
Abstract. Statistical descriptions of dynamical chaos and inves-
tigations of noise effects on chaotic oscillation regimes are
reviewed. Nearly hyperbolic and nonhyperbolic chaotic attrac-
tors are studied. An illustration of the technique of diagnosing
the attractor type in numerical simulations is given. Regulari-
ties in relaxation to the invariant probability distribution are
analyzed for various types of attractors. Spectral-correlative
properties of chaotic oscillations are investigated. Decay laws
for the autocorrelation functions and the shapes of the power
spectra are found, along with their relationship to the Lyapunov
exponents, diffusion of the instantaneous phase, and the inten-
sity of external noise. The mechanism of the onset of chaos and
its relationship to the characteristics of the spiral attractors are
demonstrated for inhomogeneous media that can be modeled by
the Ginzburg ±Landau equation. Numerical data are compared
with experimental results.

1. Introduction

Dynamical chaos, as a random process, requires a statistical
description. As chaotic systems are studied in laboratory
experiments or simulated numerically, some probabilistic
characteristics are normally calculated or measured, such as
the stationary probability distribution over the attractor,
correlation functions, power spectra, etc. Chaotic oscilla-

tions, which can be mathematically represented by chaotic
attractors of various types, differ in their statistical properties
and their sensibility to the influence of noise.

From the standpoint of rigorous theory, hyperbolic chaos
is frequently said to be the `ideal' chaos. Its structure is
topologically homogeneous and stable against disturbances
[1 ± 4]. However, as a rule, the strange chaotic attractors of
dynamical systems do not behave as structurally stable
hyperbolic systems. Nearly hyperbolic (quasi-hyperbolic)
attractors include unstable orbits of the separatrix-loop
type. The generation and disappearance of such orbits do
not affect the characteristics of chaos such as the phase
portrait of the attractor, the power spectrum, the Lyapunov
exponents, etc. Dynamical systems in chaotic regimes can be
characterized by an invariant measure that is independent of
the initial distribution and completely specifies the statistical
properties of the attractor. The existence of an invariant
measure has been proven theoretically for structurally stable
hyperbolic and quasi-hyperbolic systems [5 ± 10].

However, most chaotic attractors that have been studied
numerically and/or experimentally are not hyperbolic [11 ±
13]. The problem of the existence of an invariant measure on a
nonhyperbolic chaotic attractor encounters serious difficul-
ties because a stationary probability distribution independent
of the initial distribution cannot be introduced in general. The
nonhyperbolic attractor is the maximal attractor of the
dynamical system; it includes a countable set of regular and
chaotic attracting subsets [11, 12]. Therefore, one can
consider the invariant measure of a nonhyperbolic attractor
only if the influence of external noise is present [14]. As a rule,
nonhyperbolic attractors change their properties dramati-
cally under the action of noise [15 ± 18], whereas hyperbolic
and quasi-hyperbolic attractors are stable against noise
disturbances [15, 16, 19, 20],
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theory of dynamical chaos that still remains unresolved.
Among other things, the relaxation time to a stationary
distribution should be investigated. A number of fundamen-
tal questions that have not yet been clearly answered arise.
What is the actual relaxation time to a stationary distribu-
tion? What are the factors controlling this time? What
characteristics could be used to quantitatively estimate the
relaxation time for the stationary measure? How do the noise
statistics and noise intensity affect the law of relaxation to the
stationary distribution? Is the relaxation process related to
the dynamics of the system? These questions were partly
answered in Refs [21, 22] by means of computer simulations.

The process of relaxation to a stationary distribution can
be described by Fokker ± Planck-type or Frobenius ± Perron-
type evolutionary equations. The eigenvalues and eigenfunc-
tions of the evolution operator specify the relaxation process
and the characteristics of mixing, which are linked to the
relaxation to the invariant probability measure. However, if
the dimension of the dynamical system is high �N5 3�, the
Fokker ± Planck and Frobenius ± Perron equations are vir-
tually unsolvable, even in a numerical form. For this reason,
the studies described in Refs [21, 22] used the technique of
stochastic differential equations.

By definition, chaotic dynamics implies mixing and,
therefore, a positive Kolmogorov entropy. As a result of
mixing, autocorrelation functions decrease to zero (correla-
tion splitting). States of the system separated by a sufficiently
long time interval become statistically independent [6, 8, 23 ±
25]. It is important to note that any system with mixing is
ergodic. The temporal splitting of correlations in chaotic
dynamical systems is related to the exponential instability of
chaotic trajectories and to the system's property of generating
a positive Kolmogorov entropy [6, 8, 23 ± 27]. Although the
correlation properties of chaotic processes are very impor-
tant, they have not yet been adequately explored. It is
commonly assumed that the autocorrelation functions of
chaotic systems decay exponentially at a rate determined by
the Kolmogorov entropy [23]. It is then assumed that the
Kolmogorov entropy HK is bounded from above by the sum
of positive Lyapunov exponents [8, 27, 28]. Regrettably, this
estimate proves to be wrong in the general case of hyperbolic
systems.

It has been proven for certain classes of discrete mappings
with mixing (expanding mappings with a continuous measure
and the Anosov diffeomorphism) that the time decrease in the
correlations is bounded from above by an exponential
function [9, 29 ± 31]. Various estimates have been obtained
for the rate of this exponential decay, which are not always
related to the Lyapunov exponents [21, 32 ± 34]. As regards
systems with continuous time, no theoretical estimates for the
rate of correlation splitting are available as yet [35].

Experimental studies of some particular chaotic systems
testify to a complex behavior of the correlation functions,
which is controlled not only by the positive Lyapunov
exponents but also by the properties of the chaotic dynamics
of the system [21, 32, 34, 36]. It is important to reveal specific
parameters of the chaotic dynamics that are responsible for
the decay rate of the autocorrelations and for the spectral-line
width of the fundamental frequency of the chaotic attractor.
Our aim here is to survey our results [21, 22, 37 ± 39] obtained
recently in studying classical systems with nonhyperbolic and
quasi-hyperbolic attractors [40 ± 43]. These results include a
technique for diagnosing nonhyperbolic chaos, noise effects
on nonhyperbolic attractors, some probabilistic aspects of

chaotic dynamics (such as the features of the relaxation to the
stationary probability distribution and themixing rate), and a
spectral-correlative analysis of various types of chaotic
oscillation regimes. Particular attention is given in our review
to the influence of external noise on the statistical properties
of chaos.

