
Abstract. The quantum corrections which the equilibrium rate
constants of inelastic processes acquire due to particle momenta
deviating from the Maxwell distribution at high gas pressures
and relatively low temperatures are considered. This deviation
can be interpreted as a manifestation of the time-energy uncer-
tainty relation for particles colliding elastically at a high rate,
with the characteristic energy � �h�hm (where m is the collision
frequency) put into correspondence with the temperature. Tak-
ing account of this deviation changes the temperature depen-
dences of the rate constants of adiabatic and exothermal
processes, as illustrated by the examples of vibrationally relax-
ing diatomic molecules and nuclear fusion and chemical pro-
cesses. The experimental anomalies in the temperature
dependences of the corresponding rate constants are accounted
for adequately by introducing the non-Maxwellian corrections.

1. Introduction

As is well known, the rate constants of many exothermic
chemical reactions as well as adiabatic processes at low
temperatures are characterized by a sharply increasing
temperature dependence. The existence and the shape of the
dependence mentioned determine the character of such

important phenomena as the transition of combustion into
detonation, flame propagation, vibrational relaxation, and
even thermonuclear fusion. In the case of exothermic
reactions, such a dependence can be caused by the threshold
character of the reaction and occurs when the gas temperature
T is much less than the characteristic threshold reaction
energy DE. In the case of adiabatic processes, whose
condition of occurrence is the criterion bDE=�hv4 1 (b is the
characteristic length of intermolecular forces, and v is the
collision velocity), the reason for a sharp temperature
dependence of the rate constant of the process relates to a
sharp exponential increase in the probability of the process
under consideration as the collision velocity rises. In both
cases, the specific shape of the temperature dependence of the
process rate constant is governed by the behavior of the
particle kinetic energy distribution function at energies
considerably exceeding the gas temperature or as the saying
goes `on the tail of the Maxwellian distribution'. For a
rarefied gas, the equilibrium shape of the particle kinetic
energy distribution function is described by the Maxwellian
exponent

f �e� � exp

�
ÿ e
T

�
�1�

(e is the kinetic energy of a particle). This leads to the well-
known `Arrhenius' temperature dependence

k � exp

�
ÿDE

T

�
�2�

for the rate constant ofmany exothermic processes, and to the
Landau ±Teller type dependence

k � exp

"
ÿ
�
T0

T

�1=3
#

�3�
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for an adiabatic exothermic process (here, T0 4T is the
parameter depending on the properties of colliding particles).

At an enhanced pressure, however, the particle kinetic
energy distribution function on a high-energy `tail' can differ
notably from the simple exponential dependence (1). As first
noted by Galitski|̄ and Yakimets [1], this difference is caused
by the quantum uncertainty of the particle energy at a high
collision frequency, which is a peculiar kind of particle
spectral line broadening (see below). This `tail' phenomenon
is inherent to the particle momentum distribution function
and is similar to the Lorentz asymptotic behavior of a spectral
line against the background of the Doppler kernel. However,
as distinguished from the purely classic treatment of the
spectral line profile, the power-like `tail' of the particle
momentum distribution function has an essentially quantum
origin, because the equilibrium particle momentum distribu-
tion function remains Maxwellian in classical statistics
independently of both the gas density and interaction
potential between particles due to the commutability of
kinetic and potential energies. Owing to this effect, the
exponentially decreasing momentum (or kinetic energy)
distribution function is supplemented with an item which
decreases more slowly, in a power-like manner, as the kinetic
energy rises. The power index of this function is determined
by the energy dependence of the elastic scattering cross
section in the energy region making the main contribution
to the formation of the particle energy distribution function.
The relative contribution of the nonexponential item to the
particle energy distribution function increases with a rise in
the number density of colliding particles, because it results in
a rise in the collision frequency, and with a decrease in the
temperature, because the exponential function drops more
rapidly with the temperature than the power-like one. Taking
into account the nonexponential addition to the particle
momentum distribution function at relatively high pressures
and low temperatures results in notable changes in tempera-
ture dependences of the rate constants of adiabatic and
exothermic processes compared to the classic expressions (2)
and (3).

In parallel with the interpretation based on the time ±
energy uncertainty relation, the effect of `nonexponential tail
growing' can also be treated in terms of the coordinate ±
momentum uncertainty relation. According to this treatment,
the interaction of a particle with its surroundings restricts the
volume of configuration space, which, due to the uncertainty
relation, results in an increase in the volume of themomentum
space, i.e., in a rise in the fraction of particles with higher
momenta. Two ways of interpreting the influence of power-
like `tails' on the momentum distribution function can be
interconnected using the relation �hn=T � lT=l, where lT is the
thermal de Broglie wavelength of a particle, and l is its mean
free path with respect to a change in its momentum. The
Lorentz gas model will be considered below in the limiting
case of lT=l5 1. The theory is highly sophisticated with the
proviso that lT=l � 1, so that the Anderson localization
becomes possible.

The quantum corrections to the particle momentum
distribution function are evaluated in the present work in
the framework of a model approach. Considering several
examples of processes of such a type, it will be shown that
taking into account the quantum corrections to the equili-
brium particle momentum distribution function allows at
least a qualitative explanation of some experimentally
examined anomalies in temperature dependences of the rate

constants of vibrational relaxation of molecules, thermo-
nuclear fusion reactions, and exothermic chemical reactions
determining the spontaneous combustion time for the
oxygen ± hydrogen mixture.

2. Particle momentum distribution function
including the quantum correction

The generalized distribution function of particles over
energies E and momenta p has the form

f �E; p� �
�
exp �iEtÿ ipr� < C ��x2�C�x1� > dt dr : �4�

Here, x � �r; t�, t � t1 ÿ t2; r � r1 ÿ r2, and C�x� is the field
operator of a particle in the Heisenberg representation. As is
shown in Ref. [2], the following analytical expression is
arrived at:

f �E; p� � n�E � g�E; p�
p
�ÿ
Eÿ ep ÿ D�E; p��2 � g2�E; p��

� n�E � dg�Eÿ ep� ; �5�

where n�E � is the occupation number. In particular, for
electrons in the thermodynamically equilibrium state, one has

n�E � � 1

exp
��Eÿ m�=T �� 1

; �6�

where m is the chemical potential, T is the temperature,
ep � p 2=2m is the kinetic energy, g � �hn is the collision
width, n is the collision frequency, and D is the density energy
shift. The particle momentum distribution function is derived
by integrating relationship (5) over the energy:

f �p� �
�
dE f �E; p� : �7�

Specifically, in a rarefied gas the collision width g of the
spectral function dg�Eÿ ep� is negligible; therefore, the
Lorentzian in formula (5) operates like the d function. This
results in the following expression

f �p� � exp

�
m
T

�
exp

�
ÿ ep
T

�
�8�

which corresponds to the classical, Maxwellian particle
momentum distribution function. In the case of a moderate-
density gas, the expression for the particle momentum
distribution function contains the power-like correction
along with the resonant, Maxwellian dependence (8) in a
high-energy region ep 4 fT; g;Dg:

f �p� � 1

pe 2p

�1
ÿ1

n�E � g�E; p� dE : �9�

Relatively simple expressions for the quantum correction to
the particle momentum distribution function can be derived
in the framework of the Lorentz gas model, where the motion
of a diluted admixture of light particles with the concentra-
tion n in a heavy particle gas of concentrationN is considered
[3]. In this case, the quantity g�E; p� is determined from the
following approximate integral equation that is used in the
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theory of metals:

g�E; p� � pN

�h 3

���U�pÿ p1�
��2 dg�Eÿ ep1�

d3p1

�2p�3 : �10�

Here, the quantity D�E; p� is given as follows:

D�E; p� � P

�
g�E; p�
kÿ E

dk�
X

HF�E; p� ; �11�

where U�q� is the Fourier transform of the interaction
potential between a particle and an admixture, P is the
symbol of the principal integral value, and

