
Abstract. Experimental results on metal ± insulator transitions
and the anomalous properties of strongly interacting two-di-
mensional electron systems are reviewed and critically ana-
lyzed. Special attention is given to recent results on strongly
enhanced spin susceptibility and effective mass in low-disor-
dered silicon MOSFETs.

1. Introduction

Two-dimensional (2D) electron systems are realized when the
electrons are free to move in a plane but their motion
perpendicular to the plane is quantized in a confining
potential well. At low electron densities in such systems, the
strongly interacting limit is reached because the kinetic
energy is overwhelmed by the energy of electron ± electron
interactions. The interaction strength is characterized by the
ratio r�s � Eee=EF between the Coulomb energy and the Fermi
energy. Assuming that the effective electron mass is equal to
the band mass, the interaction parameter r�s in the single-
valley case reduces to the Wigner ± Seitz radius rs �
1=�pns�1=2aB and therefore increases as the electron density
ns decreases (here, aB is the Bohr radius in a semiconductor).
Possible candidates for the ground state of the system include
Wigner crystal characterized by spatial and spin ordering [1],
ferromagnetic Fermi liquid with spontaneous spin ordering

[2], paramagnetic Fermi liquid [3], etc. In the strongly
interacting limit (rs 4 1), no analytical theory has been
developed to date. According to numeric simulations [4],
Wigner crystallization is expected to occur in a very dilute
regime, when rs reaches approximately 35. Refined numeric
simulations [5] have predicted that prior to the crystallization,
within the range of the interaction parameter 259rs935, the
ground state of the system is a strongly correlated ferromag-
netic Fermi liquid. At higher electron densities, when rs � 1,
the electron liquid is expected to be paramagnetic, with the
effective mass m and LandeÂ g factor renormalized by
interactions. Apart from the ferromagnetic Fermi liquid,
other intermediate phases between the Wigner crystal and
the paramagnetic Fermi liquid may also exist.

In real 2D electron systems, the inherent disorder leads to
a drastic change in the above picture, which significantly
complicates the problem. According to the scaling theory of
localization [6], all electrons in a disordered infinite noninter-
acting 2D system become localized at zero temperature and
zero magnetic field. At finite temperatures, regimes of strong
and weak localizations can be distinguished: (i) if the
conductivity of the 2D electron layer is activated, the
resistivity diverges exponentially as T! 0, and (ii) in the
opposite limit of weak localization, the resistivity increases
logarithmically with decreasing temperature Ð an effect
originating from the increased probability of electron scatter-
ing from impurities back to the starting point. Interestingly,
the incorporation of weak interactions (rs < 1) between the
electrons promotes the localization [7]. However, for weak
disorder and rs01, a possible metallic ground state was
predicted [8 ± 10].

In view of the competition between the interactions and
disorder, high- and low-disorder limits can be separated.
Since many of the experimental groups have made little
distinction between these, there has been confusion about
interpretation of the data obtained. In highly disordered
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electron systems, the range of low densities is unattainable as
strong (Anderson) localization sets in (see Fig. 1). At higher
electron densities, a logarithmic-in-T correction to the
resistivity was observed in numerous experiments (see, e.g.,
Refs [11 ± 13]), providing support for the weak localization
theory. Apparently, extrapolation of the weak corrections to
T � 0 is not justified and, therefore, those studies cannot
serve as confirmation of the scaling theory. This theory is
remarkable for the principal impossibility of experimental
verification because all experiments are performed in samples
with finite dimensions at finite temperatures. The question
whether or not the scaling theory works is essentially a matter
of belief.

The case of low-disordered electron systems is much more
interesting. Low electron densities corresponding to the
strongly interacting limit become attainable. Experimental
results on the metal ± insulator phase diagram in perpendi-
cular magnetic fields revealed a close similarity between the
insulating phase at low densities and the quantumHall states.
Thus, they exclude the formation of a pinned Wigner crystal
in available samples, but support the existence of a metallic
state in a zero field [14 ± 16]. As the magnetic field is
decreased, the extended states in the Landau levels are
observed to float up in energy relative to the Landau-level
centers and merge to form a metallic state in the B � 0 limit.
These observations contradict the theoretical scenario
according to which in the limit of zero magnetic field the
extended states should float up indefinitely in energy [17, 18],
thus leading to an insulating ground state. The metallic state
was found to be remarkable by the strong drop of resistivity
with decreasing temperature [19 ± 21]. Although the origin of
the phenomenon has been attributed to strong electron ±
electron interactions, the underlying physics remained
unclear until recently.

A breakthrough in understanding this topical problem
occurred in the past four years. After a strongly enhanced
ratio gm of the spin and cyclotron splittings has been found at
low ns in silicon metal ± oxide semiconductor field-effect
transistors (MOSFETs) [22], it became clear that the system
behaves well beyond the weakly interacting Fermi liquid. It
was reported that the magnetic field required to produce
complete spin polarization, Bc / ns=gm, tends to vanish at a
finite electron density nw � 8� 1010 cmÿ2, which is close to
the critical density nc for the metal ± insulator transition in

this electron system [23 ± 25]. These findings point to a sharp
increase in the spin susceptibility w / gm and possible
ferromagnetic instability in dilute silicon MOSFETs. In
very dilute GaAs/AlGaAs heterostructures, a similar beha-
vior has been observed in both 2D hole and 2D electron
systems [26, 27]. Recently, experimental results have indicated
that in silicon MOSFETs it is the effective mass, rather than
the g factor, that sharply increases at low electron densities
[28]. They have also indicated that the anomalous rise in
resistivity with increasing temperature is related to the
increased mass. Since the magnitude of the mass does not
depend on the degree of spin polarization, this points to a
spin-independent origin of the effective mass enhancement
[29, 30]. It is interesting to note that the observed phenom-
ena are more pronounced in siliconMOSFETs compared to
GaAs/AlGaAs heterostructures, although the fractional
quantum Hall effect, which is usually attributed to elec-
tron ± electron interactions, has not been reliably exposed in
silicon MOSFETs.

The fact that nw is close to the critical density nc indicates
that the metal ± insulator transition in silicon samples with
very low disorder potential is a property of a clean 2D system
and is driven by interactions [23]. This is qualitatively
different from a localization-driven transition in more
disordered samples that occurs at appreciably higher densi-
ties than nw, which in addition are dependent on disorder
strength. In this review, attention is focused on the results
obtained in the clean regime.

There are several reviews on the topic in question that
deserve mention (see, e.g., Refs [31, 32]). However, they have
either become outdated or do not express criticism toward
items of general belief, for instance, the scaling theory. Below,
I describe the main experimental results and draw an overall
picture of the metal ± insulator transition and anomalous
properties of 2D electron systems at low densities.

2. Metal ± insulator phase diagrams
in a magnetic field

Metal ± insulator transitions in perpendicular magnetic fields
have attracted a great deal of interest in the past decade. The
experimental activity was strongly stimulated by theoretical
predictions according to which Wigner crystallization is
promoted in the presence of a magnetic field [33 ± 37].
Mainly, the insulating phase at low electron densities, whose
origin was attributed to possible formation of the Wigner
crystal, was studied [38 ± 52]. However, this possibility has
been precluded in studies of the metal ± insulator phase
diagram including quantum Hall states, which show a close
similarity of all insulating phases in available samples [14 ±
16]. It is interesting to note that there are some firmly
established experimental results which have not attracted
much attention from theorists. These include (i) oscillations
of the metal ± insulator phase boundary as a function of a
perpendicular magnetic field, and (ii) finite bandwidth of
extended states in Landau levels.

2.1 Floating-up of extended states in perpendicular
magnetic fields
2.1.1 First observation. The scaling theory of localization
came into conflict with the quantum Hall effect (quantiza-
tion of the Hall resistivity rxy � h=ne2 at integer filling factors
n accompanied with vanishing longitudinal resistivity rxx)
[53] which implies the existence of extended states in the
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Figure 1. Schematic phase diagram in a disorder-vs-ns plane. The Wigner
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Landau levels (see Section 2.3). To reconcile these two, it was
theoretically predicted almost immediately that the extended
states in the Landau levels cannot disappear discontinuously
with decreasing magnetic field but must float up indefinitely
in energy in the limit B! 0 [17, 18]. The expected phase
diagram is depicted in the inset to Fig. 2a. An equivalent
diagram plotted in the disorder versus inverse filling factor
(1=n � eB=hcns) plane is known as the global phase diagram
for the quantum Hall effect [54]. As long as no merging of the
extended states was considered to occur, their piercing of the
Fermi level was predicted to cause quantization of the Hall
conductivity in weak magnetic fields [55, 56].

