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Hard excitation of stimulated
polariton ± polariton scattering
in semiconductor microcavities

N A Gippius, S G Tikhodeev,
L V Keldysh, V D Kulakovskii

In recent years, unusual properties of polariton ± polariton
scattering of light in semiconductor microcavities have
attracted continual attention [1 ± 12]. In particular, it has
been shown in experiment [13] 1 that as the resonant
excitation frequency departs from the inflection point of the
lower polariton branch (LPB), the scattered signal above the
stimulated scattering threshold is always directed roughly
perpendicularly to the microcavity (MC) plane. However,
based on the simple four-wave mixing model [7], the signal
should be expected to shift along the lower polariton branch
(see the scattering diagram in Fig. 1).

This inference has recently been confirmed in [15]. Such
behavior was theoretically explained in Refs [16 ± 19] in terms
of the interplay between two instabilities: bistability of the
response of the polariton mode to an external pump and the
parametric instability of this mode relative to the decay into
scattered polaritons. The bistability of the linear optical
response when the pump is normal to the surface of the
microcavity (in the region of the LPB minimum) was
demonstrated in a recent work [20]. However, the mutual
influence of bistability and parametric instability feasible in
the case of pumpnear the inflection point of the LPB gives rise
to totally new and unexpected nonlinear effects. The aim of
this paper is to discuss the physical interpretation of the
instabilities found in Refs [16 ± 19] and to analyze effects of
quasi-two-dimensionality of polariton ± polariton scattering

and the saturation of excitonic transitions.We emphasize that
from the quantum standpoint, macro-occupied polariton
modes whose behavior is considered below obey the Bose
statistics. Hence, we actually discuss the kinetics of a strongly
nonequilibrium Bose system.

It is widely accepted that stimulated scattering com-
mences softly (in analogy with the soft generator excitation
regime) as the system loses stability for certain scattered
modes when the threshold is exceeded. Such modes become
macro-occupied as the threshold is passed over smoothly, and
their amplitude gradually increases with the pump. Because
the macro-occupied modes grow slowly (due to a small
growth increment of unstable modes near the threshold),
they effectively suppress the accumulation of the scattered
signal in the nearbymodes with a smaller incremental growth.
Simultaneously, the pumpmode amplitude is stabilized by the
incoming energy balance. Such behavior is reminiscent of a
second-order phase transition that occurs in a nonequilibrium
system under the effect of external excitation, when the entire
system passes concertedly and smoothly to a more stable
macroscopic state.

Studies [17 ± 19] have demonstrated that stimulated
scattering of excitonic polaritons in a semiconductor MC
can arise in a `hard' manner (by analogy to the hard generator
excitation regime). In this case, the amplitude of an excited
polariton mode initially increases in a jump due to its
bistability typical of nonlinear oscillators. If such transforma-
tion of the excited mode results in the system falling in the
region of strong instability with respect to polariton ±
polariton scattering (or any other scattering, e.g., on
phonons or free carriers), the corresponding modes in a
large phase space region are characterized by substantial
growth increments and start to be populated explosively.
The incoming energy balance makes the population of the
excited mode decrease abruptly, and the scattered signal is
strongly stochastic. This behavior is similar to the first-order
phase transition that occurs in a nonequilibrium system
excited from the outside. Although the system in Refs [17 ±
19] is assumed to be spatially uniform, one can expect its
stratification into spatially inhomogeneous regions. It is
worth noting that the bistability-allowed possibility of the
nonlinear spatially inhomogeneous self-organization of the
scattered signal has recently been considered theoretically in
the framework of a similar approach in Ref. [21]. The same
approach was applied in another recent work [22] to clarify
the feasibility of superfluidity in the polariton system in a
microcavity.

The process of polariton parametric scattering is illu-
strated by Fig. 1. The theoretical analysis of its development
includes the consideration of semiclassical equations for
EQW, the quantum well (QW) electric field in a microcav-
ity, and for the exciton polarization P�k; t� averaged over
the QW width [19]:�
i
d

