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Abstract. This paper analyzes localized invariable-form struc-
tures of electromagnetic radiation in vacuum and soliton-like
light structures traveling superluminally in a nonlinear medium.
Both types of structures are concluded to be unstable to small
perturbations.

1. Introduction

In connection with the approach of the centenary of the
publication of Einstein’s first paper on the theory of relativity
[1], it is well to bear in mind that there are several subjects in
this theory which are presumably not quite readily perceived
and from time to time give rise to bursts of scientific
publications. Among these subjects is the question of motion
with superluminal velocities (more precisely, with velocities
exceeding the speed of light in vacuum c).

As repeatedly noted in the literature, the possibility of
suchlike superluminal motion does not contradict the theory
of relativity and these motions exist in nature and have been
observed experimentally. ‘Prohibited’ are those motions
which involve signal (information) transfer with a super-
luminal velocity, the prohibition being related to the viola-
tion of the causality principle [2]. Leaving aside hypothetical
particles — ‘tachyons’, whose velocity always exceeds the
speed of light ¢[2] and the acceptance of the existence of which
would indeed generate problems with causality — the
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examples, which have been known for decades, reduce to the
following (they are analyzed in review [3]). First, there is a
light pulse made up of plane waves with the same wave vector
direction which is obliquely incident on a plane screen from a
vacuum [4]. If the angle of incidence (the angle between the
wave vector and the normal to the screen) is denoted by , the
boundary of the illuminated screen area will travel along the
screen with a velocity v = ¢/siny > ¢. Kindred examples are
different versions of a spotlight — the spot produced by a
searchlight (a pulsar in astrophysics) rotating with a constant
angular velocity Q on a screen located far enough from the
searchlight [3, 5]. Second, there is the case of media with
frequency dispersion and appreciable absorption or amplifi-
cation, where both the phase velocity (at which a surface of
constant phase travels in a monochromatic wave) and the
group velocity (at which the part of a pulse which carries the
bulk of energy travels) may exceed c. In this case, it is
pertinent to note that the phase velocity does not correspond
to the motion of any physical carrier and the group velocity is
an approximate notion, which pertains to pulses whose
spectral width is small in comparison with the carrier
frequency and whose shape is conserved fairly well [6].

The closer the carrier frequency to the absorption or
amplification resonances of the medium, the greater the
violation of this approximation, i.e., the approximation is
violated precisely in those cases where the group velocity
exceeds c. Velocities of 6—9 ¢ were experimentally observed
for a laser pulse in an amplifying medium [7]. Here, it is
actually a question of pulse shape variation: the leading edge
of the pulse travels through the medium with an atomic level
population inversion and decreases it to experience the
strongest amplification, so that the leading edge becomes
progressively steeper [8, 9]. Close to this group is the following
gedanken experiment. Along a straight line we arrange
participants with their own lamps and synchronized watches
and agree upon the time of sequential actuation of each lamp
such that the interval is shorter than the time the light takes to
propagate the distance between the lamps. Then, a super-
luminal propagation of radiation and energy will be observed.
But in none of these examples does the superluminal motion
signify a signal transfer with a superluminal velocity. Indeed,
in the former group of examples, the spotlight does not
transfer information between different points of the screen.
In the latter group, the superluminal motion of the peak of the
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pulse is possible only for a medium ‘prepared by the prepulse’,
i.e., by the smooth leading edge of the pulse preceding the
peak. It should be remembered that a sharp pulse edge, in
front of which the field vanishes or possesses a discontinuity,
travels with the speed of light in vacuum ¢ [10]. These are
precisely the pulses associated with the limiting velocity of
information transfer (in the presence of noise, the description
of signal extraction against the background noise would
necessitate detailing the detector properties, but these ques-
tions are not considered here).

Fairly recently, a series of papers about localized
(retaining limited dimensions and invariable in form) electro-
magnetic radiation structures in homogeneous linear media
made its appearance in the literature; in several publications
these polychromatic structures are referred to as X waves (see,
for instance, Refs [11, 12] and references therein). In a sense,
these works are a continuation of the subject of ‘nondiver-
gent’ (Bessel) beams (see Ref. [13] and its detailed criticism
expressed in Ref. [14]); Ref. [11] also bears references to the
related acoustic X waves not considered below. While the
localization of light in an inhomogeneous linear medium is
universally known (for instance, in an optical fiber), the
necessary condition for the spatial (non-one-dimensional)
light localization in a homogeneous medium is commonly
believed to be the presence of optical nonlinearity (soliton-
like structures). That is why the question of whether it is
possible to suppress diffraction and localize light in a linear
medium deserves, in our view, additional discussion.

