
Abstract. Theoretical and phenomenological aspects of the
physics of high-energy heavy-ion collisions are reviewed with
emphasis on ideas related to the theory and phenomenology of
color glass condensate.

1. Introduction

A description of the physics of strong interactions and, in
particular, of multiparticle production processes at high
energies in the framework of quantum chromodynamics
(QCD) requires a clean separation of perturbative and
nonperturbative elements of the theory and their contribu-
tion to the description of the phenomenon under considera-
tion. It is well known that a perturbative description in terms
of the elementary excitations of the theory Ð quarks and
gluonsÐ is applicable only for the processes characterized by
large energy ±momentum transfer and, correspondingly, by
small space ± time scales. At large times (distances), the
theory, if viewed in terms of quarks and gluons, is in the
strong coupling regime.Whenmoving from theweak towards
the strong coupling regime, the original perturbative descrip-
tion should be enriched by new elements. In most cases, such
an element is a soft background field, which encodes the part
of nonperturbative information that has to be taken into
account. In the new description, the elementary excitations

are considered as propagating in this background field.
Another possibility is directly introducing gluonic strings
stretching between constituent quarks or gluons. Most
often, a connection between perturbative and nonperturba-
tive descriptions is built using the assumption of parton ±
hadron duality, which allows comparing calculations of the
same physical quantities made in quark ± gluon and hadronic
terms. A classic example of this kind is the calculation of the
characteristics of hadronic resonances (e.g., the r-meson)
using the QCD sum rules.

The main topic of the present review is the theory and
phenomenology of multiparticle production processes in
nuclear collisions analyzed in the framework of a semiclassi-
cal approach developed in the last decade Ð the physics of
color glass condensate (CGC) (see, e.g., recent reviews [1 ± 3]).
The CGC approach is based on a resummation technique in
the QCD perturbation theory. In other approaches to
describing the high-energy nuclear collisions, one either
simultaneously takes both soft (nonperturbative) and hard
(perturbative) degrees of freedom into account by combining
them within basic Glauber collision geometry [4] or puts the
main emphasis on the physics of gluon strings stretched in
between the fast constituent degrees of freedom [5, 6]. Much
attention is also paid to the statistical approach for describing
high-energy collisions. In this case, a key role is played by the
mechanism of transformation of the partonic matter into the
hadronic one through a confinement ± deconfinement phase
transition. A detailed analysis of the physics of this transition
can be found in Ref. [7]. Multiparticle production in high-
energy nuclear collisions is drawing increased attention, in
particular, due to new interesting experimental results
obtained at the Relativistic Heavy Ion Collider (see, e.g., the
forthcoming book [8]).

We also stress that many aspects of the physics of
multiparticle production at high energies are universal, and
therefore comparison with the results for e�ÿeÿ annihila-
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tion [9 ± 11] or hadron collisions [12] is always interesting
and relevant [13]. What is specific to nuclear collisions is
the very large density of primordial gluonic modes due to
A-dependent (where A is the nucleus atomic number)
amplification of the universal perturbative growth of the
gluon density at high energies.

The present review attempts to give a balanced view of
both theoretical and phenomenological aspects of ultrarela-
tivistic heavy-ion physics in the context of a semiclassical
picture related to CGC.

1.1 Theoretical developments
Quantum chromodynamics, a non-Abelian gauge theory, is a
universally recognized theory of strong interactions. What is
unusual aboutQCD is that it is formulated in terms of colored
degrees of freedom, quarks and gluons, which are not
observed in free state due to confinement of color. A rigorous
description of the corresponding physical picture has not
been worked out yet, and in applying QCD to the analysis of
scattering processes at high energies, one therefore has to
combine calculations based on the QCD Lagrangian with
phenomenological considerations. In pre-QCD times, a basis
for describing hadronic processes at high energies was the
parton model. A modern physical picture in which the
scattering process is formulated in terms of quark and gluon
fields, on which QCD action depends, is termed the QCD±
parton model. As follows from the term itself, the partonic
degrees of freedom in the QCD±parton model are quarks
and gluons. In spite of some principal restrictions related to
the technical realization of the QCD±parton model (the
special role of axial and planar gauges, different descriptions
of scattering process in different frames of reference), it
currently constitutes a no-alternative standard language for
describing scattering processes at high energies.

Themain goal of the present review is to describe, within a
gauge theory of strong interactions, QCD, various character-
istics of scattering processes with high-energy hadrons and
nuclei characterized by the high density of partonic modes
participating in the interaction at its early stage.

As an example, we consider a scattering of a color probe,
a quark ± antiquark dipole, on a hadronic (nuclear) target.
Within the QCD±parton model, this process is described in
terms of scattering of the quark and antiquark in the color
dipole on quarks and gluons in the target, possibly
accompanied by the creation of new gluons and quarks.
The cross section of the scattering of a probe on the target
depends on the kinematical characteristics of the process
(e.g., on longitudinal and transverse momenta of the probe).
In terms of the target parton modes, this means that probes
having different sizes `see' different partonic configurations
in the target. The changes in partonic configurations (parton
density) with the changing characteristic scale of the process
(kinematical characteristics of the probe) is described by
QCD evolution equations. In particular, the evolution of
partonic densities with the changing transverse momentum
of the probe is described, in the leading logarithmic
approximation (LLA) in perturbation theory, by the Dok-
shitzer ±Gribov ±Lipatov ±Altarelli ± Parisi (DGLAP) equa-
tions [14], and that with the changing longitudinal momen-
tum by the Balitsky ±Fadin ±Kuraev ±Lipatov (BFKL)
equation [15].

To construct a consistent theoretical formalism applicable
at high energies, it is necessary to provide a description for
nonlinear effects for correlators of color excitations in the

dense partonic medium. Physically, the above necessity is
related to the fact that as the collision energy grows, the
partons in the target fill the impact parameter plane more and
more densely and, starting with some energies, the linear
approximation in density is no longer applicable [16].

Technically, the necessity of constructing a nonlinear
generalization of the linear evolution equations is particu-
larly clear in the case of the LLA in energy, where a solution of
the BFKL equation, which sums leading logarithmic con-
tributions, corresponds to a cross section characterized by a
power-like growth at asymptotically high energies Ð a result
contradicting the requirement of the unitarity of the theory
and, at the very least, showing the insufficiency of the linear
approximation for understanding the high-energy asympto-
tics of QCD. A natural line of research in this situation is to
account for corrections nonlinear in parton density that are
responsible, for example, for mutual screening of target
partons at high partonic densities. The qualitative impor-
tance of such nonlinear effects and first quantitative calcula-
tions were made in the pioneering work [16]. In particular,
quadratic nonlinearity in parton density, in the doubly
logarithmic approximation (a regime of high energies and
large transferred momenta), in which terms of the form
O�as log p 2

? log s� are kept (where as is the coupling constant
of strong interactions, p? is the transverse momentum, and s
is the collision energy squared) was first considered in
Ref. [16], and the coefficient at the nonlinear term was
calculated in Ref. [17]. The phenomenological aspects of
physics related to the nonlinear contributions were dis-
cussed, e.g., in reviews [18, 19].

A logically complete description of high-energy QCD
asymptotics in terms of auxiliary reggeon degrees of freedom
in the cross t-channel was proposed by L N Lipatov (see
review [20] and the references therein). We note that a
description of QCD in reggeon terms arises via a very special
resummation of self-energy (virtual) contributions to the
propagator of gluons exchanged between the scattering
particles. In particular, in Ref. [21], an effective action
including both gluonic and reggeon degrees of freedom was
constructed.We note that an interrelation between the results
obtained in the reggeon approach and in the approach of the
Wilson renormalization group (RG) discussed in the present
review (in which reggeon degrees of freedom are not
considered) remains unclear at present. This question seems
to present a very important topic for further studies. An
important step in this direction was made in a recent paper
[22], in which the Balitsky ±Kovchegov equation (see below,
Section 3.3.3) was derived within the reggeon formalism. This
equation has thus by now been derived in all the approaches
used (operator expansion, Wilson RG, dipole model, and
reggeon).

The rapid growth of the number of gluonic degrees of
freedom that must be used in describing the physics of
semihard processes with strong interactions leads to the idea
of using a semiclassical (tree-level) description of the config-
uration of color fields in nuclei as a basic building block in the
theory of high-energy processes [23]. The necessity of the
collective treatment of gluon modes in the large-density
regime naturally leads to a picture of disordered color glass
condensate1 as a characteristic state of gluon matter in this

1 We note that in this case, the term `condensate' is used to describe a

system of gluon modes having parametrically large occupation numbers

and is not related to the appearance of a new order parameter.
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limit. A description in terms of the CGC arises for fast
hadrons (nuclei) propagating with a speed close to the speed
of light. Because of the Lorentz contraction, they are
observed as thin disks propagating along the light cone. The
corresponding formalism is realized as a two-dimensional
classical effective theory valid in some interval of the Bjorken
variable x � p�=P�, whereP� is the longitudinal momentum
of the nucleus and p� is that of the parton. The physical
content of the model is specified by describing the source of
the classical gluon field. The McLerran ±Venugopalan (MV)
model [23] suggests considering the partons (constituent
quarks and hard gluons) as such sources, carrying a
substantial part of the longitudinal momentum of the
nucleus. These sources generate a soft gluon field, i.e., gluon
modes with small x in the nuclear wave function. The validity
of the classical description is related to the large occupation
numbers � 1=as, where as � g2=4p is the strong coupling
constant and g is a color charge, and hence the corresponding
gluon configurations can be described in terms of strong
classical gluon fields 2 Ai � 1=g [cf. Section 2.2, Eqn (9)]. The
physical picture behind the CGC is akin to the one considered
in the physics of disorderedmagnetic systems.More precisely,
averaging over the configuration of fast color sources, i.e.,
constituent quarks and hard gluons generating the soft gluon
field, has to be performed after computing the correlators of
quantum gluon modes. It is thus completely analogous to
averaging over disorder in disordered magnets.

The McLerran ±Venugopalan model provides, by con-
struction, a tree-level classical description of the gluon field
generated by constituent sources in the nucleus. In the low-
density (large transverse momentum) limit, its results repro-
duce the corresponding lowest-order calculations in pertur-
bative QCD. In the limit of high density of the source (small
transverse momentum), the model predicts a saturation of the
gluon distribution. A change in the behavior of the gluon
distribution preventing its uncontrollable `perturbative'
growth at small transverse momenta occurs at a new
important scale of the theory, the saturation momentum Qs.
The corresponding physical picture was (in terms of triple-
pomeron interaction) first considered in Ref. [16]. A semi-
classical interpretation of the saturation phenomenon was
suggested in Ref. [24] and later confirmed in Ref. [25].

The considered effective theory is valid for some restricted
interval of x. To analyze the contribution of gluonmodes with
smaller x, it is necessary to shift the scale of the effective
theory (the characteristic longitudinal momentum of the
sources) closer to the physical scale of the process p�5P�

determined by the corresponding kinematical characteristics
of the probe. This shift is realized via integration over the
quantum fluctuations of the gluon modes in the kinematic
interval that `opens' due to the shift of the scale. Technically,
the arising procedure is described in terms of the Wilson RG
with an evolution in rapidity, first considered in Ref. [24].
Carrying out calculations to all orders in density requires
computing the exact propagator (in terms of the external
field) of quantum fluctuations in the corresponding back-
ground field. The problem is technically quite complex and
was addressed in a number of publications [24, 26 ± 31].

Historically, the major step that had to bemade to finalize
the development of the formalism introduced in Refs [23, 24,
26] was the construction of the correct effective action, from
which it should have been possible to reproduce the BFKL
evolution equation in the linear limit. Such an action was
constructed in Ref. [32], where it was shown that in addition
to the usual Yang ±Mills term SYM, the effective action in
question contains an additional contribution SW describing a
nonlinear eikonal interaction of the current of fast sources J�

with quantum fluctuations of the gauge potential Aÿ (at tree
level,Aÿ � 0). It is important to note that the contribution of
one-loop diagrams, which, for simplicity, we call virtual in
what follows, to the BFKL equation arises precisely due to
these nonlinear interactions. 3 We also mention Ref. [34],
where an action analogous to that proposed in Ref. [32] was
derived by considering a physically transparent picture of a
system of precessing color spins and gluon fields.