dt
ÿ EC�k�

�
EQW�k; t� � a�k�Eext�k; t� � b�k�P�k; t� ; �1��

i
d

dt
ÿ EX�k�

�
P�k; t�

� A
X
q; q 0

�
dq; k ÿ VsatP�q 0; t� P ��q� q 0 ÿ k; t��EQW�q; t�

� F
X
q; q 0
P�q 0; t� P ��q� q 0 ÿ k; t� P�q; t� � x�k; t� : �2�

1 See also the next report [14] in this issue.
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Here, Eext � E�t� exp �ÿiEpt� d�kÿ kp� is the electric field of
the incident pump electromagnetic wave far away from the
MC, described as amacro-occupied photonmodewith a fixed
frequencyEp, the wave number kp � Ep sin#=c, and the time-
variable amplitude E�t�. EC and EX are the resonance
frequency of an empty MC and the exciton frequency in a
free QW, respectively, F is the exciton ± exciton coupling
constant, A is the exciton polarizability, x�k; t� is the
Langevin random force with hx�k; t�i � 0 and
hx�k; t� x�k 0; t 0�i / d�kÿ k 0� d�tÿ t 0�. The microcavity
response constants a and b are calculated by the scattering
matrix method [23]. The energy is measured in millielectron-
volts and the polarization and electric field in such units that
F � 1.

Equation (1) is the Maxwell equation written in the
resonant scalar approximation (i.e., with the s�-polariza-
tions ignored) with the exciton polarization taken into
account. Equation (2) is the inhomogeneous nonlinear
SchroÈ dinger equation for excitonic polarization that
includes two types of sources, a coherent external excitation
and a stochastic Langevin noise. The latter makes it possible
to simulate quantum fluctuations of the scattering signal
using semiclassical equations (1) and (2).

Equations (1) and (2), unlike those considered in
Refs [17, 18] (see also report [14] below), contain an
additional term (with the coefficient Vsat) that describes
saturation of the excitonic transition. Strictly speaking, a
full account of saturation requires solving a system of
equations for the electron ± hole density matrix that relates
diagonal elements of the matrix to the dynamics of
nondiagonal elements describing coherent polarization.
Here, we use a simplified approach [24] in which a non-
linear term proportional to jP�x�j2E�x� is introduced in the
equation for QW-averaged exciton polarization (2). The
system of equations thus written assumes that the field and
polarization system dynamics are on the whole fairly well
described by nondiagonal components of the density matrix
only.

With this approximation in mind, we now demonstrate
that at Vsat 9 0:1, the saturation of the exciton transition
results in no qualitative change in the scattering pattern and
is actually reduced to an additional linear blue-shift of the
lower polariton branch. The introduced parameter Vsat

describes the relative saturation of the exciton transition [3,
20]. For GaAlAs-microcavities, the parameter Vsat is a small
number, Vsat � 0:1. 2 This agrees with the well-established
fact that the exciton collisional nonlinearity regime occurs at
intensities below the saturation threshold for the excitonic
transition.

The nonlinear SchroÈ dinger equation takes only the
contact exciton ± exciton coupling into account. The model
does not include, for example, the exciton ± phonon interac-
tion that can play an important role in the processes of
parametric scattering of MC polaritons. However, even in
this simplest approximation, the model turns out to exhibit a
threshold behavior [16 ± 18] qualitatively similar to that
observed in experiment [13]. The threshold pump values
thus obtained lie in the range 102ÿ103 W cmÿ2, i.e., they are
of the same order of magnitude as the experimental values.

An example of the threshold behavior of Eqns (1) and (2)
discovered by us is presented in Figs 2 and 3. In the numerical
simulation, the scattering was for simplicity assumed to be
quasi-one-dimensional (only in the pump incidence plane),
and the shape of the pump pulse Eext�t� (shown by the dashed-
dotted line in the inset to Fig. 2) was chosen such that the
pump intensity threshold could be smoothly reached during
the exciting pulse. Specifically, the pump amplitude Eext�t�
was first switched on to 97%of itsmaximum for about 100 ps,
then increased slowly to the maximum value for � 1000 ps,
and finally switched off within another 100 ps. It follows from
the figure that the system's kinetics was characterized by two
abrupt transitions at t � 600 and 700 ps. Both transitions
were associated with a sharp change of polarization of the
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Ep3

E
n
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Ep2

Ep1

2Ep ÿ ELP�2kp ÿ k�

ELP�k�

I2
I3

Ep ìELP�kp�
ì 0.9 meV

ì 0.3 meV

ì 0.0

0 kp

Wave number (k)

b

a#p
z

x

y BR

QW-containing layer
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Figure 1. (a) Schematic representation of light scattering in a planar microcavity made of l or 3=2l layers (l is the resonant wavelength) containing

quantum wells (QW) and enclosed between distributed Bragg reflectors (BR). (b) Schematic of polariton ± polariton scattering at a low pump intensity.