P
HF is the

Hartree ±Fock contribution to the particle energy shift. The
parameter g can be estimated approximately on the basis of
relationship (10):

g�E; p� � �hN

2
st
�
p; p1�E �

� �������
2E

m

r
: �12�

This estimation fits with the meaning of the parameter g � �hn
as a quantity proportional to the elastic collision frequency.
Indeed, the Born approximation gives the following expres-
sion for the total scattering cross section [4]:

st �
�
dO

m 2

4p2�h 4

����� dr U�r� exp �ÿiqr�����2 ; �13�

where q � pÿ p1, and p1 � �2mE�1=2.
At high momenta �ep 4T �, the quantity f �p� is defined

by the following asymptotic expression that is derived from
formulas (7) ± (13):

f �p� � exp

�
m
T

��
exp

�
ÿ ep
T

�
� �hNTst�p�

2pe2p

�������
pT
2m

r �
: �14�

The second term in square brackets presents the sought-for
quantum correction to the particle momentum distribution
function, which is caused by collisions. As can be seen, the
relative contribution of this correction will be enhanced as the
density of particles increases and the temperature decreases,
so that it can become determining in some conditions. For
example, in the case of the electron gas for which st � eÿ2p

having regard to theDebye screening, this correction depends
on the momentum as � pÿ8 [1]. Note that the Born
approximation for electrons is valid at high ep.

The expression for the rate constant of an inelastic process
i! j accompanied by the energy release (energy absorption)
�I can be derived within the framework of the same Lorentz
gas model [3]:

nki j � A

��
dp dp 0

�1
ÿ1

dE
�� fi j�p; p 0���2 dg�Eÿ ep�

� dg�E� Iÿ ep 0 � n�E �
�
1ÿ n�E� I �� : �15�

Here, A is the normalization factor that can be evaluated by
fitting the expression for ki j in the limiting case g! 0 with its
classical value, and fi j is the scattering amplitude for the
process i! j outside the mass surface. This amplitude
depends on the center-of-mass momenta before and after
inelastic collision, which are not interconnected with each
other by the kinetic energy conservation law: e 0p 6� ep � I at a
finite value of g. Relation (15) is valid for I4 g. In the gas
approximation, the amplitude fi j does not depend on the
density of the medium.

Expression (15) implies that for a relatively low tempera-
ture T5 I the rate of a reaction with the absorption of the
energy (`ÿ' sign) is exponentially low

�� exp �ÿI=T ��. This
case is described by the exponential temperature dependence
both in the classical limit g! 0 and at a finite value of the
parameter g. In the former case, this follows from Eqn (15)
taking into account the kinetic energy conservation law and
using the d function as g! 0. At a finite value of the
parameter g, the integration in formula (15) over E is not
limited by the region E > I, so that the exponentially low
value of the rate constant of an endothermic process is caused
by a low magnitude of the last factor in square brackets in
Eqn (15). One should stress that the magnitudes of the rate
constant in two cases can differ considerably.

In the case of processes with the energy release (`�' sign in
Eqn (15) or for exothermic reactions), the above-mentioned
factor that presents, for example, the Pauli blockage effect for
electrons is practically equal to unity. Taking into account
these circumstances, equation (15) is simplified considerably,
which has been confirmed by numerical calculations. Having
regard to the known relationship [4]

dsi j � p 0

p

�� fi j�p; p 0���2 dO ; �16�

and also to a weak dependence of si j on p 0 (see below), the
integration of the second Lorentzian in formula (15) over dp 0

results in unity. This leads to the following equationwhich is a
generalization of the classical definition, taking into con-
sideration the quantum corrections:

nki j � A0
�
dp f �p�

�
p

m

�
�si j�p� : �17�

Relation (17) defines the rate constant ki j � hsi jvi of the
process under discussion through the total particle momen-
tum distribution function f �p�. The function si j�p� can be
evaluated by solving the quantum scattering problem, so that
the cross section is determined generally by the scattering
amplitude outside the mass surface [see Eqns (15), (16)]. The
asymptotic form (14) can be used for the total particle
momentum distribution function f �p� entering expression
(17). Due to the detailed balance principle, a rise in the rate
constant of an exothermic process results in an increase in the
reverse (endothermic) reaction rate, although this reaction, as
was noted, contains the exponential temperature dependence.
The equilibrium constant which interconnects the rate
constants of direct and reverse reactions is determined by
thermodynamics, and varies only slightly within the frame-
work of our weakly nonideal gas (or plasma) approach taking
into account the quantum corrections to the particle
momentum distribution function.

Relations (14) and (17) were derived within the context of
the Lorentz gasmodel, when themass of a scattered particle is
small compared to that of an excited target, and they often
collide with motionless admixture particles, i.e. this model
implies that there is no disparity between the particle
momenta in lab coordinates and the relative momenta of
light and heavy particles. These relations can also be used for
the description of the collision of particles with comparable
masses in the first approximation, assuming that the quantity
p in formula (17) is the relative momentum of colliding
particles and substituting the reduced mass m for the mass m
in Eqn (14), so that ep � p 2=2m. This approximate approach is
justified qualitatively in Section 5.
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As shown below, the considered quantum correction to
the rate constant of an inelastic collision process involving
heavy particles can play a notable role in the case of the
vibrational relaxation of diatomic molecules at temperatures
around room temperature and pressures around or higher
than atmospheric. Taking account of this correction smooths
the temperature dependence of the vibrational relaxation rate
constant of molecules in a low-temperature and high-pressure
regions and results in an increasing dependence of the rate
constant on the gas pressure. In addition, the inclusion of the
quantum correction changes the character of the temperature
dependence of threshold exothermic chemical reactions and
processes characterized by a high energy barrier, e.g., thermo-
nuclear fusion.

3. Amplitude of an inelastic VT collision outside
the mass surface

The vibrational relaxation (VT relaxation) resulting in the
transformation of the vibrational energy of a molecule into
translational energy presents one of the typical examples of
adiabatic processes for which the quantum correction can be
essential. The rate constant of the vibrational relaxation of
diatomic molecules at temperatures on the order of or higher
than room temperature is characterized by an extraordinarily
sharp temperature dependence [5 ± 7]. This is caused by the
adiabatic character of the vibrational relaxation process, for
which reason the collisional relaxation probability depends in
an exponential manner on the Massey parameter

Me � bo
v
� bm1=2

m1=2T 1=2
: �18�

In this relation expressed in Hartree atomic units, b � 1 is the
characteristic range of intermolecular forces,o � mÿ1=2 is the
molecular vibration frequency, m is the reduced mass of the
molecule, v � �T=m�1=2 is the collision velocity, and m is the
reduced mass of the colliding pair. As can be seen, on
condition that m=m � 1, which obeys for the majority of
diatomic molecules, except hydrogen halides, the magnitude
of the Massey parameter Me � Tÿ1=2 4 1 over the whole
temperature range of practical interest. This results in the
sharply increasing velocity dependence of the probability of
VT relaxation, established first by Landau and Teller [5]:

PVT�v� � exp �ÿcMe� � exp

�
ÿ cbo

v

�
5 1 ; �19�

where c is a dimensionless numerical factor on the order of
unity.

Averaging dependence (19) over the Maxwellian particle
velocity distribution function gives the temperature depen-
dence of the rate constant of the process under consideration:

kVT � exp

"
ÿ
�
T0

T

�1=3
#
; �20�

which is known as the Landau ±Teller formula. Here, T0 is a
parameter, the value of which considerably exceeds room
temperature for the majority of diatomic molecules. Depen-
dence (20) is inherent to many molecular systems at
temperatures exceeding room temperature. However, this
dependence is not followed at reduced temperatures, so that
the vibrational relaxation rate constant can exceed by many

times that determined by the Landau ±Teller formula (20).
One of the origins of such a deviation relates to the role of the
long-range van der Waals attraction of molecules, for which
reason the collision energy of molecules cannot take an
arbitrarily low magnitude [7].