The next step in understanding the nonlinear effects in
QCD at high energies was made in Ref. [35], where a general
functional evolution equation was derived in the LLA. This
equation allows writing a coupled chain of evolution
equations for parton correlators of an arbitrary order. It
was proven that for a full description of nonlinear effects in
the LLA, one must calculate two kernels of the nonlinear
evolution equation, the virtual (corresponding to the con-
tribution of diagrams with a virtual loop) s�x?� and real
(corresponding to the contribution of diagrams describing
radiation of a real gluon) w�x?; y?�, which are nonlinear
functionals of the background gluon field and generalize the
corresponding kernels of the linear BFKL evolution equa-
tion. The general evolution equation first obtained inRef. [35]
was subsequently derived in a number of ways [29, 30, 36, 37].
We note that in the limit of linear kernels, the obtained chain
of evolution equations formally coincides with that given by
the well-known Bartels ±Kwiecinski ± Praszalowicz (BKP)
equation, obtained within the reggeon formalism [38].

The first explicit calculation of the kernels s�x?� and
w�x?; y?� was published in Ref. [27]. In this review, we
describe the calculations in Refs [28 ± 30]. We note that the
answers obtained in [27] and [28 ± 30] differ, at least in the
light-cone gauge and infinitemomentum frame. The source of
this discrepancy is still unclear. It was shown [30, 39],
however, that after a transformation to the covariant gauge
and a coordinate transformation to the rest frame of the
target, the equations in Refs [40, 41] are reproduced. This
makes the difference between the results for the kernels
obtained in [27] and [28 ± 30] quite intriguing.

In the process of working out the answer for the evolution
equation kernels, a number of results elucidating the general
structure of the application of the Wilson RG formalism to
the QCD parton model were derived in Refs [28 ± 30]. In
particular, a formulation of the QCD parton model on a
complex time contour, required by the presence of time-
dependent eikonal interactions, was constructed in Ref. [28].
This formulation allowed the elucidation of a symmetry
structure of the problem and gave a rigorous definition of
parton correlators as equal-time Wightman functions analo-
gous to those considered in many-body physics. It was

2 The term `strong field' is used here in the context of the diagram

technique, where the Green's functions of the fields Ai `cancel' some of

the factors of g in the diagrams' vertices, thereby changing the structure of

the perturbation theory.

3 One can show that within the same technique, the `usual' DGLAP

equation, corresponding to evolution in transverse momenta, can also be

reproduced [33]. For this derivation, only the linear contribution from the

eikonal term is needed. But the structure of the RG is in this case more

complicated and requires further analysis.
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proven, in particular, that in the LLA approximation, a real-
time formulation of the theory can be used.

The results of the explicit analytical calculations in
Refs [27, 29, 30] allowed comparing the evolution of
quantum correlators in the Wilson RG with evolution
equations obtained earlier in the framework of the operator
product formalism [40] and by explicitly calculating Feynman
diagrams in the dipole model formalism [41] and to prove
their equivalence. We note that the nonlinear effects con-
sidered in Refs [40, 41] are in essence related to the colorless
reggeon vertex 2! 4 (triple-pomeron interaction).

An extensive analysis of the solutions of the nonlinear
renormalization group evolution equation has revealed a
number of important and interesting features [42 ± 48]. The
first and, probably, most important conclusion is that
quantum corrections do not change the basic pattern of
nonlinear saturation effects predicted at the tree level by the
McLerran ±Venugopalan model. The effects related to
quantum evolution reveal themselves through the depen-
dence of the saturation momentum Qs on energy and
transverse momentum. A second important result described
in Refs [44, 45] is the construction of an effective description
for all densities (transverse momenta) in the Gaussian (mean-
field) approximation, in which one only has to specify a two-
point function related to averaging over the sources, provid-
ing a smooth interpolation between the low-density and high-
density limits.

As mentioned above, a key question addressed by the
resummation program of QCD at high energies is how to
work out a solution to the problem of a perturbative unitarity
violation. Of course, it is not clear a priori whether a purely
perturbative solution exists or whether taking effects of all
orders in density in the leading logarithmic approximation
into account through the above-described nonlinear evolu-
tion equation suffices. A detailed analysis of this problemwas
recently performed in Ref. [49] (in the double-logarithmic
approximation) and in Refs [50 ± 53]. It turned out that the
derived nonlinear evolution equation solves the problem of
unitarity violation only for fixed impact parameter scattering.
It looks quite plausible that the solution to the problem is,
after all, intrinsically nonperturbative. The reason for this
conjecture is the necessity of generating a mass gap in the
spectrum providing an exponential decay of the amplitude in
the impact parameter plane and, correspondingly, a fulfill-
ment of the Froissart bound [see Section 3.4, Eqn (83)]. In
non-Abelian theories such as QCD, this is an absolutely
nonperturbative phenomenon.

1.2 Applications to phenomenology
The key question of the physics of the dense partonmedium is
the quantitative understanding of the role of perturbative
degrees of freedom in the early dynamics of nuclear reactions.
A clear example of a formalism where the hard dynamics can
be separated from the soft one is the physics of QCD jets,
where the hard primordial parton subprocesses lead to the
appearance of well-collimated fluxes of hadrons in the final
state. But the practical aspects of the experimental detection
of these fluxes imposes significant restrictions on studying the
kinematics of primordial parton scattering (the correspond-
ing minimal transverse momentum is equal to 50 ± 100 GeV,
see, e.g., [4, 19]). The temptation to generalize the perturba-
tive approach to smaller transverse momenta leads to the
formulation of the minijet approach to multiparticle produc-
tion at high energies, described in detailed reviews [4, 19]). The

main (quite radical) assumption of minijet physics is the
existence of a direct link between the lowest-order perturba-
tive diagrams and the inelastic cross section, which allows
estimating the number of partons that took part in forming
the transverse energy flow. Because of the infrared divergence
of the basic 2! 2 cross section, the dominant part of the thus
calculated perturbative contribution to the inelastic cross
section comes from the vicinity of the infrared cutoff, which
has to be introduced `by hand'. The calculations carried out in
the framework of the minijet philosophy [54 ± 57] played a
decisive role in early estimates of the possibility of producing
a dense and hot partonic matter at the early stages of nuclear
collisions. The estimates of the number of minijet gluons
made in Refs [54 ± 57] were technically based on using the
lowest-order parton rescattering mechanism and collinear
factorization. The necessity of considering multiple binary
collisions in the same event led to the necessity of using
nonrigorous schemes like eikonal unitarization [58].

The special role of minijets in articulating the physical
picture of early parton dynamics explains the interest in a
more detailed analysis of their possible participation in
forming the inelastic cross section. Rigorous perturbative
calculations can be carried out only for infrared-stable
observables (see, e.g., Ref. [59]), for which, if one neglects
nonperturbative contributions, the predicted behavior of the
physical observable is fully determined by the perturbation
theory. Because minijet partonic degrees of freedom cannot
be observed as well-collimated fluxes of hadronic transverse
energy, it is natural to consider [60] the infrared stable
quantity of transverse energy flow into a fixed rapidity
window. This calculation can be done to the next-to-leading
order accuracy [60]. A detailed analysis of the anatomy of the
transverse energy flow in hadronic collisions [61] made using
the HIJING generator [62] shows the dominant role of
nonperturbative degrees of freedom at transverse energies of
the order of several dozen GeV. An interesting quantity that
allows separating the semihard and soft contributions to the
inelastic cross section is the azimuthal asymmetry of the
transverse energy flow analyzed in Refs [63, 64]. The main
idea of these papers is that due to the basic character of
semihard and soft mechanisms, an angular asymmetry in the
transverse energy flow can arise only from the contribution of
the semihard mechanism, thus allowing one to single out the
perturbative contribution.

In the traditional approach to the description of nuclear
scattering, perturbative and nonperturbative components
were considered simultaneously, thus combining the semi-
hard minijet and soft stringy contributions. Most applica-
tions were developed in the framework of corresponding
Monte Carlo generators HIJING [62] and PYTHIA [65].
One of the most spectacular results obtained within this
approach was the discovery of the sharply inhomogeneous
turbulent nature of the gluon transverse energy release
described in Ref. [66].

As already mentioned in Section 1.1, the modern under-
standing of the physics of high-energy nuclear collisions is
based on the important role of nonlinear interactions in a
dense parton medium. The analysis of the role of such effects
in transverse energy production via minijets was first made in
Ref. [57]. The main ingredient of the physical picture of
transverse energy release in high-energy nuclear collisions
considered in Ref. [57] was the statement that the dominant
contribution to the transverse energy initially produced in
these collisions comes from minijets having transverse
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momenta of the order of the saturation scale. This hypothesis
constitutes the foundation of the modern phenomenology of
primordial parton dynamics in heavy-ion collisions based on
the physics of saturation.

The physical scenario outlined in Ref. [57] was analyzed,
from various standpoints, in Refs [67 ± 73]. One of the main
areas of research was the development of a tree-level
description of gluon production, generalizing the formalism
of the MV model in calculations of gluon production. The
first complete calculation of gluon production in the collision
of two nuclei of the lowest order in gluon density was done in
Ref. [67]. Along the lines of [25], the problem of finding the
gluon spectrum in nuclear collisions to all orders in density
was solved in Ref. [70]. Much attention was paid to the
numerical analysis of the gluon production in nuclear
scattering [74 ± 81]. This approach is intrinsically non-
perturbative and very promising.

The experimental data obtained at RHIC [82 ± 85] made it
possible to test the main prediction of CGC physics in the
RHIC regime [86 ± 90]. One of the most interesting questions
arising in describing the physics of the early stages of nuclear
collisions is the role of rescattering of initially produced
gluons. In recent papers [89, 91 ± 93], this question was
analyzed in detail in the framework of the saturation CGC
physics, including, in Ref. [89], a fairly detailed scenario going
beyond the binary scattering approximation.

The general conclusion is that the experimental data are in
qualitative agreement with the CGC-inspired models. We
note, however, that a transverse scale characteristic for
parton production at RHIC energies looks somewhat small
to consider the use of perturbation theory reliable.

2. Tree-level description:
the McLerran ±Venugopalan model

2.1 Physical picture
We start by describing a physical picture of a heavy nucleus
in the framework of the QCD±parton model mentioned in
Section 1. We consider a nucleus moving along the z axis
having the 4-momentum Pm � �P 0; 0; 0;Pz�. When describ-
ing ultrarelativistic particles, it is convenient to introduce
the so-called light-cone coordinates. For the cartesian
4-vector v m, the light-cone coordinates are vm� �v�; vÿ; v?�,
where v� � �1= ���

2
p ��v 0 � v 3�, vÿ � �1= ���

2
p ��v 0 ÿ v 3�, and

v? � �v 1; v 2�. The scalar product is given by
p � x � p�xÿ � pÿx� ÿ p? � x? , where pÿ and p� are the
energy and the longitudinal momentum, and x� and xÿ are
the light-cone time and the longitudinal coordinate, respec-
tively.

A description of the interacting matter in the nucleus
related to the QCD picture divides partonic (quark and
gluon) modes into two basic categories. The first includes
hard partons (valence quarks and hard gluons), which carry a
significant part of the light-cone momentum P� and are
characterized, in the leading approximation, by free motion
along the longitudinal z axis (such that their momenta are
collinear to P�). Hard partons serve as sources for gluons
with parametrically small longitudinal momenta q�5P�

(soft modes).
At the heart of theRGapproach discussed in Section 3 lies

a separation of the gluon modes in the nuclear wave function
into `soft' and `hard' (fields and their sources) by comparing
their longitudinal momentum p� with some characteristic

longitudinal scale L�, such that p� > L� for the hard modes
and p� < L� for the soft ones. The scaleL� � x�P� should be
such that x� should not be too small. In fact, the Wilson RG
procedure described in Section 3 ascribes the gluon modes
with x9 x� to sources, and those with x > x� to the fields.
The goal of the RG approach is a quantitative analysis of the
physics of gluon modes with x� > x. We recall that the
Bjorken x variable characterizes the longitudinal scale of a
probe interacting with the nucleus. A key particularity of the
small-x domain x5 1 is the dominance of gluons in the wave
function of a projectile.

At small x (high energies), the occupation numbers
characterizing the soft gluon modes are big. This explains
the starting point of the main idea of the MVmodel, which is
to describe these soft gluon modes by the tree-level classical
WeizsaÈ cker ±Williams color radiation Am

a (the subscript a
refers to a color of the gluon mode) of hard partons, which
are in turn characterized by a static random color charge
density ra. The physical picture corresponding to such
separation of scales can be described as follows.

The fast partons having large longitudinal momenta p�

propagate along the light cone emitting and absorbing soft
gluons. In the eikonal approximation, this corresponds to
having one nonzero component of the radiating current in the
� direction, Jm

a � d m�J�a . The hard partons are delocalized in
the longitudinal coordinate xÿ at distances Dxÿ � 1=p� and
appear (almost) point-like for soft radiation. Of principal
importance is also a hierarchy of temporal scales. For modes
close to the mass shell, 2p�pÿ � p 2

?, and hence, according to
the uncertainty relation, soft gluons have large energies
(frequencies) pÿ � p 2

?=p
� and, correspondingly, short life-

times

Dx� � 1

pÿ
� p�

p 2
?
� xP�

p 2
?