The thick solid curve shows the lower polariton branch ELP�k�. The thin curves (solid, dashed, and dotted) correspond to the idle modes

2Ep ÿ ELP�2kp ÿ k� for several detunings between the pump frequency and the lower polariton branch Ep ÿ ELP�kp� (square, circle, and triangle). By

virtue of energy and momentum conservation, the maximum scattering occurs for the energies and momenta at the points of intersection of the curves

ELP�k� and 2Ep ÿ ELP�2kp ÿ k�. Hence, in the framework of this model, it is natural to expect shifts in the signal S1 ! S2 ! S3 and the idler I1 ! I2 ! I3
along the lower polariton branch with increasing pump detuning Ep1 ! Ep2 ! Ep3.

2 Although not as small as the estimate 10ÿ2 reported in Ref. [20].
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pumped polariton mode P0 and the corresponding spatial
harmonic of the QW electric field E0 (solid and dotted lines in
Fig. 2, respectively).

The above transitions are accompanied by a rise in the
total intensity of the scattered polariton signal by many

orders of magnitude (see Fig. 3 showing the time and wave
number dependences of the scattered polariton signal). It can
be seen from Fig. 3 that the maxima of the signal and idler
before the first transition with t � 600 ps are positioned in
excellent agreement with the four-wave mixing theory [7, 8].
In other words, for a positive pump detuning (the pump
quantum energy higher than the LPB energy at the pump
wave number as shown in Fig. 1), the signal and the idler have
maxima at ks < 0 �#s < 0� and ki > 2kp, respectively.

To understand the nature of the abrupt transitions
demonstrated by the numerical solutions of Eqns (1) and
(2), it is necessary to study [18, 19] the stability of their
solutions at the steady-state external pump Eext�t� � const
and with a single micro-occupied mode, i.e., in the form

P�k; t� � ~P�k; t� � dk; kpP0 exp �ÿiEpt� ; �3�

EQW�k; t� � ~E�k; t� � dk; kpE0 exp �ÿiEpt� : �4�

Here, ~P and ~E are assumed to be small deviations from the
solution with one micro-occupied mode j ~P=P0j, j ~E=E0j5 1.

In the zero order in ~P and ~E, a cubic equation is obtained
[19] for the amplitude of the excited mode P0,

�DPC DPX ÿ ~Ab�P0 ÿ DPCFjP0j2P0 � ~AaEext ; �5�

where

~A � A�1ÿ VsatjP0j2� ; DPC � Ep ÿ EC�kp� ;
DPX � Ep ÿ EX�kp� :

This dependence, starting from certain positive detuning
values, has an S-shape as shown in Fig. 4 for the absence of
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Figure 2. The trajectory of polarization of the pumped polariton mode in the coordinates `jexciton polarizationj2 Ð external pump'. The time delay

between the grey (black) points is 1 ps (10 ps), time instants corresponding to the triangles are given near them in picoseconds. The solid S-shaped curve is

the solution of Eqn (5) for a stationary external pump. The inset shows time variations of the QW electric field amplitude (solid curve), the exciton

polarization amplitude (dotted curve), and the amplitude of the external pump field (dashed-dotted curve). Evidently, the system undergoes two abrupt

transitions at t � 600 and 700 ps under virtually unaltered pump.
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intensities. The exciting wave (pump) is incident at the angle 14�

corresponding to the momentum kp � 1:9 mmÿ1. We note that at

t9 600 ps, i.e., prior to the first transition, the signal and the idler have

maximum values at ks < 0 and ki > 2kp, respectively. Following the

second transition at t � 700 ps, the maxima are shifted towards ks 0 0

and ki 9 2kp, while the average intensity of the scattered modes with

k 6� kp increases by five to six orders of magnitude.
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saturation, Vsat � 0 (solid curve) and for Vsat � 0:1 (dashed
curve). The S-shaped curve for Vsat � 0 is also depicted in
Fig. 2.

Such S-curves were investigated in the theory of `empty'
nonlinear microcavities with a Kerr nonlinearity without
resonant excitons in QWs (see, e.g., Refs 25 ± 27). As regards
the existence of S-shaped dependences, the absolute instabil-
ity of the solution of Eqn (5) in the regionwhere the derivative
dP0=dEext is negative leads to the bistability of the response of
a nonlinear oscillator, as is perfectly well known, after the
work ofDuffing [28] at least (see reviews [29, 30]). It should be
noted that in early theoretical studies of polariton ± polariton
scattering in a MC [3, 7 ± 9, 11] the driving parameter was
considered to be the amplitude of the pumped mode
polarization (rather than the external electric field far from
the cavity); therefore, bistability could not develop in
principle. Such an approximation, justified at small detun-
ings from the LPB (when no S-shaped dependence arises),
leads to incorrect predictions at large detunings. The
importance of bistability for MCs with polaritons [20 ± 22,
31] has been perceived only in recent years, after publications
[16 ± 18].