A still more extraordinary property of the aforementioned
localized structures in vacuum is their superluminal velocity,
i.e., the fact that they travel as a whole with a constant
velocity V' exceeding the speed of light in vacuum c¢. We
emphasize that, owing to the invariance of the structure form,
we need not introduce the concept of group velocity: the
superluminal transfer of the fixed distributions of electric and
magnetic field intensities rigorously corresponds to the
superluminal transfer of all field characteristics as well,
including energy characteristics. However, as explained in
Section 3, this does not necessarily imply the superluminal
velocity of information transfer. For the same reason, such
behavior is qualitatively different from that discussed above
for amplifying media, where the superluminal group velocity
or the superluminal velocity of motion of the peak of pulse
intensity is associated with a significant change of the pulse
shape during propagation. Also related to this subject are the
conclusions of Ref. [15] about the possibility of the existence
of stable superluminal solitons in nonequilibrium nonlinear
media. That is why the question of whether the existence of
such structures corresponds to the principle of limiting
velocity of information transfer should be given more careful
consideration.

The above questions are the subject of our paper. In the
new wave of publications on superluminal velocities, so basic
a matter as the stability of a localized structure receives, in our
opinion, inadequate consideration. For ‘conventional’ soli-
tons (conservative, i.e., in media with negligible dissipation
[16, 17]), a small external perturbation (with a sufficiently low
energy) leads to a perturbation of the soliton that is also small
even for arbitrarily long propagation distances. Even more
stable are dissipative solitons (autosolitons) realized in media
with the gain and loss of energy: in this case, a small
perturbation of soliton shape decays in the course of
propagation [17—19]. The same requirement of at least a
‘weak’ stability (as in the case of conventional solitons) is

naturally also imposed upon superluminal localized optical
structures in vacuum and in a continuous medium. However,
we will arrive at the conclusion that all these structures are
unstable and therefore possess a limited lifetime.

2. Superluminal localized radiation structures
in vacuum

We begin with the discussion of the very possibility of
localized electromagnetic radiation structures in vacuum in
the framework of the classical Maxwell equations. To take
into account the vector nature of electromagnetic radiation, it
is conveniently characterized by the vector potential A. The
electric E and magnetic H field intensities are expressed in
terms of the vector potential by the relations (the scalar
potential is taken to be equal to zero)

E:—%%—?, H =rotA. (1)

In the one-dimensional geometry, when the fields are
plane waves and the potential depends only on one spatial
coordinate z and on the time ¢, the Maxwell equations reduce
to the one-dimensional wave equation. Its general solution
given by D’Alembert corresponds to the superposition of two
pulses of arbitrary shape invariable during propagation,
which travel in opposite directions with a velocity c:

A=A (z—ct) +A_(z+c1). (2)

In the one-dimensional vacuum, localized light structures
can therefore exist, provided that they move with a velocity
¢. This corresponds to the absence of dispersion (the
frequency dependence of optical properties) of a vacuum.
Note that we are treating the vacuum in a purely classical
way, in the framework of the Maxwell equations. Although
the physical — electron-positron — vacuum possesses
nonlinearity as well as spatial and frequency dispersion
owing to the quantum-electrodynamic effects of vacuum
polarization, these vacuum properties can manifest them-
selves in modern experiments on unique laser facilities
affording ultrahigh power densities [20 —22].

Let us now make certain that the Maxwell equations do
allow the existence of non-spreading (‘non-diffracting’)
radiation structures in three-dimensional space, which travel
in vacuum with a constant superluminal velocity V" > ¢ (see
Refs [11, 12]). At each point in time, the field can be
represented as the superposition (the Fourier integral) of
uniform plane waves with (real) wave vectors k. Then, for
any point in time the components of the vector potential
corresponding to an individual plane (monochromatic) wave
are of the form A(k) exp (ikr — iw?) in the complex represen-
tation. In this case, from the Maxwell equations there follow
the transverse-type condition A(k)k = 0 and the dispersion
relation k2 = w?/c? between the frequency o and the wave
vector k. The general solution of the wave equation for the
vector potential is defined by the spectral decomposition of
the form

A(r, 1) = j[s(k) exp (ikr — iwr) dk .
Our interest is with localized field structures (with a finite

energy) traveling along the z-axis with an invariable velocity
V' and possessing invariable form (the broader class of
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‘weakly varying’ waves was considered in Refs [23, 24] and
references therein). For them, the vector potential has the
form