2. Diagnosis of hyperbolicity in chaotic systems

Strange attractors in finite-dimensional systems can be
divided into three basic classes: structurally stable (robust)
hyperbolic, almost hyperbolic (quasi-hyperbolic), and non-
hyperbolic [11 ± 13]. The property of robust hyperbolicity of a
chaotic attractor implies that all its trajectories are of the
same saddle type, and their stable and unstable manifolds are
everywhere transverse, i.e., the structure of the hyperbolic
attractor is homogeneous at any point of the attractor.
Furthermore, small perturbations of the parameters of the
system preserve these properties. But structurally stable
hyperbolic attractors are rather typical of idealized objects
such as the Smale ±Williams solenoid [44] or the Plykin
attractor [45]. The existence of a robust hyperbolic attractor
has not been proven for dynamical systems specified by
differential equations or discrete mappings. Nevertheless,
several examples of almost hyperbolic attractors are known
for such systems. These are the Lorenz attractor [46] and the
Shimizu ±Morioka attractor [47] in flow systems and the Lozi
attractor [48] and the Belykh attractor [49] in discrete
mappings. Singular phase trajectories are characteristic of
these systems. For example, the Lorenz attractor is character-
ized by the presence of a set of separatrix loops of the saddle-
point-type equilibrium state, whereas the Lozi attractor
includes nonrobust homoclinic curves without tangencies
between stable and unstable manifolds. However, these
peculiar trajectories do not generate stable motions, and the
quasi-hyperbolic and hyperbolic attractors are similar from
the standpoint of numerical simulation.

Most chaotic attractors of dynamical systems are non-
hyperbolic [11 ± 13]. Nonhyperbolic attractors include chao-
tic limiting sets and stable periodic orbits that, as a rule, are
difficult to detect in numerical simulations, because they have
extremely small attracting basins. If the whole collection of
properties is considered, nonhyperbolic attractors differ
substantially from hyperbolic ones [13, 50, 51]. Therefore,
the diagnosis of the attractor type is of paramount impor-
tance for the analysis of nonlinear systems in both the
theoretical and practical contexts [17, 52 ± 57].

The direct technique of determining the conditions of
hyperbolicity includes the calculation of the angles f
between the stable and unstable manifolds along a phase
trajectory. A numerical procedure of computing these
angles was proposed by Lai et al. [58] as a tool for
diagnosing the hyperbolicity of chaotic saddle points in
two-dimensional systems. This technique consists of trans-
forming an arbitrary vector by the evolution operator in
both direct and reverse time, which makes it possible to find
the angle between the directions of stability and instability
for various points of chaotic sets.

Manifolds are one-dimensional in two-dimensional sys-
tems, and hence diagnosing the effect of homoclinic tangency
does not present major difficulties. The problem is more
complex for three-dimensional systems, because the mani-
folds are two-dimensional in this case. We have suggested a
method for diagnosing hyperbolicity in three-dimensional
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differential systems [59]. It was found that systems such as the
RoÈ ssler system, the Chua circuit [60], and the Anishchenko ±
Astakhov oscillator are typically nonhyperbolic, i.e., structu-
rally unstable systems [11]. The Lorenz system can be
considered an exception. The Lorenz attractor is almost
hyperbolic in a certain parameter range. The stable and
unstable manifolds of the attractor trajectories intersect
transversely [59]. However, as the parameters are varied, the
Lorenz system exhibits a bifurcational transition to a
nonhyperbolic attractor [61]. Figure 1a shows the probabil-
ity distribution of angles p�f� for the Lorenz attractor in the
system [41]

_x � ÿs�xÿ y� ; _y � rxÿ yÿ xz ; _z � ÿbz� xy : �1�

It can be seen from the upper graph that the probability of
homoclinic contact is exactly zero � p�f� � 0]. As the region
where the Lorenz attractor exists recedes, the effect of
homoclinic contact emerges (Fig. 1b). Evidently, the angle
between the manifolds can vanish at r5 38 (Fig. 1b). This
effect largely accounts for the properties of nonhyperbolic
chaos, which are considered in subsequent sections of our
article.

3. Chaos in the presence of noise

Nonlinear stochastic problems are of fundamental and
practical importance. Two basic approaches to the analysis
of stochastic systems are known [62 ± 65]. The first is based

on solving stochastic equations and is called the Langevin
method. Any particular solution of stochastic equations,
even for the same initial state, generates a new realization
of the random process. This method allows obtaining an
ensemble of a large number of realizations and finding a
statistical characterization of the process. Averaging can be
done over one, sufficiently long, realization, because the
chaotic process is ergodic. The second approach consists in
solving the evolutionary equations for the probability mea-
sure, such as the Chapman ±Kolmogorov equation, the
kinetic equation, or the Fokker ± Planck equation. This
requires that the random process in the system be at least
Markovian, which poses some constraints on the noise
sources. For the process to be Markovian, random actions
must be independent. In this case, the Chapman ±Kolmo-
gorov equation is valid. If the noise is Gaussian, the process
is diffusive, and the probability density obeys the Fokker ±
Planck equation. If the noise sources satisfy the correspond-
ing requirements, the method of stochastic equations and
the method of evolutionary equations must yield equivalent
results [62 ± 64, 66].

The problem of statistical characterization of dynamical
chaos and the role of fluctuations in chaotic systems is of
particular interest [6, 7, 19, 42, 66 ± 70]. For systems with
hyperbolic-type chaotic dynamics, statistical description is
possible even in purely deterministic cases, i.e., in the
absence of noise [6, 7, 19, 70]. This means that the
stationary solution of the evolutionary equation for the
probability density allows the existence of the limit as
D! 0, where D is the noise intensity; therefore, a solution
for the probability measure can be obtained even in a purely
deterministic case. As shown in Refs [6, 19], small fluctua-
tions �D5 1� in hyperbolic systems give rise to small
variations in the structure of the probability measure.
From this standpoint, so-called quasi-hyperbolic (almost
hyperbolic) attractors, such as the Lozi attractor and the
Lorenz attractor [11, 12], do not virtually differ from
hyperbolic attractors. This is because neither quasi-hyper-
bolic nor hyperbolic attractors contain stable periodic
orbits. A rigorous proof of the existence of a probability
measure in the Lorenz attractor in the absence of noise was
given in Ref. [7].