We now consider the conditions of stability of the solution
with a single macro-occupied mode (5). For this, we linearize
Eqns (1) and (2) with respect to small deviations of the signal
amplitude

~E�k; t� � ~E�k� exp �ÿiot� ; ~P�k; t� � ~P�k� exp �ÿiot�

and the idler amplitude

~E ���k; t� exp �ÿ2iEpt� � �~E��k� exp �ÿiot� ;
~P���k; t� exp �ÿ2iEpt� � �~P��k� exp �ÿiot� ;

where �k � 2kp ÿ k,

o

~E�k�
~P�k�
�~E��k�
�~P��k�

0BBBB@
1CCCCA � Ĥeff

~E�k�
~P�k�
�~E��k�
�~P��k�

0BBBB@
1CCCCA : �6�

Here, the effective `Hamiltonian' is given by a �4� 4� matrix
[19],

Ĥeff �
EC�k� b

~A EX � 2FjP0j2 ÿ AVsatP �0 E0
0 0
0 ÿ�FP 2

0 ÿ AVsatP0E0��

0BB@ � � �

� � �
0 0
0 FP 2

0 ÿ AVsatP0E0
2Ep ÿ E �C��k� ÿb �
ÿ ~A � 2Ep ÿ �EX � 2FjP0j2 ÿ AVsatP �0 E0��

1CCCA :

�7�
Eigenfrequencies O�k� of the linear problem in (6) and (7)

can serve as indices of stability of the solution with a single
macro-occupied mode (3) ± (5). If the imaginary part of the
eigenfrequencies O�k� is negative, the solution with one
macro-occupied mode (3) ± (5) is stable because deviations
from it decrease exponentially with time, / exp �ImO�k�t�,
ImO�k�<0. Otherwise, the growth increment is positive,
ImO�k� > 0, and the solution is unstable.

Figure 5a, b illustrates the dependences of the eigenfre-
quencies of linear problem (6), (7) on the two-dimensional
wave number calculated for Vsat � 0 at jP0j2 � 0:16,
jEextj2 � 0:083, i.e., at the terminal right point of the lower
stable branch of the S-curve (see the triangle on the solid curve
in Fig. 4). Interestingly, the threshold of this instability at the
given parameters of the microcavity and pump lies at a
slightly larger external field than the boundary of parametric
instability (see the circle in Fig. 4 corresponding to
jP0j2 � 0:14, jEextj2 � 0:081). That the parametric instability
threshold is passed over is evidenced by the appearance of an
eight-shaped instability region of the single-mode solution in
Fig. 5b: the imaginary part of the eigenvalue is already
positive within this region and the corresponding polariton
modes are unstable. At pump intensities somewhat below the
parametric instability threshold, the same modes have a
maximum lifetime. In the stationary regime, the signal
accumulates in these long-lived modes; therefore, the scat-
tered signal intensity is maximum below the threshold, in the
directions forming the figure eight. This effect was theoreti-
cally predicted in Ref. [7] and was recently demonstrated in
experiment [32].

We return to the scattering kinetics depicted in Fig. 2 and
compare the evolution of the pumped mode (points and
triangles) with the S-shaped curve of the solution with a
single macro-occupied mode (solid curve). Evidently, the first
abrupt transition at t � 600 ps is the transition of the driven
nonlinear oscillator from the lower to the upper branch of the
S-curve. This means that the first instability at t � 600 ps in
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Figure 4. S-shaped curve of a driven nonlinear excitonic oscillator in the

coordinates `jexciton polarizationj2 Ð external pump' computed without

regard for the saturation of the exciton transition (solid curve as in Fig. 2)

and taking the saturation at Vsat � 0:1 into account (dashed curve). The

open circle on the solid S-curve indicates parameters corresponding to the

parametric instability threshold. The triangles show the points of the lost

stability of the lower branch of the S-curve; renormalized spectra at these

points are shown in Figs 5a, b and 6a, b. The star symbols indicate the

states of the system with a high polariton density on the upper branch of

the S-curve; the corresponding renormalized spectra are presented in

Figs 5c, d and 6c, d.
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the approximation of one-dimensional scattering and in the
absence of saturation results from the loss of stability of the
solution at the end of the lower stable branch of the
S-contour. Because the S-contour is independent of the

spatial dimensionality, this instability is also preserved in the
quasi-two-dimensional case.

