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Millimeter-wave response
in themagnetoconductivity of highly perfect
two-dimensional electron systems

S I Dorozhkin

1. State of the art
This talk reviews the state of the art research on photo-
response in the magnetoconductivity of 2D electron systems,
with emphasis on the experimental aspects of the phenom-
enon and including the latest results from the cond-mat
preprint archive; and presents a photoresponse model
involving a radiation-induced nonequilibrium in the electron
distribution function. It also puts forward the hypothesis that
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near-zeromagnetoresistance statesmight be due to an energy-
inverted electron distribution rapidly relaxing within a single
broadened Landau level.

The great interest in the magnetoresistivity behavior of
highly perfect two-dimensional electron systems in a high-
frequency electromagnetic field has been driven by the
discovery in 2002 [1] of radiation-stimulated giant magne-
toresistance oscillations (GMOs) with close-to-zero resis-
tance in the fundamental minima, as exemplified in Fig. 1.
The position of oscillations in a magnetic field approximately
corresponds to that of cyclotron resonance harmonics,
o � no�n�c . Here, o is the radiation frequency, n � 1; 2; 3; . . .,
and o�n�c � eH �n�=m�c is the cyclotron frequency in the field
H �n� (m� is the electron effective mass). Thus, the giant
magnetoresistance oscillations turn out to be periodic in an
inverse magnetic field. Superficially, what distinguishes
GMOs from Shubnikov ± de Haas oscillations and the

quantum Hall effect is the absence of, respectively, oscilla-
tions and quantized plateaus in the Hall resistance which
remains virtually unchanged by radiation (Fig. 2a). The
observation of close-to-zero magnetoresistance states led the
authors of Ref. [1] to suggest that superconductivity might
have occurred under the conditions of their experiment. Giant
oscillations and states with close-to-zero magnetoresistance
were almost simultaneously observed in Ref. [2] and shortly
afterwards reproduced elsewhere [3]. It should be noted that
GMO-like oscillations of photocurrent were predicted many
years ago for 2D systems in a quantized magnetic field in a
regime nonlinear in the electric field [4], and that this
prediction was later extended to magnetoresistance [5] (for
more details see the talk byV IRyzhi|̄ in this issue)Ð so that it
was generally clear immediately after the publication of
Ref. [1] that there was no need to invoke the idea of
superconductivity to account for these experiments. Soon
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thereafter, the diagonal rxx and Hall rxy components of the
magnetoresistivity tensor and the dissipative component sxx
of the magnetoconductivity tensor were simultaneously
measured [6] and shown to be related between themselves by
the usual relation sxx � rxx=�r2xx � r2xy�, with the implication
that at the GMO minima, under the experimental conditions
used (rxx 5 rxy), the magnetoresistivity rxx and magneto-
conductivity sxx simultaneously go to zero. As a result, when
the Corbino samples used in Ref. [6] (the term referring to a
ring made of a 2D system and having Ohmic contacts on its
inner and outer sides) were in a state with near-zero rxx, their
resistance, on the contrary, sharply increased (because the
resistance of a Corbino sample is proportional to sÿ1xx ) Ð
something which is clearly inconsistent with the idea of
superconductivity.