:

At such small lifetimes, the dynamics of hard modes is
effectively frozen, and therefore soft gluons are effectively
coupled to the static correlators of the hard modes.

The current describing the hardmodes can thus be written
as

J m
a �x� � dm�ra�xÿ; x?� ; qÿra �

qra
qx�

� 0 ;
�1�

supp ra �
�
jxÿj4 1

L�

�
:

In the non-Abelian equations of motion describing the tree-
level dynamics of soft gluons, current (1) plays the role of a
source,

�Dn;F
nm� � dm�ra�xÿ; x?� ; �2�

where Dn is the covariant derivative and F nm is the Yang ±
Mills field strength. The source ra is a stochastic variable with
zero mean. The spatial correlations ra�x� �x � �xÿ; x?�� at
the scale L� are inherited from (generally speaking, static)
correlators of hard gluons. The weight of a given charge
configuration ra is determined by some functionalWL�r� that
is gauge invariant by assumption. An analysis of the gluon
field generated by the source ra is most transparent in the
light-cone gauge A� � 0.

The calculation of gluonic correlators in the MV model
proceeds in two steps:
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� solving classical Yang ±Mills equations (2) in the light-
cone gauge A� � 0. The solution Ai�x��r� is some nonlinear
functional of r. In Section 2.2, we show that it is always
possible to construct a static solution of (2) having Aÿ � 0.
� computing correlators in this classical solution by

averaging with respect to r with the weightWL�r�,

Ai

a�x�; x�Aj
b�x�; y� . . .

�
L �

�
DrWL�r� Ai

a�x�A j
b�y� . . . ;

�3�

where x � �xÿ; x?� and the normalization of correlators is
fixed by�

DrWL�r� � 1 : �4�

It is important to note that correlators (3) depend on the
scale L�. As is discussed in Section 2.2, the effective theory
specified by Eqns (2) and (3) in fact holds only for the modes
having longitudinal momenta not too small compared to the
reference scale L�. At very small longitudinal momenta bL�

with b5 1, the (large) quantum corrections of the order of
as ln �1=b� have to be included. To calculate correlators at the
new scale bL�, one has to construct a new effective theory via
integration over the quantum degrees of freedom with
longitudinal momenta in the strip bL� < j p�j < L�.

2.2 Classical solution
Understanding the structure of the classical solution of (2) is a
key to the physics of the MV model. Before turning to the
non-Abelian case, it is useful to consider its Abelian
simplification, i.e., to solve the equation qnF nm � dm�r�x�,
where F mn is now an Abelian field strength, in the light-cone
gauge A� � 0. For the sought static solution, the m � ÿ and
m � i components of the equations of motion imply that
Aÿ � 0 (and hence F ÿ� � F iÿ � 0) and F i j � 0. The
sought static solution is thus a two-dimensional pure-gauge
one,

Ai�p� � ÿ p i

p�
r�p�; p?�

p 2
?

: �5�

To specify the solution completely (in particular, to provide
its description in coordinate space) we must choose some
prescription for the axial pole at p� � 0. We choose the
prescription 1=p� � 1=�p� � ie�. In coordinate space, this
leads to the solution in the form

Ai�xÿ; x?� �
� xÿ

ÿ1
dyÿ q ia�yÿ; x?� ; �6�

vanishing at xÿ ! ÿ1. The function a�x� satisfies
ÿH 2

?a�x� � r�x�. Different prescriptions for the axial pole
correspond to the same electric field F i��x� � qia�x� and
thus to the prescription-invariant physics.

Turning now to the analysis of the non-Abelian case, we
note that for a static charge density r, Eqns (2) are, generally
speaking, not consistent. Indeed, from

�
Dm; �Dn;F

nm�� � 0,
there follows a covariant conservation of the color current
�Dm; J

m� � 0, and therefore the considered current
Jm � dm�J� must satisfy

�Dÿ; J�� � qÿJ� ÿ ig�Aÿ; J�� � 0 ;

which (atAÿ 6� 0) it does not. The current is static only up to
the isotopic precession

J��x�; x� � W�x�; x� r�x�W y�x�; x� ;

where r is some initial orientation of the color charge density
at some x� � x�0 andW�Aÿ� is a time-ordered Wilson line

W�Aÿ��x�; x� � T exp

�
ig

� x�

x�
0

dz� Aÿ�z�; x�
�
: �7�

Analogously to the above-described Abelian case, we can,
however, consider a static solution of the form

A� � Aÿ � 0 ; Ai � Ai�xÿ; x?� : �8�

Solution (8) is invariant under gauge transformations
independent of xÿ and x�, i.e., under two-dimensional
transformations in the transverse plane. Then, for the m � �
component, we have �Di;F

i�� � r�x�, while for the m � i one,
we obtain �Dj;F

j i� � 0, with the two-dimensional pure-gauge
solution (F j i � 0)

Ai�xÿ; x?� � i

g
U�xÿ; x?� q iU y�xÿ; x?� ; �9�

where U�xÿ; x?� belongs to SU�N� and has an implicit
dependence on r. The fields Ai in (9) can be gauge-rotated
to zero by a gauge transformation U y�x�,

A m ! ~A m � U yA mU� i

g
U y q mU ; �10�

leaving the only nonzero component

~A� � i

g
U y�q�U � :

We note that the transformed gauge potential satisfies the
covariant gauge constraint qm ~Am � 0 and the transformed
equations of motion take the simple formÿH 2

? ~A��x� � ~r�x�,
where

~r�x� � U y�x� r�x�U�x� �11�

is the classical charge density in the rotated gauge. It is
convenient to introduce, by analogy to the Abelian case, a
new function a�x� � ~A��x�, such that a�x� satisfies
ÿH 2

?a�x� � ~r�x�. In computing the gluon correlators, it is
convenient to use an explicit expression for U in terms of a,

U y�xÿ; x?� � P exp

�
ig

� xÿ

xÿ
0

dzÿ a�zÿ; x?�
�
; �12�

where P denotes ordering of the matrices a�x� from left to
right in ascending (descending) order in xÿ at xÿ > xÿ0
�xÿ < xÿ0 �, respectively. Various choices of xÿ0 correspond
to solutions related by residual two-dimensional gauge
transformations. We have thus fully constructed a static
classical solution Ai�~r� in the light-cone gauge as an implicit
nonlinear functional of the source ~r . Explicit construction of
the solution is, obviously, not possible Ð one would have to
explicitly solve the nonlinear equation U�r��ÿH 2

?a�U y�r� � r
for a. For hard modes, the source r is localized in the vicinity
of xÿ � 0 [cf. (1)].
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We now turn to the all-important issue of fixing the
residual gauge invariance. To do it at the tree level [i.e., on
classical solution (9)], we again use the retarded boundary
conditions in xÿ: Ai�xÿ; x?� ! 0 for xÿ ! ÿ1, which is
equivalent to choosing xÿ0 ! ÿ1 in (12). The choice of this
boundary condition fixes, in fact, the axial pole prescription
for the gluon propagator used in computing the quantum
corrections. We also note that the chosen retarded prescrip-
tion corresponds to the source having its support only at
positive xÿ in the interval 09 xÿ9 1=L�.

In the MV approach, L� is a large longitudinal scale, and
the dominant contribution to the target wave function and,
correspondingly, cross section comes from themodes with the
characteristic longitudinal size

Dxÿ � 1

p�
4

1

L�
:

These modes are thus sensitive only to a crude longitudinal
structure of the localized source, allowing us to simplify the
classical solution at parametrically large distances from the
source by using the following approximation for the rotation
matrices:

U y�xÿ; x?� � P exp

�
ig

� xÿ

ÿ1
dzÿ a�zÿ; x?�

�
� y�xÿ�O y�x?� � y�ÿxÿ� ; �13�

where y is the Heaviside theta-function,

O y�x?� � P exp

�
ig

�1
ÿ1

dzÿ a�zÿ; x?�
�
; �14�

and therefore [cf. (9)]

Ai�xÿ; x?� � y�xÿ� i
g
O�q iO y� � y�xÿ�Ai

1�x?� ; �15�

and the chromoelectric field strength is effectively a delta-
function, 4

F i��x� � ÿq�Ai � ÿd�xÿ�Ai
1�x?� : �16�

To construct observable quantities from gauge potentials
A, we recall that a gluon component of the structure function
xG�x;Q2� is related to the momentum density of gluons
dN=d3k by

xG�x;Q2� �
�
d2k? dk�y�Q2 ÿ k2?�xd

�
xÿ k�

P�

�
dN

d3k
; �17�

where dN=d3k can, in turn, be expressed through the
correlator of gluon fields

dN

d3k
�
X
l

X
c

a
y
lc�k� alc�k� �

2k�

�2p�3


Ai

c�x�; k�Ai
c�x�;ÿk�

�
;

�18�

where averaging is performed over the wave function of a
hadron (nucleus). 5 Relations (17) and (18) allow us to
interpret (17) as a density of gluons with the longitudinal

momentum k� � xP� and transverse momentum jk?j4 jQj
in the hadron (nuclear) wave function.

Therefore, a tree-level (i.e., calculated on the classical
solution) structure function xGcl�x;Q2� has the form

xGcl�x;Q2� � 1

p

�
d2k?
�2p�2 y�Q2 ÿ k 2

?�

��F i�

a �k�
��2�

L ; �19�

where averaging over r is done at the scaleL� � xP� [see (3),
(4)]. In the linear approximation in r (weak-field limit), we
have F �ja ' i�k j=k 2

?�ra and, therefore,

xGcl�x;Q2� ' 1

p

�
d2k?
�2p�2

y�Q2 ÿ k 2
?�

k 2
?


��ra�k���2�L : �20�

We note that in the considered approximation, the depen-
dence of the gluon density on x is only due to the
x-dependence of the weight functional WL�r� �L� � xP��,
and hence all x-dependence in theMVmodel is encoded in the
weight functional and determines, in effect, its (quantum)
evolutionary dependence on L�.

We note that (19) allows a natural interpretation in terms
of the gluon number density in the transverse momentum
plane in the unit of rapidity t � lnP�=L� � ln 1=x:

xGcl�x;Q2� '
� Q2

d2k?
1

4p3

��F i�

a �k�
��2�

L

�
� Q2

d2k?
dN

dt d2k?
: �21�

An important role is played in what follows by the gluon
number density in the transverse phase space parameterized
by the so-called unintegrated structure function j�x; k2?�.
For a homogeneous (in the sense of density dependence on
the impact parameter) domain in the transverse plane with
an area S?, the functions xGcl�x;Q2� and j�x;Q2� are
related by

xGcl�x;Q2� � N 2
c ÿ 1

4p3
S?
� Q2

d2k?
4p3

N 2
c ÿ 1

1

S?

dN

dt d2k?

� N 2
c ÿ 1

4p3
S?
� Q2

d2k? j�x; k 2
?� ; �22�

where Nc is the number of colors.

2.3 Gluon distribution in the McLerran ±Venugopalan
model of the nucleus: low-density limit
The simple model of the color source generating the gluonic
component of the nuclear wave function proposed by
McLerran and Venugopalan [23] corresponds to considering
the A�Nc constituent quarks in the nucleus as an ensemble
of independent color sources. The main approximation made
in this model clearly neglects correlations between the colors
of constituent quarks belonging to the same nucleon due to
confinement. For sufficiently small probes and sufficiently
large nuclei, this should be a good approximation. The total
color charge in the tube with the transverse cross section DS?
is described by its moments,

hQai � 0 ; hQaQai � DS?
g2CFNcA

pR2
A

� DS?
g2�N 2

c ÿ 1�A
2pR2

A

;

�23�
4 We note that d- and y-functions in these formulas are understood as

being regularized at distances Dxÿ � 1=L�.
5 In Eqn (18), aylc�k� and alc�k� are creation and annihilation operators of

a gluon with momentum k, color c, and transverse polarization l.
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and for the color charge density Qa, we therefore have

hQaQai
DS?�N 2

c ÿ 1� �
g2

2

A

pR2
A

� m 2
A : �24�

In terms of ra�xÿ; x?�,

Qa �
�
DS?

d2x?
�
dxÿ ra�xÿ; x?�

�
�
DS?

d2x? ra�x?� ; �25�

while the moments of color charge distribution (23) corre-
spond, assuming homogeneity in the impact parameter plane,
to the correlators

ra�xÿ; x?� r b�yÿ; y?�

� � dabd�x?ÿ y?� d�xÿÿ yÿ�lA�xÿ� ;

ra�x?� r b�y?�

� � dabd�x? ÿ y?� m 2
A

�26�

or, in momentum space,

ra�k?� ra�ÿk?�

� � pR2
A m 2

A ; �27�

where m 2
A �

�
dxÿlA�xÿ� � g2A=2pR2

A [see (24)]. The weight
functional generating correlators (26) is, evidently, Gaussian:

WA�r� � exp

�
ÿ 1

2

�
d3x

ra�x�ra�x�
lA�xÿ�

�
: �28�

Using (20) and (26), we obtain an expression for the structure
function xGcl�x;Q2�,

xGcl�x;Q2� ' N 2
c ÿ 1

4p
R2

A m 2
A

� Q2

L 2
QCD

dk 2
?

k 2
?