Another factor affecting the temperature dependence of
the vibrational relaxation rate constant and manifesting itself
at high gas pressures relates to the role of many-particle
effects [8 ± 10]. This factor, which is also most notable at
temperatures lower than or around room temperature, plays
an essential role at Nb3 � 1 (N is the number density of gas
particles, and b is the characteristic range of intermolecular
forces). The relevant corrections arise, particularly, as a result
of taking into account the density dependence of the
scattering amplitude in Eqns (15) ± (17), the dependence
originated from many-body collisions.

One more mechanism that is capable of considerably
changing the character of the temperature dependence of the
vibrational relaxation rate constant of diatomic molecules at
high pressures and relatively low temperatures relates to the
quantum effects under consideration, which lead to a
deviation in the particle momentum distribution function
from the Maxwellian one. The VT relaxation rate constant
taking this mechanism into consideration can be evaluated by
averaging the cross section of this process over the above-
found particle velocity distribution function (14).

The quantum problem on the energy exchange between an
excited oscillator having massM and an oscillation frequency
o and a structureless particle of mass m has been resolved by
Jackson and Mott [11] within a one-dimensional approach.
This solution will be used further for determining the
scattering amplitude fi j�p; p 0� outside the mass surface that
is engaged in formula (15). The interaction potential between
the oscillator and the incident particle will be approximated
by the exponential dependence

V�x;X� � C exp
�ÿa�xÿ X �� ; �21�

where X is the coordinate of the oscillator being found in the
initial nth state characterized by the wave function cn�X �,
and x is the coordinate of the incident particle. We represent
the wave function of the colliding particles through the
standard expansion

C�x;X � �
X
n

cn�X � fn�x� : �22�

Denoting the initial state of the oscillator by index i, and the
final one by n, one obtains the following standard asymptotic
(for large x) representation for the scattered particle wave
function:

fi�x� � exp �ÿikix� � Ai exp �ikix� ; �23a�

fn�x� � An exp �iknx� : �23b�

Here, ki � mvi=�h, and the initial vi and the final vn velocities
are interconnected with each another through the energy
conservation law: mv 2n =2 � mv 2i =2� �ho.

The solution of the given problem within the framework
of the distorted-wave Born approximation has the following
form [11] (neglecting an unessential phase factor):

An � 2Yin

kn

�1
ÿ1

U�x�Fn�x�Fi�x� dx : �24�
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Here, the notation was adopted:

U�x� � 2mC

kn
exp �ÿax� ; �25�

Yns �
�
exp �aX �cn�X �cs�X � dX : �26�

Due to the small amplitude of nuclear vibrations in molecules
�aX5 1�, the magnitude of integral (26) at s � n is close to
unity. Note that Fn�x� are the eigenfunctions for the
scattering equation in the exponential potential (25):�

d2

dx 2
� k2n ÿU�x�

�
Fn�x� � 0 : �27�

The 3D representation of the scattering amplitude outside
the mass surface for the inelastic scattering of a particle of
mass m by an atomic particle having internal degrees of
freedom has the following form

fi! n�pi; p 0�

� ÿ m

2p�h2

�
exp �ÿip 0r�C �n �R�V�r;R�Ci�r;R� dr dR ; �28�

where Ci�r;R� is the total wave function of the system
involving the incident particle with an initial momentum pi
and the atomic system in the state Ci�R�. Using the
SchroÈ dinger equation for the total wave function Ci�r;R�,
one can exclude the interaction potential V�r;R� from
relationship (28):

fi! n�pi; p 0� � ÿ
1

4p

�
p 2
i ÿ p 0 2 � �Ei ÿ En� 2m

�h2

�

�
�
exp �ÿip 0r�C �n �R�Ci�r;R� dr dR : �29�

Designating the final state momentum by pn brings this
equation to the following form

fi! n�pi; p 0� �
1

4p
� p 0 2 ÿ p 2

n �

�
�
exp �ÿip 0r�C �n �R�Ci�r;R� dr dR : �30�

The total wave function of the system is represented within
the framework of the distorted-wave approximation as
follows:

Ci�r;R� � Ci�R� fi�r� �Cn�R� fn�r� : �31�

Substituting expression (31) into Eqn (30) results in

fi! n�pi; p 0� �
1

4p
�p 0 2 ÿ p 2

n �
�
exp �ÿip 0r� fn�r� dr : �32�

Since the problem in the original formulation of Jackson
and Mott is a one-dimensional one, integral (32) should also
be calculated in the 1D case, having regard to expression (24)
for the amplitude. Taking into consideration the asymptotic
behavior of the function fn [see expression (23b)], one obtains

fi! n�pi; p 0� � p 0 � pn
2pn

exp �ÿiZ�An�pi; pn� ; �33�

where Z is a phase unessential for further analysis. Using the
standard definition of the transition probability [4]

Pi! n � pn
pi

��An�pi; p 0�
��2 ; �34�

we obtain

�� fi! n�pi; p 0�
��2 � �p 0 � pn

2pn

�2
pi
pn

Pi! n : �35�

The dependence of the scattering amplitude of an inelastic
process outside themass surface on p 0 is seen to be determined
mainly by the factor ��p 0 � pn�=2pn�2, and is rather weak,
which is in accordance with the comments made in the
Introduction. The expression for the transition probability is
derived as a result of the exact solution to equation (27) and
integration in formula (24) [11]:

�� fi! n�pi; p 0�
��2 � �p 0 � pn

2pn

�2
pi
pn

8p

�h2
m

M

m�ho
a2

� sinh �pqi� sinh �pqn��
cosh �pqi� ÿ cosh �pqn�

�2 ; �36�

where the dimensionless parameters jqj4 1 are intercon-
nected with the wave vector k by the following relations

qn � 2kn
a

; qi � 2ki
a
:

Due to the condition jqj4 1, the expression for the vibra-
tional relaxation rate constant in the one-dimensional
formulation takes the following form [cf. formula (15)]:

nki! n � A

�
dE n�E ��1ÿ n�E� �ho��

�
�
dp dp 0 dg�Eÿ ep� dg 0 �Eÿ ep 0 � �ho�

�
�
p 0 � pn
2pn

�2
p

pn
exp

�
p�qi ÿ qn�

�
: �37�

The last factor in expression (37) can be rewritten as follows

exp
�
p�qi ÿ qn�

� � exp

�
p
q2i ÿ q2n
qi � qn

�
� exp

�
ÿ 2po

a�v

�
; �38�

where

�v � 1

2

" �������
2ep
m

r
�

�����������������������
2�ep � �ho�

m

r #
: �39�

4. Estimation of the VT relaxation rate constant
in a dense media with due regard for the effects
of the quantum energy uncertainty

Expression (37) is reduced to a more simple analytical form
introducing the following designations for the characteristic
temperatures of molecules:

y 0 � m

2

�
po
a

�2

; y � �ho : �40�
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Some further simplifications have resulted in the following
form of Eqn (37):

nkVT � A exp

�
m
T

�
�
(�1

0

dE

E� �ho
exp

�
ÿE

T

�
exp

�
ÿ2
�
y 0

T

�1=2�
exp

�
y
2T

�

� 1

4

�
dEp

�hNsp
2pe 5=2p

exp

�
ÿ 4

�����
y 0
p����epp � ����������������
ep � �ho

p �

�
�1
0

dE
exp �ÿE=T � ������������

2E=m
p���������������

E� �ho
p

)
� A exp

�
m
T

�
fI1 � I2g :

�41�
The first term �I1� in Eqn (41) represents the classical
contribution to the mechanism of VT relaxation, which is
described by the Landau ±Teller dependence

I1 �
�1
0

dE

E� �ho
exp

�
ÿE

T

�
exp

�
ÿ2
�
y 0

E

�1=2�
exp

�
y
2T

�

�
�����������������

4p

3�y 0�1=2
s

E
5=4
0 exp

�
ÿ3
�
y 0

T

�1=3�
exp

�
y
2T

�
1

E0 � �ho

�
������
4p
3

r
�y 0�1=6T 5=6

�y 0�1=3T 2=3� y
exp

�
ÿ3
�
y 0

T

�1=3�
exp

�
y
2T

�
: �42�

Here, E0 � �y 0�1=3T 2=3 is the collision energy at the saddle
point of integrand in equation (42).