The proposed theoretical explanations of GMOs [7 ± 9]
relied mainly on the idea [4] of indirect optical transitions
involving a change in electron momentum due to scattering
by an impurity. Simultaneously, it was suggested by the
present author [3] that the non-equilibrium occupation of
disorder-broadened Landau levels might be an alternative
explanation of GMOs. The authors of Refs [10, 11] developed
this idea further by including the energy relaxation effect Ð
which left the results qualitatively unchanged, though (in
Ref. [12], the role of non-equilibrium electron distribution
was briefly discussed by some of these authors). However,
while all these approaches were adequate for describing the
positions of GMO features (such as theminima, maxima, and
zeroes of photoresponse), they failed to account for the near-
zero values of magnetoresistance at the minima. Instead, all
the above theories yielded negative values of magnetoresis-
tance for the fundamental GMO minima at intense enough
radiation (see Fig. 2b, for example). Today, this contradiction
is usually resolved in the following way: as is well known [13],
uniform states with negative resistance are unstable, so a
uniform system is likely to break into domains in such a
way that, given that the I ±V curve of the uniform state is
an S-type, the domain-structured sample will have a near-zero
resistance (see, the review paper [14], for example). For 2D
electron systems irradiated under conditions when the Hall
conductivity greatly exceeds the dissipative one, the forma-
tion of domain structure was first investigated in Ref. [15].
What the above discussion implies then is that one of the key
problems facing experimenters today is testing the domain
formation idea. The present author's own search for such
domain structures has met with no success so far, no are there
reports on such structures from other research groups who
presumablymust be working along similar lines. At the end of
this paper, a scenario other than the domain structure will be
suggested for the appearance of states with near-zero
magnetoresistance.

GMOs located near cyclotron resonance harmonics nicely
fit the picture of a one-particle energy spectrum in a magnetic
field but are a completely unexpected feature for collective
modes in limited-size samples (i.e., for bulk and boundary
magnetoplasmons) because, given the typical parameters of
the samples used in GMO studies, microwave radiation is
expected (and observed) to be absorbed at frequencies which
are quite far from the cyclotron resonance and its harmonics
(see, for example, Ref. [16] and references therein). To the
author's knowledge, there is currently no answer to the
question of why effects related to the excitation of collective
modes are dominated in magnetotransport measurements by
giant magnetoresistance oscillations.

It has recently been established [17, 18] that the giant
suppression of magnetoresistivity due to irradiation can be
observed not only at GMO minima near the cyclotron
resonance harmonics but (for relatively low-frequency radia-
tion) also in a wide magnetic field range for which o5oc

(Fig. 3). In this region no single-photon transitions occur
between the Landau levels. As before, no change in the Hall
resistance accompanies the giant suppression of magnetore-
sistance (Fig. 3a). The essential point is that irradiation can
reduce magnetoresistance by more than one order of
magnitude, to well below its values at the minima of `dark'
Shubnikov ± de Haas oscillations. It turned out that the
calculation of Ref. [17] using a non-equilibrium distribution
function was adequate for this effect as well (Figs 3b, d).
Another experimental finding of Ref. [17] was that under
certain circumstances, radiation of low intensity has no effect
on the Shubnikov ± de Haas amplitudes. This effect arises in a
threshold manner with respect to the irradiation frequency
near the second subharmonic o0 � oc=2 of the cyclotron
resonance at the threshold frequency o0. This result can be
explained quantitatively [17] as a change from radiation-
induced transitions between Landau levels to those within
one broadened Landau level. Below the threshold frequency
and at a relatively high power of radiation, an additional
minimum of GMOs is observed near the second subharmonic
[1 ± 3] Ð which, it seems, can naturally be associated with
two-photon processes.

2. GMO characteristics
To understand the GMO effect and to be able to use it to
measure radiation frequencies, a crucial point is to know
exactly where GMO features (minima, maxima, etc.) are
located. Most theories predict the existence of only one type
of features with well-defined positions Ð namely, where
photoresponse is absent (i.e., magnetoresistance is
unchanged by irradiation). Theoretically, these features are
shown to correspond to the cyclotron resonance and its
harmonics. The best experimental work on the subject seems
to have been performed in Ref. [19], where the magnetic fields
corresponding to GMO features were measured to high
precision. These data confirmed that the most characteristic
feature of the oscillations Ð and one practically independent
of radiation power Ð is a point near the position of the
cyclotron resonance at which radiation has no influence on
magnetoresistance (see Figs 1 and 2). According to Ref. [19],
this point is shifted by about 2% toward lowermagnetic fields
from the cyclotron resonance position as calculated from the
known electron effective mass m� � 0:067m0 for GaAs. The
amount by which similar features shift from the positions of
the corresponding cyclotron resonance harmonics for higher-
number GMOs increases with increasing oscillation number.
The disagreement with theoretical predictions is most likely
due to different Landau levels being nonequivalent in terms of
conductivity (because, for example, the width of the level
depends on its number [20]). The positions inmagnetic field of
GMO minima and maxima are shifted respectively towards
weaker and stronger fields relative to the position of the
cyclotron resonance and its harmonics o � noc. Increasing
the radiation power leads to the maxima and minima being
shifted toward the positions of the harmonics (see, for
example, Ref. [3]).