The first attempt [14] to experimentally determine the
metal ± insulator phase diagram in low-disordered silicon
MOSFETs at low temperatures has already revealed discre-
pancies with the theory (see Fig. 2a). In that paper, a
somewhat arbitrary criterion for the longitudinal conductiv-
ity sxx � e2=20hwas used tomap out the phase boundary that
corresponds to the Anderson transition to the regime of

strong localization. For one thing, however, the phase
boundary was shown to be insensitive to the choice of the
cutoff value (see, e.g., Ref. [57]); for another, particular cutoff
value was consistent with the results obtained for quantum
Hall states by vanishing activation energy combined with
vanishing nonlinearity of current ± voltage characteristics
when extrapolated from the insulating phase [15] (note that
for the lowest-density phase boundary, a lower value of
sÿ1xx � 100 kO at a temperature of about 25 mK follows
from the last-mentioned method). The metallic phase sur-
rounds each insulating phase as characterized by the
dimensionless Hall conductivity sxyh=e2 that counts the
number of quantum levels below the Fermi level (in bivalley
(100)-silicon MOSFETs, spin and valley degeneracies of the
Landau level should be taken into account). This indicates
that the extended states do not actually disappear discontinu-
ously. Instead, with decreasing magnetic field they float up in
energy relative to the Landau-level centers andmerge forming
a metallic state in the limit B � 0 (see Sections 2.2 and 2.4).
Besides, the phase boundary at low electron densities
oscillates as a function of B with minima corresponding to
integer filling factors. The phase boundary oscillations
manifest themselves in that at electron densities near the
metal ± insulator transition at B � 0, the magnetoresistance
oscillates with an amplitude that diverges as T! 0 [38]; the
regions in which the magnetoresistance diverges are referred
to as the reentrant insulating phase (see Section 2.2).

2.1.2 Other methods and 2D carrier systems. The topology of
the observed metal ± insulator phase diagram, i.e., merging
the extended states and, hence, the presence of direct
transitions between the insulating phase with sxy � 0 and
quantum Hall phases with sxyh=e2 > 1, is robust, being
insensitive to the method for spotting the phase boundary
[15, 58] and to the choice of 2D carrier system [59, 60]. It was
verified using a criterion of vanishing activation energy and
vanishing nonlinearity of current ± voltage characteristics as
extrapolated from the insulating phase, which allows more
accurate determination of the Anderson transition [15].
Kravchenko et al. [58] also applied a method that had been
suggested in Ref. [61] for similar silicon MOSFETs. They
studied extended states by tracing maxima in the longitudinal
conductivity in the (B; ns)-plane (see Fig. 2b) and found good
agreement with the aforementioned results. A similarmerging
of at least the two lowest extended states was observed in
more disordered 2D hole systems in a GaAs/AlGaAs
heterostructure [59] (see Fig. 3a) and in a Ge/SiGe quantum
well [60] (see Fig. 3b). In the former case, the extended states
were determined by peaks in sxx or temperature-independent
crossing points in rxx; in the latter, they were associated either
with maxima in rxx and/or drxy=dB, or with crossing points
of rxx at various temperatures. It is noteworthy that a bad
combination of the criterion for determining the phase
boundary and the 2D carrier system under study may lead
to a failure when mapping out the phase diagram down to
relatively weak magnetic fields. In Ref. [61], extended states
were studied by measuring maxima in the longitudinal
conductivity in the (B; ns)-plane for the strongly disordered
2D electron system in GaAs/AlGaAs heterostructures (see
Fig. 3c). Because of strong damping of the Shubnikov ±
de Haas oscillations in weak magnetic fields, the desired
region in the phase diagram below 2 T was not reached in
that experiment. This invalidates the claim by Glozman et al.
[61] that the extended states do not merge [62]. The behavior
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of the lowest extended state in Fig. 3c, which in the view of
Glozman et al. [61] floats up above the Fermi level as B! 0,
simply reflects the occurrence of a phase-boundary oscillation
minimum at the filling factor n � 2, similar both to the
minimum at n � 1 in Fig. 3a and to the case of silicon
MOSFETs (see Fig. 2). Such a minimum manifests itself in
that there exists a minimum in rxx for integer n5 1 that is
straddled by the insulating phase [38, 63 ± 67]. To this end, all

available data for the metal ± insulator phase diagrams agree
well with each other, except those in the vicinity of B � 0. In
weak magnetic fields, experimental results obtained in 2D
electron systems with high disorder are not method-indepen-
dent. Glozman et al. [61] found that the cutoff criterion yields
basically a flat phase boundary down to B � 0, which is in
agreement with the data for silicon MOSFETs (Fig. 2a). On
the contrary, Hilke et al. [60] employed the method based on
temperature dependences of rxx and obtained a turn-up at the
phase boundary in Fig. 3b. Note that the validity of the data
in Fig. 3b for the lowest extended state in magnetic fields
91:5 T is questionable because the weak temperature
dependences of rxx as analyzed by Hilke et al. [60] cannot be
related trustworthily to either an insulator or a metal. The
same applies to similar temperature dependences observed,
for instance, in Refs [68 ± 74].

2.1.3 Weak-field regime. As a matter of fact, the weak-field
problem Ð whether or not there is an indefinite rise in the
phase boundary as B! 0 Ð reduces to a problem of the
existence of a metal ± insulator transition at B � 0 and T � 0.
In diluted 2D electron systems with low enough disorder, the
resistivity r strongly drops with lowering temperature,
providing an independent way of facing the issue. Given
strong temperature dependences of r, those with dr=dT > 0
( dr=dT < 0) can be associated with a metallic (insulating)
phase [19 ± 21, 75, 76]. If extrapolation of the temperature
dependences of r to T � 0 is tolerable, the curve with
dr=dT � 0 should correspond to the metal ± insulator transi-
tion. The fact that this method and the one based on
vanishing activation energy combined with vanishing non-
linearity of current ± voltage curves when extrapolated from
the insulating phase give equivalent results strongly supports
the existence of a true metal ± insulator transition in a zero
magnetic field [77] (see also Section 2.4). As long as in more-
disordered 2D carrier systems the metallic behavior
( dr=dT > 0) is suppressed (see, e.g., Refs [78 ± 85]) or
disappears entirely, it is definitely incorrect to extrapolate
those weak temperature dependences of r to T � 0 with the
aim of distinguishing between insulator and metal. Once one
of the two methods fails, it remains to be seen how to verify
the conclusion as inferred from the other method. This makes
uncertain the existence of a truemetal ± insulator transition at
B � 0 in 2D electron systems with high disorder.

2.1.4 Phase boundary oscillations. The next important point is
the oscillating behavior of the phase boundary that restricts
the insulating phase with sxy � 0 (see, for instance, Fig. 2). It
is worth noting that the oscillations persist down to the
magnetic fields corresponding to the fillings of higher
Landau levels, as indicated also by magnetoresistance
oscillations [38, 63, 67]. The oscillation period includes the
following elements. With decreasing magnetic field, the
lowest extended states follow the Landau level, then float up
in energy relative to its center, and finally merge with
extended states in the next quantum level. The last stage was
absent in the original considerations [17,18, 54, 55], thus
leading to discrepancies between experiment and theory.
Recently, theoretical efforts have been concentrated on
modifications of the global phase diagram for the quantum
Hall effect to reach topological compatibility with the
observed metal ± insulator phase diagram. It has been pre-
dicted that the spin-up and spin-down extended states in the
Landau level should merge [86, 87] (see Fig. 4a). However, as
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regards lowest extended states, the topology of the phase
diagram changes for the lowest Landau level only; moreover,
they do not float up before merging. It has been verified that
shifts of the extended states from the Landau-level centers
that are caused by disorder-induced mixing of the Landau
levels are small [88 ± 93]. Within tight-binding models, an
indication had been first obtained that the extended states
disappear [94 ± 96], which caused some criticism of the
relevance of such a lattice model to the continuum system
[97, 98]. After that, a floating up of the extended states
without merging has been found in studies [99 ± 101]. On the
contrary, Sheng andWeng [102, 103] have found amerging of
the extended states, although without an oscillating behavior
of the lowest extended state (see Fig. 4b). As for now, the
effect of the phase boundary oscillations is still far from being
fully described theoretically.

