
Abstract. Problems associated with determining the symmetry
properties of the elastic constant tensor of icosahedral and
decagonal quasicrystals are reviewed. Notions of elastic iso-
tropy and anisotropy are considered, and their relation to the
components of the elastic constant tensor is discussed. The
question is addressed of how to determine experimentally
whether a system under study is elastically isotropic. Experi-
mental results produced by resonant ultrasound spectroscopy
of icosahedral Al ±Li ±Cu and decagonal Al ±Ni ±Co single
quasicrystals are discussed in detail.

1. Introduction

The discovery of a quasicrystalline phase with icosahedral
symmetry in the binary Al ±Mn system by Shechtman, Blech,
Gratias, and Cahn [1] has demonstrated that periodicity does
not constitute an indispensable condition for the formation of
long-range order in solids and led to a radical revision of
concepts about the nature of the crystalline state. Quasicrys-
tals possess many properties characteristic of periodically
structured solids, e.g., faceting and sharp-peaked diffracto-
grams. The correlation length of the quasicrystal structure
determined by X-ray diffraction analysis can be as large as
several micrometers; due to this, quasicrystals rank among
the most perfect periodically ordered crystals in terms of
structural quality. At the same time, quasicrystals are
essentially different from periodically ordered crystals in
that they are lacking in translational symmetry. Quasicrys-
tals are characterized by a peculiar type of aperiodic long-
range order and may exhibit rotational symmetry incompa-
tible with periodicity. Such quasicrystals include, besides
icosahedral phases, axial phases with octagonal, decagonal,
and dodecagonal structures.

Elastic isotropy constitutes one of the remarkable
properties of icosahedral quasicrystals Ð that is, phases
with long-range coordination order and a class of icosahe-
dral diffraction symmetry [2 ± 5]. None of the periodically
ordered crystals possesses this property (even in cubic
crystals, the velocity of sound depends on the direction
of propagation of the acoustic waves). It should be noted
that experimental studies designed to elucidate whether a
given medium is elastically isotropic may prove nontrivial.
The point is that the relationship between the components
of the elastic constant tensor may be very similar to the
corresponding relationship for isotropic media even
though the elastic properties of periodically ordered
crystals are always anisotropic. A well-known example is
provided by tungsten having the smallest elastic anisotropy
of all periodically ordered crystals (the velocity of acoustic
waves in a tungsten single crystal varies with the direction
of their propagation by no more than 0.5%) [6]. This
emphasizes the importance of highly precise measure-
ments in experimental investigations of weakly anisotro-
pic media.

Icosahedral Al5.1Li3Cu became the first object of detailed
studies on the elastic properties of quasicrystals. It turned out
to be thermodynamically stable, which made it possible to
grow single crystals by classical methods. Unlike the thermo-
dynamically stable icosahedral phases with a perfect structure
discovered later, e.g., Al ±Mn±Pd, the structure of icosahe-
dral Al5.1Li3Cu is distorted by the so-called phason strains
representing extended static defects characteristic of quasi-
crystals. The structural quality of quasicrystals having
phason strains can be substantially improved by annealing.
The equilibrium phase diagram of the ternary Al ±Li ±Cu
system [7] permits the growing of single crystals of both the
icosahedral Al5.1Li3Cu phase and the Al4.8Li3Cu R-phase
formed by triacontahedral clusters located at the nodes of the
body-centered cubic lattice with a large constant a � 13:9 A

�

(space group Im3) [8]. The Al4.8Li3CuR-phase is the so-called
approximant of icosahedral Al5.1Li3Cu, i.e., a periodically
ordered crystal with a unit cell in which the component atoms
are arranged in a pattern reminiscent of the local atomic
structure of a quasicrystal. Of great interest is the possibility
of comparing elastic properties of the two phases similar in
terms of composition and local structure, one of which
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(icosahedral) is assumed to be elastically isotropic and the
other (cubic) of necessity is pronouncedly anisotropic.
Detailed studies of elastic properties have also included
quasicrystals with a face-centered icosahedral (fci) lattice in
the ternary Al ±Mn±Pd system, whose Bragg peaks are not
broadened by structural defects even in the absence of
annealing. The highly perfect structure of fci Al ±Mn±Pd
single crystals was confirmed by observations of the
anomalous transmission of X-rays, i.e., the Borrmann
effect [9, 10].