The development of the first instability brings the system
into the region of the upper branch of the S-contour (see the

jEextj2 � 0.08, dE 2ext= dP 2
0 � 0.59, jP0j2 � 0.44

jEextj2 � 0.08, dE 2ext= dP 2
0 � 0, jP0j2 � 0.16
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trajectory depicting the behavior of the excited mode in
Fig. 2). In the case of an empty MC, whose dispersion curve

has no inflection point, the upper branch is stable [25, 26].
However, a different situation occurs when the MC contains
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polaritons; in this case, the upper branchmay be unstable (see
the transition at t � 700 ps in Fig. 2). The cause of this second
instability can be understood from Fig. 5c, d, showing the
dispersion of eigenfrequencies of the linear problem in (6) and
(7) in the absence of saturation calculated for the parameters
jP0j2 � 0:44 and jEextj2 � 0:083, i.e., at the upper branch of
the S-contour (see the star symbol on the solid curve in Fig. 4).
As follows from Fig. 2, it is approximately this region into
which the excited mode falls as a result of the development of
the first instability at t � 600 ps. Then, the regions near
ks � 0, ki � 2kp (as shown in Fig. 5d) are characterized by
very strong parametric instability with a large incremental
growth. Unlike the figure eight during parametric scattering
of polaritons on the lower branch of the S-contour [7, 32], the
scattered signal on the upper branch of the S-contour reaches
its maximum within compact solid angles inside the figure
eight, close to ks � 0, ki � 2kp. This qualitatively agrees with
experimental findings [13, 15]. Owing to the development of
the second instability, the solution with a single macro-
occupied mode decays: other polariton modes are rapidly
populated (see also Fig. 3). As a result, the amplitude of the
excited polariton abruptly decreases, and this state turns out
to be more or less stable even if fluctuating in time because of
rescattering on other polariton modes.

It must be noted in addition that taking the finiteness of
saturation Vsat � 0:1 into account leads to a quantitatively
different position of the S-curve (cf the solid and dashed
curves in Fig. 4) but does not cause a qualitative change in the
scattering scenario. This follows, for example, from the
smallness of the difference between the eigenfrequencies of
the linear problem (6), (7) for Vsat � 0 and Vsat � 0:1
calculated at characteristic jump points on the correspond-
ing S-curve (see Fig. 6).

To summarize, using a simplified quasi-one-dimensional
model of polariton ± polariton scattering in MCs, we have
numerically demonstrated the feasibility of a hard-threshold
stimulation of polariton ± polariton scattering while
smoothly varying the external pump. This is possible due to
the mutual influence of bistability of the response of the
excited polariton mode and its instability relative to para-
metric pump. The resultant scattered signal proves to be
directed roughly normally to the microcavity, ks � 0, in
qualitative agreement with experiment [13, 15]. The analysis
of stability of polariton ± polariton scattering indicates that
this result must be preserved when taking the quasi-two-
dimensionality of the scattering and excitonic saturation into
account. In conclusion, we emphasize that an essential
condition for the existence of an instability region on the
upper branch of the S-shaped curve of a nonlinear oscillator
with respect to the scattering into other polaritonmodes is the
presence of an inflection point at the lower polariton
dispersion branch. In the case of an empty MC with a
quadratic dispersion or pump far away from the inflection
region, there is no such instability, and the behavior of the
system proves simply bistable.

The authors are grateful to P V Elyutin and N SMaslova
for helpful discussions. Theworkwas supported in part by the
RFBR and INTAS.
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Stimulated polariton ± polariton scattering
in semiconductor microcavities

V D Kulakovskii, D N Krizhanovskii,
M N Makhonin, A A Demenev,
N A Gippius, S G Tikhodeev

Mixed exciton ± photon states in planar semiconductor
microcavities (MCs) with quantum wells (QWs) in a 1ÿ3 l
thick active layer (where l is the wavelength of light) represent
a new class of quasi-two-dimensional particles having unique
properties [1]. Such states, called microcavity polaritons, are
realized in MCs if the decay of both the photon and exciton
modes does not exceed the exciton ± photon interaction
energy. Light quantization in a planar MC perpendicular to
the plane of the mirrors leads to an almost parabolic
dispersion of the photon mode with a very small effective
mass near zero lateral quasi-momentum k,
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