Concluding this section, I would like to make a couple of
remarks on alternative ways for determining the metal ±
insulator phase boundary. An attempt was made to spot the
phase boundary in the limit B � 0 using the sxy � e2=2h
criterion [104]. However, this particular value of sxy has no
special meaning as B! 0. An idea was put forth to relate
the minimum in the inverse compressibility to the metal ±
insulator transition [105]. However, it has been recently
shown that this minimum lies at carrier densities well above
the critical density for the percolation metal ± insulator
transition in a zero magnetic field [106]. Particularly, in
highly disordered 2D carrier systems, its position may be

close to that of the crossing point of the resistivity curves at
various temperatures [105], which formally yields overesti-
mated densities for the metal ± insulator transition because of
suppression of the metallic behavior (see Section 2.4).

2.2 Similarity of the insulating phase
and quantum Hall phases
2.2.1 Method for comparison and consequences. About a
decade ago, attention was mainly paid to the insulating
phase at low electron densities as a possible candidate for
the Wigner crystal. It was argued that its aforementioned
reentrant behavior was a consequence of the competition
between the quantum Hall effect and the pinned Wigner
crystal [38, 39]. Another certain argument was the strongly
nonlinear current ± voltage characteristics in the insulating
phase, which were attributed to depinning of the Wigner
crystal [40, 41]. Similar properties of the insulating phase in
2D electron (near n � 1=5) [42 ± 49] and 2D hole (near
n � 1=3) [50 ± 52] systems in GaAs/AlGaAs heterostructures
with relatively low disorder were also attributed to a pinned
Wigner crystal which is interrupted by the fractional quantum
Hall state. An alternative scenario was discussed in terms of
percolation metal ± insulator transition [57, 107, 108]. To
distinguish between the two scenarios, the behavior of
activation energy and current ± voltage characteristics in the
insulating phase was studied and compared to that in
quantum Hall phases [15, 16, 109].

In contrast to the low-density insulating phase, the way
for determining the current ± voltage characteristics of the
quantum Hall phases is different for Corbino and Hall bar
geometries. In the former, the dissipationless Hall current
does not contribute to the dissipative current that is
proportional to sxx, thus allowing straightforward measure-
ments of current ± voltage curves for all insulating phases. In
the latter, the two current channels are connected through
edge channels (see Section 2.3), and current ± voltage char-
acteristics correspond to quantum-Hall-effect breakdown
curves. The dissipative backscattering current I that flows
between opposite edge channels is balanced by the Hall
current across the filled Landau levels and associated with
the longitudinal voltage Vxx. As long as sxx 5 sxy, the
quantized value of sxy is a factor that allows the determina-
tion of I � sxyVxx and the Hall voltage V � Isd=sxy from the
experimental breakdown dependence ofVxx on source ± drain
current Isd. The dependence V�I � constitutes a current ±
voltage characteristic, which is equivalent to the case of
Corbino geometry [15] (see Fig. 5). Not only are the
current ± voltage curves similar for all insulating phases, but
they behave identically near the metal ± insulator phase
boundaries (see Fig. 6a). The dependence of the critical
voltage Vc on the distance from the phase boundary is close
to a parabolic law [41, 57]. The phase boundary position
determined by a vanishing Vc is practically coincident with
that determined by a vanishing activation energy Ea of
electrons from the Fermi level EF to the mobility edge Ec

(see Fig. 6b). The value of Ea is determined from the
temperature dependence of the conduction in the linear
interval of current ± voltage curves, which is activated at not
too low temperatures [110]; notice that it transforms into
variable range hopping when T! 0 (see below). The
activation energy changes linearly with the distance from the
phase boundary, reflecting the constancy of the thermody-
namic density of states near the transition point (see also
Section 2.4). The threshold behavior of the current ± voltage

Insulator

1
3

5

6

4

sxy � 2

D
is
o
rd
er
,n

i=
n

a

1=n

Insulator

sxy � 1

D
is
o
rd
er

0

1

1 2 3

b

1=n

23

Figure 4. (a) Sketch of the modified global phase diagram for the quantum

Hall effect as expected from the mean-field approximation neglecting the

Zeeman energy. The dashed line corresponds to the collapse of the

exchange-enhanced spin splitting. (Adopted from Ref. [86].) (b) Numer-

ical results for the phase diagram within a tight-binding model. (Adopted

from Ref. [103].)

February, 2005 Metal ë insulator transitions and the effects of electron ë electron interactions in two-dimensional electron systems 133



characteristics is caused by the breakdown in the insulating
phases. The breakdown occurs when the localized electrons
residing at the Fermi level gain enough energy to reach the
mobility threshold in an electric field Vc=d over a distance
given by the localization length L [15, 111]:

eVcL

d
� jEc ÿ EFj ; �1�

where d is the corresponding sample dimension. The
quantities Ea and Vc are related through the localization
length which is temperature-independent and diverges near
the transition as L�EF� / jEc ÿ EFjÿs with the exponent s
close to unity, in agreement with the theoretical value s � 4=3
in the classical percolation problem [112]. The values of the
localization length are practically the same near all metal ±
insulator phase boundaries, which indicates that even
quantitatively all insulating phases are very similar. Note
that since the localization length in Eqn (1) is small compared
to the sample dimensions, the phase boundary position
determined by the diverging localization length refers to an
infinite 2D system. As inferred from the vanishing of both Ea

and Vc at the same point (see Fig. 6b), possible shifts in the
mobility threshold due to finite sample dimensions are small,
which in turn justifies extrapolations to the limit of L!1.

The consequences of the above-considered method
include:

(i) insofar as no dramatic changes in transport properties
occur, this excludes the pinned Wigner solid as the origin for

the insulating phase at low electron densities in the available
samples of low-disordered silicon MOSFETs;

(ii) the metal ± insulator phase diagram in Fig. 2a is
verified and substantiated;

(iii) the existence of a metal ± insulator transition in zero
magnetic field is supported (see Section 2.4), and

(iv) the bandwidth of the extended states in the Landau
levels is finite.

All of these are also valid for relatively low-disordered 2D
carrier systems in GaAs/AlGaAs heterostructures with the
distinction that fractional quantum Hall phases are involved.
Nevertheless, the topology of the phase diagram remains
unchanged, including the oscillating behavior of the phase
boundary that restricts the low-density insulating phase (see
Fig. 7). Additional confirmation of the percolation transition
to the low-density insulating phase in GaAs/AlGaAs hetero-
structures was received by studying the high-frequency
conductivity [113] and time-resolved photoluminescence of
2D electrons [114], as discussed in Ref. [16].

2.2.2 Finite bandwidth of extended states. It was predicted two
decades ago that the localization length diverges as a power
law at a single energy E� falling in the center of the Landau
level: L�E� / jEÿ E�jÿs [115 ± 117]. The idea to check this
prediction based on low-temperature measurements of sxx
[118] was quickly developed to a concept of single-parameter
scaling [119]. It was suggested that the magnetoresistance
tensor components are functions of a single variable defined
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as the ratio between the dephasing length Ld�T � / Tÿp=2

(where p is the inelastic-scattering-time exponent) and the
localization length. The concept was claimed to be confirmed
by measuring the temperature dependences of the peak width
DB in rxx (or sxx) and the maximum of drxy=dB in a highly
disordered 2D electron system in InGaAs/InP heterostruc-
tures, the measurements which yielded DB / TK, where
K � p=2s � 0:4 [120]. Later on, both deviations in the power
law and different exponents in the range between K � 0:15
and K � 1 were observed for other 2D carrier systems,
different Landau levels, and various disorder strengths [65,
68, 69, 121 ± 140]. Importantly, the scaling analysis of the
experimental data in question is based on two unverified
assumptions: (i) zero bandwidth of the extended states in the
Landau levels, and (ii) constancy of the thermodynamic
density of states in the scaling range. If either assumption is
invalid, this may lead at least to underestimating the
experimental value of the exponent K.