Equally interesting are the elastic properties of decagonal
quasicrystals periodically ordered along the axis of tenfold
symmetry and quasiperiodically in the plane perpendicular to
this axisÐ that is, displaying the structural properties of both
periodic crystals and quasicrystals. On the one hand,
deformation of decagonal quasicrystals in the plane perpen-
dicular to the axis of tenfold symmetry is assumed to be
isotropic [11]. On the other hand, calculations of the lattice
excitation spectrum predict, in the low-frequency region, a
significant difference between the dispersion relations along
the periodic decagonal axis and along the direction in the
quasiperiodic plane [12]. Today, there are several decagonal
phases available as single crystals, the sizes of which make
them suitable candidates for acoustic experiments. Decagonal
quasicrystals in the ternary Al ±Ni ±Co system have been
studied most extensively.

In recent years, a variety of reviews on different aspects
of quasicrystal physics have been published [13 ± 16].
However, these publications do not specially consider
studies on elastic properties, barring brief notes on the
subject, despite a large number of original papers devoted
to this issue. Hence, it is opportune to systematize and bring
order to the data obtained thus far on the elastic properties
of quasicrystals. The present review is focused on the
problems associated with experimentally determining the
symmetry of the elastic constant tensor of icosahedral and
decagonal quasicrystals. The notions of elastic isotropy and
anisotropy are discussed in terms of their relation to the
components of the elastic constant tensor, along with
experimental approaches to the verification of whether the
medium under consideration is elastically isotropic. The
Debay contribution to the specific heat of quasicrystals,
computed from the measured elastic moduli, is compared
with the results of calorimetric experiments. The review
does not cover a number of problems related to the effects
of double-well tunneling systems on the velocity and
absorption of sound in quasicrystals at temperatures below
1 K. These problems were detailed in Ref. [17].

2. The icosahedral system

The dependence of the stress tensor si j on the strain tensor ui j
is invariant under inversion transformation. For this reason,
the classification of crystals in terms of their elastic properties
corresponds to the classification by diffraction symmetry
classes or Laue classes. Thus, 32 crystallographic point
groups of periodically ordered crystals are grouped into 11
Laue classes, with one class for each of the triclinic,
monoclinic, and rhombic systems, and two classes for each
of the hexagonal, tetragonal, rhombohedral, and cubic
systems [18]. Both three-dimensional crystallographic point
groups of the icosahedral system 235 and m�3�5 belong to the
Laue class m�3�5 [19, 20]. The free elastic energy of a
quasicrystal of the Laue class m�3�5, corresponding to phonon

deformations alone, has the form [2 ± 5]

Fel � 1

2
cxxxx�u2xx � u2yy � u2zz�

� cxxyy�uxxuyy � uxxuzz � uyyuzz�
� �cxxxx ÿ cxxyy��u2xy � u2xz � u2yz� : �1�

In what follows, we shall apply the Voigt's notations widely
used in the scientific literature on crystal elastic properties. In
these notations, components of the tensor ci j k l of rank four
are written as Cab with two indices running through 1, 2, 3, 4,
5, and 6, to which pairs of indices xx, yy, zz, yz, zx, and xy
correspond, respectively [21]. Expression (1) for the free
energy of a quasicrystal of the Laue class m�3�5 relates to the
elastic constant matrix

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C 0 0 0
0 0 0 0 C 0 0
0 0 0 0 0 C 0

0BBBBB@

1CCCCCA ; �2�

where

C 0 � 1

2
�C11 ÿ C12� ; �3�

which is identical with the elastic modulus matrix of an
isotropic medium [18]. The deformation of quasicrystals of
the icosahedral system is determined by two independent
elastic moduli C11 and C12, and their elastic properties are
isotropic. The difference between the elastic properties of
icosahedral quasicrystals and elastically isotropic media
arises when the third-order elastic constants are taken into
consideration [22]. It should be recalled that none of the
periodically ordered crystals possesses the property of elastic
isotropy, because their deformation is determined by at least
three independent elastic moduli.