� ANc
asCF

p
ln

Q2

L2
QCD

; �29�

where we immediately recognize the standard spectrum of
gluons emitted by theANc quarks in the nucleus calculated in
the lowest order in perturbation theory. From expressions
(11), (27), and (29), it follows that in the consideredweak-field
approximation,

jA�x; k 2
?� �

m 2
A

k 2
?
: �30�

2.4 Gluon distribution in the McLerran ±Venugopalan
model of the nucleus: saturation
In Section 2.3, we calculated the unintegrated structure
function j in the low-density regime. From the standpoint
of calculational technique, `low density' means neglecting the
non-Abelian effects in computing the correlation of chromo-
electric fields [see (19), (21)]. The fully non-Abelian calcula-
tion was performed in Refs [24, 25] (see also a detailed and
transparent derivation in Ref. [2]). The answer for the
unintegrated structure function j�x; k 2

?� takes the form

jA�k?� �
1

pasNc

�
d2x?
x 2
?

exp �ÿik?x?�

�
�
1ÿ exp

�
ÿ 1

4
x 2
?Q

2
A ln

1

x 2
?L

2
QCD

��
; �31�

where

Q2
A � asNcm 2

A � asNc

�
dxÿ lA�xÿ� : �32�

From (31), it is clear that the (transverse) momentum scaleQ2
s

at which nonlinear effects become important is determined by
the nonlinear equation

Q2
s ' Q2

A ln
Q2

s

L2
QCD

; �33�

where the characteristic transverse distance was chosen equal
to 1=x 2

? � Q2
s . The properties of nonlinear gluon distribution

(31) are best illustrated by considering its asymptotics at small
(large transverse momenta) and large (small transverse
momenta) densities. It is easily seen that formula (31)
interpolates between the following limits:

jA�k?4Qs� � m 2
A

k 2
?
! jA�k?5Qs� � 1

asNc
ln

Q2
s

k 2
?
: �34�

Equation (34) demonstrates a key property of Eqn (31) at
small momenta. The saturation phenomenon shows itself in a
mild logarithmic infrared divergence as compared to the
power-like infrared divergence in the perturbative regime.
The scale of transverse momenta Qs controlling this transi-
tion is called the saturation momentum. In turn, the structure
function xG�x;Q2� calculated from (31) interpolates between
the following limits:

xGA�x;Q2� �k 2
?4Q2

s � ' Nc
asCF

p
ln

Q2

L2
QCD

;
�35�

xGA�x;Q2� �k 2
?5Q2

s � '
1

4p3as

N 2
c ÿ 1

Nc
pR2

A ln
Q2

s

Q2
:

Regarding the second relation in (35), we note the inverse
proportionality to the strong coupling constant as, which is
typical of the physics of saturation.

3. Quantum corrections in the high-energy limit

In Section 2, we discussed theMVapproach to the description
of dense partonic systems at the tree-level (classical) approx-
imation in QCD at high energies. In the present section, we
describe a systematic approach to computing quantum
corrections to the tree-level description.

3.1 Renormalization group
Quantum corrections to the tree-level MV picture are
determined by the physics of quantum modes with lon-
gitudinal momenta j p�j < L� considered in addition to the
classical modes Ai generated by the source r. The restriction
j p�j < L� comes from the fact that, by assumption, the
modes having j p�j > L� were already integrated out in the
process of constructing the effective theory at the scale L�.

The basic object of the theory under construction is the
generating functional of the correlators of gluon fields having
longitudinal momenta in the interval j p�j < L� in the light-
cone gauge A� � 0:

Z� j � �
�
DrWL�r�Zÿ1L �r�

�L
DAm

a d�A�a �

� exp

�
iS�A; r� ÿ i

�
j � A

�
�
�
DrWL�r�ZL�r; j � : �36�
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Equation (36) includes two functional integrations: over Am,

ZL�r; j � � Zÿ1L �r�
�L
DAm

a d�A�a � exp
�
iS�A; r� ÿ i

�
j � A

�
;

�37�

where ZL�r� � ZL�r; j � 0� describes quantum fluctuations
at fixed r, and the classical averaging over r with the weight
WL�r�. The subscript L denotes integration over the modes
having jp�j < L�. 6

The quantum dynamics of the problem is specified by the
effective action S�A; r� such that, first, the tree-level equations
of motion are reproduced in the regime dS=dAm � 0 and,
second, a correct quantum evolution of the correlators of the
theory is ensured. Such an effective action was proposed in
Refs [27, 32, 35] (see also Ref. [34]),

S�A; r� � ÿ
�
d4x

1

4
F a
mnF

mn
a

� i

gNc

�
d3x Tr

�
r�x�W1;ÿ1�x�

	 � SYM � SW ; �38�

where

W1;ÿ1�Aÿ��x� � T exp

�
ig

�
dx� Aÿ�x�

�
: �39�

Effective action (38) includes the standard Yang ±Mills term
SYM, as well as a gauge invariant generalization of the
Abelian eikonal vertex

�
d4x raA

ÿ
a .

7

At the tree level,Am
a � Am

a � d miAi
a, whereAi

a is a solution
of the classical equations of motion with the source ra
described in Section 2.2. The full gluon field in (36) and (37)
includes both classical and quantum components:

Am
a�x� � Am

a�x� � dAm
a�x� : �40�

The mean field


Am

a�x�
�
includes Am and the contribution

induced by quantum fluctuations hdAmi corresponding to the
polarization of gluon fluctuations by the external charge,


Am
a�x�

� � Am
a�x� �



dAm

a�x�
� � Am

a�x� � dAm
a�x� ; �41�

and satisfies�
dS

dAm
a�x�

�
� 0 �42�

(the brackets denote quantum averaging at fixed r).
Using generating functional (36), we can compute arbi-

trary gluon correlators. For example, the two-point correla-
tor is given by



TAm�x�An�y���
�
�
DrWL�r�

� LDAAm�x�An�y� exp ÿiS�A; r��� LDA exp
ÿ
iS�A; r�� �43�

(double brackets indicate averaging with respect to both
quantum fluctuations and the external source).

The sought effective theory can be constructed by layer-
by-layer integration of quantum fluctuations with respect
to p� (or pÿ). The dominant contributions at small x are
those proportional to large rapidity intervals Dt �
ln �1=x�4 1. We see in what follows that integration over
p� in the strip k�5 p�5L� generates corrections of the
order as ln �L�=k�� to amplitudes with external momenta
k� < L�, which are essential if L�4 k�. From the stand-
point of a more general description that takes quantum
corrections into account, the MV model describes tree-level
correlations of gluon fields where all degrees of freedom with
longitudinal momenta larger than p� are already integrated
out and the corresponding induced contributions are taken
into account in the correspondingly renormalized parameters
of the action. Summation of the logarithmic corrections is
described in terms of a quantum evolution of the weight
functional WL�r�, where L� � k�. The resulting classical
theory is valid for modes with longitudinal momenta of the
order of k�.

3.2 Linear evolution:
the Balitsky ± Fadin ±Kuraev ±Lipatov limit
The evolution of the unintegrated structure function j�x; k 2

?�
with a change in energy in the LLA in energy and lowest order
in density is given by the BFKL equation [15]

qj�t; k 2
?�

qt
� asNc

p2

�
d2p?

k 2
?

p 2
?�k? ÿ p?�2

j�t; p 2
?�

ÿ 1

2

asNc

p2

�
d2p?

k 2
?

p 2
?�k? ÿ p?�2

j�t; k 2
?� : �44�

A key feature of BFKL equation (44) is the exponential
growth of its solution with t,

j�t!1� � exp �cBFKLt� ; �45�

where cBFKL � asNc4 ln 2=p. The asymptotics of form (45)
means that the physical cross sections calculated in the linear
approximation in the gluon density have a power-like
divergence in the high-energy limit �t � ln 1=x � ln

��
s
p �

and, thereby, violate unitarity. We note that the BFKL
equation can be written not only for the unintegrated
structure function but also, e.g., for the scattering amplitude
of a fast color dipole on the target N�x?; y?�, where x?, y?
are coordinates of the charges constituting the dipole in the
transverse plane (see, e.g., Ref. [2]):

qN�x?; y?�
qt

� ÿ as
p

�
d2z?

�x? ÿ y?�2
�x? ÿ z?�2�y? ÿ z?�2

� �N�x?; z?� � N�z?; y?� ÿ N �x?; y?��t : �46�
We stress once again that the linear approximation in the
gluon density described in this subsection is conceptually
unsatisfactory and needs improvement. A natural way to such
an improvement is to work out a consistent nonlinear
generalization of the linear formalism. We follow this logical
line below.

3.3 Nonlinear evolution equation
To describe a quantum evolution of the weight functional
WL�r� with L�, it is convenient to consider two theories,

6 We note that in the light-cone gauge, the `longitudinal' separation of

degrees of freedom is defined uniquely: the residual gauge transformations

are independent of xÿ and, therefore, cannot change the longitudinal

momentum p�.
7 Strictly speaking, because of the nonlocal dependence of the eikonal

interaction of the source r with Aÿ on time, the effective action should be

considered on a contour in the complex plane. It can be shown, however,

that in the LLA, one can restrict oneself to considering the dynamics on

the real-time axis [28].
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`Theory I' and `Theory II', differing by their respective
longitudinal scales L� and bL�, where b5 1, but
as ln �1=b� < 1. In Theory II, the modes in the strip

bL� < j p�j < L� �47�

separating Theories I and II are integrated out, and the
induced contributions resulting from this integration are
taken into account in the weight functionalWbL by a suitable
renormalization of its coefficients.

3.3.1 Nonlinear evolution equation: derivation. To explicitly
calculate DW �WbL ÿWL, it is useful to compare the
expressions for gluon correlators calculated at the same
scale k�9 bL� in the two theories. In Theory II, in the
leading order in as, induced effects are taken into account at
the tree level by definition. In Theory I, one has logarith-
mically amplified contributions fromquantum fluctuations in
strip (47). In computing quantum corrections, we keep the
terms of the leading order in as ln �1=b� (leading logarithmic
approximation) to all orders in background fields and
sources. This is necessary because of the key role of strong
fields Ai � 1=g and sources r � 1=g in our problem. The
resulting equation [32, 35] is a nonlinear functional equation
forWt�r� [here t � ln �1=b�] describing the evolution ofWt�r�
with growing t.

We schematically consider calculations in Theory I in the
example of the two-point equal time correlator

Ai

a�x�; k�Ai
a�x�;ÿk�

�
or, more precisely, its coordinate

counterpart G�x; y� � 
Ai
a�x�; x�Ai

a�x�; y�
�
, which is, in

fact, independent of x� because of the static nature of the
source. In what follows, it is convenient to decompose the full
gluon field as

Am
a�x� � Am

a�x� � dAm
a�x� � a m

a �x� ; �48�

where Am
a�x� is a classical solution, dAm

a�x� are the semihard
quantum fluctuations with longitudinal momenta in the strip
(47), and a m

a �x� are soft fields. Quantum effects important for
our calculation arise from the interaction of soft modes a m

with the semihard ones dAm in the presence of the external
field Ai and the source r. A detailed analysis [28, 30] shows
that in the LLA, dAi � as log �1=b�Ai and ha ia ii �
as log �1=b�AiAi, and therefore

G�x; y� � Ai�x�Ai�y� � Ai�x� dAi�y� � dAi�x�Ai�y�
� 
a i�x�; x� a i�x�; y�� : �49�

Correlator (49) contains three principal contributions: the
tree-level one, the inducedmean field, and the induced density
corresponding to gluon polarization in the presence of the
external source. The smallness of contributions nonlinear in
a i is due to the smallness of the induced fields compared to
background ones. Because Ai and r are static, the induced
mean field dAi is also static, and the two-point functions, such
as ha i

xa
j
yi, depend only on x� ÿ y�. We also note that

hdAmi � 0.
As mentioned above, in calculating dAi and hdAi dAii, we

look at quantum contributions coming from semihard
gluons. We note that the LLA imposes stringent restrictions
on the kinematical definition of the semihard modes Ð these
are the near-mass-shell modes with longitudinal momenta
bL�5 j p�j5L� and frequencies Lÿ5 j pÿj5Lÿ=b,

where

Lÿ � Q 2
?