Two points of interest here are the shape of the I ±V curve
and the absolute values of magnetoresistance at GMO
minima. As is well established (see, for example, Ref. [1]),
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magnetoresistance at minima falls off rapidly (approximately
as an activation law) with lowering temperature; however, it is
practically universally reported that at low temperatures
magnetoresistance goes to a finite value. Low temperature
observations showed radiation-induced reductions of up to
two orders of magnitude in magnetoresistance. Resistance at
minima turns out to be Ohmic over a wide range ofmeasuring
currents (approximately to 80 mA in Ref. [21]). One further
point tomention is the negative voltage observed on potential
contacts at GMO minima [22]. This effect is not reproduced
when the magnetic field is reversed in sign and is presumably
due to radiation being detected on the contacts, where
boundary magnetoplasmons may be involved [23]. A sig-
nificant asymmetry with respect to the sign of the magnetic
field is observed, in particular, also in Fig. 1 at jH j > 0:2 T.

3. Conductivity in quantizing magnetic fields
and the role of disorder in GMOs
To observe GMOs, it is essential that the 2D electrons have a
highmobilityÐ ofmore than 3� 106 cm2 Vÿ1 sÿ1, according

to all available data. The observation of GMOs was in fact a
follow-up of the studies of Refs [24, 25], which had used less
perfect samples and therefore showed smaller-amplitude
oscillations and no states with near-zero magnetoresistance.
Still further back, experiments [26] on samples with amobility
of 1:2� 106 cm2 Vÿ1 sÿ1 had demonstrated only solitary
magnetoresistance features, which were located near the
anticipated positions of magnetoplasmon resonances Ð
positions which depended on the density of 2D electrons
and the size of the sample and differed substantially from the
position of the cyclotron resonance or from that of any of its
harmonics. So the described evolution of photoresponse with
changing electronmobility seems to suggest that well resolved
Landau levels are a condition for GMOs to be observed.

On the other hand, the observation of giant oscillations
clearly requires that disorder to be present in the system of 2D
electrons. There are two fundamental reasons for this. First,
the fact that GMOs are close to cyclotron resonance
harmonics indicates that radiation-stimulated transitions
between Landau levels whose numbers differ by more than
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one are important. The selection rules which forbid such
transitions in ideal systems cease to apply if a system is
disordered on a spatial scale less than the cyclotron radius.
It seems important to discuss the nature of random potential
in the samples that were studied. The above mobility
requirements for the observation of GMOs can be fulfilled
only in selectively doped GaAs/AlGaAs heterostructures, in
which a donor impurity supplying electrons to the 2D system
is separated from the 2D layer by a nominally undoped
barrier spacer typically about 800 A

�
thick. The widely held

view is that the dominant scattering potential in such
structures arises from fluctuations in the concentration of
charged donors behind the spacer Ð with the result that the
minimum spatial dimension, lmin, of potential fluctuations in
the plane of the 2D electron system turns out to be
approximately equal to the spacer thickness ds. The upper
limit for the spatial scale of the fluctuations is on the order of
the sample size. Because the cyclotron radius rc decreases as
the magnetic field increases, one and the same random
potential has a short-period component (rc > lmin) in weak
magnetic fields, which vanishes when the cyclotron radius
becomes less than the spacer thickness. In this connection, it is
useful to estimate the cyclotron radius rc �

����������
2p ns
p ��hc=eH�

corresponding to the Landau level closest to the Fermi level.
Under typical experimental conditions (ns � 3� 1011 cmÿ2),
the radius rc � ds � 800 A

�
in a field of about 1 T. Hence, in

fields weaker than that a short-period component of the
fluctuation potential is present in a sample, which lifts the
selection rules and allows any photon-absorbing transitions
that conserve energy. In stronger fields, the observation of
GMOs becomes impossible, and only cyclotron resonance
can be seen.