In what follows, we consider elastic isotropy and aniso-
tropy and their relation to the components of the elastic
constant tensor. Also, we describe an experimental approach
to the clarification of whether the medium under study
possesses elastic isotropy. By way of example, let us consider
the periodically ordered crystals of a cubic system that
incorporates Laue classes m3m (crystallographic point
groups 432, �43m, m3m) and m3 (crystallographic point
groups 23 and m3). The elastic constant matrix of cubic
crystals assumes the form [18]

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

0BBBBB@

1CCCCCA : �4�

Three elastic moduli C11, C44, and C12 are independent. The
elastic constant matrix of cubic crystals is different from that
of an isotropic medium only in that

C44 6� 1

2
�C11 ÿ C12� : �5�

It therefore appears useful to compare isotropic media with
cubic crystals. A convenient measure of deviation from the
elastic isotropy is the anisotropy shear parameter that can be
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defined as

es � 1ÿ 2C44

C11 ÿ C12
: �6�

The second term on the right-hand side of expression (6) is
known as the Zener ratio and constitutes the ratio of the
squares of the velocities of the purely transverse acoustic
waves polarized in the (001) crystallographic plane and
propagating along the [100] and [110] directions. For
isotropic media, the parameter es equals zero.

The first experimental observations of isotropic elasticity
in icosahedral quasicrystals were reported for icosahedral
Al5.1Li3Cu. It was shown by ultrasound [23, 24] and inelastic
neutron scattering [25] techniques that the sound velocity in
Al5.1Li3Cu single crystals varied by no more than 1 ± 2%,
depending on the direction. In the icosahedral Al ±Mn±Pd
quasicrystals, accurate measurements of the speed of sound
were made by Amazit et al. [22]. These authors found that the
velocities vt and vl of the transverse and longitudinal acoustic
waves, respectively, propagating along the fivefold and
twofold axes differ from one another by no more than 0.2%,
while the velocity of transverse acoustic waves propagating
along the twofold axis is independent of polarization within
the limits of experimental error of order 0.01%. However, the
analysis of the experimental technique employed in Ref. [22]
indicates that, the sound velocities vt and vl having been
measured only for two crystallographic directions, the data
obtained cannot, strictly speaking, be regarded as proof of
elastic isotropy defined as the equality of the parameter es to
zero, because it is impossible to derive modulus C12 from
them [26].

Elastic isotropy of a quasicrystal having icosahedral
symmetry was experimentally established with a high degree
of accuracy and reliability by Spoor and co-workers [26] using
resonant ultrasound spectroscopy of icosahedral Al5.1Li3Cu.
The resonant ultrasound spectroscopy technique [27, 28]
permits one to determine all components of the elastic
modulus tensor from the mechanical resonance frequencies
of a free sample measuring about 1 mm. Among all other
techniques for the measurement of elastic moduli, this
method ensures the highest absolute accuracy because it
requires only very weak dry contacts between the corners of
the sample and the ultrasound transducers; hence, no
correction for the binding material is needed.

Spoor et al. [26] measured resonant frequency spectra
of icosahedral and cubic single crystals of the ternary
Al ±Li ±Cu system cut in rectangular parallelepipeds with a
volume of 0.1 and 0.3 mm3, respectively. The frequencies of
some 30 resonances were measured for each sample with the
quality factor in the range from 103 to 105. The approxima-
tion of these resonances by the Lorentz function allowed their
frequencies to be determined with a relative accuracy in the
range of 10ÿ4 to 10ÿ6.