A(X,_}’7Z,l) :A(xvyazf VZ) (3)

We introduce the longitudinal z and transverse r; = (x, )
coordinates and the corresponding wave vector components
ky and k; = (kx,k},). Applying conditions (3) to the partial
plane waves with amplitudes of the form

A(K) exp (ik.r.) exp {iku <z - kﬂu z>] ,

we obtain the relation

. )

Then, the longitudinal and transverse components of the
wave vectors obey the following dispersion relation:

k= (5—22—1)/{1. (5)

From relation (5) it follows that stationary structures may
only be superluminal: ¥ > ¢2. In cylindrical coordinates
(r, @, z) the wave superpositions now take on the form

e e (G

x recos (o — @)+ (z — Vt)] } dk) do. (6)

Integration with respect to k| is performed between infinite
limits and with respect to the angle « over the interval of
length 27. The field distributions defined by expression (6) are
exact solutions to the Maxwell equations for an arbitrary
weight function A (k, o) (subject to the above transverse-type
condition). Dependent on the form of this function is the
distribution localization property related to the finiteness of
the energy, for which purpose it would suffice to impose the
normalization condition

J.|A(k”,a)|2dk“ do < 00 (7)

Different examples of suchlike distributions are given in
Ref. [11]. Upon expanding the potential into the Fourier
series

o0

> Aulky)exp (ima)

m=—-00

Ak ) =

we can write expression (6) in the form

00
A(r,p,z— V1) = -2n Z i" exp (ime)

nm=—-00

“ [ All)) Tl r ) exp [iky (z — V1)) dky (8)

where J, is the Bessel function.

Therefore, exact solutions of the Maxwell equations
describe stationary blobs of electromagnetic fields possessing
finite or normalizable energy and propagating with a constant
superluminal velocity. One can easily see from expression (6)
that the magnitude of velocity affects only the scale of
coordinates and time. If the new variables

2
p=r <K> -1, ¢=z-I11t 9)

c

are introduced, the velocity V' will not appear in the
expressions for the field distributions whatsoever:

Alp,9,¢) = J[&(ku, o) exp {ik [p cos (o — @) +¢| } dk dor.
(10)

The absence of diffraction spreading can be explained as
follows. The diffraction of an ordinary (for instance,
Gaussian) beam of monochromatic radiation takes place
owing to the difference (for a fixed frequency of the light) of
the longitudinal components of the wave vector or the phase
velocities of individual plane waves into which the beam in the
initial section is decomposed. As a consequence, misphasing
of these plane waves with path length z occurs, which is
accompanied by diffraction beam spreading. When the field is
made up of plane waves with different frequencies w whose
traveling direction ensures the fulfillment of relation (4), the
longitudinal components of the phase velocities for all such
waves coincide, so that they remain phased-in during the
subsequent propagation as well. It is valid to say that
producing a localized structure requires illuminating a
sufficiently large spatial volume (the characteristic dimen-
sion is L) with broadband radiation with a specially selected
relation between the partial frequencies and the wave vectors
in such a way that the interference of these waves is
constructive in a local domain and destructive in the
remaining one. The domain of constructive interference will
travel with the velocity ¥ through the illuminated volume.

One can see from this reasoning that such superluminal
structures are idealized objects which require for their
realization the ‘illumination” of a vacuum throughout
infinite space. When only a finite domain with dimensions L
is ‘illuminated’, as is inevitably the case in a real experiment,
the boundary between the illuminated and non-illuminated
domains will travel with the speed of light in vacuum ¢, so that
the lifetime of the localized structure is limited by a value
~ L/(V — ¢) (recall that V' > ¢). The structure persists as long
as its center is far from the boundaries of the illuminated
region (which travel with a velocity ¢ lower than the velocity
of travel of the main part of the structure V).

3. On the stability of superluminal structures

A more general realizability criterion for the structures of the
type under consideration consists of the requirement that they
should be immune to small perturbations. It is easy to see that
suchlike structures are unstable. Indeed, one version of a
small perturbation of an ideal (extending throughout the
entire space) structure is truncation of the edges of this
structure at an arbitrarily low intensity level, which corre-
sponds to experimental realization. In this case, the perturba-
tion energy will also be arbitrarily low. However, the
truncation front will, in accordance with the aforesaid,
propagate with the speed of light in vacuum ¢, with the result
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that the structure lifetime will once again be limited to the
quantity ~ L/(V — ¢), where L is the characteristic dimension
of the ‘truncated’ structure. The lifetime increases when
V' — ¢, but in this case the structure dimensions increase as
well.