The effects of noise are important for nonhyperbolic
systems. As shown in Ref. [16], the mean distance between
an orbit with noise and a nonhyperbolic attractor without
noise is much larger than in the hyperbolic case and depends
on the informational dimension of the attractor. It is well
known that noise can induce various phase transitions in
systems with nonhyperbolic attractors [42, 43, 71, 72]. As
sources of Gaussian noise are added to the system, the
attraction basins of the coexisting attractors merge. This
results in relaxation to a stationary probability density,
which is independent of the initial state [14]. A statistical
description of nonhyperbolic chaos encounters fundamental
difficulties. Strictly speaking, a stationary probability
measure independent of the initial distribution does not
exist in nonhyperbolic chaotic attractors without noise. The
continuum limit as D! 0 cannot be implemented in this
case [14]. Moreover, probabilistic characteristics of non-
hyperbolic chaos are highly sensitive even to tiny variations
in the parameters of the system [13, 42, 59, 73]. Thus, the
existence of a stationary probability measure in a nonhyper-
bolic attractor is only possible if the system is affected by
noise.
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Figure 1. Calculation results for Lorenz system (1) at s � 10 and b � 8=3:
(a) probability distribution of angles for the Lorenz attractor at r � 27;

(b) the minimum angle fmin as a function of the parameter r. The vertical

line marks the theoretically determined onset of the transition from the

Lorenz attractor to nonhyperbolic attractors.
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4. Relaxation to the stationary probability
distribution for chaotic attractors
in the presence of noise

4.1 Models and numerical techniques
We now consider the chaotic attractors of the well-known
systems such as the RoÈ ssler oscillator [40]

_x � ÿyÿ z�
�������
2D
p

x�t� ; _y � x� ay ; _z � bÿ z�mÿ x�
�2�

and the noise-affected Lorenz system (1) [41]

_x � ÿs�xÿ y� �
�������
2D
p

x�t� ;
_y � rxÿ yÿ xz ; �3�
_z � ÿbz� xy :

In both models, x�t� is the source of Gaussian white noise
with the mean value hx�t�i � 0 and correlation
hx�t�x�t� t�i � d�t�, where d�t� is the Dirac delta func-
tion. The parameter D denotes the noise intensity. For the
RoÈ ssler system, we fix the parameters a � 0:2 and b � 0:2,
varying the parameter m within the range �4:25; 13�. For the
Lorenz system, we choose two different regimes Ð a quasi-
hyperbolic attractor (s � 10, b � 8=3, and r � 28) and a
nonhyperbolic attractor (s � 10, b � 8=3, and r � 210).

The chaotic attractors of systems (2) and (3) have been
studied in detail and are classical examples of quasi-
hyperbolic and nonhyperbolic chaos, respectively [43, 74].
Thus, the results obtained for Eqns (2) and (3) can be
generalized to a broad class of dynamical systems.

To study the processes of relaxation to a stationary
distribution in these systems, we analyze the time evolution
of a collection of points initially located in a cube of a
small size d around an arbitrary point of a trajectory that
belongs to the attractor of the system. We choose the size
of this cube to be d � 0:09 and fill the cube uniformly with
points whose number is n � 9000. In due course, they
spread over the entire attractor. To characterize the
convergence to a stationary distribution, we trace the time
evolution of the set of points and calculate the ensemble
average

�x�t� �
�
W

p�x; t� x dx � 1

n

Xn
i� 1

xi�t� ; �4�

where x is one of the dynamical variables of the system and
p�x; t� is the probability density of the variable x at time t,
which corresponds to the initial distribution. We introduce
the function

g�tk� �
���xm�tk�1� ÿ �xm�tk�

�� ; �5�

where �xm�tk� and �xm�tk�1� are successive extrema of �x�t�.
The function g�tk� characterizes the amplitude of fluctua-
tions in the mean of �xm�t�. The successive time instants tk
and tk�1 in (5) correspond to the extrema of �x. The
temporal behavior of g�tk� gives an idea of the regularities
and rate of relaxation to the probability measure in the
attractor. We calculated the highest Lyapunov exponent l1
of a chaotic trajectory on the attractor and the normalized
autocorrelation function (ACF) of the well-established

oscillations x�t�:

C�t� � c�t�
c�0� ; c�t� � 
x�t�x�t� t��ÿ 
x�t��
x�t� t�� :

�6�

Here, the angular brackets h. . .i denote time averaging.
Instead of g�tk� and C�t�, we plot their respective

envelopes g0�tk� and C0�t�, to make the figures more
informative and visual.

4.2 Relaxation to the stationary distribution
in the RoÈ ssler system. Effects of noise on the mixing rate
The nonhyperbolic chaotic attractor that appears in the
RoÈ ssler system (2) at fixed a � b � 0:2 and at m values
within the interval �4:25; 8:5� is a well-known example of a
spiral (or phase-coherent) attractor. The phase trajectory in a
spiral attractor winds around one or several saddle foci. The
ACF is oscillatory, and narrow-band peaks stand out in its
power spectrum; they correspond to the mean winding
frequency and its harmonics and subharmonics [43, 75 ± 77].

As the parameter m is increased, the attractor of system
(2) changes qualitatively. An incoherent attractor arises
within the interval 8:5 < m4 13, which is called a funnel
attractor [42, 76]. The phase trajectories behave in a more
complex way in it. As a result, the ACF of the funnel attractor
decaysmuchmore rapidly than in the case of spiral chaos, and
the power spectrum does not contain pronounced peaks.

Calculations carried out for m 2 �4:25; 7:5� (spiral chaos)
and for m 2 �8:5; 13� (funnel chaos) without including noise
suggest that an invariant probability measure exists at these
parameter values. 1 Qualitatively, all effects observed in
system (2) for each attractor type are preserved as the
parameter m is varied.

Figure 2 shows a typical behavior of the function g0�t�
for the spiral and the funnel attractor of system (2). It has
been found that noise strongly affects the mixing rate in the
spiral-attractor regime. The relaxation time considerably
decreases with the increase in the noise intensity (Fig. 2a).
The situation is radically different in the case of the funnel
attractor. Incoherent chaos is virtually insensitive to noise
influences. The behavior of g0�t� does not change substan-
tially as noise is added (Fig. 2b). Numerical simulations
show that the correlation times are also quite different for
these two chaotic regimes: in the absence of noise effects,
they differ by two orders of magnitude. For spiral chaos,
the correlation time is considerably shorter in the presence
of noise (Fig. 3a), while the ACF for the funnel attractor in
the deterministic case virtually coincides with the ACF in
the presence of chaos (Fig. 3b). Therefore, nonhyperbolic
incoherent chaos exhibits some properties of hyperbolic
chaos, i.e., as Sina|̄ noted [6], `dynamical stochasticity'
proves to be stronger than the stochasticity enforced from
outside. This interesting result requires a more detailed
consideration.

We also note another result. It has been found that a
positive Lyapunov exponent is weakly sensitive to fluctuation
effects for both spiral and funnel chaos (Fig. 4) and slightly
decreases as noise is intensified. The correlation time can,
however, vary significantly under the influence of noise in this
case. Thus, mixing in the regime of spiral chaos is determined

1 Stable trajectories have vanishingly small basins of attraction and do not

manifest themselves, because the accuracy of computations is finite.
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not only and not so much by the degree of exponential
instability. Other, weightier factors are present. We analyze
them below.

For this, we use the notions of instantaneous amplitude
and phase of oscillations [77]. Unfortunately, neither is
universal. For spiral attractors, these quantities are quite
reasonably introduced as

x�t� � A�t� cosF�t� ; y�t� � A�t� sinF�t� : �7�

As follows from (7), the instantaneous phase is deter-
mined by the relation

F�t� � arctan
y�t�
x�t� � pn�t� ; �8�

where n�t� � 0; 1; 2; . . . are the numbers of winds of the phase
trajectory around the equilibrium state.

