation of the
polarization vector P k Z:

Pz � ÿ qF
qEz
� sLLx � sllx ;

where Lx also incorporates the second term in Eqn (68),
related to the HF interaction (66). As a result, we find that the
total effective polarization that is caused only by NMER and
allows for the contribution from

DLx � ÿ F

2 eA lx

is given by the following formula

Pn �
�
sl ÿ F

2 eA sL

�
lx � wn�o�

�
sl ÿ F

2 eA sL

�2

Ez :

This formula describes the linear dynamic response of the
ferromagnet to an electric field whose frequency is close to the
NMR frequency. Actually, the sample must be located in the
antinodes of the field E�t�, in contrast to ordinary NMR,
where the sample is in the antinodes of the field
H�t� / exp �ÿiot�.

The experimental method merits a special discussion.
Unfortunately, so far nothing can be said about the
magnitude of the effect, since the constants sl and sL remain
unknown in the model under discussion. However, some
quantitative estimates (within extremely broad limits) that
use experimental data on the static ME effect in other
magnetic substances can be made, so that one may infer that
we are dealing here with a new experimentally measurable
phenomenon, although in the static case (reconstruction of L
by a static electric field) there is no such an effect.

In concluding this section a remark is in order. Above we
described only the principles underlying the NMER phenom-
enon caused by theME andAFE interactions and used only a
simple model of a two-sublattice ferromagnet, with no direct
reference to specific magnetic substances. However, we
consistently allowed for both NMER channels, in contrast
to previous papers [8, 9, 25] where only one channel was taken
into consideration. A fuller analysis that agrees with the
present section and concerns the NMER effect in the Mn2Sb
ferrimagnet was done in a recent paper written by Kurkin,
Mirsaev, and Turov [32]. Mn2Sb is probably the most
promising magnetic substance for experimental examination
of both electroactive antimagnons (see Section 5) and
NMER.

7. Concluding remarks

Despite the long history of spin-wave dynamics, a large
section of it, devoted to the effect of an alternating electric
field on the properties of magnetic substances, has never
really been developed, although it would seem to be of
practical interest and have certain prospects for discovering
new physical phenomena.

The present review focuses not only on filling this gap in
the physics of magnetic phenomena, but also on acquiring an
understanding of the reasons for its emergence, both objective
and subjective. The reasons are conditioned by the existence
of special features of multiple-points positions occupied by
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the magnetic atoms of the substance, with the features
occurring very often. It is enough to flip through the
International Tables for X-ray Crystallography [15] to see
that the situation where the symmetry center 1 is not one of
the elements of local (island) symmetry of the position occurs
very often.

The element 1 must perform a nonidentity permutation
of the atoms in this position (see, in particular, the code (37)
of position 4e for trirutiles, and also Fig. 1 for a two-fold
position). Even in the most thorough works (reviews and
monographs) on the physics of magnetic phenomena,
usually no attention is paid to the existence of such
positions of magnetic atoms or, precisely, to the properties
associated with these positions. Yablonskii and Krivoruchko
[10 ± 14] were the first not to follow this tradition. However,
as noted earlier, their ideas and results did not promote the
development of a new section in the physics of magnetic
phenomena. In the monograph on magnetism [3], where spin
dynamics occupies a sizable portion of the material, this area
of dynamics was not covered either. Meanwhile, the
development of these ideas could have led to a new, fairly
broad area of spin-wave dynamics. It is our hope that the
present review will serve as a `trigger' and will attract the
attention of researchers to the new section of magnetody-
namics Ð there is certainly a need for this (paper [8] and the
present review should be considered an additional chapter to
monograph [3]).

Here, we touched only on a few phenomena related to that
area of spin-wave dynamics. (The reader should know that
paper [8] covers more than a dozen additional problems
waiting for their theoretical development and experimental
verification.) Note, for instance, that the existence of
antimagnons as a new type of spin waves may manifest itself
in the physics of magnetic phenomena not only as a result of
the combined action of ME and AFE interactions but also in
the absence of the field E (thermodynamics and magnetoa-
coustics), in nonlinear phenomena, etc. We believe that some
of the ideas considered in this review and the related
phenomena will soon be discussed in textbooks on magnet-
ism. In particular, the textbookswill contain figures like Fig. 2
depicting antimagnons (in addition to ferromagnons) and
including the inhomogeneous case. We also believe that
experimenters should do everything possible to detect these
new interesting phenomena predicted theoretically.

In conclusion, we list some additional promising areas of
research (both theoretical and experimental) in the present
section of magnetodynamics (they have been partially listed
in Ref. [8]).
� Surface electroactive magnons (including antimag-

nons).
� Interaction between electroactive magnons and hyper-

sound.
� Nonlinear phenomena in electromagnetoelastic

dynamics.
� Longitudinal (in relation to the fundamental basis

vector) electroactive oscillations (waves).
� Electroactive oscillations in multilayer ferromagnetic

and antiferromagnetic macrostructures (see Ref. [8]).
� Cubic ferrimagnets in the presence of ME and/or AFE

interactions. The study of such ferrimagnets will make it
possible to develop an approach to the important problem of
spin-wave dynamics of the famous yttrium-iron garnet (YIG)
Y3Fe5O12. We are speaking of the existence of electroactive
magnons excited by the above-mentioned interactions. There

are experimental data (true, rather contradictory) pointing to
the presence of an ME effect in YIG (e.g., see Refs [33 ± 35]).
The magnetic structure of this ferrimagnet contains
40 magnetic sublattices, of which 16 occupy the a positions
(these are known as a-ions) with the local symmetry f3g, while
24 sublattices occupy the d position (these are known as d-
ions) with the local symmetry f4g. The space symmetry of
YIG is O10

h � Ia3d. The magnon spectrum of this compound
has been thoroughly studied byKolokolov et al. [36] but, first,
without allowing forME andAFE interactions (i.e., atE � 0)
and, second, with no mention of antimagnons. To avoid the
difficulties in calculations involving such a large number of
sublattices (actually, thanks to translations related to body
centering �I � we can limit ourselves to 20 sublattices), the
authors suggest first considering a simplified model of a
collinear cubic ferromagnet with a smaller number of
sublattices with noncentrally symmetric local symmetry,
e.g., for magnetic ions in the six-fold position 6 f f4g of
group O 1

h � Pm3m with six magnetic sublattices. It is hoped
that this model will help answer some questions concerning
YIG dynamics in the field E�t�, and especially the question of
whether antimagnons actually exist.
� Electroactive and magnetoactive magnons in exchange-

noncollinear antiferromagnets [up to now we have spoken of
collinear and weakly (relativistically) noncollinear magnetic
substances]. This problem was not treated in the current
review, although it is of substantial interest in connection
with important features and has been discussed in several
papers. Here, we will not examine the discussion of this topic.
The point is that there is still no unified position even in
relation to the space group of the magnetic substances in
question. All this requires a special study of the dynamics of
such exchange-noncollinear magnetic substances, which has
been done in a paper by Mirsaev and Turov [37].
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