The resonant frequencies of a sample can be evaluated
from the known elastic moduli [29 ± 31], whereas the inverse
problem needs to be solved when determining elastic moduli
from the known resonant frequencies. In resonant ultrasound
spectroscopy, the analysis of resonant frequencies is based on
the minimization of the function

F �
Xn
i�1

�
fi
gi
ÿ 1

�2

; �7�

where fi and gi are the calculated and observed frequencies of
resonance i, respectively, and n is the number of measured
resonances. The minimum of function F in the multidimen-
sional space of elastic moduli is usually found with the help of
the Levenberg ±Marquart algorithm for the nonlinear opti-
mization [27, 28].

Table 1 represents elastic moduli obtained in Ref. [26]
from the analysis of resonant frequencies of icosahedral and
cubic Al ± Li ±Cu single crystals on the assumption that the
study samples have at least cubic symmetry, so that no more
than three components of the elastic modulus tensor are
independent. The root-mean-square deviation of the fre-
quency spectrum for either phase does not exceed 0.1%,
suggesting excellent agreement between the computed and
the observed frequencies. Table 1 also includes parameters es
of anisotropy.

Parameter es � 0:0105� 0:0014 for cubic Al4.8Li3Cu is
comparablewith the parameter of anisotropy for tungsten.At
the same time, its value is several times higher than the
measurement error, i.e., the cubic Al4.8Li3Cu is elastically
anisotropic with a high level of confidence. Conversely, the
parameter of anisotropy of icosahedral Al5.1Li3Cu is only
0:0002� 0:0007. Thus, the icosahedral Al5.1Li3Cu quasicrys-
tal is much more isotropic than any of the periodically
ordered crystals, and its elastic isotropy is confirmed by the
fact that the measurement error of es is much higher than the
value of the parameter of anisotropy es itself. Experimental
errors related to the measurement of the parameter of elastic
anisotropy in the icosahedral and cubic Al ± Li ±Cu quasi-
crystals by resonant ultrasound spectroscopy are presented in
Fig. 1 where parameter es for either phase is plotted as a

Table 1. Results of analysis of the resonant frequency spectra of
icosahedral Al5.1Li3Cu and cubic Al4.8Li3Cu single crystals [26]. The
elastic moduli Cab are determined on the assumption that the study
samples possess at least cubic symmetry, i.e., have three independent
moduli each; units of measurement Ð 1012 dyn cmÿ2.

Phase Standard
deviation, %

C11 C12 C44 es

Al5.1Li3Cu
Al4.8Li3Cu

0.07
0.09

1.122
1.112

0.304
0.311

0.409
0.396

0:0002� 0:0007
0:0105� 0:0014

0.010

es; As

0.005

0

0 0.05 0.10 0.15

Standard deviation, %

Al4.8Li3Cu

Al5.1Li3Cu Al71Ni16Co13

Figure 1. Parameter es of shear anisotropy of the icosahedral Al5.1Li3Cu

quasicrystal and its periodic approximant, the cubic Al4.8Li3Cu, and

parameter As of azimuthal shear anisotropy of the decagonal

Al71Ni16Co13 quasicrystal as a function of the root-mean-square devia-

tion in the resonant frequency spectrum.

April, 2005 Elastic properties of icosahedral and decagonal quasicrystals 413



function of the root-mean-square deviation in the resonant
frequency spectrum.