We have found that the component of mixing in the
direction of the flux of trajectories is associated with the
instantaneous-phase variance s 2

F, which controls phase
diffusion. Figure 5a illustrates the time dependence of the
instantaneous-phase variance s 2

F on the ensemble of initially
close trajectories for the spiral and funnel attractors of system
(2). It can be seen that in the time intervals considered, the
variance grows in a virtually linear manner both with and
without the presence of noise. The assumption that the time
dependence of the instantaneous-phase variance for chaotic

oscillations in the RoÈ ssler system is linear was made in
Ref. [75]; however, it was justified neither theoretically nor
numerically. For spiral chaos without noise (curve 1), s 2

F is
small and grows much more slowly than in the other cases
under study. The linear growth of the variance allows
determining the effective phase-diffusion coefficient (first
introduced by Stratonovich [78])

Beff � 1

2

�
ds 2

F�t�
dt

�
; �9�
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Figure 2. Behavior of the function g0�tk� for the attractors in RoÈ ssler

system (2): (a) for the spiral attractor (a � b � 0:2, m � 6:1) at D � 0

(curve 1), D � 0:001 (curve 2), and D � 0:1 (curve 3); (b) for the funnel

attractor (a � b � 0:2, m � 13) at D � 0 (solid curve) and D � 0:01
(dashed curve).
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Figure 3. Envelopes of the normalized autocorrelation function C0�t� for
the attractors in system (2): (a) at m � 6:1, for D � 0 (solid curve) and

D � 0:01 (dashed curve); (b) at m � 13, for D � 0 (solid curve) and

D � 0:01 (dashed curve).
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where the angular brackets denote time averaging of fast
oscillations.

The diffusion coefficient Beff as a function of the noise
intensity is presented in Fig. 5b for the spiral and funnel
attractors in RoÈ ssler system (2). It can be seen that Beff grows
with D in both cases, but this growth is stronger for spiral
chaos.

4.3 Relaxation to the probability measure
in the Lorenz system
The well-known quasi-hyperbolic attractors in three-dimen-
sional differential systems, such as the Lorenz attractor and
the Shimizu ±Morioka attractor [47], are switching-type
attracting sets. The phase trajectory switches chaotically
from the vicinity of one saddle equilibrium state to the
vicinity of another. Such switching involves random phase
changes even in the absence of noise. Adding noise does not
substantially modify the phase dynamics and does not
therefore affect the rate of relaxation to the stationary
distribution.

Figure 6 shows the behavior of the function g0�tk� for the
quasi-hyperbolic and nonhyperbolic chaotic attractors of
system (3) with and without the inclusion of noise influ-
ences. It has been discovered that noise has virtually no effect
on the relaxation rate for the Lorenz attractor (Fig. 6a). The
situation is radically different for the nonhyperbolic attractor
in the Lorenz system. In this case, noise strongly affects the
relaxation rate of the probability measure (Fig. 6b).

We now assess the dependence of the Lyapunov exponent
and correlation time on the level of noise influence. For the

same chaotic attractors in the Lorenz system, the highest
Lyapunov exponent l1 and the normalized autocorrelation
function C�t� �t � t2 ÿ t1� of the dynamical variable x�t�
were calculated for various noise intensities D. It was found
that within the accuracy of computations, l1 is independent of
the noise intensity for either type of chaotic attractor.
Similarly, noise has virtually no effect on the ACF of the
quasi-hyperbolic attractor (Fig. 7a). However, in the regime
of the nonhyperbolic attractor, the ACF declines more
rapidly with the presence of noise (see the curves in Fig. 7b).

5. Spectral-correlative analysis
of dynamical chaos

We now consider the correlative and spectral properties of
various types of chaotic oscillations in greater detail. The
experience of studying dynamical chaos in three-dimen-
sional differential systems shows that two classical models
of random processes can be used to describe the correlative
and spectral properties of a certain class of chaotic systems.
These are the models of a narrow-band random process
(harmonic noise) and of a random telegraphic signal. It was
found that the harmonic-noise model describes the correla-
tion parameters of spiral chaos sufficiently well, while the
telegraphic-signal model works well for the statistical
properties of switching-type attractors, such as the Lorenz
attractor [41].

We consider the basic characteristics of the above-
mentioned models of random processes.
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Figure 5. (a) Time dependence of the instantaneous-phase variance s 2
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parameters are s � 10 and b � 8=3.
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Harmonic noise is a narrow-band, zero-mean random
process defined by the relation [78 ± 80]

x�t� � R0

�
1� a�t�� cos �o0t� f�t�� ; �10�

where R0 and O0 are constant (mean) values of the amplitude
and frequency of oscillations and a�t� and f�t� are random
functions characterizing the fluctuations of the amplitude and
phase of oscillations. The process a�t� is considered to be
stationary. Themost frequently used simplifying assumptions
are as follows: (1) the fluctuations of the amplitude and phase
are statistically independent; (2) the phase fluctuations f�t�
are aWiener process with a diffusion coefficient B. Under the
adopted assumptions, the ACF of process (10) is given by the
expression [78 ± 80]

c�t� � R 2
0

2

�
1� Ka�t�

�
exp

ÿÿBjtj� coso0t ; �11�

where Ka�t� is the covariance function of the amplitude
fluctuations a�t�. 2 The Wiener ±Khintchin theorem yields a
corresponding expression for the spectral power density.

The generalized telegraphic signal is a process that
describes random switching between two possible states
x�t� � �a. Two basic types of telegraphic signals Ð random

and quasi-random Ð can be considered [80, 81]. A random
telegraphic signal has a Poisson distribution of switching
times tk, and therefore the probability distribution of pulse
lengths is exponential,

r�y� � n1 exp �ÿn1y� ; y5 0 ; �12�

where n1 is the mean switching frequency. The ACF of such a
process decreases exponentially:

c�t� � a 2 exp
ÿÿ2n1jtj� : �13�

The other type of telegraphic signal (quasi-random)
corresponds to random switching between two states
x�t� � �a, which is only possible at discrete time instants
tn � nx0 � a, n � 1; 2; 3; . . . , where x0 � const and a is a
random quantity. If the probability of switching events is
1=2, theACFof this process decays with time according to the
linear law

c�t� � a 2

�
1ÿ jtj

x0

�
; jtj < x0 ; �14�

c�t� � 0 ; jtj5x0 :