Second, disorder is a crucial factor in determining the
dissipative conduction of 2D electrons in a magnetic field
where, as is well known, there is no current along the electric
field if the electrons are not scattered. In this case, the classical
motion of a 2D electron consists of two components, a
cyclotron rotation in the plane of the electron system with
(cyclotron) frequency oc � eHz=m

�c (where Hz is the mag-
netic field component perpendicular to the 2D electron
system); and a straight line motion with velocity cE=Hz in
the direction perpendicular to the electric field E lying in the
plane of the system. The resulting cycloid motion of the
electron corresponds to the zero values of the diagonal
(dissipative) components of the magnetoconductivity and
magnetoresistance tensors. A current along the electric field
appears only due to electron scattering and the associated
shift of the line of drift in this direction. At low temperatures
the predominant electron scattering is usually elastic scatter-
ing by impurities. The line of drift can shift either along or
opposite to the electric field direction as a result of
scattering, respectively contributing negatively or positively
to the dissipative conductance. In a classical treatment, the
dissipative conduction is positive because electrons are
predominantly scattered opposite to the electric field, due
to the fact that during its cycloid motion an electron moves
along the drift most of the time. Quantum-mechanically, the
preferential shift of the line of drift (i.e., of the center of the
Landau orbital) is determined by the electron energy
distribution function. As a result, the dissipative conductiv-
ity has the form

sxx �
�
sxx�E�

�
ÿ df

dE

�
dE

(for equilibrium distribution functions, a similar formula was
first obtained in Ref. [27]; for non-equilibrium functions, the
reader may be referred to Refs [28, 29]). Clearly, in the
equilibrium case we always have �ÿ df= dE� > 0 and sxx > 0.
The presence of inverted population (ÿ df= dE < 0) regions in
the momentum-symmetric part of the non-equilibrium
function leads to a negative contribution to the dissipative
conductivity. In 2D electron systems the energy spectrum
consists of broadened Landau levels. As Fig. 2c demon-
strates, for this spectrum regions of inverted population may
be expected to appear when the photon energy either some-
what exceeds a multiple of the cyclotron energy or is less than
the Landau level width (in the latter case the appearance of
such regions depends on the position of the Fermi level within
the broadened Landau level). Whether an inverted distribu-
tion will appear undoubtedly depends on how fast the
electron system comes to equilibrium and how fast it loses
its energy Ð the processes which, for systems with a Landau
spectrum (and especially for disordered ones), are so complex
that actually no analyses of them have been made.

4. GMO model using a non-equilibrium distribution
function
In this Section we demonstrate how GMOs and the giant
suppression of magnetoresistance at o < oc can potentially
be described in terms of a non-equilibrium distribution
function. For this purpose, we will look in more detail at the
results of Ref. [3], where the non-equilibrium distribution
function was calculated for a model in which stimulated and
spontaneous transitions were only allowed to occur between
levels differing in energy by �ho. For the case of the giant
suppression of magnetoresistance, we will also present the
numerical results of Ref. [17], which were obtained using the
distribution function equation (2) of Ref. [10] Ð an equation
which uses the relaxation time approximation to describe
relaxation in energy. In both cases, the conductivity formulas
used were those obtained in the framework of the self-
consistent Born approximation for the case of non-over-
lapping Landau levels. Whether this approximation and the
formulas we borrowed fromRefs [20, 10] are applicable to the
experiment under discussion will be left `off-screen' in our
discussion, and instead our purpose will be to see how a non-
equilibrium electron energy distribution affects the conduc-
tivity.