2L�
; �50�

and Q? is some characteristic transverse momentum.
The calculation aims at expressing dAi and ha ia ii through

correlators of the semihard modes in the LLA in as ln �1=b� in
the one-loop approximation. It turns out [35] that in the
considered LLA, the sought logarithmic amplification is
related to the correlator of the fluctuations of the charge
density

ŵab�x; y� �


dra�x� drb�y�

� �51�

and induced density

ŝa�x� �


dra�x�

� � O

�
as ln

1

b
r
�
: �52�

It is convenient to isolate the logarithmic factor in (51) and
(52) explicitly,

ŝa�x� ! d�xÿ� as ln 1

b
sa�x?� � d�xÿ�

�
dxÿ ŝa�xÿ; x?�

�53�

and

ŵab�x; y� ! d�xÿ� as ln 1

b
wab�x?; y?� d�yÿ�

� d�xÿ�d�yÿ�
�
dxÿ

�
dyÿ ŵab�x; y� : �54�

Correlator (49) then takes the form

G�x; y� � Ai
xAi

y � as ln
1

b

��GinJ n�xAi
y �Ai

x�GinJ n�y
� �GiÿwGÿi�xy

�
: �55�

In expression (55), the virtual kernel s is contained in J n.
After averaging over r with the weight functional WL�r�,
formula (55) describes the gluon density at the scale bL�

calculated to the LLA accuracy in Theory I.
The kernels s and wwere calculated analytically in Refs [1,

27, 28, 30]. The result appears to depend on technical
assumptions made in the calculations in Refs [27] and [1, 28,
30] (see also Ref. [33]). That the form of nonlinear terms in
QCD evolution equations depends, in particular, on the way
one fixes the residual gauge freedom is, in fact, not new (see,
e.g., Ref. [17]).

We consider the same gluon correlator (49) in Theory II.
By construction,

hAi
xAi

yibL � hAi
xAi

yiL

� as ln
1

b


�GinJ n�xAi
y �Ai

x�GinJ n�y � �GiÿwGÿi�xy
�
L ;

�56�
where

hAi
xAi

yiL �
�
DrWL�r� Ai

a�x�Ai
a�y� : �57�

Analogous formulas can be written for hAiAiibL in terms of
WbL. Equation (56) is, in fact, an evolution equation for the
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gluon density that can be used for the derivation of the
evolution equation for the weight functional
WL�r� ! WbL�r�.

The derivation is performed in two stages. At the first
stage, one shows that the expressions for quantum corrections
can be reproduced by adding a Gaussian random source to
the right-hand side of classical equations of motion (2), and at
the second stage, one performs the necessary redefinitions of
the classical source and the weight functional.

In more detail, one considers the modified equations of
motion

�Dn;F
nm�a � d m�ÿra�x� � na�x�

�
; �58�

with the random source na�x� chosen such that on solutions of
Eqn (58), with quantum corrections taken into account, the
correlator hAiAii coincides with that calculated in Theory I.
The noise na thus plays the role of fluctuations in the charge
density dra induced by the semihard modes. Using this
analogy, one assumes that na is stationary and has the same
correlators as dra,


na�x�
�
n � sa�x� ;



na�x� nb�y�

�
n � wab�x; y� ; �59�

where the brackets h. . .in denote averaging over n.
A simple analysis shows [28, 30] that correlators calcu-

lated in Theories I and II coincide if the wave functional W
satisfies the quadratic relation�

DrWbL�r� Ai
x�r� Ai

y�r�

�
�
DrWL�r�

�
DnW �n ; r� Ai

x�r� n� Ai
y�r� n� : �60�

Expanding the integrand in the right-hand-side of (60) up to
the second order in nd=dr and integrating over n, one obtains
the relation for the integrands in (60):

WbL�r� ÿWL�r� � ÿ d
drx
�WLsx� � 1

2

d2

drx dry
�WLwxy� : �61�

We stress that convolutions on the right-hand-side of (61)
contain three-dimensional integration, e.g.,

d
drx
�WLsx� �

�
d3x

d
dra�x�

�
WLsa�x�

�
: �62�

We also note that because the support of s lies in the interval
1=L�9 xÿ9 1=bL�, the logarithmic amplification arises
only after the integration over xÿ. In the limit as b! 1,
equality (62) can be transformed into

d
drx
�WLsx� � as ln

1

b

�
d2x?

d
dra�xÿL ; x?�

�
WLsa�x?�

�
: �63�

In terms of rapidity, t � ln �P�=L�� � ln �1=x�, and
hence ln �P�=bL�� � t� Dt, where Dt � ln �1=b�. After
evident notation changes WL �Wt, WbL �Wt�Dt, and
xÿL � 1=L� � xÿt , relation (61) becomes

Wt�Dt�r� ÿWt�r�

� asDt
�
1

2

d2

drt�x� drt�y�
�Wtwxy� ÿ

d
drt�x�

�Wtsx�
�
; �64�

where rt�x?� � r�xÿt ; x?� and the convolutions are under-
stood as two-dimensional integrals, e.g.,

d
drt�x�

�Wtsx� �
�
d2x?

d
dra�xÿt ; x?�

�
Wtsa�x?�

�
: �65�

According to (64) and (65), the evolution from Wt�r� to
Wt�Dt�r� is generated by the changes in the source r in the
interval of rapidities �t; t� Dt� in which, in the LLA used,
quantum corrections are essential. 8 We note that the
coordinate support of the source correlates with the long-
itudinal momenta of the modes over which the integration is
performed. Therefore, the rapidity t can be interpreted both
as a momentum, t � ln �P�=L��, and as a coordinate
t � ln �xÿt =xÿ0 � (here, xÿ0 is some arbitrary longitudinal
scale, e.g., xÿ0 � 1=P�).

Taking the limit as Dt � ln �1=b� ! 0 yields the final
equation describing the evolution of the wave functional in
t � ln �1=x�, first obtained via direct computation in
Ref. [35],

qWt�r�
qt

� as

�
1

2

d2

drt�x� drt�y�
�Wtwxy� ÿ

d
drt�x�

�Wtsx�
�
: �66�

Equation (66) is a functional Fokker ± Planck equation,
in which t plays the role of time, describing diffusion in the
space of charge densities r with r-dependent drift and
diffusion coefficients ass and asw. In the language of
random processes, Eqn (60) is a Chapman ±Kolmogorov
equation. Equation (66) can also be interpreted as a
functional SchroÈ dinger equation in the imaginary time t.
Evolution equation (66) leads to a chain of evolution
equations for the charge density correlators hrr . . . rit [35].
In particular, multiplyingWt�r� by r�x� r�y� and performing
the functional integration over r, we obtain an evolution
equation for the two-point correlator,

d

dt



ra�x� rb�y�

�
t � as



d�xÿ ÿ xÿt � sa�x?� rb�y�

� d�yÿ ÿ xÿt � ra�x� sb�y?�
� d�xÿ ÿ xÿt � d�yÿ ÿ xÿt � wab�x?; y?�

�
t ; �67�

where h. . .it denotes averaging over r with the weight
functionalWt�r�.

3.3.2 Nonlinear evolution equation: a-representation. All
physically interesting correlators can be computed in terms
of tree-level correlators of color charge density and the
quantum corrections to them. At the same time, a more
transparent picture of quantum evolution arises in the
covariant gauge if all correlators are expressed through the
background field a introduced in Section 2.2. The new
evolution equation is given by [29, 30]

qWt�a�
qt

� as

�
1

2

d2

dat�x� dat�y� �WtZxy� ÿ
d

dat�x� �Wtnx�
�
: �68�

Evolution equation (68) involves new virtual and real kernels
n and Z. Explicit computations [29, 30] lead to the following

8 A detailed discussion can be found in Ref. [37].
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simple expressions for them:

n a�x?� � ig

2p

�
d2z?
�2p�2

1

�x? ÿ z?�2
Tr
ÿ
T aO y�x?�O�z?�

�
;

Z ab
x?; y? �

1

p

�
d2z?
�2p�2

�x i ÿ z i��y i ÿ z i�
�x? ÿ z?�2�y? ÿ z?�2

��1� O y�x?�O�y?� ÿ O y�x?�O�z?� ÿ O y�z?�O�y?�
	ab

:

�69�
Here, Ta is a generator of SU�N� in the adjoint representa-
tion.

Using the a-representation allows, in particular, con-
structing a neat Hamiltonian form of evolution equation
(68) first obtained by Weigert [94]. In more detail, an explicit
calculation shows [94] that there exists a remarkable equation
interrelating the coefficients of evolution equation (68) (and,
therefore, real and virtual contributions),

1

2

�
d2y?

dZ ab�x?; y?�
da b�y?� � n a�x?� ; �70�

which allows rewriting evolution equation (68) in the
Hamiltonian form:

qWt�a�
qt

�
��

d2z?
2p

J i
a�z?� J i

a�z?�
�
Wt�a� � ÿHWt�a� ;

�71�
J i
a�z?� � i

�
d2x?
2p

z i ÿ x i

�z? ÿ x?�2
�
1ÿ O y�z?�O�x?�

�
ab

d
da b

t �x?�
:

In discussing solutions of nonlinear renormalization group
equation (68) or its Hamiltonian analogue (71), a diligent
analysis of the structure of functional derivatives with
respect to a is required [30, 43] (see also Ref. [95]). The
main idea is that, as follows from the experience in
computing quantum corrections to the MV model, the
development of quantum evolution up to the scale t
generates the field a with support in the interval
04 xÿ4 exp �t�=P� � xÿ0 exp �t� � xÿt . Within the consid-
ered RG procedure, one can then make the replacement

O y�x?� ! O yt �x?� � P exp

�
ig

� xÿt

0

dxÿ a�xÿ; x?�
�
: �72�

Detailed analysis shows [30] that quantum evolution (i.e., the
changes in the tree-level field configuration induced by
quantum corrections) occurs at the boundary of the tree-
level source in the coordinate xÿ such that the derivatives of
Wilson lines (72) in renormalization group equations (68) and
(71) are in fact taken with respect to the colored field
at�x?� � a�xÿt ; x?� at the endpoint xÿt :

dO yt �x?�
da a

t �z?�
� igd�2��x? ÿ z?�T aO yt �x?� : �73�

It is very important to take this circumstance into account
when discussing the general properties of solutions of master
equations (66) and (68) and their physical interpretation [43 ±
45]. In particular, the quantities Ot�x?� and their canonically
conjugate momenta

P a
t �x?� �

1

ig

d
da a

t �x?�
�74�

are the true canonical variables of the theory [30].

As already mentioned, evolution equations (68) allow
calculating an arbitrary correlator of a-dependent opera-
tors. The evolution equation for one of the functionals of a
that is of special interest, namely, for V�x?; y?� �
Tr
ÿ
O y�x?�O�y?�

�
, has the form [30]

qV�x?; y?�
qt

� ÿ as
2p2

�
d2z?

�x? ÿ y?�2
�x? ÿ z?�2�y? ÿ z?�2

� 
NcV�x?; y?� ÿ V�x?; z?� V�z?; y?�
�
t : �75�

Equation (75) was first derived by Balitsky [40] using the
formalism of the functional operator expansion on the light
cone.

3.3.3 Nonlinear evolution equation: results. Before turning to a
description of the known (approximate) analytical solutions
of (68), we discuss a simple closure of the hierarchy of
Eqns (75) reducing all higher order correlators to the
products of basic two-point functions, e.g.,
V�x?; z?� V�z?; y?��t ! 
V�x?; z?��t
V�z?; y?��t :
Such factorization arises `automatically' in the limit of large
Nc. The above-introduced combination V�x?; y?� is related
to the scattering amplitude N�r? � x? ÿ y?� of a corre-
sponding (dependent on the representation of the gauge
group used in constructing a Wilson line) color dipole:

N�r?� � 1

Nc

�
Tr �1� ÿ V�x?; y?�

�
: �76�

The corresponding evolution equation forN , first derived by
Balitsky [40], has the form

qN�x?; y?�
qt

� ÿ as
p

�
d2z?

�x? ÿ y?�2
�x? ÿ z?�2�y? ÿ z?�2

� �N�x?; z?� � N�z?; y?�ÿ
ÿN�x?; y?� ÿ N �x?; z?�N �z?; y?�

�
t : �77�

Equation (77) was independently derived by Kovchegov [41]
in the framework of the color dipole model formalism and
subsequently rederived in Ref. [96] by direct resummation of
the contributions of triple-pomeron vertices. Recently, a
derivation of this equation within the reggeon formalism
was given [22]. It is important to note that by its physical
meaning,N�x?; y?� is a scattering amplitude at a fixed impact
parameter b?� �x?� y?�=2, N�x?; y?� � N �b?; r?�, where
r? � x? ÿ y?. This circumstance is of importance for us in
discussing the interrelation between saturation and unitarity
in Section 3.4.