5.1 Spectral-correlative analysis of spiral chaos
From the physical standpoint, spiral-type chaotic attractors
largely resemble noisy limit cycles. It should be kept in mind
in this context that spiral attractors are present in completely
deterministic systems, i.e., without fluctuation sources. We
consider the regime of spiral chaos in RoÈ ssler system (2) at
a � b � 0:2 and m � 6:5. With this aim in view, we intro-
duced the instantaneous amplitude A�t� and phase F�t�
according to (7) and, by means of numerical simulation, we
determined the normalized ACF of the chaotic oscillation
x�t� (Fig. 8, points in shaded region 1), the covariance
function of amplitude fluctuations KA�t�, and the effective
phase-diffusion coefficient Beff. Figure 8 shows the results for
Cx�t� in system (2) with and without the presence of noise.
The decay of the ACF is virtually exponential both in the
absence (Fig. 8a) and in the presence of noise (Fig. 8b).
Furthermore, as can be seen from Fig. 8c, an interval exists
for t < 20 where the ACF decreases much more rapidly. The
envelope of the computed ACF,Cx�t�, can be approximated
using Eqn (11). For this, we substitute the calculated
characteristics KA�t� and B � Beff into the expression for the
normalized envelope C0�t�:

C0�t� � KA�t�
KA�0� exp

ÿÿBeffjtj
�
: �15�

The calculation results for C0�t� are represented by the
points of curves 2 in Figs 8a and 8b. It can be seen that the
behavior of the envelope of the ACF,Cx�t�, is described well
by formula (15). We note that taking the factor KA�t�=KA�0�
into account yields a good approximation for all t5 0. This
means that the amplitude fluctuations are important in short
time intervals �t < tcor�, whereas the slow decrease in the
correlation is mainly determined by phase diffusion. The
surprisingly good agreement between the numerical results
for spiral chaos and the data for the classical model of
harmonic noise is noteworthy. At the same time, this good
agreement is quite difficult to explain. First, relation (11) was
obtained under the assumption that the amplitude and phase

1

C0�t�

0 1 2 3
t

a

1

C0�t�

0 35,000 70,000
t

b

Figure 7. Envelopes of the normalized autocorrelation function C0�t� for
the attractors in system (3): (a) r � 28, D � 0 (solid curve) and D � 0:01
(dashed curve); (b) r � 210, D � 0 (solid curve) and D � 0:01 (dashed

curve).

2 The factorR 2
0

�
1� Ka�t�

�
is the covariance functionKA�t� of the random

amplitude A�t� � R0

�
1� a�t��. This representation is most convenient to

use in our further studies.

February, 2005 Statistical properties of dynamical chaos 157



fluctuations are statistically independent. It is absolutely clear
that this assumption is not applicable to the chaotic regime.
Second, formula (11) was derived taking into account that the
phase fluctuations can be described in terms of a Wiener
process. In the case of chaotic oscillations, F�t� is a more
complex process, with unknown statistical properties. It is
especially important to emphasize that the results in Fig. 8a
were obtained for the regime of purely deterministic chaos
(without noise), which additionally confirms the similarity
between chaotic self-oscillations and a random process.

It follows from the results presented in Fig. 8 that the
envelope of the ACF for chaotic oscillations at t > tcor can be
approximated by the exponential factor exp

ÿÿBeffjtj
�
.

According to the Wiener ±Khintchin theorem, the spectral
peak at themean frequencyo0 must have a Lorentzian profile

with the width determined by the effective phase-diffusion
coefficient Beff:

S�o� � C
Beff

B2
eff � �oÿ o0�2

; C � const : �16�

The calculation results shown in Fig. 9 confirm this assertion.
The fundamental spectral line can be approximated by
expression (16), which is supported by the numerical results
for the power spectrum of the oscillation x�t�. The results
presented in Figs 8 and 9 for the noise intensityD � 10ÿ3 were
reproduced for various D in the interval 0 < D < 10ÿ2 and
for the range of the parameter m that corresponds to the
spiral-chaos regime. We note that the above-presented
approximation results for the ACF and the profile of the
basic spectral line of the spiral attractor in the RoÈ ssler system
were completely confirmed by studies of spiral attractors in
other dynamical systems [38, 39].

5.2 Correlation parameters of the Lorenz attractor
The narrow-band-noise model cannot be used to analyze the
ACFs of switching-type chaotic oscillations, which have a
continuous spectrum without pronounced peaks at any
distinguished frequencies. Such attractors are quite complex
in their structure [82]. The Lorenz attractor is a classical
example of a switching-type attractor [41]. We consider the
Lorenz system in the quasi-hyperbolic-attractor regime at
r � 28, s � 10, and b � 8=3.

There are two saddle foci in the phase space of the Lorenz
system, which are located symmetrically about the z axis and
are separated by the stable manifold of the saddle point at the
coordinate origin. The stable manifold has a complex
structure, which is responsible for random switching between
the saddle foci in peculiar paths [11, 82] (Fig. 10). The phase
trajectory, spiraling around a saddle focus, approaches the
stable manifold and, with a certain probability, can subse-
quently enter the vicinity of the other saddle focus. The
winding about the saddle foci does not make a significant
contribution to the time dependence of the ACF, while the
random switching substantially affects the correlation time.

We consider the time dependence of the x coordinate
illustrated in Fig. 11. If the winding about the saddle foci is
eliminated using the symbolic-dynamics method, we can
obtain a signal similar to the telegraphic signal [37, 39].

Figure 12 shows the ACF of the oscillation x�t� for the
Lorenz attractor and the ACF of the corresponding
telegraphic signal. A comparison between these two graphs
indicates that the correlation-decay time and the behavior of
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Figure 8. The normalized ACF of the oscillation x�t� in system (2) at

m � 6:5 (points in the shaded region 1) and its approximation (15) (points

on curve 2) forD � 0 (a) andD � 10ÿ3 (b); (c) envelopes of the ACF on a

logarithmic scale for D � 0 (curve a), D � 0:001 (curve b), and D � 0:01
(curve c).

S
�o
�=
S
m
a
x
,d

B

0

ÿ10

ÿ20

ÿ30

ÿ40

ÿ50
0.95 1.00 1.05 1.10 1.15 1.20

o

Figure 9. A fragment of the normalized power spectrum of the oscillation

x�t� in system (2) at a � b � 0:2, m � 6:5 (solid curve) and this spectrum

approximated by Eqn (16) (dashed curve) for the noise intensityD � 10ÿ3.
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the ACF on this time scale are mainly determined by the
switching, while the winding about the saddle foci does not
contribute considerably to the ACF decay. It is important
to note that the ACF decay law is virtually linear at short
times. This fact is remarkable, because a linear decay of the
ACF corresponds to a discrete equidistant probability
distribution of residence times in the form of a set of delta
peaks, and the probability of switching between two states
should be 1=2 [80, 81].