The method based on vanishing activation energy and
vanishing nonlinearity of current ± voltage characteristics as
extrapolated from the insulating phase shows that the former
assumption is not justified. Moreover, measurements of the
rxx peakwidth as a function of temperature in low-disordered
silicon MOSFETs yield a linear dependence which extra-
polates to a finite peak width as T! 0, according to Ref. [15]
(see Fig. 8). Very similar temperature (and frequency)
dependences were observed in highly disordered 2D carrier
systems in GaAs/AlGaAs heterostructures [141, 142] and
Ge/SiGe heterostructures [66, 143]. It is noteworthy that a

similar behavior is revealed if the data from the publications
which claim the observation of scaling are plotted on a linear
rather than logarithmic scale (see, e.g., Fig. 9); finite values of
the peak width as T! 0 are even more conspicuous for the
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data of Refs [123 ± 125]. The reason for the ambiguity is quite
simple: within the limits of experimental error, it is difficult
(on a logarithmic scale it is especially difficult) to distinguish
between sublinear/superlinear fits to the data and linear fits
which do not necessarily run to the origin.

Although lack of data in most of the above-cited
experimental papers does not allow one to verify the validity
of both assumptions, it is very likely that there is no
qualitative difference between all of the discussed results. As
a matter of fact, they can be described by a linear (or weakly
sublinear) temperature dependence with a finite offset at
T � 0. Here is an alternative and simple explanation of the
temperature dependence of the rxx peak width in terms of
thermal broadening. Within a percolation picture, if the
activation energy Ea � kBT, the conduction is on the order
of the sxx maximum, so that the value of � kBT provides a
thermal shift to the effective mobility edge corresponding to
the sxx peak width [15]. Despite the fact that the concept of
thermal broadening has been basically ignored in the
literature in search for not so trivial data interpretations, it
looks as if no experimental results go beyond this favoring of
the concept of single-parameter scaling. Once the behavior of
the localization length is not reflected by the temperature-
dependent peak width in rxx, no experimental support is
provided for numeric calculations of the localization length,
which give a somewhat larger exponent s � 2 compared to
s � 4=3 in the classical percolation problem (see, e.g.,
Ref. [144]). The latter value of s, as well as the behavior of
the localization length in Fig. 6, have been recently confirmed
by measurements of the high-frequency conductivity in the
variable-range-hopping regime [138] (see Fig. 9b).

Thus, the finding of finite bandwidth of the extended
states in the Landau levels [15, 16], which is in obvious
contradiction to scaling arguments, is a firmly established
experimental result. Astonishingly, it has had no theoretical
interpretation for ten years.

2.2.3 The Hall insulator. Deep in the interior of insulating
phases and at low temperatures, the variable-range-hopping
regime occurs in which the conductivity sxx is small compared
to its peak value [112]. In this regime, it was predicted that the
deviation Dsxy of the conductivity sxy from its quantized
value in strong magnetic fields is much smaller than
sxx / exp

�ÿ �T0=T �1=2
�
[145]: Dsxy / sgxx with the expo-

nent g � 1:5; notice that this is in contrast to a straightfor-
ward linear relationship in the activation regime, as inferred
from approximately the same behavior of the rxx peak width
and the maximum of drxy=dB with a change in temperature.
Later on, finite rxy contrastedwith diverging rxx was found in
calculating the magnetotransport coefficients at T � 0 in the
insulating phase with vanishing sxx and sxy [146, 147]. Such a
behavior of rxx and rxy indicates a special quadratic relation
between conductivities:

sxy / s2xx : �2�

Moreover, it was shown that rxy is close to the classical value
(B=nsec) [148], providing arguments for the existence of aHall
insulator phase [54].

Values of rxy close toB=nsecwere experimentally found in
the low-density insulating phase, deviations from the classical
Hall line being attributed to a possible admixture of rxx [43,
63, 149 ± 154]. Thus, the distinction of the Hall insulator
phase from the quantum Hall phases Ð that is, the absence

of extended states below the Fermi level Ð becomes evident
when expressed in terms of rxx and rxy.

It was empirically found in low-disordered silicon
MOSFETs that the lowest-filling-factor peak in sxx plotted
in the (sxy; sxx)-plane is close to a semicircle centered at
(e2=2h; 0) [39, 108, 154]. The semicircle law for the lowest-n
peak was reproduced in a highly disordered 2D hole system in
a Ge/SiGe quantum well [72, 73]. It was shown in these works
that the semicircle relation originates directly from conduc-
tivity/resistivity tensor inversion:

s2xx �
�
sxy ÿ e2

2h

�2

�
�
e2

2h

�2

� 1ÿ rxye
2=h

r2xx � r2xy
; �3�

because the (narrow) sxx peak in question is located at a filling
factor just below n � 1 (see, for instance, Fig. 2) where rxy is
still close to h=e2. Although this finding is consistent with
available theories [155 ± 159], the semicircle law does not seem
universal if higher-n peaks in sxx with different heights are
involved [39, 123, 154, 160].

2.3 Edge channel effects and direct measurements
of the quantized Hall conductivity
In a magnetically quantized 2D electron system, the Landau
levels bend up at the sample edges due to the confining
potential, and edge channels form where these levels intersect
the Fermi energy (see, e.g., Ref. [161]). The natural question
arises whether the current in the quantum Hall state flows in
the bulk or at the edges of the sample. Although the Hall
conductivity sxy was not directly measured in early experi-
ments on the quantumHall effect, it seemed obvious that this
quantity corresponds to rxy, in agreement with the concept of
currents that flow in the bulk [162]; it is amatter of course that
finite sxy would give evidence for the existence of extended
states in the Landau levels [155, 161]. This concept was
challenged by the edge current model [163]. In this
approach, extended states in the bulk of a sample are not
crucial and the problem of current distributions in the
quantum Hall effect is reduced to a one-dimensional task in
terms of transmission and reflection coefficients as deter-
mined by the backscattering current at the Fermi level
between the sample edges. Importantly, if the edge current
contributes significantly to the total current, conductivity/
resistivity tensor inversion is not justified because the
conductivities sxx and sxy are related to the bulk of the 2D
electron system.

To verify whether or not the Hall conductivity is
quantized, direct measurements of sxy were necessary for
excluding a possible shunting effect of the edge currents.
Being equivalent to Laughlin's gedanken experiment [164,
165], such measurements were realized using the sample of
Corbino geometry which allows separation of the bulk
contribution to the total current [166 ± 173]. A Hall charge
transfer below the Fermi level between the boundaries of a
Corbino sample is induced by magnetic field sweep through
the generated azimuthal electric field. If sxx ! 0, no
discharge occurs allowing determination of the transferred
charge

Q � sxypr2eff c
ÿ1dB ; �4�

where reff is the effective radius. The induced voltage
V � Q=C, which is restricted due to a large shunting
capacitance C, changes linearly with the magnetic field, with

136 A A Shashkin Physics ±Uspekhi 48 (2)



a slope determined by sxy in the quantumHall states until the
dissipationless quantumHall state breaks down (see Fig. 10).
The fact that the quantization accuracy of sxy (about 1%) is
worse compared to that of rxy may be attributed to the
nonconstancy of the effective area in moderately homoge-
neous samples. Thus, the Hall current in the quantum Hall
effect flows not only at the edges but also in the bulk of the 2D
electron system through the extended states in the filled
Landau levels.

Apparently, the dissipative backscattering current in Hall
bar samples should be balanced by Hall current through the
filled Landau levels, thus resulting in a longitudinal potential
drop [174]. This point makes a significant contribution to the
edge current model.