The second term in Eqn (41) represents the sought-for
quantum correction to the molecular vibrational relaxation
rate constant. The specific calculations require the energy
dependence of the elastic scattering cross section for the
particles engaged. Approximating this dependence by the
power-like function

sp � s�e0�
�
e0
ep

�kÿ1=2
; �s k

p � s�e0�
�
e0
y 0

�kÿ1=2
; �43�

we take the integral I2 with the constraint T < y:

I2 � 1

4

�hNs k
p vT

2y 0
T��������������������

y 0�T� y�p 1

2
���
p
p G�2� 2k�

21�2k
: �44�

Comparison of expressions (42) and (44) is followed by the
conclusion that the relative contribution of the quantum
correction to the VT relaxation rate constant is given by the
following relationship

I2
I1
� 1

4

�y 0�1=3T 2=3 � y��������������������
y 0�T� y�p �

T

y 0
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�
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p vT

2y 0
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�
3

�
y 0

T
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�
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T
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ÿ y
2T

�
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p22�2k
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3
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�hNs k

p vT

2y 0
exp

�
3

�
y 0

T

�1=3�
; �45�

which is valid under the conditions of T < y, and
E0 � �y 0�1=3T 2=3 5y. As can be seen, this relative contribu-
tion rises linearly as the gas particle number density increases,

and under the obvious condition of y5 y 0 rises exponentially
as the temperature decreases.

The temperature dependence of the VT relaxation rate
constant can be expressed in a form convenient for further
analysis:

kVT � k0

�
exp

�
ÿ3
�
y 0

T

�1=3�
� Ct

�
: �46�

Here, the nonexponential correction is given by the following
relationship

Ct � 1

4

�
T

y 0

�1=3�
T

y

�1=2
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�
ÿ y
2T

�
G�2� 2k�
p22�2k

����
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4

r
�hNs k

p vT

2y 0
:

�47�

The most representative system for which the quantum
correction under consideration becomes essential is the
nitrogen molecule. Quite extensive experimental material
has been accumulated on the subject. In this case,
m � 14mp, a � 4:55� 108 cmÿ1, so that the above-intro-
duced parameters are y � 3400 K, y 0 � 800;000 K, and
representation (46) is valid under the condition of
T > 220 K. The factor k0 entering formula (46) for molecular
nitrogen is expressed as follows [7]:

k0 � 6� 10ÿ8 exp
�
1690

T

�
T 1=3 exp

�
122:5

T 2=3

�
: �48�

The last factor in this formula accounts for the influence
of the molecular attraction at low temperatures. The second
term in curly brackets in Eqn (46) corresponds to the
contribution from a power-like `tail' of the particle momen-
tumdistribution function. In the case ofmolecular nitrogen at
a temperature around room temperature, the particle elastic
scattering cross sections is determined by the van der Waals
interaction, according to which k � 5=6, and sp � eÿ1=3p . This
gives for nitrogen:

I2
I1
� 2:9� 10ÿ17T 4=3

�
N

NL

�
exp

�
ÿ 1690

T

�
exp

�
277:8

T 1=3

�
;

�49�

where NL � 2:68� 1019 cmÿ3 is the Loschmidt number.
From the analysis performed it follows that the vibra-

tional relaxation rate constant for diatomic molecules is
represented as a sum of two terms:

kVT � kcl � kt ; �50�
the first of which corresponds to the classical Landau ±Teller
model [see the first term in formula (46) having regard to
Eqn (48)], and is in quite good agreement with the experiment
at temperatures higher than or on the order of 1000K [6]. The
second term constitutes the quantum correction caused by the
power-like decreasing of the particle momentum distribution
function. This density-dependent correction in the case of
nitrogen is estimated by the following relationship

kt � 1:7� 10ÿ24T 5=3

�
N

NL

�
cm3 sÿ1 : �51�

Calculations show that the relative contribution of this
quantum correction at T � 1000 K and atmospheric pres-
sure does not exceed a fraction of a percent. However, at
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room temperature and atmospheric pressure the quantum
correction kt�300� � 2:3� 10ÿ20 cm3 sÿ1 is about 14 times
higher than that estimated from the classical Landau ±Teller
model: kcl�300� � 1:6� 10ÿ21 cm3 sÿ1.

Experimental data on the vibrational ± translational
relaxation rate constant of the nitrogen molecule at room
temperature or lower are characterized by a considerable
spread of values. In this connection, one can compare the data
for nitrogen at room temperature and atmospheric pressure,
reported by Kovacs and Mack [12] (kVT � 10ÿ20 cm3 sÿ1),
Chatelet [9, 10] (kVT � 0:5� 10ÿ20 cm3 sÿ1), and Akishev et
al. [13] (kVT � 10ÿ18 cm3 sÿ1), which differ from each other
within two orders of magnitude.

Figure 1 compares the results of the theory developed here
with those experimental data supplemented with the results
from measurements [14 ± 17].

One should note that the comparison of the theory with
measurement data is hampered by the dependence of the
vibrational relaxation rate 1=tVT � NkVT on the gas particle
number density in the above-cited experimental works [8 ± 10,
12] at room temperature and lower becoming nonlinear for
N � 1022 cmÿ3. This magnitude of the gas density is beyond
the range of applicability of the theory of interest here. The
present theory predicts a deviation of the particle density
dependence of the vibrational relaxation rate constant from
the linear one already at atmospheric pressure and room
temperature. The existing experiments relate to either atmos-
pheric gas pressure (particle number density N � 1019 cmÿ3)
or liquefied gas (N � 1022 cmÿ3) and therefore the direct
comparison of the calculated density dependence of the VT
relaxation rate constant with experiment is rather difficult.
Such a comparison can be made after performing a direct gas
phase measurement of the density dependence over a wide
range of pressures, from one up to several hundred atmo-
spheres.

One more factor bringing an uncertainty into the results
obtained relates to the usage of the Lorentz gas model that
assumes the mass of the scattered particle to be small
compared to that of the vibrationally excited molecule.
However, due to a weak sensitivity of the quantum correc-
tion to themass of the incident particle, the usage of themodel
presented can hardly result in considerable error, amounting
to orders of magnitude. Another source of uncertainty can be
related to the usage of the power-like velocity dependence (37)
of the elastic scattering cross section with the index k � 5=6
corresponding to the van der Waals interaction potential.
Invoking amore accurate interaction potential can somewhat
change the magnitude of the quantum correction.

5. The thermonuclear fusion reaction

The cross section of nonresonant thermonuclear reactions,
specifically the fusion reaction

d� d! t� p ; �52�
is determined by the energy of interacting particles in the
center-of-mass system (for dd-reactions, one more neutron
channel exists, namely, d� d! He3 � n having a compar-
able probability [18]). As was noted in Ref. [18], the main
contribution to the fusion reaction at a not-too-high
temperature is due to particles with energies exceeding the
plasma temperature as many as several times. A considerable
deviation in the energy dependence of the rate of the
nonresonant fusion dd-reaction (52) from theoretical predic-
tions was found in recent experiments [19 ± 20]. Figure 2
shows the energy dependence of the astrophysical factor for
the cross section of the fusion reaction (52), measured in
experiments with the beam of deuterons interacting with
deuterons incorporated into a metal crystal lattice of a target
[20]. The influence of quantum effects on the rate of thermo-
nuclear fusion reactions was considered in Refs [21, 22].