Knowing the elastic moduli C11 and C12, it is possible to
calculate the contribution of lattice excitations to the low-
temperature specific heat and Debye temperature yD of
icosahedral Al ± Li ±Cu. At low temperatures, only long-
wave acoustic modes contribute to the specific heat of
quasicrystals given by the expression

CD�T � � 2p2k4B
5�h3

1

v3s
T 3 ; �8�

where 1=v3s is the averaged inverse third power of long-wave
phase velocities vi of three acoustic modes [32]. For an
elastically isotropic medium, 1=v3s is written as

1

v3s
� 1

3

�
1

v3l
� 2

v3t

�
; �9�

and the velocities of longitudinal and transverse acoustic
waves are vl �

�������������
C11=r

p
and vt �

�����������
C 0=r

p
, respectively (r is

the density). Substitution of the elastic modulus values
obtained in Ref. [26] and the density estimated in Ref. [23]
into expressions (8) and (9) yields CD=T

3 � 13:2 mJ
(g-atom K4)ÿ1. It is worth noting that coefficient b of the
cubic-in-T contribution to the low-temperature specific heat
of icosahedral Al ± Li ±Cu, determined in Ref. [33] from
calorimetric measurements in a temperature range of 1 ±
6 K, is equal to 19 mJ (g-atom K4)ÿ1, i.e., larger than the
CD=T

3 ratio of the Debye model, calculated from the results
of acoustic measurements [26]. An excess contribution to the
low-temperature specific heat Cp�T �, proportional to T 3, is
characteristic of many icosahedral quasicrystals, including fci
Al ±Cu ±Fe, Al ±Mn±Pd, and Al ±Re ±Pd [33, 34].

The acoustic contribution to the specific heat is often
characterized by the Debye temperature yD. For quasicrys-
tals, the usual definition of yD based on the number of atoms
per unit cell of a periodically ordered crystal is unambiguous.
The Debye temperature of a quasicrystal is naturally defined
as

yD � �h

kB

�
6p2NA

V0

�1=3

vs ; �10�

where V0 is the volume of one gram-atom. The use of this
definition for icosahedral Al ±Li ±Cu yields yD � 528 K.

3. The decagonal system

Let us now consider elastic properties of decagonal quasi-
crystals. The decagonal system is divided into two Laue
classes 10=m and 10=mmm that incorporate three-dimen-
sional crystallographic point groups: 10, 10=m, and 1022,
10mm, 10m2, 10=mmm, respectively [11, 35]. In the frame of
reference with the z-axis chosen along the tenfold axis, the free
elastic energy of the quasicrystal of a Laue class 10=m or
10=mmm, corresponding to phonon deformations alone, has
the form [11]

Fel � 1

2
cxxxx�u2xx � u2yy� �

1

2
czzzz u

2
zz

� cxxzz�uxx uzz � uyy uzz� � cxxyy uxx uyy

� �cxxxx ÿ cxxyy�u2xy � 2cxzxz�u2xz � u2yz� : �11�

The number of independent components of the elastic
modulus tensor is five. The difference between the elastic
properties of quasicrystals belonging to Laue classes 10=m
and 10=mmm appears only when the third-order elastic
constants or when the phason degrees of freedom are taken
into consideration [11]. The elastic modulus matrix of
decagonal quasicrystals assumes the form

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C 0

0BBBBB@

1CCCCCA; �12�

where C 0 is given by expression (3). C11, C33, C44, C12, and
C13 are usually chosen as independent moduli. Equality (3)
reduces to two the number of independent elastic moduli
determining a deformation with nonzero components uxx,
uxy, and uyy of the strain tensor, i.e., deformation in the
quasiperiodic xy-plane, as for an isotropic medium. Thus,
the elastic properties of a decagonal quasicrystal are
isotropic in the plane perpendicular to the axis of tenfold
symmetry; in other words, a decagonal quasicrystal pos-
sesses the property of transverse elastic isotropy. Of all
periodically ordered solids, only hexagonal crystals offer
this property [21].