From an experimental viewpoint, all edge channel effects
proceed from slow equilibration (overmacroscopic distances)
between the electrochemical potentials of different edge
states, including the state in the bulk of a sample. As long as
such an equilibration occurs on the edges at the Fermi level,
the applicability of the edge state model is justified. The
approach accounts for the phenomena observed in conven-
tional transport experiments, which include nonlocal resis-
tance and effects related to contacts/reservoirs (see, e.g.,
Ref. [175]). However, particular potential profiles at the
edge and current distributions can be probed only using
nondestructive spatially resolved imaging techniques [176 ±
194]; notice that many of the so-revealed inhomogeneous
samples show quite good magnetotransport characteristics.
Contrary to standard considerations of the edge channels in
terms of skipping orbits for a confining potential that sharply
changes over the magnetic length lB � ��hc=eB�1=2, it turned
out that in most samples the potential profile at the edge is
smooth and spansmuch larger distances than lB. Edge regions
corresponding to approximately 10-mm scale of a confining
potential were visualized in Hall photovoltage optical
imaging experiments on standard Hall bar samples [183] (see
Fig. 11a). Since the Hall electric field is nearly constant, even
if some field enhancement occurs near the edges [176], the
edge current contribution can be appreciable depending on
the particular sample.

For a soft confining potential, edge channels are also
referred to as compressible and incompressible strips whose

spacing is determined by the electron density gradient [195].
This is very similar to the long-standing phenomenon of Hall
current pinch: given electron density gradients, the Hall
current basically flows through narrow channels (or incom-
pressible strips) determined by the minimal sxx, their position
in the sample being controlled, for instance, by a magnetic
field [181, 182, 196 ± 199]. When located at the edge, the pinch
ofHall current becomes identical with the subject broached in
Ref. [195]. The Hall current channels at the edge of a sample
were imaged using a single-electron transistor as a probe for
the local sxx [184] (see Fig. 11b). Applying a negative voltage
to a side gate leads to a shift in the edge of the 2D electron
system towards the probe, thereby creating a line scan of the
local sxx across the sample edge. Vanishing sxx is indicated by
enhanced fluctuations in the feedback signal, the feedback
circuit being used to keep the current through the single-
electron transistor constant by controlling its voltage relative
to the 2D electron system.

With respect to the preceding subsections, the insignif-
icance of edge channel effects in transport experiments is
verified in the usual way by coincidence of the results
obtained in Hall bar and Corbino geometries.

2.4 True zero-field metal ± insulator transition
and phase boundary in parallel magnetic fields
As has been discussed above, the existence of extended states
in quantizing magnetic fields was established by two
independent experimental methods: (i) quantization of sxy,
and (ii) vanishing activation energy and vanishing nonlinear-
ity of current ± voltage characteristics as extrapolated from
the insulating phase. Theory is generally in agreement with
this evidence, even though there are unresolved problemswith
finite bandwidth of the extended states in the Landau levels.
In contrast, no extended states are expected in a zeromagnetic
field, at least for weakly interacting 2D electron systems. The
second experimental criterion, however, leads to the opposite
conclusion, although it does not have absolute credibility
alone. To sort it out, further support by independent
experimental verifications is needed.

Alternative criterion is based on analysis of the tempera-
ture dependences of the resistivity in the fieldB � 0. Provided
they are strongly varied, those with positive (negative)
derivative dr=dT are indicative of a metal (insulator) [19 ±
21, 75, 76]; note that in the vicinity of the transition, r�T�
dependences obey the scaling law with the exponent K � 1,
which is consistent with the concept of thermal broadening/
shift by the quantity � kBT of the effective mobility edge in
the insulating phase (see Section 2.2). If extrapolation of r�T �
to T � 0 is valid, the critical point for the metal ± insulator
transition is given by dr=dT � 0. In a low-disordered 2D
electron system in silicon MOSFETs, the resistivity at a
certain electron density shows virtually no temperature
dependence over a wide range of temperatures [200 ± 202]
(see Fig. 12a). This curve separates those with positive and
negative derivative dr=dT nearly symmetrically at tempera-
tures above 0.2K [203]. Assuming that it remains flat down to
T � 0, one can obtain the critical point nc which corresponds
to a resistivity r � 3h=e2 [31].

Recently, these two criteria have been applied simulta-
neously to the 2D metal ± insulator transition in low-
disordered silicon MOSFETs [77, 202]. In a zero magnetic
field, both methods yield the same critical density (see
Figs 12b and 13b). Since one of them is temperature-
independent, this equivalence strongly supports the existence
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Figure 10. The induced voltage in a Corbino sample of a GaAs/AlGaAs

heterostructure in up- and down-sweeps of the magnetic field. Also shown

by straight lines are the expected slopes for n � 2=3, 1, 2, 3, and 4. (Taken

from Ref. [168].)
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of a true metal ± insulator transition at B � 0. This also
bolsters confidence that the curve with the zero derivative
dr=dT will remain flat (or at least will retain finite resistivity
value) down to zero temperature. Additional confirmation in
favor of a true zero-field metal ± insulator transition is
provided by magnetic measurements as described in the next
section.

In the presence of a parallel magnetic field Bk, the
outcome is very different. With increasing parallel field, the
transition point nc�Bk� determined from the vanishing
nonlinearity and activation energy shifts approximately
linearly to higher electron densities, being saturated above a
critical field Bc � 3 T at a constant value which is approxi-
mately 1.5 times higher than that in a zero magnetic field.
Note that a similar suppression of the metallic state was
observed using a cutoff criterion r � 100 kO [108]. In the
metallic phase, the saturation of the resistance with a parallel
magnetic field testifies to the onset of full spin polarization of
the 2D electrons, as inferred from an analysis of Shubnikov ±
de Haas oscillations in tilted magnetic fields [204 ± 206]. One
might expect that the 2D electron system is spin-polarized for
parallel fieldsBk > Bc, and that the observed phase boundary
shift exhibits a spin effect. At the so-determined critical
density nc�Bk�, the exponential divergence of the resistivity
as T! 0 dies out, although dr=dT remains negative at least
for Bk > Bc (see Figs 12c and 13b). In a magnetic field,

contrary to the zero-field case, not only are the r�T � curves
asymmetric about themiddle curve in Fig. 12c, but all of them
have negative derivatives dr=dT in the entire temperature
range, although the values of r are comparable to those in the
B � 0 case. The metallic ( dr=dT > 0) temperature depen-
dence of the resistivity, observed at higher electron densities in
parallel magnetic fields, is weak, so that the derivativemethod
does not yield a critical density for Bk > Bc. Its failure leaves
uncertain the existence of a true metal ± insulator transition in
a parallel magnetic field.

A very similar conclusion holds for 2D electron systems
with higher disorder in a zero magnetic field (see Section 2.1).
In this case, the metallic (dr=dT > 0) behavior is also
suppressed [78 ± 85] or disappears entirely, and extrapolation
of the weak r�T � dependences to the limit T � 0 is not
justified, invalidating the derivative criterion for determining
the critical point of the metal ± insulator transition (see
Fig. 13c). It is noteworthy that, owing to its simplicity, the
derivative method is widely used when describing metallic
(dr=dT > 0) and insulating (dr=dT < 0) temperature depen-
dences of resistivity in a restricted temperature range. To
avoid confusion with metallic and insulating phases, how-
ever, one should employ alternative methods for determining
the metal ± insulator transition point. Such methods, includ-
ing a vanishing activation energy and noise measurements,
have been applied to highly disordered 2D carrier systems
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[202, 207, 208]. Being similar, they yield lower critical
densities for the metal ± insulator transition, compared to
those obtained formally using the derivative criterion. This
simply reflects the fact that the metallic ( dr=dT > 0)
behavior of the resistivity is suppressed, the critical density
nc increasing naturally with disorder strength (see Fig. 1).