Similar superluminal localized structures of electromag-
netic radiation are also possible in continuous media. Here,
an additional limitation is the requirement that the absorp-
tion in the medium can be neglected (the frequency interval
involved should belong to the medium transparency range).
Furthermore, the difference between linear media and the
vacuum will lie with the form of dispersion relation. By
repeating the previous reasoning about truncation of the
distant edges of the structure, it is easy to verify that all
superluminal structures — both in linear and nonlinear
media — are unstable and possess a finite lifetime, its upper
limit coinciding with the estimate made in the vacuum case. It
is also pertinent to note that one of the most general physical
equations — the equation of wave front motion [10], in which
the speed of light in vacuum naturally appears as the highest
possible velocity of propagation of any signals — serves as an
important verification criterion for material equations of
nonlinear electrodynamics and optics, which is especially
topical in the case of extremely short pulses. Indeed, the
conventional material relation for the refractive index n of a
medium with the Kerr nonlinearity is of the form
n = ny + npI, where ng is the linear refractive index, I is the
radiation intensity, and n, is the nonlinearity coefficient,
which may be either positive or negative for various media.
Then, as is easily seen, the velocity of the wave front forn, < 0
could exceed the speed of light in vacuum. This means that the
material relation in use has limited applicability and the
dispersion (finite response time) of the nonlinear refractive
index should be included into consideration [25].

A significant difference of the above superluminal
localized structures from the ordinary ‘subluminal’ soliton-
like radiation packets consists of precisely the fact that the
latter are stable to small perturbations. Indeed, from the
stability of, for instance, dissipative (in a medium with
nonlinear amplification and absorption) subluminal solitons
to truncation of their distant edges there follows the
completion (of formation) of these edges during propaga-
tion, which is impossible for superluminal structures. It is easy
to verify that superluminal soliton stability would imply the
possibility of transferring information with a superluminal
velocity, which is ruled out by the general principles of the
theory of relativity. It is noteworthy that Sazonov in his
review paper [15] expressed the opposite viewpoint that
superluminal solitons may be stable in nonequilibrium
media. In our view, this is due to an incomplete stability
analysis and the neglect of the most dangerous perturbations
in that review. Soliton stability is also incompletely treated in
a recent paper [26] (in the analysis of transverse effects by the
averaged-Lagrangian technique, small-scale perturbations,
i.e., the effects like small-scale self-focusing [27], are not
considered).

4. Conclusion

Thus, although localized (invariable in form) superluminal
structures (X waves) exist as exact solutions of the Maxwell
equations in vacuum, they are idealized objects, whose
realization necessitates the ‘illumination’ of the entire infinite
space and which are not stable to small perturbations. From a

broader viewpoint, any superluminal radiation structures in
linear and nonlinear media alike are unstable. The real
(stable) localization of light in a homogeneous medium is
possible only in the nonlinear regime for subluminal-velocity
solitons. However, this does not signify that localized linear
distributions cannot be realized, for instance in a vacuum or a
diluted gas, for a limited time interval (lifetime). Such
structures are not merely a ‘freak of light and shade’. Quite
the opposite. These experiments appear to be interesting from
the general physical standpoint as well as due to the
possibility of ultrashort action of a high-intensity burst of
electromagnetic radiation on different objects. In principle,
the superluminal travel of the burst of electromagnetic
radiation in vacuum may give rise to Vavilov—Cherenkov
emission of gravitational waves. This follows from the
(linearized) Einstein gravitational equations, in which the
superluminal source is represented by the energy-momentum
electromagnetic field tensor [28]. This effect leads to energy
losses in the burst and is thereby responsible for the additional
limitation of its lifetime. However, because of the extreme
smallness of the effect its manifestation may be tangible only
for structures of cosmic (astrophysical) scale. In laboratory
conditions, the superluminal propagation velocity of a field
burst opens up fresh real possibilities, supposedly including
applications (see the discussion of Vavilov—Cherenkov
radiation in the superluminal motion of a spotlight along a
screen [3, 5]). The use of laser supercontinuum generation
sources [29, 30] shows promise for the production of
laboratory superluminal localized structures of the X-wave
type, which necessitate broadband coherent radiation.

The author is grateful to E B Aleksandrov for helpful
discussions.
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