Figure 13 shows the distribution of residence times
computed for the telegraphic signal presented in Fig. 11. As
can be seen from Fig. 13a, the distribution of residence times
indeed has a structure close to an equidistant discrete
distribution. At the same time, the peaks are not d-like
spikes but have finite widths. Figure 13b shows the
probability distribution of switching that occurs at values
that are multiples of x0, the minimum residence time for one
state. 3 This dependence demonstrates that the probability of
a transition within the time x0 (within one trajectory
winding) is close to 1=2. The discrete character of switching
can be accounted for by the properties of the manifold
structure in the Lorenz system (see Fig. 10). The manifolds
split into two sheets near the origin x � 0, y � 0. As a result,

the probability of switching between two states within one
winding about a fixed point is approximately 1=2. Because of
this particular aspect of the dynamics, the ACF of the
oscillations x�t� and y�t� on the Lorenz attractor has the
form specified by expression (14). However, the finite width
of the distribution peaks and deviations of the probability
P�x0� from 1=2 can result in the ACF not linearly decreasing
to zero (see Fig. 13).

6. Phase diffusion in an active
inhomogeneous medium described
by the Ginzburg ±Landau equation

Distributed systems are among the most interesting subjects
of investigation in theoretical physics. First and foremost, this
is due to wave processes that occur only in distributed
systems. Numerous studies have been dedicated to the
dynamics of continuous media, including the onset of
turbulence. An irregular behavior of the medium in space
and time can develop because of its spatial nonuniformity
[83 ± 85]. Effects of spatial nonuniformity have been studied,
for example, in ensembles of coupled self-oscillatory systems
[86, 87] that can be regarded as models approximating a
distributed active medium. In ensembles with a spatial
frequency gradient, the emergence of frequency clusters Ð
groups of oscillators with equal or close mean frequencies Ð
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y

Figure 10. A qualitative illustration of the structure of the manifold in the

Lorenz system.
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Figure 11. Telegraphic signal (solid curve) obtained for the oscillation x�t�
(dashed curve) in the Lorenz system at s � 10, b � 8=3, and r � 28.
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Figure 12. ACF of the oscillation x�t� (a) and the telegraphic signal (b).

3 The time x0 corresponds to the duration of one trajectory winding about

the saddle focus in the Lorenz attractor.
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is typical. Accordingly, perfect (with equal frequencies) or
imperfect (with differing frequencies) clusters are considered.

Frequency clusters can also form in a continuous
inhomogeneous active medium [88, 89]. In contrast to
ensembles, which consist of discrete sets of oscillators, a
regime with a continuous coordinate dependence of the
frequency is possible in a medium with imperfect clusters.
This corresponds to the effect of emergence of imperfect
clusters with a continuous power spectrum of oscillations.
Because this phenomenon can be observed in a purely
deterministic medium in the absence of fluctuations, it
implies the onset of deterministic chaos in a distributed
medium. We here consider the onset of chaotic temporal
behavior of a continuous inhomogeneous medium and
compare the details of the dynamics of the inhomogeneous
medium with the above-described emergence of phase
diffusion in finite-dimensional systems.

As an example, we studied a one-dimensional self-
oscillatory medium that obeys the Ginzburg ±Landau equa-
tion with a coordinate-dependent frequency,

at � io�x�a� 1

2

ÿ
1ÿ jaj2�a� gaxx ; �17�

where i is the imaginary unit, a�x; t� is the complex amplitude
of oscillations, t is the time, x 2 �0; l � �l � 50� is the spatial
coordinate, and g is the diffusion coefficient.

As g! 0, oscillations at different points of the medium
have different frequencies specified by the function o�x�. We
considered the case where the frequency depends on the
spatial coordinate linearly, o�x� � xDmax; in experiments,
Dmax was set to the fixed value 0.2. The boundary conditions
had the form

ax�x; t�
���
x�0; l
� 0 :

The initial state of themediumwas chosen at randomnear
some uniform distribution a0 � const. Equation (17) was
integrated numerically using an implicit finite-difference
technique with a forward ± backward marching procedure
[90]. We calculated the real oscillation amplitude

A�x; t� � ��a�x; t���
and the phase

f�x; t� � arg a�x; t� :

The mean oscillation frequency was computed as the mean
time derivative of the phase,

O�x� � 
ft�x; t�
�
:

If no mismatch is present �Dmax � 0�, only uniform self-
oscillation regimes are possible inmedium (17): a�x; t� � a�t�.
At a given mismatch Dmax, the formation of perfect and
imperfect frequency clusters can be observed in a certain
range of diffusion-coefficient values (Fig. 14). Time-periodic
oscillations correspond to perfect clusters. In the regime of
imperfect clusters, the time variation in the oscillation
amplitude A at any fixed point in the medium x is quite
complicated and resembles a chaotic process.

This effect can be illustrated by the calculations of the
power spectra for the regimes of perfect and imperfect clusters
shown in Fig. 15. As the regime evolves from perfect to
imperfect clusters, a transition from multifrequency regular
oscillations to complicated oscillations with a continuous
spectrum are observed in the medium at any spatial point.
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Figure 13. The distribution of pulse durations for the telegraphic signal

(a) and the probability distribution of switching within times that are

multiples of x0 (b).

a

0.15

0.20
O�x�

0.10

0.05

0 10 20 30 40 50
x

O�x�
0.15

0.10

0.20

0.05

0 10 20 30 40 50
x

b

Figure 14.Variation in themean oscillation frequencyO along themedium

for a perfect cluster structure at g � 1:0 (a) and for an imperfect structure

at g � 0:85 (b).
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We also calculated the temporal ACFs of the process
A�x; t� for various points in the medium,

cA�x; t� �


A�x; t�A�x; t� t��ÿ 
A�x; t��2 ; �18�

where the angular brackets h i denote time averaging and

A�x; t�� is t-independent. We considered the normalized
ACF (correlation coefficient)

CA�x; t� � cA�x; t�
cA�x; 0�

:

An ACF is exemplified in Fig. 16a. Our calculations
demonstrate that in the imperfect-cluster regime, CA�x; t�
decreases with time at any point in the medium x, ultimately
approaching zero (Fig. 16a). This testifies to the presence of
mixing. Two time scales can be distinguished in the ACF-
envelope decay law. At small t (of several oscillation periods),
the correlation declines rapidly. At longer times, an exponen-
tial decrease with a certain damping rate a is a fairly good
approximation. The damping rate varies within the range
a � �0:15ÿ0:4� � 10ÿ3, depending on the point in the
medium. If the cluster structure is perfect, periodic or quasi-
periodic processes occur in the medium, with corresponding
correlation functions.