3. Many-body phenomena
in diluted 2D electron systems

The resistivity drop with decreasing temperature in a low-
disordered 2D electron system in silicon MOSFETs in a zero
magnetic field turned out to be stronger compared to the
metallic r�T� expected from the temperature-dependent
screening theories [209 ± 212] and was attributed to a
manifestation of strong electron ± electron interactions [19].
Recently, the underlying physics of the effect has been
clarified. A greatly enhanced ratio gm between the spin and
the cyclotron splittings has been found at low electron

densities, thus indicating that the 2D system behaves well
beyond the weakly interacting Fermi liquid [22]. Experimen-
tal results have also shown that it is the effective mass that
sharply increases at low electron densities and is related to the
anomalous rise in the resistivity with temperature [28]. In view
of quantum phase transitions at T � 0, while for the
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insulating phase a transition is signaled by the diverging
localization length, the interaction-enhanced mass may be a
similar indicator for the metallic phase.

3.1 Increase in the product gm near
the metal ± insulator transition and
possible ferromagnetic transition
3.1.1 Beating pattern of Shubnikov ± de Haas oscillations.
Electron ± electron interactions give rise to a renormalization
of the Fermi-liquid parameters, including the effective mass
and g factor [3]. Tracing Shubnikov ± de Haas oscillation
minima in a 2D electron system in tilted magnetic fields, it is
easy to determine the ratio gm between spin and cyclotron
splittings, which is proportional to the spin susceptibility w. In
the range of high electron densities n5 2� 1011 cmÿ2 in
siliconMOSFETs, moderate enhancements of gm by a factor
of 4 2:5 were observed [204, 213, 214], which is consistent
with the concept of a weakly interacting Fermi liquid.

At low electron densities in low-disordered silicon
MOSFETs placed in perpendicular magnetic fields, the
Shubnikov ± de Haas oscillation minima corresponding to
the cyclotron splittings (n � 4, 8, 12, 16, . . .) were found to
disappear as the electron density is reduced [22] (see Fig. 14).
Disregarding the minimum for the valley splitting at n � 1,

only minima corresponding to the spin splittings (n � 2, 6, 10,
14, . . .) remain close to the metal ± insulator transition which
occurs in the samples studied at nc � 8� 1010 cmÿ2. These
results disclose that as one approaches the metal ± insulator
transition, the cyclotron gaps (which are equal to the
difference between the cyclotron and spin splittings, ignoring
the valley splitting) become smaller than the spin gaps and
eventually vanish. The condition for vanishing is an equality
of the spin and the cyclotron splittings, or gm=2me � 1 (where
me is the free electron mass) which is higher by more than a
factor of 5 than the value of this ratio in bulk silicon:
gm=2me � 0:19. The phenomenon cannot be explained in
the framework of themany-body enhancement of spin gaps in
a perpendicular magnetic field [215 ± 219] because the dis-
appearance of the cyclotron gaps over a wide range of
magnetic field intensities would require an enhanced g factor
which is independent of the magnetic field. This implies that
the product gm is nearly field-independent and approxi-
mately equal to its enhanced many-body zero-field value
(see Section 3.2). Thus, the spin susceptibility w / gm is
greatly enhanced near the metal ± insulator transition.

Similar experiments in tilted magnetic fields cannot
provide high accuracy in determining the behavior of the
renormalized gm at low electron densities because there are
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too few Shubnikov ± de Haas oscillations near the metal ±
insulator transition. Nevertheless, high enough accuracy was
attained in experiments on the parallel-field magnetotran-
sport.

3.1.2 Scaling the parallel-field magnetoresistance and other
procedures. As the thickness of the 2D electron system in
siliconMOSFETs is small compared to themagnetic length in
accessible fields, the parallel magnetic field couples largely to
the electrons' spins, while the orbital effects are suppressed.
The resistance in dilute silicon MOSFETs was found to be
isotropic with respect to the in-plane magnetic field and rise
steeply with the field, tending to saturation at a constant value
above a critical field Bc which depends on the electron density
[220 ± 222] (seeFig. 15a).Ashasbeenmentioned inSection2.4,
the saturation field Bc corresponds to the onset of full spin
polarization of the electron system [204 ± 206].

It was found in a low-disordered 2D electron system in
silicon MOSFETs that the normalized magnetoresistivity
measured at different electron densities in the low-tempera-
ture limit in which r�Bk� becomes temperature-independent
collapses onto a single curve when plotted as a function of
Bk=Bc, where the scaling parameter Bc is normalized to
correspond to the saturation/polarization field [23] (see
Figs 15b, c). The scaling breaks down when one approaches
the metal ± insulator transition where the magnetoresistivity
strongly depends on temperature even at the lowest experi-
mentally achievable temperatures. Note that the observed
scaling dependence is described reasonably well by the
theoretical dependence of r=r�0� on the degree of spin
polarization, x � gmmBBk=p�h2ns � Bk=Bc, which arises due
to the spin-polarization-dependent screening of a random
potential [223]. The field Bc is proportional, with a high
degree of precision, to the deviation in the electron density
from its critical value: Bc / �ns ÿ nc� (see Fig. 16a). The
procedure used provides high accuracy for determining the
functional form of Bc�ns�, even though the absolute value of
Bc is determined not so accurately. Since the considerable
increase in the product gm at low electron densities (see
Fig. 16b), which follows from the Bc�ns� dependence, is in
agreement with the enhanced gm obtained from Shubnikov ±
de Haas oscillations, the band tail of localized electron states
is small and the clean limit shows up. Therefore, the tendency
for Bc to vanish at a finite electron density nw close to nc gives
evidence in favor of the existence of a ferromagnetic
transition in this electron system, thus indicating that the
metal ± insulator transition is driven by interactions [23]. It
signifies that the vicinity of either tricritical point is reached in
the phase diagram of Fig. 1 (see Section 3.3).

A similar conclusion about possible spontaneous spin
polarization was drawn based on a scaling of magnetocon-
ductivity data in similar samples at different electron densities
and temperatures [24]. Results for the greatly enhanced gm
were corroborated in detailed studies of Shubnikov ± de Haas
oscillations in dilute silicon MOSFETs with higher disorder
in tilted magnetic fields [224] (see Fig. 16c). The agreement
among all three sets of data is remarkable, especially if one
takes into account that different teams used different
experimental procedures, dissimilar samples, and various
field/spin-polarization ranges [25]. This also indicates that
the electron density nw � 8� 1010 cmÿ2 is sample-indepen-
dent, in contrast to the critical density nc for the metal ±
insulator transition. Obviously, for the spin susceptibility
w / gm to diverge at ns � nw, the extrapolation of Bc�ns� to
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zero must be valid. To verify its validity, accurate data at
lower densities, lower temperatures, and on much less
disordered samples are needed [25, 225, 226].

Thermodynamic investigations of the spin susceptibility,
based onmeasurements of the chemical potential change with
parallel magnetic field, dm=dBk, were performed in highly
disordered silicon MOSFETs, as inferred from the consider-
ably higher densities for the metal ± insulator transition [227]
(see Fig. 16d, cf. Fig. 16c). As compared to the clean regime,
the obtained dependence of the polarization field Bc on ns in
Fig. 16d is shifted to appreciably higher electron densities
owing to local moments in the band tail [222, 227 ± 229]. The
band tail effects thus become crucial in parallel field
experiments on highly disordered 2D electron systems.

3.1.3 Other 2D carrier systems. A similar enhancement of the
spin susceptibility at low electron densities was found in dilute
GaAs/AlGaAs heterostructures through the analysis of the
Shubnikov ± de Haas oscillations [27] (see Fig. 17a). The
thickness of the 2D carrier system in GaAs/AlGaAs hetero-
structures is relatively large, which leads to an increase in the
effective mass with a parallel magnetic field [27, 230 ± 234]. As
a result, the magnitude of the polarization field, obtained
from the parallel-field magnetoresistance, becomes strongly
reduced as the electron density increases. Disregarding this

reduction, both data sets allow determination of the Bc�ns�
dependence whose critical behavior is not so evident, possibly
because the lowest experimentally reached densities are still
too high. Due to the lower effective mass, the higher
dielectric constant, and the absence of valley degeneracy,
the same interaction strength r�s � Eee=EF in the 2D electron
system in GaAs/AlGaAs heterostructures is likely to be
achieved at densities about two orders of magnitude lower
than in silicon MOSFETs. Therefore, the existence of a
critical region is expected for electron densities ns < 109 cmÿ2

which have not yet been accessed in currently available
samples of GaAs/AlGaAs heterostructures.