The dependence of the cross section of a reaction on the
center-of-mass kinetic energy ep can be represented in the
following form (see, e.g., Ref. [23])

s1�ep� � S�ep�
ep

exp
�ÿ2pZ�ep�� : �53�
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Figure 1. Temperature dependence of the vibrational ± translational

relaxation time at a pressure of 1 atm. The experimental points were

taken from the following papers: [6] (1), [14] (2), [16] (3), [12] (4), [10] (5),

[15] (6), and [17] (7). The line 8 represents the classical dependence

corresponding to the first term in formula (50), and line 9 relates to the

total VT relaxation rate constant calculated taking into account the

second, quantum term in Eqn (50).
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Figure 2. The beam energy dependence of the astrophysical factor for the

deuteron fusion reaction cross section [20]. Experimental evidences and
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nuclei screened by the free electrons of the target metal are presented.
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Here, Z�ep� � Z1Z2e
2=�hv is the Sommerfeld parameter

characterizing the exponential probability of subbarrier
tunneling in the Coulomb field (the Gamow factor) [4], and
Zi is the charge of the reacting particle. It is usually believed
that for nonresonant reactions the astrophysical factor S�ep�
changes slightly with energy over a low-energy region.
However, the measured reaction rate in a beam low-energy
region e < 5 keVwas found to be considerably higher than the
value predicted.An attemptwasmade to explain this effect on
the basis of the hypothesis for screening ions by an electron
cloud [20]. The impact of the potential Ue related to the
screening of the Coulomb interaction by electrons on the
reaction cross section can be accounted for in the first
approximation by adding it to the collision energy [23]:

s�ep� � s1�ep �Ue� : �54�

Since experiments [20] were performed at an enhanced
density of the substance, and the above-noted contradictions
between the experimental and calculated data concern a
relatively low energy region, it would appear natural to
explain those contradictions by the necessity of taking into
consideration the quantum correction. This was tried to
perform in Ref. [21] where the cross section of reaction (52),
calculated with due regard for the quantum corrections to the
particle momentum distribution function in the real experi-
mental conditions, was compared with the measured data
[20].

Figure 2 presents the theoretical energy dependences of
the astrophysical factor obtained in that publication for non-
screened deuterium nuclei and for screened ones, calculated
with various magnitudes of the screening potential. As seen,
the theoretical curve fits the experimental one badly at the
screening potential of 28 eV that seems to be reasonable for
the conditions under consideration. Good agreement in a
beam low-energy region is reachable only at the screening
potential of 309 eV, which is hardly a real magnitude in the
conditions of the experiment. Obviously, the problems arising
in interpreting the experimental results require an improve-
ment of the theoretical models used.

A model description of fusion reactions with regard to
quantum effects on the momentum distribution function in
conditions of the real experiment has been presented by
Coraddu et al. [21]. The reaction rate for the interaction
between the beam and the target that was measured in
Ref. [20] was calculated in Ref. [21]. The rate of a reaction
a� b! c� d involving particles of various sorts is expressed
generally as follows:

nanbK � C

�1
0

dEa

�
dpa

�1
0

dEb

�
dpb

�
do

�
�
dq q2na�Ea�

�
1� nc�E 0c�

�
dga�Ea ÿ ea; ea�

� nb�Eb�
�
1� nd�E 0d�

�
dgb�Eb ÿ eb; eb� dgc�E 0c ÿ epcÿq; epcÿq�

� dgd�E 0d ÿ epd�q; epd�q� sa�b!c�d�ep�
�������
2ep
m

s
; �55�

whereEa, pa are the energy andmomentumof a particle of the
sort a, respectively; E 0c � Ec �Qc ÿ o �Ec � Ea�, E 0d �
Ed �Qd � o �Ed � Eb�; Qi is the energy of the ith reaction
product; ep is the center-of-mass kinetic energy of a particle; m
is the reduced mass of the colliding particles; C is the
normalization factor that is to be found on the basis of

comparison with the low-density and high-temperature
calculation data; epi � p 2

i =2mi, and

ep � p2

2m
; and p � mbpa ÿmapb

ma �mb
:

The `ÿ' sign in Eqn (55) relates to fermions, and the `�' sign
corresponds to bosons.

The magnitude of the factors �1� n�E 0�� for endothermic
reactions �Qa < 0� is exponentially low. This means that the
mechanism of acceleration of fusion reactions, related to the
power-like tails under consideration, assumes that the plasma
temperature should not be too low, as the colliding particles
are already ionized, and the ionization rate is fitted by an
exponential function of temperature. On the other hand, the
ionization in a solid-statematrix occurs owing to the existence
of the conduction electrons; however, in this case some
threshold energy should also be overcome, which relates to
the interaction of a deuterium ion with its surroundings in the
metal.

For exothermic �Qa > 0� reactions in the nondegenerate
case, the magnitude of n�E 0� is negligible when compared to
unity. The form of the expression for the occupation numbers
n�E � depends on the type of statistics for the system. The Bose
statistics are obeyed for deuterons, so that

n�E � �
�
exp

�
Eÿ m
T

�
ÿ 1

�ÿ1
: �56�

The particle kinetic energy distribution function in the case of
non-ideal plasma is determined by the Lorentzian

dg�Eÿ e; e� � g�E; e�=p�
Eÿ eÿ D�E; e��2 � g 2

: �57�

The linewidth is given by the following formulas [22]

ga�Ea; ea� � �hNsava ; sa � pe 4

e 2a
; va �

�������
2ea
ma

s
; �58�

where N is the number density of scatters (the summation
over all the scatter sorts is generally needed).

Strictly speaking, the reaction cross section involved in
Eqn (55) has to be found through the solution of the quantum
mechanical problem for nuclear transformation outside the
mass surface. As is shown above for the case of VT relaxation,
such a problem is resolvable approximately, and the final
solution does not deviate considerably from that obtained by
using the ordinary cross sections calculated on the mass
surface. A similar approach will be applied to the case of
fusion reactions, but this question, however, requires further
investigation.

5w>In the case of an ideal plasma that occurs, for
example, at a decreased density, the parameter g�E; e� ! 0.
Under this conditions, the function dg�Eÿ e; e� approaches
the d function and expression (55) for the reaction rate takes
the classical form. The above-presented model was utilized in
Ref. [21] for numerical calculations of the reaction rates. The
calculations were performed for conditions close to the
experimental ones: the particle concentration na �
5� 1023 cmÿ3, the masses of the target �a� and projectile �b�
particlesma � mb � 2 a.m.u. In the character ofN involved in
expression (58) for the linewidth, the concentration of
scattering ions in the metal matrix was taken.
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The integral (55) was calculated by the Monte Carlo
method, taking account of its high dimension [21]. The
particle kinetic energy distribution in the metal matrix was
set to correspond to the room temperature T �
2:44� 10ÿ2 eV. The beam energy of particles of sort b was
also preset.

One should note that the evaluation of the reaction rate
for the beam ofmonoenergetic particles using Eqn (55) can be
simplified, which results in the following simpler integral

naK1 � C1

�1
0

dEa

�
dpa

�
n�Ea� a�Ea ÿ ea; ea�

�������
2ep
m

s
s�ep� :

�59�
Here a�Eÿ e; e� is the Lorentzian (57). For the case of an ideal
plasma, the expression for the reaction rate is simplified
within the framework of this model, because the contribu-
tion of `wings' of the Lorentz function (57) to the integral can
be neglected:

naK2 � C2

�1
0

dEa

�
dpa

�
n�Ea� d�Ea ÿ ea�

�������
2ep
m

s
s�ep�

�
�1
0

dea n�ea� eps�ep� : �60�

The influence of the distribution `tails' on the reaction rate
can be evaluated comparing the results of calculations by
formulas (60) and (55). These results can also be correlated
with the reaction rates calculated from the relationship
K1 � sv using formula (53), which provides an estimation of
both the factor S�ep� and the deviation of theoretical
predictions from the experiment.