Because no noise sources are present in the model under
study, only the onset of dynamical chaos Ð an absolute
exponential instability of oscillations in the mediumÐ can be
responsible for mixing. To analyze the stability of the
oscillations, we jointly integrated Eqn (17) and the linearized
equation for a small perturbation u�x; t� of the complex

amplitude a�x; t�:

ut � io�x�u� 1

2

ÿ
1ÿ jaj2�uÿ 1

2
a 2u � � guxx ; �19�

where u � is complex conjugate to u. The boundary conditions
for the perturbation are given by

ux�x; t�
���
x� 0; l

� 0 :

For any time t, the Euclidean perturbation norm ku�x; t�k
was considered, which reduced to the sum of a finite number
of terms because of the discretization of the spatial coordi-
nate. Our calculations have shown that the decay of the ACF
in the regime of imperfect clusters is accompanied by an
exponential temporal growth (on average) in the perturbation
norm (Fig. 16b). The rate of the exponential growth lmax

obtained for g � 0:85 had the value lmax � 0:0023. We note
that this lmax exceeds the damping rate of the ACF by an
order of magnitude.

To check the presence of exponential instability in the
medium, we calculated the highest Lyapunov exponent lmax,
based on the time series of data, using the algorithm suggested
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Figure 15. Normalized spectral power densities of the process A�x1; 2; t�:
(a) in the regime of perfect clusters �g � 1:0� at the point x1 � 25 (cluster

center); (b) in the regime of imperfect clusters (g � 0:85 at the point

x1 � 25) (cluster center).

1.0

CA�t�

0.5

0

ÿ0.5

ÿ1.0
0 5000 10,000 15,000

t

a

1015

jjujj

1010

105

100

10ÿ5

b

0 5000 10,000 15,000
t

1

2

Figure 16. (a) The normalized autocorrelation function of the process

A�x; t� in the regime of imperfect clusters �g � 0:85� at the point x � 25

(cluster center). The dashed curve represents the exponential approx-

imation of the envelope of the ACF: C exp �ÿat�, a � 0:0003, C � const.

(b) Time dependence of the perturbation norm ku�x; t�k for the

oscillation of medium (17) in the regime of imperfect frequency clusters

at g � 0:85 (curve 1) and in the regime of perfect frequency clusters at

g � 1:00 (curve 2). The dashed straight line corresponds to the

exponential function exp �0:0023t�.
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in [91]. The calculations yielded a positive value of the highest
Lyapunov exponent, which weakly depends on the para-
meters of the numerical scheme. The results corresponding
to different points in the medium differed to a certain extent
but were all of the order 10ÿ3. For instance, at the optimum
parameters of the numerical scheme, the reconstruction
technique yielded

lmax � 0:002� 0:0002

for the point x1 � 25, which agrees very well with the results
of the linear stability analysis. Thus, it can be safely said that
the regime of imperfect frequency clusters corresponds to
chaotic oscillations in time.

The estimates of the highest Lyapunov exponent obtained
using two different methods agree well with each other, but
differ substantially (by an order of magnitude) from the
estimate for the exponential-damping rate of the correlations
in the corresponding regime. According to the above
discussion, for a broad class of chaotic systems with lumped
parameters, the rate of correlation splitting at long time
intervals and the width of the main spectral line are
determined by the effective diffusion coefficient for the
instantaneous phase of the fluctuations,

y�t� � A�t� ÿ 
A�t�� :
To verify this assertion, we studied the dynamics of the

instantaneous phase defined as

F�t� � arctan

�
yh�t�
y�t�

�
� pk ; k � 0; 1; 2; . . . ; �20�

where yh�t� is the Hilbert-conjugate process. The choice of an
integer k in Eqn (20) is dictated by the continuity condition
for the function F�t�.

For an ensemble of segments of a sufficiently long
realization F�t�, we calculated the variance

s2F�t� �


F 2�t��ÿ 
F�t��2

where the angular brackets h i denote ensemble averaging.
The variance of the instantaneous phase is plotted as a
function of time in Fig. 17. The variance grows with time
almost linearly in the interval t 2 �0; 10000�. A least-square
estimate of the angular growth factor makes it possible to
determine the effective diffusion coefficient for the phase
F�t�:

Beff � 1

2

�
ds2F�t�
dt

�
: �21�

Here, the angular brackets h i denote averaging `fast' variance
oscillations over time.

In the regime of imperfect clusters, the obtained Beff

values range within the interval �0:00016; 0:00038�, depend-
ing on the spatial coordinate x. A more accurate, direct
calculation of Beff based on formula (21) proved to be quite
complicated because of the need of averaging over a vast
dataset.

Our numerical investigation revealed a number of
important new facts.

(1) The development of chaos and turbulence in a
continuous self-oscillatory medium can result from the

inhomogeneity of the medium, which specifies a continuous
coordinate dependence of the self-oscillation frequency.

(2) The self-oscillations of the medium in the regime of
imperfect, partial (cluster) synchronization are mixable, i.e.,
they are exponentially unstable, with split temporal correla-
tions.

(3) The damping rate of the correlation functions at long
times is not directly determined by the Lyapunov exponent
but is related to the diffusion of the instantaneous oscillation
phase. This testifies to the generality of the correlation
splitting laws in finite-dimensional and distributed chaotic
systems.

7. The autocorrelation function and power
spectrum of spiral chaos in physical experiments

Our experiments were carried out using a setup that included
a radiotechnical generator with inertial nonlinearity (Anish-
chenko ±Astakhov generator [43]) and the fundamental
frequency 18.5 kHz, a fast-ADC computer with the discreti-
zation frequency 694.5 kHz, and a generator of broadband
Gaussian noise in the frequency band from 0 to 100 kHz [92].
The behavior of the ACFwas also analyzed in the presence of
external noise.With this aim in view, a signal from an external
noise generator with controlled noise intensity was fed to the
system. The generator with inertial nonlinearity can be
described by the three-dimensional dissipative dynamical
system

_x � mx� yÿ xzÿ dx 3 ; _y � ÿx ; _z � ÿgz� gI�x�x 2 ;

I�x� � 1 ; x > 0 ;
0 ; x4 0 :

� �22�

At certain m and g, the system realizes spiral-chaos
regimes [43].

The first important question to be unambiguously
resolved in the experiment is whether the Wiener-process
approximation can be used to describe the statistical para-
meters of the instantaneous phase, as assumed in Refs [21, 37,
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Figure 17.Dispersion of the instantaneous phase computed for the regime

of imperfect clusters �g � 0:85� at the point x � 25 (cluster center),

Beff � 0:00016. The approximating straight line is shown dashed.

162 V S Anishchenko, T E Vadivasova, G A Okrokvertskhov, G I Strelkova Physics ±Uspekhi 48 (2)



39, 75]. The instantaneous phase used to determine the
diffusion coefficient Beff is based on the concept of an
analytical signal with the application of the Hilbert trans-
form of experimental realizations of x�t� [77]. The phase
variance s2F�t� is then computed by averaging over an
ensemble of N realizations. The effective phase-diffusion
coefficient is determined by the temporal-growth rate of the
variance.