The properties of the solution of (77) are best illustrated
by its convenient parameterization proposed in Ref. [97]:

N�x?; y?� � 1ÿ exp
�ÿ�r?�2 Q2

s �t; b?�
�
: �78�

In Eqn (78), the dependence of the scattering amplitudeN on
the energy is controlled by the dependence of the saturation
momentum Q2

s on t. An intensive analytical and numerical
analysis [42, 43, 46, 56] has shown that the following simple
parameterization of the dependence of the saturation scale
Qs�b?; t� on energy is valid:

Q2
s �t; b?� � Q2

s �t0; b?� exp
�
cas�tÿ t0�

�
; �79�
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where c is a numerical coefficient, c � 1. From Eqns (78) and
(79), we see that the magnitude of the scattering amplitude is
determined by a multiplicative combination of the probe size
Q 2
? � 1=r 2? and rapidity t. At large Q2

? and moderate t, we
obtain the standard perturbative answer N � 1=Q2

?. Most
interesting is, of course, the high-energy limit t!1 in
which, due to �Q 2

s �t!1� ! 1 [cf. (79)], the second term in
(78) equals zero and the scattering amplitude is saturated at its
upper limit, N�t!1� ! 1. Therefore, the quadratic non-
linearity of Balitsky ±Kovchegov equation (77) ensures
unitarization at a fixed impact parameter b?. Transition
from the purely perturbative regime at intermediate energies
to the nonlinear regime at high energies is controlled by the
key parameter of the theory, the saturation scale.

Is it possible to give a compact description of the theory in
the whole range of transverse momenta? In Ref. [45], it was
shown, in particular, that due to completely different reasons,
the asymptotics at both small �q2?5Q2

s � and large �q2?4Q2
s �

transverse momenta are described by the Gaussian weight
functionalW satisfying the equation

qWt�r�
qt

� 1

2

�
d2x? d2y? l�x?; y?� d2Wt�r�

dr a
t �x?� dr a

t �y?�
: �80�

At large transverse momenta, one can simply neglect all
nonlinear effects, and a complete description of the system is
provided by the two-point function satisfying the BFKL
equation. At small transverse momenta, the situation is
again Gaussian, but this time because of the nonlinearities
in the equation kernel being small due to oscillations of the
arguments of theWilson lines in it. It turns out that with good
accuracy the solution of the general master equation (66) or
(68) can be approximated by the Gaussian satisfying Eqn (80)
with the kernel interpolating between the regimes of small and
large transverse momenta:

lt�k?� � lBFKL
t

k2?
k2? � plBFKL

t

: �81�

We also mention an important observation made in
Refs [43, 44], namely, a `geometrical scaling' of the kernel

lt�k?� ' 1

p
k2?

�
Q2

s �t�
k2?

�g

�82�

(g is some constant) valid in the `scaling window'
Q2

s �t�5 k2?5Q4
s �t�=Q2

0 and leading to the corresponding
scaling behavior of physical observables.

In concluding this section, we also mention recent papers
[47, 48] analyzing the distinctions in the solutions of the full
renormalization group evolution equation and its simplified
variant, the Balitsky ±Kovchegov evolution equation.

3.4 Saturation and unitarity
Equation (78) demonstrates the saturation phenomenon in
terms of the dipole scattering amplitude. Indeed, it follows
from Eqn (78) that the scattering amplitude for large dipoles
(i.e., those for which the distance between the charges in the
transverse plane r2? � �x? ÿ y?�2 > Q2

s ) is small. We note
once again that the right-hand side of Eqn (78) depends only
on the dipole size r? � x? ÿ y?, and hence the equation is
valid at a fixed impact parameter b � �x? � y?�=2. Unitarity
(e.g., meeting the condition N4 1) is thus ensured at fixed b
only.

At this stage, the most important question to answer is
whether saturation also helps to solve the unitarity violation
problem for the full inelastic cross section, obtained by
integrating the scattering amplitude over the impact para-
meter. Unfortunately, the answer to this question turns out to
be negative. A detailed analysis of the problem is given in
Refs [50 ± 53].

The unitarity requirement in the theory leads to the
famous Froissart bound on the maximally allowed growth
of the total inelastic cross section with collision energy E,

sinel <
p
m2

p
�lnE �2 � p

m2
p
t 2 ; �83�

where mp is the smallest mass in the theory (the pion mass in
QCD with light quarks).

The physical cross section for the scattering of the probe,
having the transverse size Q2

? � 1=r2? at the energy � exp �t�,
is obtained by integrating the scattering amplitudeN over the
impact parameter b?,

s�Q2
?; t� � 2

�
d2b?N�Q?; b?jt� � pR2�t� ; �84�

where we introduce an energy-dependent interaction radius
R�t�. In terms of this radius, Froissart bound (83) corre-
sponds to the maximally allowed growth of the interaction
radius R�t� � t.

A key reason for the unitarity violation is easily under-
stood by noticing that in perturbation theory, the behavior of
the fields at spatial infinity for both colored and color-neutral
systems is always power-like. Therefore, for sufficiently large
impact parameters b? and sufficiently high energies, the
integral in (84) has a power-like divergence. This effect can
be characterized by a compact formula for the total cross
section derived in Ref. [51],

sinel � pR2
target � 2pRtarget x0 exp

�
asNc

2p
Et
�
; �85�

where E is a constant. We see from Eqn (85) that at large t,
the growth of the total cross section is exponential and thus
violates the Froissart bound. One more point elucidating
the reasons for unitarity violation is the impossibility of
perturbative generation of mass in the non-Abelian massless
gauge theory; the perturbation theory cannot generate the
mass mp [cf. (83)] that turns a power-like dependence of the
scattering amplitude on the impact parameter into an
exponential one and thus saves unitarity. Therefore,
beyond nonlinear effects taken into account in the above-
described modified perturbation theory, there remain many
important nonperturbative phenomena having to do with
the restoration of unitarity broken down in the perturbative
description (a detailed discussion of these issues in terms of
constituent quarks, the soft pomeron, etc. can be found in
Ref. [52]).

4. Dense gluon matter in nuclear collisions

Of exceptional interest to the studies of non-Abelian parton
dynamics are ultrarelativistic heavy-ion collisions, because
the dense initial partonic fluxes are present in them and
provide conditions for the creation of dense partonic matter
at the early stages of these collisions.
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To describe the parton-related dynamics of nuclear
collisions at high energy, it is necessary to exactly specify the
role of partonic degrees of freedom within the chosen
description of nuclear interactions. Below, we discuss two
approaches existing in the literature. 9

In the first one, one considers [56, 62] a mixture of soft
nonperturbative (e.g., hadronic strings) and semihard
perturbative contributions to the inelastic cross section.
The perturbative cross sections are strongly divergent at
small momentum transfer (small transverse energy), and
therefore, to arrange a finite contribution to the inelastic
cross section, one has to introduce an explicit infrared cutoff.
The dominant contribution to the perturbative component
of the inelastic cross section therefore comes from the
infrared cutoff scale Ð a situation that is not conceptually
satisfactory (the infrared divergence of the perturbative cross
sections is typically power-like, and therefore introducing a
cutoff presents a `brutal' way of fixing a physically important
scale).

In the second approach [57, 68], related to the physical
implications of the gluon saturation phenomenon, the
saturation scale Qs is not introduced artificially, but arises
due to nonlinear effects in a dense gluonmedium. Technically
speaking, the saturation momentum Qs plays the role of an
infrared regulator, and the dominant contribution to the
physical cross section is again coming precisely from the
vicinity of this momentum scale. An important difference
from the mixed type models is that in saturation type models,
it is extremely difficult, if at all possible, to consistently add a
soft nonperturbative component into consideration.

4.1 Mixed model
The most complete description of the dynamics of heavy-ion
collisions based on superposition of soft stringy and
semihard partonic dynamics currently available is provided
by the HIJING model [62]. In addition to taking initial and
final state radiation in hadronic collisions into account, the
model also accounts for nuclear shadowing of the structure
functions and the energy loss of produced partons in the
debris created in a nuclear collision. The nuclear collision is
described in HIJING as a superposition of nucleon ± nucleon
collisions. The hadronic pÿp block of HIJING is `normal-
ized' on experimental data at the energies � 100 GeV, and
hence, in this sense, the model is adequately tuned to RHIC
energies. Although it is probably very difficult to extra-
polate, without major modifications, the physics embedded
into HIJING to the Large Hadron Collider (LHC) energies,
at RHIC energies the model provides a sufficiently balanced
and reliable basis for analyzing the physics of nuclear
collisions.

A good illustration of the use of the mixed `soft ± hard'
approach is the formula for the energy and centrality
dependence of the (pseudo)rapidity particle density contain-
ing a characteristicmix of soft and hard contributions [86, 98],

dN

dy
� ÿ1ÿ X�s�� npÿp hNparti

2
� X�s� npÿphNcolli ; �86�

where npÿp is the pseudorapidity particle density in pÿp
collisions, X�s� is the yield of semihard dynamics in particle

production, and hNpart�coll�i are the average numbers of
participants (collisions) at a given energy. We recall that by
`participants', we understand the nucleons having experi-
enced at least one inelastic collision, while the subscript
`coll' refers to counting all inelastic collisions. The estimate
of X�s� in Ref. [86] gave X�130 GeV� � 0:1, i.e., a ten percent
share of semihard particle production mechanisms.

4.1.1 Anatomy of the transverse energy flow. Before turning to
the analysis of nuclear collisions, we discuss the `anatomy' of
the transverse energy flow generated in multiparticle produc-
tion processes in nucleon ± nucleon interactions in terms of
the relative contributions of various perturbative and non-
perturbative mechanisms. As mentioned above, nucleon ±
nucleon collisions constitute a basic element in the construc-
tion of mixed type models like HIJING, and hence the results
of this analysis will help to gauge, through comparison with
experimental data [99], contributions to the observed trans-
verse energy flow due to different mechanisms and give their
physical interpretation.

We first turn to the calculation of the perturbative
contribution to the transverse energy flow in the central
rapidity window in the next-to-leading order (NLO) approx-
imation and compare it to experimental data obtained by the
UA2 collaboration [99]. In general, a calculation of the jet
cross section to the NLO accuracy requires using a so-called
jet-defining algorithm specifying the resolution for the jet to
be observed, for example, the angular size of the jet-defining
cone (see, e.g., Ref. [59]). The considered cross section is
calculated by integrating the differential one over the phase
space, with the integration domain restricted by the jet
characteristics imposed by the jet-defining algorithm. The
transverse energy distribution in a given rapidity interval
ya < y < yb in the NLO with an accuracy of O�a3s � is
calculated from the formula

ds
dE?

�
�
D2PS

ds

d4p1 d
4p2

� d
�
E? ÿ

X2
i� 1

j p?ij y�ymin < yi < ymax�
�

�
�
D3PS

ds

d4p1 d
4p2 d

4p3

� d
�
E? ÿ

X3
i� 1

j p?ij y�ymin < yi < ymax�
�
; �87�

where D2�3�PS denotes integration over the two-dimensional
(three-dimensional) phase space. The first contribution
corresponds to the two-particle final state with one-loop
radiative corrections taken into account, and the second one
to the three-particle final states. In perturbative QCD, one
can rigorously compute only infrared-safe quantities [59], in
which the divergences related to real and virtual contributions
compensate each other, such that adding one very soft gluon
does not change the answer. It is easy to convince oneself that
the transverse energy distribution into a given rapidity
interval calculated with formula (87) satisfies the above
requirement. 10

The calculation of the transverse energy spectrum in pÿ�p
collisions was performed in Ref. [64] using the Monte Carlo

9 In the literature, an analysis of nuclear collision dynamics in terms of

gluon strings stretching between constituent degrees of freedom is also

discussed (see., e.g., Ref. [5]). 10 For a formal definition of infrared safety, see, e.g., Ref. [100].
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code developed in Ref. [100] and a `jet' definition correspond-
ing to the studied transverse energy production spectrum (87).

In Fig. 1, we compare the LO and (LO�NLO) transverse
energy spectra in pÿ�p collisions calculated according to the
method described in Ref. [60], with the experimental
transverse energy distribution in the central rapidity window
jyj < 1 and azimuthal coverage p=64j4 11p=6 at��
s
p � 540 GeV measured by the UA2 Collaboration [99].
We see that the perturbative LO�NLO calculations agree
with experimental data only at large enough energies
E?0 60 GeV. It is interesting to note that precisely around
this energy, the space of experimental events becomes
dominated by the two-jet configurations [99]. This means
that only starting from these transverse energies do the
assumptions on which perturbative calculations are based
(collinear factorization in the leading twist, an explicit
account for all contributions of a given order in as) allow
describing the process of transverse energy production and
ensuring the required duality between the description of
dominant configurations contributing in the considered
order in perturbation theory and the transverse energy
carried by hadrons in the final state. At E?4 50 GeV, the
calculated spectrum is in radical disagreement with the
experimental one both in shape and magnitude, demonstrat-
ing the inadequacy of the considered O�a3s � perturbative
calculation in this domain. We note that it is currently
impossible to improve the results of the above calculation,
because neither calculations of the considered spectrum in
higher orders nor infinite-order resummation of the corre-
sponding perturbation theory series for this process have so
far been performed.