The connection of transverse elastic isotropy and aniso-
tropy with the components of the elastic modulus tensor can
be discussed by analogy with icosahedral quasicrystals (see
Section 2). We shall refer to periodically ordered crystals of
the tetragonal Laue class 4=mmm that includes crystal-
lographic point groups 422, 4mm, �42m, and 4=mmm. The
elastic modulus matrix of the crystals of Laue class 4=mmm is
written as [18]

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C66

0BBBBB@

1CCCCCA : �13�

The six moduli C11, C33, C44, C66, C12, and C13 are usually
chosen as independent ones. The elastic modulus matrices of
a tetragonal crystal of Laue class 4=mmm and a transversely
isotropic medium are different only in that

C66 6� 1

2
�C11 ÿ C12� : �14�

It is therefore possible to compare transversely isotropic
media with tetragonal crystals of a Laue class 4=mmm as
the most similar in terms of elastic properties. The
following parameter of azimuthal shear anisotropy is
chosen as the measure of deviation from the transverse
isotropy state:

As � 1ÿ 2C66

C11 ÿ C12
: �15�

The second term on the right-hand side of expression (15) is
the ratio of the squares of the velocities of the pure transverse
acoustic waves polarized in the (001) plane and propagating
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along the [100] and [100] directions. For transversely isotropic
media, As � 0.

Elastic isotropy of a quasicrystal with decagonal
symmetry exemplified by Al ±Ni ±Co was experimentally
established in Ref. [36] using resonant ultrasound spectro-
scopy, as in the case of icosahedral Al5.1Li3Cu [26]
considered in Section 2. Components of the elastic modulus
tensor were measured in a single crystal of the decagonal
Al71Ni16Co13 compound cut in a 2:0� 1:2� 1:2 mm rec-
tangular parallelepiped with the edges parallel to the
twofold and tenfold axes. The resonant frequency spectrum
was measured in the frequency range of 1 ± 3 MHz, where a
total of 30 resonances were observed. The quality factor Q
of the sample varied from 1:5� 103 to 2:5� 103, depending
on the excited mode.

The accuracy with which the elastic moduli were
determined was assessed on the assumption that the
function F close to the minimum was a quadratic function
of the elastic moduli [see expression (7)]. In this case, the
surfaces of the constant value of function F had an ellipsoid
shape. The measurement error for the elastic modulus was
estimated from the lengths of the ellipsoid semiaxes,
corresponding to the value of F that was 2% larger than
the minimal one. As a rule, when the root-mean-square
deviation of the measured spectrum from the calculated one
did not exceed 0.1%, the measurement errors determined
using this criterion were larger than all errors, including
those related to the reproducibility. They were 1, 0.02, and
3% for the compressional, shear, and nondiagonal moduli,
respectively [27].

The elastic moduli of the off-decagonal Al71Ni16Co13
quasicrystal, presented in Table 2, were determined on the
assumption that this quasicrystal had a symmetry corre-
sponding at least to the Laue class 4=mmm. This means that
not more than six components of the elastic modulus tensor
were independent. In such an analysis of resonant frequen-
cies, the root-mean-square deviation was only 0.11%, while
the measurement errors of pure shear moduliC66 andC

0 were
0.03%. The parameter of azimuthal shear anisotropy As

calculated from C66 and C 0 was 0:0002� 0:0004. The very
small value of the parameter As (below the experimental
error) suggests practically perfect transverse elastic isotropy,
as expected for the decagonal quasicrystal. For comparison
with themeasurement errors of the parameter of anisotropy es
of the icosahedral and cubic Al ± Li ±Cu phases discussed in
Section 2, the parameter of azimuthal shear anisotropy As of
the decagonal Al ±Ni ±Co quasicrystal in Fig. 1 is plotted as a
function of the root-mean-square deviation in the resonant
frequency spectrum.