The time dependence of the phase diffusion shown in
Fig. 18a is not strictly linear, as should be expected for a
Wiener process. However, the linear growth dominates over
small fluctuations in the phase variance. Therefore, the
process under consideration can be associated with a Wiener
process whose diffusion coefficient is Beff.

The next stage of the experiment is themeasurement of the
ACF for the chaotic oscillations of the generator with inertial
nonlinearity. Several dozen realizations of the signal x�t�,
each with a duration of 10 s, were recorded by the fast ADC.
The total length of the realizationwas �3ÿ5� � 105 oscillation
periods with a discretization step Dt corresponding to

37 points per period. The ACF was calculated as follows.
First, we computed the time-averaged value of the x variable
for each of N realizations of the process x�t�:

�x � 1

n

Xn
i� 1

x�ti� : �23�

Next, time averaging was used to obtain the mean product

x�t�x�t� t��,

Kl�t� � 1

p

Xp
i� 1

x�ti�x�ti � kDt� ; �24�
t � kDti ; k � 0; 1; . . . ; nÿ p ;

where l � 1; . . . ;N is the realization number. Because the
correlation-decay rate is not high in the regime under
consideration, the ACF should be calculated for a very long
time interval. To achieve high accuracy in the calculation of
the ACF, the obtained data were averaged over N realiza-
tions:

c�t� � 1

N

XN
l� 1

Kl�t� ÿ �x 2 : �25�

TheACFwas normalized to themaximum value at t � 0, i.e.,

C�t� � c�t�
c�0� :

Experimental graphs of the envelopes of the normalized
ACF for various external-noise intensities are shown in
Fig. 18b. The obtained dependences were approximated by
the exponential law

Capp�t� � exp �ÿBefft� ;
where Beff is the experimentally determined effective instan-
taneous-phase diffusion coefficient. The approximations are
shown by symbols in Fig. 18b.

We now analyze the results of the power-spectrum
measurements. The power spectrum of a diffusive process
has a Lorentzian profile whose width is determined by the
effective phase-diffusion coefficient. For a normalized spec-
trum, the Lorentzian is given by formula (16). Experimen-
tally, the diffusion coefficient can be independently deter-
mined by measuring the width of the spectral peak. To obtain
a more accurate value of the diffusion coefficient, we
approximated the spectral peak using formula (16) and
varying Beff. We chose the Beff value at which the approxima-
tion error was minimum (Fig. 19a). Figure 19 presents
experimental power spectra of the generator with inertial
nonlinearity. The spectrum was computed using the standard
technique of the fast Fourier transform (FFT) with aver-
aging. The principal result is that the values of the effective
phase-diffusion coefficient based on the power-spectrum
measurements agree well with the Beff values obtained from
the linear approximation of the growth of the instantaneous-
phase variance. The corresponding values of the effective
phase-diffusion coefficient are given in the table for three
values of the external-noise intensity.

Thus, we have found experimentally that in the spiral-
chaos regime, the instantaneous-phase variance of chaotic
oscillations grows on average linearly with the diffusion
coefficient Beff. In the absence of noise, this coefficient is
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Figure 18. (a) Time dependence of the phase variance in the presence of

noise with the intensity D � 0:001 mV and the linear least-square

approximation of this dependence (the dimensionless time t is equal to

the number of oscillation periods). (b) The ACF envelopes (solid lines)

obtained experimentally for various intensities of the external noise: 1,

D � 0; 2, D � 0:0005 mV; and 3, D � 0:001 mV; with their experimental

approximations (straight lines) for the respective damping rates

Beff � 0:00024, Beff � 0:00033, and Beff � 0:000439. The other para-

meters of the numerical calculations are N � 100, n � 262144, and

p � 1=�2n�.

February, 2005 Statistical properties of dynamical chaos 163



controlled by the chaotic dynamics of the system. If noise is
present, the growth of the phase variance is also linear, but
Beff increases. The ACF of spiral chaos decreases exponen-
tially with time, as exp �ÿBefft�. The spectral-line width of
oscillations at the fundamental frequencyo0 is determined by
the phase-diffusion coefficient according to Eqn (16).

8. Conclusion

Our results demonstrate the existence of a class of spiral-type
nonhyperbolic attractors for which noise has a pronounced
effect on the rate of relaxation to the stationary distribution
and on the correlation time but, virtually, does not influence
the value of the positive Lyapunov exponent. The rate of
mixing on nonhyperbolic attractors is determined not only
and not very much by the exponential instability but depends

on the complex dynamics of the instantaneous phase of
chaotic oscillations. In the spiral-chaos regime, noise sub-
stantially increases the rate of relaxation to the stationary
distribution. For chaotic attractors with an irregular behavior
of the instantaneous phase, noise has virtually no effect on the
mixing rate. This is the case for nonhyperbolic funnel and
switching-type attractors such as the quasi-hyperbolic Lorenz
attractor.

Spiral nonhyperbolic attractors can appear not only in
finite-dimensional but also in distributed systems. An
inhomogeneous medium modeled by the Ginzburg ±Landau
equation can serve as an example. A characteristic feature of
spiral attractors is that they correspond to a complex process
of irregular self-oscillations whose statistical properties can
be described in terms of the classical model of narrow-band
noise. In essence, spiral chaos is similar in its properties to a
noisy limit cycle (e.g., a noise-affected Van der Pol generator).
The autocorrelation function and power spectrum of a spiral
attractor are completely determined by the fluctuations in the
instantaneous amplitude and phase of oscillations. The
amplitude fluctuations control the decay rate of the correla-
tions at short time intervals and, accordingly, the noise
pedestal in the power spectrum. The phase fluctuations
broaden the spectral line at the fundamental frequency in
the spectrum and result in an exponential decay in the
autocorrelation function, which is determined by the effec-
tive diffusion coefficient Beff. The phase-diffusion coefficient
in a noise-free system is determined by its chaotic dynamics
and does not directly depend on the positive Lyapunov
exponent. The following important conclusion can be
deduced: in dynamical systems with spiral chaos, the
Kolmogorov entropy as a quantitative characteristic of the
mixing rate is mainly controlled by the growth rate Beff of the
instantaneous-phase variance rather than by the positive
Lyapunov exponent, as is generally assumed. Analyses of
the statistical properties of the Lorenz attractor have shown
that the properties of the ACF are mainly determined by the
random-switching process, weakly depending on winding
about the saddle foci. The classical model of the telegraphic
signal can be used to describe the statistics of the Lorenz
attractor. In particular, this model provides a good approx-
imation of the interval of linear decrease in the ACF, which
enables us to theoretically calculate the correlation time. The
fact that the ACF decay rate for the Lorenz attractor is
virtually constant both in and without the presence of noise
results from the statistics of the switching process. The
probability of switching in the Lorenz attractor is nearly 1=2
and virtually independent of the level of noise influence.
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