In practical terms, this means that to achieve agreement
with experimental data, one needs to invoke additional model
assumptions that cannot be avoided when accounting for
higher-order and higher-twist effects. In the popular Monte
Carlo generators PYTHIA [65] and HIJING [62], the effects
such as multiple binary parton ± parton collisions, initial and
final state radiation, and transverse energy production during
hadronization are taken into account. In Fig. 2, we compare

the same experimental data by UA(2) [99] with the spectrum
calculated with the HIJING event generator. In Fig. 2, to
illustrate the relative contribution of different dynamical
mechanisms, we plot the contributions from hard parton
scattering without initial and final state radiation, the full
partonic contribution and, finally, the transverse energy
spectrum of final hadrons. We see that taking additional
partonic sources such as initial and final state radiation into
account allows reproducing the (exponential) form of the
spectrum, but still not the magnitude. The remaining gap is
filled in by soft contributions due to transverse energy
production from decaying stretched hadronic strings. We
finally note that the spectrum calculated in HIJING is
somewhat steeper than the experimental one. An additional
fine tuning can be achieved by selecting different structure
functions.

The described results clearly demonstrate that in order to
reproduce the experimentally observed transverse energy
spectrum, one has to invoke complicated mechanisms of
parton production that account for radiation accompanying
the hard parton ± parton scattering in both the initial and
final stages of this process, as well as production of gluonic
kinks (collective excitations of the gluon strings) by these
strings and the nonperturbative generation of transverse
energy at the hadronization stage. This statement is a
calorimetric analog of the well-known result on the impor-
tance of the minijet component in describing the tails of
multiplicity distributions [62, 101].

We note that the above-described results have the most
direct relation to the description of the early stages of heavy-
ion collisions. In most dynamical models of nucleus ± nucleus
collisions, the description is made in terms of an incoherent
superposition of nucleon ± nucleon collisions. As we have
convinced ourselves, to correctly describe the partonic
configuration `preceding' the observed transverse energy
flow in nucleon ± nucleon collisions, mechanisms beyond
conventional collinear factorization have to be invoked.
This means that to estimate such quantities as, e.g., parton
multiplicity at some given time scale, a very careful analysis of
various contributions is required.

4.1.2 Azimuthal pattern of transverse energy flow. To under-
stand the parton-related dynamical features of heavy-ion
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collisions, one needs to analyze the experimentally observable
quantities sensitive to particular features, distinguishing
semihard parton dynamics from the soft hadronic one. One
specific proposal was discussed in Refs [64, 65]. The idea is
that the perturbative mechanism generates an asymmetric
flow of transverse energy due to its collimation along the
directions fixed in the processes with large momentum
transfer.

To quantify an event-by-event asymmetry of transverse
energy flow, we consider the difference between the transverse
energy deposited, in some rapidity window ymin < yi < ymax,
into two oppositely azimuthally oriented sectors with a
specified angular opening dj each.

For convenience and without restricting the generality of
the description, we can think of the directions of these cones
as being `up' or `down' in some specially chosen coordinate
system in the transverse plane. All results are, of course,
insensitive to the particular choice. Denoting the transverse
energy going into the `upper' and `lower' cones in a given
event by E "?�dj� and E #?�dj�, respectively, we can quantita-
tively characterize the event-by-event asymmetry in trans-
verse energy production by considering the quantity

dE?�dj� � E "?�dj� ÿ E #?�dj� ; �88�

and the statistical properties of transverse energy by the
corresponding probability distribution

P�dE?jdj� �
dw
ÿ
dE?�dj�

�
d dE?�dj� : �89�

This distributionwas calculated [64] in theHIJINGmodel for
central Au ±Au collisions at the RHIC energy

��
s
p � 200GeV

and central Pb ± Pb collisions at the LHC energy��
s
p � 5:5 TeV for dj � p. The distributions P�dE?jp� were
calculated both at the partonic level and at the level of final
hadrons with semihard interactions and quenching on and
off. 11 This allowed analyzing the contribution of HIJING
minijets and of the effects related to their hadronization to the
asymmetry in question. The resulting distributions are
plotted in Figs 3 and 4, for RHIC and LHC energies,
respectively, with quenching turned on and the value of the
minijet infrared cutoff p0 � 2 GeV .

The numerical values of the mean square deviation dE?
characterizing the widths of the corresponding probability
distributions in Figs 3 and 4 are given in Table 1, where for
completeness we also give the widths of the probability
distributions with quenching turned off and for a larger
value of the infrared cutoff p0 � 4GeV.

From the results presented in Figs 3 and 4 and Table 1, we
can draw the following conclusions.

First, the magnitude of the azimuthal asymmetry char-
acterized by the width of the probability distribution
P�dE?jdj� � dw�dE?�dj��=ddE?�dj� is strongly dependent
on semihard interactions (minijets). Switching off minijets,
i.e., accounting for soft mechanisms only, leads to a
substantial narrowing of the asymmetry distribution, by the
respective factors 2.3 at RHIC and 4.1 at the LHC energy
(these values correspond to the case of quenching turned on).

Second, a remarkable fact is that parton and final
(hadronic) distributions of dE? in both cases practically

coincide. This means that partonic and hadronization
contributions to the transverse energy flow are additive. In
addition, there exists an azimuthal symmetry of the energy
flow with respect to the oppositely oriented cones. Both
conclusions show that the energy ± energy correlation in
Eqn (88) is a sensitive indicator of the presence of initial

11 By quenching, we here understand the effect of minijet damping in the

medium created after the nuclear collision.
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Table 1.Themain properties of the azimuthal asymmetry of the transverse
energy flux.

Nuclear
collisions

��
s
p

,
GeV

Infrared
cutoff p0,
GeV

Asymmetry
������������hdE 2ip

,
GeV

AuëAu 200 2 Hadrons (quenching on)
Hadrons (quenching off)
Partons
Soft hadrons

16
17
18
7

Pb ëPb 5500 2 Hadrons (quenching on)
Hadrons (quenching off)
Partons
Soft hadrons

61
71
65
15

Pb ëPb 5500 4 Hadrons (quenching on)
Partons
Soft hadrons

69
76
16
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parton dynamics that can be studied in the calorimetric
measurements in central detectors at RHIC and LHC.

Third, as expected, turning off quenching somewhat
enhances the fluctuations. However, as seen from the table,
the effect is insignificant numerically, giving an additional
argument for the proposed asymmetry being in fact essen-
tially determined by the earliest stage of the collision at which
the primordial parton flow is formed.

Finally, we can conclude from Table 1 that the studied
asymmetry is not particularly sensitive to changes in the value
of the infrared cutoff p0, thus providing a robust signal for the
presence of semihard dynamics and deserving experimental
study.

4.1.3 Turbulence of initial gluons: the impact parameter plane
picture. In Section 4.1.2, we discussed an event-by-event
asymmetry of the transverse energy flow from the `momen-
tum' standpoint. In a more detailed analysis, a spatial pattern
giving rise to this energy ± momentum flux should be
considered. Of particular interest is an event-by-event
transverse energy generation pattern in the impact parameter
plane. This question was first addressed in Ref. [66], where
strikingly interesting results were obtained .

The event-by-event transverse energy release pattern in
the mixed-type models like HIJING is determined by two
major factors. The first one is a distribution of the number of
soft and (semi)hard inelastic collisions per unit transverse
area. The second is the shape of the corresponding transverse
momentum (energy) spectra. A convolution of the two
distributions determines the shape of the transverse momen-
tum and energy release. For broad distributions, one expects
an intermittent turbulent spatial transverse energy distribu-
tion in the transverse plane. Most promising in this respect is
of course the semihard partonic component. The distribution
of the number of semihard inelastic interactions is quite
broad, and the transverse energy spectra generated in these
collisions are power-like. Precisely this combination leads to
the intermittent turbulent-like pattern of the primordial
transverse energy release [66].

In Ref. [66], the following transverse energy distribution
for an ensemble of free-streaming gluons (taken from the
HIJING parton event list) at zero rapidity y � 0 (and thus at
z � 0) at proper time t was considered:

E�t; x?; z � 0� �
X
k

p? k

t
�tp? k�2

1� �tp? k�2
d
ÿ
x? ÿ x? k�t�

�
d�yk� ;
�90�

where summation is over partons and the second factor on the
right-hand side stands for the parton formation probability
distribution.

It is reasonable to consider the transverse energy distribu-
tion at some coarse-grained spatial scale. More specifically,
the size of the transverse cell is limited from below by the
uncertainty principle dr? > 1=dp? and from above by
causality (the local horizon of the gluon in the comoving
frame). At a given t, this upper bound is simply given by
dr? < t, and therefore the number of independent cells in the
transverse plane can be quite large for large nuclei and small
proper times. The natural longitudinal size of the cell can be
chosen as jyj < 1.

The particular case considered in Ref. [66] was Au ±Au
collisions at the RHIC energy

��
s
p � 200 GeV. The `snapshot'

of the transverse energy and transverse momentum distribu-
tions made at t � 0:5 fm gave striking results. As has been

already mentioned, the HIJING model involves a well-
articulated separation of the soft and semihard mechanisms
of transverse energy production. We let the corresponding
contributions be denoted by Esoft and Ehard. In these terms, the
results in Ref. [66] can be described as the appearance, on the
background of the smooth uniformly distributed energy
density Esoft ' 5 GeV, of the pronounced peaks (`hot spots')
with large energy densities E > 20 GeV (corresponding to
Ehard 5 15 GeV) separated by distances of the order of
4ÿ5 fm. We note that the vector field of transverse momenta
had a pronounced vorticity Ð a natural analogue with
instabilities (turbulence) induced in the uniform `soft'
laminar flow by the minijet component was pointed out in
Ref. [66].

The importance of the results in Ref. [66] lies, in our
opinion, in the fact that their character is not related to the
particular model considered (HIJING), the chosen collision
energy, etc. As we have mentioned on many occasions in the
preceding paragraphs, a consistent model of heavy-ion
collisions is necessarily a mix of soft and hard mechanisms.
Any such mix is to generate a turbulent-like intermittent
picture analogous to the one discussed in Ref. [66].

4.2 Parton production and saturation in nuclear collisions
The cross sections describing hard processes (e.g., high-p? jet
production) are proportional to the product of incoming
partonic flows. At high energies, when the saturation
phenomenon becomes important, this customary picture has
to be reconsidered. The corresponding analysis was first made
in Ref. [57], where it was shown, in particular, that because of
saturation, the multiplicity and transverse energy density of
gluons produced at central rapidity are characterized by the
following scaling dependences on Qs:

dN

dy
� 2AxGnucleon�x;Q2

s � ; �91�
dE?
dy
� 2QsxGnucleon�x;Q2

s � ;

where Qs � aA=R2 is a characteristic saturation scale at
which gluon emission and recombination balance each
other. We see that the A-counting in Eqn (91) is different
from the naively expected perturbative factor A2, and is more
akin to the one in soft production models.

It is important to stress that a picture of gluon production,
and thus of the initially produced gluonic configuration,
depends on the gauge used in the calculation. This fact was
explicitly demonstrated inRef. [69], where a calculation of the
spectrum of gluons produced in pÿA collisions was
performed in both covariant and light-cone gauges. It turned
out that the origin of the A-dependent effects looks comple-
tely different in these two gauges: in the covariant gauge, it is a
rescattering of the produced gluon on the nucleons in the
nucleus, and in the light-cone gauge, it is a nonlinear
interaction of gluons in the nuclear wave function. This
explains a certain ambivalence with which intuitive reason-
ing explaining the basic features of gluon production is
formulated (see, e.g., Ref. [68]). Here, it is convenient to
follow the `light-cone-gauge logic', in which the number of
produced gluons is roughly proportional to their `pre-
scattering' number in the nuclear wave function [68].

4.2.1 Spectrum of produced gluons: analytic results. The
qualitative ideas described in Section 4.2 were further
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developed in Ref. [70], where an analytic nonlinear ansatz for
the spectrum of gluons produced in the collision of two
identical nuclei was suggested. The corresponding expression
can be written as a two-dimensional integral in the transverse
coordinate plane [70]. With logarithmic accuracy and for
parametrically small transverse momenta k 2

? < Q2
s , one can

perform the two-dimensional integration over the coordi-
nates and obtain the following impressively simple expression
for the gluon spectrum:

dNAÿA

d2b dy d2k?
� CF

ap3
Q2

s

k 2
?