In order to estimate the influence of the distribution `tails'
on the magnitude of the reaction rate (59), proper allowance
must be made for the deviation of the distribution function
from the Maxwellian form, which is related to a finiteness of
the width of the generalized energy and momentum distribu-
tion function. As is shown in Refs [1, 3], the asymptotic
expression for the kinetic energy distribution function taking
into consideration the quantum correction contains the
power-like dependence

f �e� � C 0
�1
0

dEa n�Ea� a�Ea ÿ ea; ea�

� exp

�
ÿ ea
T

�
� Ca�T �

e 4p
: �61�

Using this representation one can calculate the reaction rate
from Eqn (59) taking into account the non-Maxwellian form
of the particle kinetic energy distribution function:

K3 � C3

�1
0

dea f �ea�
�����������
2eaep
m

s
s�ep� : �62�

Table 1 shows the results of such calculations [21].
The quantities Ki outlined in Table 1 are defined by

expressions (59), (60), and (62). The data in the table imply
that the reaction rates calculated using different models agree
well at a beam energy exceeding 2 keV. Within the energy
range between 1 and 2 keV, the quantitiesK1 andK2 are close
to each other, but much less than the reaction rate K.
Moreover, a rather good agreement between the quantities
K3 and K should be emphasized. Therefore, one can conclude

that the approach represented by formula (17) or (62) is quite
reasonable in the order-of-magnitude estimating of the
reaction rates. The results of comprehensive Monte Carlo
calculations indicate a considerable contribution to the
reaction rate from `tails' in the momentum distribution
function. The last column of the table contains the factor
determining the deviation of the reaction rate K from that
determined for the case of an ideal plasma.

Evaluation of the influence of atomic screening on the
reaction rate in comparison with the above-considered
mechanisms is also of interest. In doing so, the relevant
calculations were performed in Ref. [21] within the frame-
work of the model developed, setting the screening potential
toUe � 28 eV and taking into account its influence according
to formula (54). The accepted magnitude of the screening
potential seems quite reasonable for the conditions of
experiment [20]. The computations imply that the screening
does not notably affect the total rate of the reaction
d� d! t� p studied in experiment [20] at the accepted
magnitude of the potential.

It is pertinent to note that the multidimensional Monte
Carlo modeling of the reaction rate, used in Ref. [21], has
confirmed the reasonability of estimations performed on the
basis of relationships of type (17) ± (59) that where obtained
within the framework of the Lorentz gas model.

One should also emphasize that the effect of the extra-
ordinarily high fusion reaction rate is observable if there is
enough time for establishing the particle momentum distribu-
tion function at high momenta. The relaxation time for the
distribution function, estimated first by Galitski|̄ and Yaki-
mets [1], is represented by the following obvious relationship

t�p� � 1

N�p=m� st�p� ; �63�

where p4 pT, st�p� is defined by relations of type (13), (58),
and pT is the thermal momentum of a particle. For the case of
the screened Coulomb interaction, the quantity st�p� can be
expressed as follows:

st�p;E � � 4pe 4

�ep � E� eD�2 ÿ 4Eep
; �64�

where eD � �h2=2mr 2D, and rD is the Debye screening radius.
The correction to the particle momentum distribution

function in a dense `hot' plasma (T > 1 eV) can be estimated
in the context of a Lorentz gas model in the following manner
[3, 21]:

f �p� � 1

�2pmT �3=2
"
exp

�
ÿ ep
T

�
�

���
p
p

N�hT

e 4p

�������
2T

ma

s #
: �65�

Table 1.

Eb,
keV

K1 K2 K3 K K=K1

15
10
5
2
1.8
1.5
1.2
1

4:381� 104

4:073� 103

1:711� 101

2:615� 10ÿ4

5:038� 10ÿ5

2:339� 10ÿ6

3:613� 10ÿ8

8:252� 10ÿ10

4:045� 104

3:762� 103

1:580� 101

2:421� 10ÿ4

7:223� 10ÿ5

3:850� 10ÿ6

7:474� 10ÿ8

7:711� 10ÿ10

7:393� 104

6:877� 103

2:892� 101

4:487� 10ÿ4

1:344� 10ÿ4

7:343� 10ÿ6

2:265� 10ÿ7

5:678� 10ÿ8

4:38� 104

4:11� 103

1:77� 101

2:85� 10ÿ4

5:62� 10ÿ5

3:34� 10ÿ6

7:84� 10ÿ7

2:82� 10ÿ7

1.00
1.01
1.03
1.09
1.12
1.43
21.7
342
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The relevant fusion reaction rate is then found from formula
(55) involving the reaction cross section sab�ep�. This model
describes, for example, the situation where the reacting
particles interact mainly with heavy admixture particles.
This occurs in the experiments upon a heavy metal matrix
with a particle concentrationN [19, 20]. The model presented
also assumes a nominally weak nonideality of the plasma and
the condition lT=l5 1. It is convenient to represent the rate
constant of process (52) in the form

k � kcl � kt : �66�
Here, the first term

kcl � 4

3

�������
2T

m

s
S

T
t1=2 exp �ÿt� �67�

is the classical reaction rate constant that is characterized by
the astrophysical factor S [23] and the energy EG:

EG � 4
mp

me
Ry z 21 z

2
2 m ; �68�

where m is the reduced atomic mass of the particles a and b.
The Gamow factor G is expressed through the energy
parameters as follows [23]:

G � exp

 
ÿp

��������
EG

ep

s !
;

and for the parameter t, the following formula is valid:

t � 3

�
p
2

�2=3�
EG

T

�1=3

: �69�

Using the above-introduced definitions one obtains the
expression for the quantum correction to the rate constant
of reaction (52) that depends on the medium density (cf.
Refs [3, 21]):

kt � 4 � 5!

p6
S

EG

�������
2T

ma

s
�hn
T
: �70�

Here, the notation was used:

n � NA rme
4
��������������
2T=ma

p
AmE

2
G

: �71�

In relationship (71), rm is the density of the metal with the
atomic number Am, and NA is the Avogadro constant. As
follows from Refs [24 ± 26], taking into account the screening
effect results in an increase in the classical rate constant kcl
owing to the Solpeter correction f0:

k 0cl � f0kcl ; �72�
f0 � exp �z1z2g� ; �73�

g � e 2

rDT
: �74�

Since the above-derived expression for the quantum
correction contains the integration over the kinetic energy ep
of relative motion, the asymptotic magnitudes of which
considerably exceed the screening potential Ue, the correc-
tion in question does not practically depend on the screening
effect.

6. Kinetics of exothermic chemical reactions

As is well known, the rate constants of chemical reactions
accompanied by the energy release usually contain the
Arrhenius-like gas temperature dependence (2) [27, 28]. This
means the existence of an energy barrier along the reaction
coordinate, so that the relative kinetic energy of reagents has
to exceed a threshold energy for carrying out their transfor-
mation into the final products. In such a case, in accordance
with the concepts outlined, the magnitude of the reaction rate
constant should be influenced by the quantum effects related
to the occurrence of power-like `tails' of the energy distribu-
tion function in a region of relatively low temperatures and
elevated pressures. The greater part of exothermic chemical
reactions in gases are characterized by a very complicated,
multistage mechanism with a possible chain branching. For
this reason, it is hardly possible to establish quantitatively the
influence of quantum corrections to the energy distribution
function on the net yield of the reaction products or the
induction time in a pure form. This arises from both
insufficiently reliable knowledge of parameters of all the
elementary reactions, determining the rate or the character-
istic time of the gross reaction, and the possible change of
main reaction channels as the pressure and temperature
alternate during its proceeding. Nevertheless, even the
relatively simple model approach to the calculation of the
kinetics of the most extensively studied reaction of hydro-
gen ± oxygenmixture burning implies that the rate constant of
this reaction can change notably at a pressure on the order of
a few atmospheres as a result of inserting the quantum
corrections to the particle momentum distribution function.