The orbital effects in parallel magnetic fields can be
avoided by using narrow quantum wells. A 2D electron
system in narrow AlAs quantum wells is similar to that in
siliconMOSFETs, except that the valley degeneracy is absent
in the former [235]. The critical region expected for densities
ns < 2� 1010 cmÿ2 is well exceeded by the lowest attainable
electron densities in narrow AlAs quantum wells with high
disorder (see Fig. 17b). Note that the data points relating to
the insulating phase reflect the physics of localmoments in the
band tail [222, 227 ± 229], which is different from that in the
metallic phase.

Being very similar to silicon MOSFETs, a 2D electron
system in Si/SiGe quantum wells differs by the higher
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dielectric constant and the presence of a spacer. Moreover, it
is distinguished from other systems by its remote-doping
scattering, as indicated by the small parallel-field magnetore-
sistance [236]. A similar increase in the spin susceptibility at
low densities was observed in this electron system, the lowest
achievable densities also being well above the expected critical
region for ns < 4� 1010 cmÿ2 [237]. Thus, in all the studied
dilute 2D electron systems other than silicon MOSFETs, too
high disorder and, hence, too high electron densities for the
metal ± insulator transition (see Fig. 1) mask possible critical
behavior of the spin susceptibility.

3.2 Determining separately the effective mass and g factor
3.2.1 Slope of the metallic temperature dependence of con-
ductivity in a zero magnetic field. The great enhancement of
the spin susceptibility w / gm at low electron densities can be
caused, in principle, by an increase in either g or m, or both.

The effective mass and g factor were determined separately
using the recent theory of temperature-dependent corrections
to conductivity due to electron ± electron interactions [238].
Note that its main advantage compared to the temperature-
dependent screening theories [209 ± 212] is that spin exchange
effects are treated carefully in the new theory. At intermediate
temperatures, the predicted dependence s�T� shows up as a
linear function

s�T �
s0
� 1ÿ A�kBT ; A� � ÿ �1� 8F a

0 � gm
p�h2ns

; �5�

where s0 is the value obtained by extrapolating the linear
portion of the s�T � dependence to T � 0, and the numerical
factor 8 is expected for temperatures lower than the valley
splitting in silicon MOSFETs. The slope A� is determined by
the Fermi liquid constants F a

0 and F s
1 that define the

renormalization of g and m: g=g0 � 1=�1� F a
0 �, and

m=mb � 1� F s
1 . Using these relationships one obtains both

g and m from the data for the slope A� and the product gm
[28].

For sufficiently small deviations js=s0 ÿ 1j, the tempera-
ture dependence of the normalized conductivity s=s0 at
different electron densities above the critical density nc for
the metal ± insulator transition is linear over a wide enough
interval of temperatures (see Fig. 18a). The inverse slope 1=A�

and the quantity mBBc are close to each other in a wide range
of electron densities (see Fig. 18b).Moreover, the low-density
data for 1=A� are approximated well by a linear dependence
which extrapolates to the critical density nc in a way similar to
the behavior of Bc. This finding immediately points to
approximate constancy of the g factor at low electron
densities, in accord with the functional form of the slope A�

in expression (5).
Renormalizations g=g0 and m=mb as functions of the

electron density, determined from this analysis, corroborate
earlier results produced at high densities but are striking in the
limit of low electron densities (see Fig. 18c). Over the high-ns
region, the enhancement of both g and m is relatively small,
both quantities increasing slightly with decreasing electron
density in agreement with earlier data [239]. Also, the
renormalization of the g factor is dominant compared to
that of the effective mass, in agreement with theoretical
studies [240 ± 242]. In contrast, over the low-ns region, the
renormalization of the effective mass increases sharply with
decreasing density, while the g factor remains nearly constant.
Hence, it is the effective mass, rather than the g factor, that is
responsible for the drastically enhanced spin susceptibility
near the metal ± insulator transition.

Normally, no difference is assumed between the interac-
tion parameter r�s � Eee=EF and the Wigner ± Seitz radius
rs � 1=�pns�1=2aB. The finding of the greatly enhanced
effective mass breaks the equivalence of r�s and rs, because
they are connected through the ns-dependent mass:
r�s � 2�m=mb�rs, where the numerical factor 2 comes from
the valley degeneracy in siliconMOSFETs. Therefore, as one
approaches the metal ± insulator transition in low-disordered
silicon MOSFETs, the interaction parameter r�s grows much
more rapidly than rs, reaching the values of r

�
s > 50 [28].

In similar experimental verifications of the theory [238] on
another 2D carrier systems, much higher values of F a

0

compared to the expected limit F a
0 � ÿ1 for the Stoner

instability were found for the metallic slope of s�T�
dependences [243 ± 246]. The relatively small enhancement
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of the g factor indicates that the spin exchange effects are not
very pronounced. From an experimental point of view, this
raises a problem of comparison between different theories.

Formally, even if there are possible uncertainties in the
coefficients entering theoretical relationships, both the
temperature-dependent screening theories [209 ± 212] and
the theory developed in work [238] describe reasonably well
the available experimental data [247, 248]. To discriminate
between these two, more detailed comparison with experi-
ment is needed. Note that the slope A� in Eqn (5) is
proportional to the effective mass in all theories, so that the
conclusion about the greatly enhanced effective mass at low
electron densities in low-disordered silicon MOSFETs is
basically independent of a particular theory.

3.2.2 Temperature-dependent amplitude of the weak-field
Shubnikov ± de Haas oscillations. The claim about a sharp
increase in the effective mass was verified based on the
analysis of the temperature dependence of the Shubnikov ±
de Haas oscillations. The approach was similar to that used
by Smith and Stiles [214], but it was extended to much lower
electron densities and temperatures [29]. The r�T� depen-
dence becomes saturated in the low-temperature limit, and
the Lifshitz ±Kosevich formula with a constant Dingle
temperature for the weak-field oscillation amplitude of the
normalized resistance:

A�T �
A0

� 2p2kBT=�hoc

sinh�2p2kBT=�hoc� ;

A0 � 4 exp

�
ÿ 2p2kBTD

�hoc

�
; �6�

where oc � eB?=mc is the cyclotron frequency, and TD is the
Dingle temperature, describes damping of the Shubnikov ±
de Haas oscillations with temperature (see Fig. 19a). The
effective mass as a function of electron density, determined by
this method, agrees well with the data obtained by the
procedure described in the preceding section (see Fig. 19b).
The agreement between the results produced using two
independent methods supports the validity of both and
justifies the applicability of formulas (6) to the strongly
interacting 2D electron system in silicon MOSFETs.

To probe a possible contribution from the spin exchange
interactions to the effective mass enhancement, a parallel
magnetic field component was introduced to align the
electrons' spins. Within the limits of experimental accuracy,
the effective mass does not depend on the degree of spin
polarization x � �B2

? � B2
k�1=2=Bc (see Fig. 19c). Therefore,

the m�ns� dependence is robust, and the origin of the mass
enhancement has no relation to the electrons' spins and
exchange effects.

A similar analysis of the Shubnikov ± de Haas oscillations
in dilute silicon MOSFETs at high temperatures T > 0:3 K,
where the low-density resistivity (and, hence, TD) crucially
depends on temperature, allows an evaluation of the effective
mass as well as the g factor which is calculated from the
known value of gm [224] (see Fig. 20). The two data sets are
obtained based on unlike assumptions of a temperature-
independent Dingle temperature and that of a Dingle
temperature that increases linearly with temperature. Too
large a scatter in the results makes it impossible to establish
which quantity (either g or m, or both) is responsible for the
great enhancement of the spin susceptibility. Note that an
attempt to improve the evaluation of the effective mass by
justifying the application of the Lifshitz ±Kosevich formula
with a temperature-dependent TD [249] would lead, on the
contrary, to bigger deviations of the estimated values of mass
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from the results obtained in the low-temperature limit (cf.
Figs 19b and 20).