Up to the present, we have discussed the deformation of a
decagonal Al ±Ni ±Co quasicrystal in the quasiperiodic
plane. Let us now move to the comparison of the elastic
properties in the quasiperiodic plane in which the transla-
tional symmetry is absent and in the direction of the

decagonal axis along which the long-range order of the
periodic type is present. Let us introduce the definition of
polar elastic anisotropy, i.e., the deviation from the state of
complete elastic isotropy. For the quantitative assessment of
the polar anisotropy of a transversely isotropic medium, it is
possible to apply two parameters; one is polar shear
anisotropy

Ps � 1ÿ 2C44

C11 ÿ C12
; �16�

where 2C44=�C11 ÿ C12� is the ratio of the velocities squared
of the purely shear waves propagating in the (001) plane and
polarized along the [001] direction and in the (001) plane,
respectively; the other is polar compression anisotropy

Pc � 1ÿ C11

C33
: �17�

The second term on the right-hand side of expression (17) is
the ratio of the squares of the velocities of the pure long-
itudinal acoustic waves propagating in the (001) plane and
along the [001] direction. For both parameters of polar
anisotropy, the zero value corresponds to the state of
complete elastic isotropy.

Parameters Ps and Pc for decagonal Al ±Ni ±Co quasi-
crystal are 0.207 and ÿ0:009, respectively, suggesting an
unexpectedly weak polar elastic anisotropy. Because the
elastic moduli C11 and C33 are closely related to the
interatomic potentials, the proximity to zero of the polar
compression anisotropy Pc defined by expression (17) can
imply that the coupling forces along the periodic direction
and the directions in the quasiperiodic plane are practically
identical, in agreement with the concept of universal local
order in decagonal and icosahedral phases [37].

The polar elastic anisotropy of a decagonal Al ±Ni ±Co
quasicrystal can be illustrated by constructing a slowness
surface that characterizes the dependence of the inverse phase
velocity s � vÿ1 of a monochromatic elastic wave on the
direction of the wave normal and serves as the geometric site
of the points given by the radius vectors of the inverse phase
velocity s � n=v in the wave normal space, i.e., in the
coordinates nx, ny, and nz. The normal to the surface of the
inverse phase velocity coincides with the direction of the
group velocity vector V � qo=qk. There are three sheets of
the slowness surface commonly labelled according to the
polarization of the corresponding acoustic waves: quasilongi-
tudinal (L) for the inner sheet, and quasishear (T1, T2) for the
two outer sheets, each of them having a center of symmetry.
The slowness surface and the constant frequency surface
defined by the relation o�k� � const have identical shapes
and differ only in scale.

The propagation of a monochromatic elastic wave
through an anisotropic medium is described by the Christof-
fel equations

�Gik ÿ rv2dik� uk � 0 ; �18�

where Gik � ci j k l nj nl is the Christoffel tensor, and uk is the
polarization vector [38]. The dependence of the phase velocity
on the direction of the wave normal is represented by the
equation��Gik ÿ rv2dik

�� � 0 : �19�

Table 2. Elastic moduli of the decagonal Al71Ni16Co13 quasicrystal,
determined from the mechanical resonance frequency spectrum on the
assumption that the number of independent moduli is n [36]; units of
measurement Ð 1012 dyn cmÿ2.

n T, K C11 C33 C44 C66 C12 C13

6
5

290
5

2.3430
2.4199

2.3221
2.4019

0.7019
0.7282

0.8845
0.9175

0.5736
0.5849

0.6662
0.6669
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For transversely isotropic media, the solutions of equation
(19) are given by the expressions

rv2T1
� C44 � 1

2
c sin2 y ; �20�

rv2L;T2
� C44 � 1

2
�a sin2 y� h cos2 y�

� 1

2

��a sin2 y� h cos2 y�2 ÿ 4�ahÿ d 2� sin2 y cos2 y�1=2 ;
�21�

where y is the angle between the wave normal vector n and the
polar axis z; parameters a, c, d, and h are defined as follows:
a � C11 ÿ C44, c � C11 ÿ C12 ÿ 2C44, d � C13 � C44, h �
C33 ÿ C44 [21].