The rate constant of an exothermic reaction can be
estimated using relations of type (14) ± (17). Setting the
threshold kinetic energy DE � p 2

0 =2m results in

kin�T � � s0C
�1
p0

p

m
p 2

�
exp

�
ÿ p 2

2mT

�

� 1

2p

�������
pT
2m

s
�hNTst�p�

e 2p

�
dp : �75�

This expression was obtained assuming the following simpli-
fied form for the momentum dependence of the reaction cross
section:

sin�p� � 0 ; p < p0 ; sin�p� � s0 ; p > p0 : �76�
Besides, C is a constant responsible for the normalization of
the particle energy distribution function. During computa-
tion with formula (75), the momentum dependence of the
elastic scattering cross section st�p� should be specified.
Approximating this dependence by the power-like function
similar to Eqn (43) one obtains

kin � s0C
p 4
T

2
exp

�
ÿDE

T

�
�
�
1� 3

4
���
p
p vT�hNst�p0�

T� DE
exp

�
DE
T

��
: �77�

In the expression obtained pT � �2mT �1=2, and vT � pT=m.
This expression is easily transformed into the following final
form convenient for further analysis:

kin � k0 exp

�
ÿDE

T

��
1� 6:7P exp �DE=T �������

mT
p �DE �1=3�T� DE �

�
: �78�
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In this relationship, k0 � s0Cp 4
T=2, which corresponds to the

pre-exponential factor of the reaction rate constant in the
absence of the quantum correction; P is the pressure of the
gaseous mixture in units of bar; m is the reduced mass of the
colliding particles in the proton mass units; DE is the energy
defect of the reaction, and T is the gas temperature in K.

The time delay of the spontaneous combustion in
hydrogen ± air or hydrogen ± oxygen mixtures behind the
front of the reflected shock wave was studied experimentally
and theoretically in Refs [29, 30]. The data obtained have
shown a striking deviation (between 10 and 103 times) from
theoretical predictions, especially utilizing pure oxygen at
relatively low temperatures (� 800 K) and elevated pressures
(up to 10MPa), with themeasured time delay turned out to be
much shorter than the relevant classical calculated value.
Moreover, a violation of the similarity law that interconnects
the spontaneous combustion time ti and the pressure of the

mixture, tiP � const, has been found. The kinetic calcula-
tions of the reaction involving 42 direct and reverse processes
were performed in Refs [29, 30] using the rate constants taken
from Refs [31, 28].

We have done the calculations within the framework of
the kinetic model [29, 30], taking account of quantum
corrections in accord with the simplest approximation (78).
The set of the classical rate constants used in computation is
given in Table 2. The kinetic energy dependence of the
elastic scattering cross section contained in formula (77) was
either neglected or approximated by gas-kinetic expression
(43). The most considerable influence of the quantum
corrections on the magnitude of the reaction rate constant
was found in the case of exothermic reactions with a high
magnitude of activation energy. As an example of such a
process, reaction 2 from Table 2 can be marked, the rate
constant of which at a pressure of 5 atm and a temperature

Table 2. The classical magnitudes of the reaction rate constant, utilized in the numerical calculations.

No. Reaction log �A� b DE Q

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

H2 �O2 ) OH�OH

OH�OH) H2 �O2

OH�H2 ) H�H2O

H�H2O) OH�H2

H�O2 ) OH �O

OH�O) H�O2

O�H2 ) OH �H

OH�H) O�H2

H�H�M) H2 �M

H2 �M) H�H�M

OH�H�M) H2O�M

H2O�M) OH�H�M

H�O2 �M) HO2 �M

HO2 �M) H�O2 �M

HO2 �H2 ) H2O2 �H

H2O2 �H) HO2 �H2

HO2 �HO2 ) H2O2 �O2

H2O2 �O2 ) HO2 �HO2

H�HO2 ) OH�OH

OH�OH) H�HO2

H�HO2 ) H2O�O

H2O�O) H�HO2

H�HO2 ) H2 �O2

H2 �O2 ) H�HO2

O�HO2 ) OH�O2

OH�O2 ) O�HO2

OH�HO2 ) H2O�O2

H2O�O2 ) OH�HO2

OH�OH�M) H2O2 �M

H2O2 �M) OH�OH�M

HO2 �H2 ) H2O�OH

H2O�OH) HO2 �H2

HO2 �H2O) H2O2 �OH

H2O2 �OH) HO2 �H2O

H�H2O2 ) H2O�OH

H2O�OH) H�H2O2

OH�M) O�H�M

O�H�M) OH�M

O�O�M) O2 �M

O2 �M) O�O�M

O�H2O) OH�OH

OH�OH) O�H2O

13.24
10.82
8.00
8.66

17.08
13.25
7.18
3.69

17.81
18.77
21.92
15.11
17.85
19.08
13.48
13.68
12.26
13.73
14.40
13.08
13.15
12.74
13.82
14.16
13.24
13.35
13.48
14.60
24.70
33.05
11.78
11.44
13.40
13.06
13.38
14.06
15.38
18.67
13.28
18.26
10.18
9.18

0.0
0.3
1.6
1.6
ÿ0.9
0.0
2.0
2.8
ÿ1.0
ÿ1.1
ÿ2.0
0.0
ÿ0.8
ÿ1.2
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ÿ3.0
ÿ4.9
0.0
0.0
0.0
0.0
0.0
0.0
0.0
ÿ1.0
0.0
ÿ1.0
1.1
1.1

48.1
29.2
3.30
18.57
16.52
0.0
7.55
3.88
0.0

104.4
0.0

105.1
0.0
48.41
26.03
7.95
0.0
39.74
1.90
40.1
2.08
57.63
2.13
56.64
ÿ0.4
52.66
0.0
73.0
0.0
53.25
18.68
73.74
32.29
1.76
3.97
79.19
99.36
0.0
ÿ1.79
118.1
17.26
0.0

ÿ18.6
18.6
15.0
ÿ15.0
ÿ16.8
16.8
ÿ1.9
1.9
104.2
ÿ104.2
119.2
ÿ119.2
46.9
ÿ46.9
ÿ15.7
15.7
41.7
ÿ41.7
38.8
ÿ38.8
55.7
ÿ55.7
57.4
ÿ57.4
55.6
ÿ55.6
72.4
ÿ72.4
49.7
ÿ49.7
52.4
ÿ52:4
ÿ30.8
30.8
68.1
ÿ68.1
ÿ102.3
102.3
119.0
ÿ119.0
ÿ16.9
16.9

Note. The temperature dependence of the rate constant was approximated by the relationship K � ATb exp �ÿDE=RT � (the magnitudes of rate

constants for binary reactions are given in cm3 molÿ1 sÿ1 and for ternary reactions in cm6 molÿ2 sÿ1). Here,T is the temperature, K;DE is the activation

energy, kcalmolÿ1;Q is the energy release (energy uptake atQ < 0) in the same units, andMstands for amolecule in themixture. The given reaction rate

constants were found from averaging over all the components of the gas mixture.
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of 1000 K has increased about twice as a result of
introducing the quantum correction.