�
exp

�
ÿ k 2

?
2Q2

s

�
ÿ exp

�
ÿ k 2

?
Q2

s

��
: �92�

Equation (92) implies the important conclusion that up to
possible logarithmic factors neglected in the process of its
derivation, the spectrum of gluons produced in nucleus ±
nucleus collision is finite in the limit as k 2

?=Q
2
s ! 0,

dNAÿA

d2b dy d2k?
! 1

a
CF

2p3
; �93�

providing, therefore, infrared-finite results for expressions
containing integration over transverse momenta such as the
inelastic cross section. This result is highly nontrivial. In the
standard minijet scenarios based on collinear factorization,
infrared finiteness can be ensured only by using brute force
(an explicit infrared cutoff for a strongly divergent spectrum
� 1=k 4

?). In pÿA scattering, where nonlinear corrections
related to the single participant nucleus are summed, the
gluon spectrum still has a power-like divergence at small
momenta (� 1=k 2

?) [25, 70]. This shows that it is only the
combination of all nonlinear effects in both colliding nuclei
that ensures the infrared finiteness of the spectrum of
produced gluons and of the physical cross sections calculated
from it.

The spectrum of Eqn (92) allows making quantitative
estimates relating the physical quantities to the saturation
momentum more precise. In particular, the mean transverse
momentum of produced gluons is given by

hk 2
?i �

1

ln 2
Q2

s : �94�

We see that the numerical value of hk 2
?i is indeed very close to

that of Q2
s , as was assumed in the intuitive picture considered

in Refs [23, 57, 68]. Performing integration over k? in
Eqn (92), we obtain an expression for the gluon rapidity
density in the transverse plane,

dNAÿA

d2b dy
� 1

a
ln 2CF

p2
Q2

s : �95�

It is useful to compare Eqn (95) with the expression for the
density of gluons in the nuclear wave function calculated in
the same cylindrical geometry in the McLerran ±Venugopa-
lan approximation:

dNMW

d2b dy
� 1

a
CF

2p2
Q2

s : �96�

Comparing Eqn (95) with Eqn (96), we see that the density of
produced gluons, Eqn (95), is indeed proportional to the
density of gluons in the nuclear wave function

dNAÿA

d2b dy
� 2 ln 2

dNMW

d2b dy
; �97�

with the proportionality coefficient 2 ln 2 ' 1:39. From
Eqn (95), we can also obtain the rapidity density of the
produced gluons in terms of the nucleon structure function,

dNAÿA

dy
� pR2

A

1

a
ln 2CF

p2
Q2

s � 2 ln 2�VAr�xG�x;Q2
s � ; �98�

where VA � A is a nuclear volume.

4.2.2 Parton production and saturation: numerical solution. A
natural problem arising within the context of theMcLerran ±
Venugopalan approach to high-energy heavy-ion physics is to
study, at the same semiclassical level, the spectrum of gluons
produced in collisions of two nuclei. Evidently, the spectrum
of created gluons depends on the gluon mode content in
colliding nuclei [67]. In the pioneering paper [67], the
spectrum of produced gluons was calculated to the leading
order in the perturbation theory. The answer contained a
characteristic strong infrared divergence. Later, these calcula-
tions were expanded in Refs [71 ± 73]. In this approach, the
problem is to solve the Yang ±Mills equations in the presence
of the external source current [67]

J m � d m�r�1�d�xÿ� � d mÿr�2�d�x�� �99�
corresponding to the two incident nuclei. In Refs [74 ± 81], an
extensive program for the numerical solution of this problem
was realized. Under the assumption of the invariance under
longitudinal Lorentz boosts, the problem reduces to solving
the �2� 1� classical Hamiltonian chromodynamics on the
lattice.

The result depends on three parameters Ð the charge g,
the color charge density mA [cf. (24)], and the nuclear radius
RA Ð through their dimensionless combination x �
g4pR2

Am
2
A. Correspondingly, for the rapidity density of multi-

plicity and the transverse energy of primordial glue, we have

dE?
dy
� mAx fE�x� ; �100�

dN

dy
� x fN�x� :

In the weak-field limit (more exactly, for x < 50), all
considered quantities are characterized by a strong depen-
dence on x and thus on the infrared cutoff. At x � 100; this
dependence is saturated.

It is important to check whether the perturbative result in
Ref. [67] is reproduced in the weak-field limit. A recent
analysis shows that the agreement can be reached only at
very small values of the scaling parameter x < 10 [81]. As
regards the spectrum of produced gluons, it has an exponen-
tial `thermodynamical' form at small energies [77, 81], but
deviates from it at large energies [81].

The most important issue addressed by the numerical
computation is, probably, how large the occupation numbers
of gluon modes fg are. The classical description on which the
considered method is based is valid only at large fg 4 1. The
situation here is not yet finally settled, but it is most probable
that for parameter values corresponding to RHIC energies, a
statement on the fulfillment of the condition fg 4 1 would be
an exaggeration.

4.2.3 Interpreting RHIC data in color glass condensate terms.
With publications of experimental data obtained at RHIC,
there arises a possibility of testing the ideas related to CGC
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(saturation) physics in the framework of simplest model
assumptions. We assume that from the moment the CGC
melts, because of collision, into the physical gluon modes, the
produced gluons no longer interact and their transformation
into final hadrons is not accompanied by substantial changes
in the kinematic structure of the energy ±momentum flow
(soft hadronization hypothesis). Then, by making compar-
isons with experimental data on charged multiplicity [82 ± 85]
or multiplicity per participant [82], we can establish con-
straints on parameters describing the initial configuration of
produced gluons.

For example, we consider a model with the cylindrical
nuclear geometry used in Ref. [70]. Then, e.g., taking the
value for the charged multiplicity density measured by
PHOBOS in Au ±Au collisions [100]

dNAuÿAu
ch

dZ

����
Z� 0

� 555� 12�stat� � 35�syst� ; �101�

and taking as � 0:3 and pR2
A � 150 fm2, we obtain the

estimate for the saturation momentum Qs from Eqn (98) as
Q2

s � 0:7 GeV2.
Analogously, we can compare the experimental data

of the results of the numerical analysis described in
Section 4.2.2. For example, using the second equation in
(100), we can determine (for given g and RA) the value of m
and compute the transverse energy density from the first
equation in (100). Using [81] dN=dy � 1000, we obtain (for
g � 2 and SA � 150 fm2) m � 0:5 GeV and dE?=dy �
1:5 �GeV� � dN=dy.

A more elaborate way of estimating the characteristics of
CGC from experimental data was suggested in Refs [86 ± 88].
The main novelty of this approach is to use the density of
participating nucleons in the formula determining the
saturation scale,

Q2
s �s?; b?� �

4p2Nc

N 2
c ÿ 1

as�Q2
s � xG�x;Q2

s �nucleon
rpart�s?; b?�

2
;

�102�

where rpart�s?; b?� is the density of participant nucleons as a
function of the collision impact parameter b? and the
coordinate in the transverse plane s?. The substitution of
rpart into the equation determining the saturation scale
presents a highly nontrivial hypothesis on the nonperturba-
tive geometry of the gluon production mechanism. The
resulting relation between multiplicity per participant and
saturation momentum is given by [86 ± 90]�

2

Npart

dNch

dy

�
' 2

3
c xG

ÿ
x; hQ2

s i
�
; �103�

where c is the proportionality coefficient between the gluon
spectrum and the nuclear wave function discussed in Section
4.2.1 and hQ2

s i denotes averaging over the impact parameter.
Experimentally, �2=Npart� dNch=dy ' 3:8, and therefore
Eqn (103) allows estimating the (average) saturation momen-
tum Qs. Without invoking additional assumptions, the
typical value of Q2

s obtained from Eqn (103) is not too big:
Q2

s ' 0:5ÿ0:7 GeV2.

4.3 Interaction effects. On the way to thermalization?
Up to now, we have discussed only the properties of the
initially produced gluon system appearing immediately after
the coherence of the wave functions of incident nuclei is

broken by the collision and, as a consequence, entropy in the
form of physical (mainly gluonic) fields is produced. Before
the energy ±momentum flow of these fields is converted into
that of final hadrons hitting detectors, it could, however, be
essentially transformed by interaction effects. The question
that has particularly shaped high-energy heavy-ion physics is
whether the reinteraction of produced parton matter could
lead to its thermalization and the formation of quark ± gluon
plasma, thus allowing us to reproduce, in the laboratory,
conditions that existed in the early universe. In this subsec-
tion, we briefly review the recent progress in describing the
real-time evolution of an interacting (dense) gluon system.

Broadly speaking, the reinteraction effects can be classi-
fied into two categories.

First, if a strong physical gluon field is produced, it can
evolve (in real time) according to the nonlinear Yang ±Mills
equations of motion. This regime is possible until the
occupation numbers of the field modes become small.
Schematically, the occupation numbers f should satisfy the
inequality 1 < f < 1=as. Such nonlinear evolution could, in
principle, lead to all kinds of exciting scenarios typical for
nonlinear field dynamicsÐ from the appearance of collective
dynamical instabilities to chaotization and the formation of
localized collective excitations.

Second, the reinteraction of produced physical gluons can
be described in terms borrowed from kinetic theory. 12 This
possibility has been discussed, in relation to saturation
physics in nuclear collisions, in a number of recent publica-
tions [89, 91 ± 93, 103].

The simplest way to analyze gluon reinteraction effects is
to use the Boltzmann equation formalism at a binary
scattering level [91 ± 93]. Calculations of the equilibration
time in this approximation produce a parametrically large
estimate teq � exp �1= ����

as
p � 1=Qs. The equilibration rate is low

because the momentum transfer in the system is not effective:
the transverse momenta exchanged in the gluon interactions
are small Ð of the order of the infrared cutoff (the screening
Debye mass).

The main motivation for developing the saturation
physics approach is the very dense system of primordial
gluons that is, presumably, formed at the initial stage of
high-energy heavy-ion collision. To produce a more reliable
description for gluon reinteraction and their possible
equilibration, a kinetic approach that is more appropriate
for (initially) dense systems is required. Such an approach
was developed in Refs [89, 103], where the kinetic equation
formalism taking inelastic processes into account in the
third order in gluon density was constructed and
employed. The resulting reinteraction scenario described in
Refs [89, 103] is quite complex and involves several stages,
to which there correspond a set of proper time scales
t � �t0; aÿ3=2s t0; a

ÿ5=2
s t0; a

ÿ13=5
s t0�, where t0 � 1=Qs.

Initially, at t � t0, physical gluons are freed from the
nuclear wave functions and form a dense system of semihard
gluons with transverse momenta of the order of Qs and the
occupation number of the order of 1=as. The system expands,
and at t � aÿ3=2s t0, the occupation numbers of semihard
primordial gluons become small, and hence the standard
description in terms of the Boltzmann equation can be
applied.

12 There are good grounds to believe that these two approaches are (at least

partially) complementary [102].
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In the interval of proper times aÿ3=2s t0 < t < aÿ5=2s t0,
inelastic interactions of semihard gluons lead to the appear-
ance of soft gluons with momenta k? � a1=2s . At the end of
this interval, the densities of hard and soft gluon components
equalize.

At t > aÿ5=2s t0, a thermalization of the soft gluon
subsystem occurs. Its temperature subsequently undergoes a
linear increase through the energy loss of the remaining
semihard modes in the hot soft gluon medium until at
t � aÿ13=5s t0, it reaches its maximal value T � a2=5s Qs. At this
timescale, semihard gluons disappear and the gluon system is
fully equilibrated.

Detailed discussion of RHIC data in the context of the
above-described scenario can be found in Ref. [89].

We note that the validity of the scenario described in [89,
103] is based on some quite restrictive assumptions. For
example, for the equilibration time aÿ13=5s t0 to be less than
the `binary' one, exp �1= ����

as
p �, the coupling constant should be

very small, as < 0:004. Also Ð especially at RHIC energies,
when Qs � 1 GeV2 and realistic values of the coupling
constant as � 0:3 Ð the transverse momenta of the soft
gluons produced at the second stage k? � a1=2s t0 are in fact
of the order of LQCD, and therefore perturbative methods
could turn out to be insufficient.

5. Conclusion

In this review, we have discussed some aspects of the exciting
and rapidly developing domain of the application of non-
linear QCD physics to a description of ultrarelativistic heavy-
ion collisions. Research in this field is related to fundamental
theoretical questions such as unitarity of strong interactions
at high energies, at the same time providing the possibility of
explaining the experimental data, currently for the RHIC
accelerator, as well as for the expected extremely interesting
experimental data from the LHC.
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