The transverse isotropy of media makes the slowness
surface circularly symmetric about the polar z-axis. Figure 2
depicts the zonal section of the slowness surface of a
decagonal Al ±Ni ±Co quasicrystal by a plane containing
the polar z-axis. The section was obtained from expressions
(20) and (21) using the values of the elastic moduli Cab (see
Table 2). All the sheets of the slowness surface are convex
throughout, hence the one-to-one correspondence between
the group velocity vector V and the wave normal vector n
within each sheet. In other words, each vector n corresponds
to one direction of V, and vice versa. On the whole, the shape
of the sheets of the slowness surface suggests weak polar
anisotropy.

The weak polar elastic anisotropy is also evidenced by the
dispersion curves o�q� measured for certain symmetric
directions of the decagonal Al ±Ni ±Co quasicrystal by the
inelastic neutron scattering technique [39, 40]. It is worthwhile
to note that the sound velocities obtained from the dispersion
curves in the limit of small wave vectors are in good
agreement with the elastic moduli determined by resonant
ultrasound spectroscopy.

The knowledge of all elastic moduli Cab makes it possible
to calculate the contribution of lattice excitations to the low-
temperature specific heat of the decagonal Al ±Ni ±Co
quasicrystal from expression (8). For a transversely isotropic
medium, the average of the inverse third power of the long-
wave phase velocities vi for three acoustic modes can be

written as [32]

1

v3s
� 1

3

X
i�T1;T2;L

�p
0

1

v3i �y�
sin y dy

2
: �22�

Numerical integration of equation (22) using expressions (20)
and (21) for the angular dependence of sound velocities vi�y�
and elastic moduli Cab measured at 5 K (see Table 2) gives
vs � 4:9� 103 m sÿ1. The substitution of the obtained mean
sound velocity vs into expression (8) leads to the coefficient of
the acoustic contribution to the low-temperature specific heat
CD=T

3 � 8:9 mJ (g-atom K4)ÿ1, in good agreement with the
coefficient b � �9:5� 0:6� mJ (g-atom K4)ÿ1 of the cubic-in-
temperature contribution to the low-temperature specific
heat measured in the same sample [41]. The Debye tempera-
ture yD � 602 K corresponds to the ratio CD=T

3 obtained.

4. Conclusions

Precise measurements of the elastic moduli of the icosahedral
Al5.1Li3Cu quasicrystal by resonant ultrasound spectroscopy
have provided evidence that this quasicrystal constitutes an
elastically isotropic medium, in agreement with theoretical
predictions. The parameter of elastic anisotropy is only
0:0002� 0:0007. This means that the icosahedral Al5.1Li3Cu
quasicrystal is more isotropic than any periodically ordered
crystal. In contrast, the cubic Al4.8Li3Cu crystal, i.e., the
periodic approximant of the icosahedral Al5.1Li3Cu quasi-
crystal, possesses reliably measurable elastic anisotropy, even
if a very weak one.

Detailed experimental analysis of the resonant frequency
spectrum of a single crystal of decagonal Al71Ni16Co13 has
demonstrated that the number of independent elastic moduli
responsible for the deformation in the quasiperiodic plane
equals two, as for an isotropic medium. This quasicrystalline
phase possesses transverse elastic isotropy to an accuracy of
0:0002� 0:0004. Weak polar elastic anisotropy of the
decagonal Al71Ni16Co13 quasicrystal suggests its closeness to
the state of complete elastic isotropy and is consistent with the
hypothesis of universal local order in decagonal and icosahe-
dral quasicrystals.

To conclude, the application of resonant ultrasound
spectroscopy has made it possible to experimentally deter-
mine the symmetry of the elastic modulus tensor of quasi-
crystals with icosahedral and decagonal structures, using the
icosahedral Al5.1Li3Cu and decagonal Al71Ni16Co13 quasi-
crystals as examples. In terms of elastic properties, icosahe-
dral and decagonal quasicrystals may be regarded as isotropic
and transversely isotropic media, respectively.

The author is grateful to H R Ott and A Migliori for the
discussion of the experimental results obtained by resonant
ultrasound spectroscopy, and also to N A Chernoplekov for
the discussion of lattice excitation spectra in doped metals
and alloys.
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