The calculations were performed for two mixture compo-
sitions, as was done in Ref. [30]: (1) 5%H2� 95%O2, and (2)
15%H2� 85%O2. The calculated results are presented in
Figs 3 and 4. The figures demonstrate that applying the
quantum corrections improves the agreement with the
experiment in comparison with calculations performed using
the classical reaction rate constants. The agreement gets
closer as the pressure rises, and the coincidence is better

when neglecting the energy dependence of the gas-kinetic
collision cross section. At the same time, it would be rather
naive to expect full agreement between the theory and
experiment, concerning such an integral parameter as the
spontaneous combustion time. This relates to the rather
rough character of estimates (75) ± (78) and the not fully
completed model of the chemical reaction under considera-
tion. Specifically, the existing classical model does not
discriminate the rate constants of ground-state and vibra-
tionally or electronically excited particles engaged in the
reactions. Besides, other effects may show themselves in
experiments, such as desorption of oxygen from the shock
tube walls. However, the above-given example qualitatively
testifies to a considerable contribution from the quantum
corrections to kinetic calculations of chemical reactions at
pressures exceeding the atmospheric pressure.

7. Quantum corrections
to the nonequilibrium electron kinetic energy
distribution function in a dense gas

Quantum corrections are turned out to be essential not only in
the equilibrium case, as was considered in detail above, but
also in a nonequilibrium situation, if the elastic collision
frequency in the system is high enough. As the most wide-
spread example of such a system we can mention weakly
ionized plasma where the electron gas is found in a dense
medium and subjected to the action of the external electric
field. At a moderate gas pressure and low ionization degree,
the electron energy distribution function (EEDF) is formed as
a result of the balance of the energy and momentum of
electrons which acquire the energy and momentum from the
electric field and lose them in pair collisions with gas particles.
Therewith, the EEDF obeys the similarity law in accordance
to which the distribution function depends on the ratio of the
electric field strength E to the gas particle density N [32, 33].
This law breaks down at pressures much higher than the
atmospheric pressure (see, for example, Refs [34 ± 39]), with
the degree of deviation of the electron mobility in liquid rare
gases from that determined by the similarity law amounting
to several orders of magnitude, as follows from the experi-
ments described in detail in Ref. [39]. This effect is usually
explained by the increasing role of coincident collisions of an
electron with several atomic particles with a rise in pressure,
which causes the effective smearing of the Ramsauer mini-
mum in the momentum transfer cross section for scattering of
an electron on an atom [34]. One more possible origin of the
deviation of the EEDF from the similarity law can be related
to the quantum corrections to the EEDF in a dense gas,
caused by a high electron ± atom elastic collision frequency.

The quantum corrections indicated mainly concern the
high-energy portion of the electron kinetic energy distribu-
tion function. Therefore, it is hardly expected that their
introduction would change such kinetic characteristics of
electrons as mobility, drift velocity, or diffusion coefficient,
the magnitudes of which are governed by the electron energy
of the order of itsmean value.However, themagnitudes of the
rate constant of electron impact excitation and ionization of
gas particles in an electric field are determined by a high-
energy `tail' of the EEDF; therefore, introducing the quantum
correction may turn out to be necessary in this case.

The problem of calculation of the EEDF in an electric
field with due regard for the quantum corrections was stated
in Ref. [40] where the case of a static electric field, as well as an
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Figure 3.The pressure dependences of the spontaneous combustion time ti

calculated and measured for various magnitudes of the initial temperature

in the mixture 5%H2� 95%O2. The solid lines were calculated without

introducing the quantum corrections for high density to the reaction rates.

The initial temperature is: 900 K (1), 1000 K (2), 1100 K (3), and 1200 K

(4). The experimental points [30] are marked by black squares; the relevant
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by� (the temperature dependences of the reaction rate constants obey the
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the elastic scattering cross section as given by formula (43)].
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intense laser radiation field, was treated in the context of the
Lorentz gas model. For some model situations, the expres-
sions for the generalized electron energy and momentum
distribution function were derived, which contained power-
like decreasing dependences along with the exponential ones.
The magnitude of departure from equilibriummanifests itself
through the occupation numbers n�E; p�, while the Lorent-
zian characterizing spectral properties of the generalized
distribution function has the form (5) (this approximation is
referred to as the Kadanoff ± Baym ansatz [2]).

By way of example let us consider the generalized
nonequilibrium distribution function [see Eqn (5)] f �E; p�
for electrons subjected to the action of the monochromatic
laser wave E � EL exp �ÿioLt� [40]. Introduce the effective
coefficient of electron diffusion in the space of velocities
v � p=m:

D � v
2

3

e2E 2
Lnm�v�

o2
L � n 2m�v�

: �79�

Here, nm�v� is themomentum relaxation frequency depending
on the kinetic energy. In addition, introduce the parameter B
characterizing the rate of the kinetic energy loss due to
inelastic collisions (energy relaxation) with the frequency
ne�v�:

B � ETne�v� ; �80�

where T is the gas temperature. Then we obtain the following
expression for the occupation numbers [40]:

n�E; p� �
�
exp

�� E

0

de
T

B

D� B
ÿ m
T

�
� 1

�ÿ1
; �81�

which transforms into the Fermi distribution (6) in the low-
field limiting case �D5B�. In the opposite limiting case
D4B, corresponding to a strongly nonequilibrium situa-
tion, the asymptotic estimation of behavior of the electron
momentum distribution function can be realized assuming
power-like velocity dependences of frequencies of elastic
and inelastic electron ± molecule collisions: nm�v� � v l,
ne�v� � v l�q (l, q are the fitting parameters for these
dependences). In the limit oL 4 nm, this leads to the
following dependence [3]:

f �p� / pÿ�26�3q�=4 : �82�

The above-outlined approach was applied in Ref. [40] for
estimating the rate constants of inelastic electron ±molecule
collisions. Specifically, it is shown that introducing the
quantum correction results in a drastic (about five orders of
magnitude) increase in the electron-impact atomic ionization
rate constant.

Note one more effect showing itself in nonideal plasma
and promoting an increase in the excitation and ionization
rate constants. This relates to the Debye screening, resulting
in an effective lowering of the ionization potential of atoms or
ions in plasma. The phenomenon is similar to the Solpeter
effect [see formulas (72) ± (74)] consisting in an increase of the
fusion reaction rate due to the screening of the Coulomb
interaction in plasma. This effect was explored in Refs [41 ±
46] in application to the problems of radiation and collision
kinetics of equilibrium and nonequilibrium classical plasmas.
The calculations performed in Ref. [47] under the same

assumptions and with the introduction of the quantum
correction into the electron energy distribution function
showed that the latter effects resulted in an ionization rate
constant exceeding by an order ofmagnitude that which takes
into account the screening effect. Moreover, the screening
effect becomes notable at a large magnitude of the plasma
nonideality factor, while the expressions derived in Refs [41 ±
46] are valid, strictly speaking, in the limit of a weak
nonideality.

8. Conclusions

The examples given above imply a notable influence of
quantum effects upon the particle momentum distribution
function; occurrence of power-like asymptotic dependences
(`tails') at high kinetic energies affects the rates of threshold or
barrier exothermic reactions. Examples of such an influence
and comparison with the available experimental data con-
firm, at least qualitatively, the importance of the quantum
effects in VT relaxation processes, thermonuclear fusion
reactions, and chemical transformations. The quantitative
evaluation of the rate constants of those processes with due
regard for the quantum effects requires, on the one hand,
developing the more accurate numerical models involving the
real energy dependences of both elastic and inelastic collision
processes and, on the other hand, improving the experimental
methods for studying inelastic processes at elevated pressures.
It should be recognized that the key point in the theoretical
approach applied is the scattering amplitude outside the mass
surface, which determines the cross sections of elementary
processes and comprises a new object of theoretical and
experimental research that has not been adequately explored
up to now. The aim of this article is to focus attention on the
importance of this object and stress some problems arising
from its study.
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