An analysis of the temperature-dependent amplitude of
Shubnikov ± de Haas oscillations in a dilute 2D electron
system in narrow AlAs quantum wells yielded moderate
enhancements of the effective mass as well as the g factor
determined from the known gm [235]. The observed behavior
of g andm is similar to that found at high electron densities in
silicon MOSFETs. This indicates that the valley origin of the
greatly enhanced effective mass at low electron densities in
silicon MOSFETs is not very likely, even though the lowest
accessible electron densities in narrow AlAs quantum wells
are still too high. Interestingly, the observed values of g=g0 in
the limit of high electron densities in AlAs quantum wells
exceed appreciably the value of g=g0 � 1, as well as those
found in silicon MOSFETs. The increase in the spin
susceptibility with the strain-induced valley polarization,
observed at high electron densities in AlAs quantum wells
[250], is likely to be connected with an increase in the g factor.

3.2.3 Spin and cyclotron gaps in strong magnetic fields. The
results for the great enhancement of the effectivemass are also
consistent with the data for spin and cyclotron gaps, which
were obtained by magnetocapacitance spectroscopy. The
experimental procedure is based on determination of the
chemical potential jumps in a 2D electron system, when the
filling factor traverses the gaps in the spectrum. A dip in the
magnetocapacitance at the integer filling factor is directly
related to a jump of the chemical potential across a
corresponding gap in the spectrum of the 2D electron system
[251, 252]:

1

C
� 1

C0
� 1

Age2 dns=dm
; �7�

where C0 is the geometric capacitance, and Ag is the sample
area. The chemical potential jump is determined by integrat-
ing the magnetocapacitance over the dip in the low-tempera-
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ture limit where the magnetocapacitance saturates and
becomes independent of temperature [253]. It should be
emphasized that conventional measurements of the activa-
tion energy yield a mobility gap which may be different from
the gap in the energy spectrum. This is a serious disadvantage
as compared to the direct method of magnetocapacitance
spectroscopy.

The g factor determined by this procedure is close to its
value in bulk silicon and does not change with the filling
factor [254], in disagreement with the theory of exchange-
enhanced gaps [215 ± 219]. The cyclotron splitting corre-
sponds to the effective mass that is greatly enhanced at low
electron densities (see Fig. 21). Thus, the spin exchange effects
are still not pronounced in strong magnetic fields.

It is worth noting that in contrast to the g factor, the valley
gap is greatly enhanced at the lowest filling factors n � 1 and
n � 3 and oscillates with n [253, 254]. This is similar to the
behavior of the spin gap in GaAs/AlGaAs heterostructures
[255, 256], both of the gaps increasing linearly with a growth
of the perpendicular magnetic field.

3.3 Wigner crystal or ferromagnetic Fermi liquid,
as analyzed from theoretical approaches
As has been mentioned above, the experimental results
obtained in low-disordered silicon MOSFETs indicate that
the metal ± insulator transition is driven by electron interac-
tions on the metallic side. In contrast, on the insulating side
this is still a classical percolation transition with no dramatic
interaction effects. One then concludes that the vicinity of
either tricritical point in the phase diagram in Fig. 1 is
reached. This is consistent with the fact that the interaction
parameter r�s at low electron densities exceeds the theoretical
estimate for the onset of Wigner crystallization, even though

it is not yet clear whether or not electron crystallization
expected in the low-density limit is preceded by an inter-
mediate phase like a ferromagnetic Fermi liquid.

To address the problem, two approaches have been
formulated. The first one exploits the Fermi liquid model,
extending it to the region of relatively large r�s . Its outcome is
that the renormalization of g factor is large compared to that
ofm [240 ± 242]. In the limiting case of high r�s , onemay expect
a divergence of the g factor that corresponds to the Stoner
instability. These predictions are in contradiction to the
experimental evidence. First, the dilute system behavior in
the regime of the greatly enhanced susceptibility Ð close to
the onset of spontaneous spin polarization and Wigner
crystallization Ð is governed by the effective mass, rather
than the g factor, through the interaction parameter r�s . And
second, the insensitivity of the effective mass enhancement to
spin exchange effects cannot be accounted for. This discre-
pancy diminishes somewhat the chances for the occurrence of
a ferromagnetic Fermi liquid that precedes electron crystal-
lization. In principle, should the spin exchange be small, the
spin effects may still come into play closer to the onset of
Wigner crystallization, where the Fermi energy may continue
dropping as caused by mass enhancement.

The other theoretical approach is not based on a Fermi
liquid. In analogy with He3, the existence of an intermediate
phase between the Fermi liquid and the Wigner crystal,
caused by a partial separation of the uniform phases, was
predicted [257]. It was also foretold that the renormalization
of m near the crystallization point is dominant compared to
that of g and that the effective mass may diverge at the
transition point and should increase with the magnetic field
intensity [258]. The significant increase in the effective mass
near the electron crystallization point also follows from
Gutzwiller's variational method [259] which was applied to
silicon MOSFETs [260], and from the dynamical mean-field
theory [261]. Although the sharp increase in the mass is in
agreement with the experimental results, the suggested
dependence of m on the degree of spin polarization is not
confirmed by the available data.

Concluding this section, I would like to make some more
remarks on the Fermi-liquid-related concepts. An idea was
expressed to connect the observed effective mass enhance-
ment to possible formation of a coupled-valley state in
bivalley electron systems [262, 263]. Still, it is at odds with
the fact that similar results were obtained for single-valley
electron systems. An assumption was made that a plateau at
the Fermi energymay form in theE�k� spectrum, thus leading
to a diverging effective mass (see, e.g., Ref. [264]). As for now,
however, the dependence of the effective mass on tempera-
ture, resulting from the plateau formation, is not consistent
with the experimental findings. A prediction that the electron
density, at which the effective mass exhibits a sharp increase,
is sensitive to disorder [265] was not confirmed by the
experimental data from available samples. After all, one can
simply follow a classical way of phenomenologically introdu-
cing Fermi-liquid parameters as the physical observables to
be determined in experiment.

4. Conclusions

A critical analysis of the available experimental data for 2D
electron systems shows that the consequences of the scaling
theory of localization are not confirmed. The main points to
be addressed by the theorists are the problem of finite
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Figure 21. Difference of the normalized values of cyclotron and spin gaps

in a perpendicular magnetic field versus electron density for silicon

MOSFETs. The level width contribution is indicated by systematic error

bars. Also shown for comparison is the value of (me=mÿ g) determined

from the data of Ref. [28] (dashed line), Ref. [29] (dotted line), and

Ref. [214] (dot-and-dash line), as well as by using the band electron mass

and the g factor in bulk silicon (solid line). (Taken from Ref. [254].)
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bandwidth of the extended states in the Landau levels and
that of a true metal ± insulator transition in a zero magnetic
field, whose existence is strongly supported in low-disordered
2D electron systems, but remains uncertain in 2D electron
systems with high disorder. Also, there is still no theoretical
description of the oscillations of the metal ± insulator phase
boundary as a function of a perpendicular magnetic field.

In the past four years, significant progress has been made
in understanding the metallic state in strongly interacting
low-disordered 2D electron systems. This state is remarkable
for the strong metallic temperature dependence of the
resistivity, caused by electron ± electron interaction effects.
The spin susceptibility measured in low-disordered silicon
MOSFETs using different experimental procedures shows a
sharp increase and possible divergence at a finite sample-
independent electron density nw close to the critical density nc
for the metal ± insulator transition. This indicates that the
metal ± insulator transition in clean 2D systems is driven by
interactions. Unlike the Stoner instability, the increase in the
spin susceptibility is caused by the enhanced effective mass
rather than the g factor. The effective mass does not depend
on the degree of spin polarization, so that the mass
enhancement is not due to spin exchange. A similar increase
in the spin susceptibility was observed in other 2D carrier
systems. It remains to be seen whether or not this increase
indicates the occurrence of a spontaneous spin polarization at
a finite carrier density.

I am grateful to I L Aleiner, M W C Dharma-wardana,
V T Dolgopolov, MM Fogler, V F Gantmakher, D Heiman,
S V Kravchenko, D N Sheng, and A Widom for valuable
discussions. The author is supported by the Russian Founda-
tion for Basic Research and the RF Ministry for Education
and Science.
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