In Ref. [3] the density of states D�E� and the conductivity
tensor components were given by the following formulas [20]:

D�E��
X1
n�0

2N0

pGn

�
1ÿ
�
Eÿ En
Gn

�2�1=2
�
X1
n�0

2N0

pGn
Z 1=2

n �E�; �1�

sxx � e2

p2�h

X1
n�0

�
Gxx
n

Gn

�2 �En�Gn

EnÿGn

�
ÿ df

dE

�
Zn�E� dE ; �2�

sxy � ÿ nsec

H
� e2

p2�h

X1
n�0

�G xy
n �4

G 3
n �hoc

�En�Gn

EnÿGn

�
ÿ df

dE

�
Z 3=2

n �E� dE:

�3�

Here, En � �hoc�n� 1=2� is the energy of the nth spin-
degenerate Landau level of width Gn, and the total number
of states at this level is N0 � 2eH=hc (per unit area). The
contributions from this level to sxx and sxy are characterized
by the parameters G xx

n and G xy
n , respectively. The only

modification we made to Eqns (1) Ð (3) was to use the non-
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equilibrium distribution function f �E� which is calculated for
the case of zero temperature under the approximation
mentioned above (spontaneous and induced transitions
causing an energy change by �ho). Under these assumptions,
and using the stationarity condition, it is easy to write the
recurrence relation for the distribution function,

f �E� � lf �Eÿ �ho�
l� 1ÿ f �Eÿ �ho� : �4�

Here, the parameter l is proportional to the radiation power
(the number of photons). The above relation is valid for
D�E� 6� 0 andD�Eÿ �ho� 6� 0. We assume that f �E� � f0�E� for
D�Eÿ �ho� � 0 and E > EF; and also for D�E� �ho� � 0 and
E < EF (where f0�E� is the Fermi distribution function at zero
temperature). Within the approximation used, the condition
of electron number conservation has the formX1

n�ÿ1

�
f �E� n �ho� ÿ f0�E� n �ho��D�E� n �ho� � 0 ; �5�

which is valid for any value of energy E. The solutions of
Eqns (4) and (5), which were obtained numerically, determine
the non-equilibrium distribution function. An example of
such a function is shown in Fig. 2d for parameter values
corresponding to Fig. 2b. Figure 2b shows magnetoresistivity
tensor components calculated for a long-period fluctuation
potential. These results correctly describe such things as the
position of the GMOs and their asymmetric shape; the
absence of the effect in the Hall resistivity; the weak magnetic
field dependence of the GMO amplitude; and the magnetic
field regions where radiation has little effect on the Shubni-
kov ± de Haas amplitudes. As already noted, where experi-
ment and theory disagree the most is in the values of
magnetoresistance at the minima of the giant oscillations
(which are negative in theory and close to zero in experiment).

The results of similar calculations for the case of short-
period potential fluctuations are shown in Fig. 3, which
represents the region of relatively strong magnetic fields
(o < oc). In Fig. 3b, this region reveals a significant
suppression of the Shubnikov ± de Haas oscillation maxima
Ð an effect which leads to a considerable reduction in the
average values of magnetoresistance and therefore provides a
qualitative explanation of the giant suppression of magne-
toresistance as demonstrated by the experimental results in
Fig. 3a. Predictions and experiment are brought much closer
together (see Fig. 3d) by using the distribution function
equation (2) of Ref. [10], which is applicable at non-zero
temperatures and includes relaxation processes. As can be
seen from the distribution function of Fig. 3c, in the region of
the giant suppression ofmagnetoresistance radiation-induced
transitions occur within the broadened Landau levels.

In conclusion, we would like to discuss a scenario in which
the states with close-to-zero magnetoresistance arise by a
mechanism which does not involve (as of yet undiscovered)
domains. This scenario consists in the distribution function
rapidly levelling off within one individual Landau level in
situations in which, in the absence of relaxation, a distribu-
tion function with inverted-population regions must appear.
An example of such a hypothetical distribution function is
shown in Figs 2d and 3c. Clearly, for such a distribution
function the magnetoconductivity of a uniform state would
be zero, in correspondence with experimental observations.
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