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Abstract. Basic aspects of the subject and methodology for a
new and rapidly developing area of research that has emerged at
the intersection of physics and control theory (cybernetics) and
emphasizes the application of cybernetic methods to the study of
physical systems are reviewed. Speed-gradient and Hamilto-
nian solutions for energy control problems in conservative and
dissipative systems are presented. Application examples such as
the Kapitza pendulum, controlled overcoming of a potential
barrier, and controlling coupled oscillators and molecular sys-
tems are presented. A speed-gradient approach to modeling the
dynamics of physical systems is discussed.

1. Introduction. Physics and cybernetics

The exchange of matter and exchange of energy are the two
types of interaction between a system and the external

A L Fradkov Institute for Problems of Mechanical Engineering,
Russian Academy of Sciences,

Bol’shoi prosp. 61, Vasil’evskii Ostrov, 199178 St. Petersburg,
Russian Federation

Tel. (7-812) 321 47 66. Fax (7-812) 321 47 71

E-mail: alf@control.ipme.ru

Received 20 August 2004, revised 30 November 2004
Uspekhi Fizicheskikh Nauk 175 (2) 113—138 (2005)
Translated by E Yankovsky; edited by A M Semikhatov

medium commonly studied in physics. In the second half of
the 20th century, attention focussed on a third type of
interaction, the exchange of information. The relation
between information and other characteristics of a physical
system has been discussed in the works of Szillard [1], Gabor
[2], Brillouin [3], R L Stratonovich [4, 5], and others [6—8]. In
1994, Uspekhi Fizicheskikh Nauk published an article by
B B Kadomtsev, “Dynamics and information’ [9], in which
the properties of physical systems capable of exchanging
information with the external medium were analyzed in
detail (in Ref. [9], such systems were called informationally
open). The exchange of information substantially enriches the
class of possible behaviors of the system and poses new
problems, whose solutions have been recently studied by
many researchers (e.g., see Refs [10—13]). In particular,
researchers have been studying aspects of transferring and
processing information in quantum systems. The results of
these studies have been used to develop the principles
regarding the design and functioning of quantum computers
[13, 14].

At the same time, Kadomtsev concluded, first in his article
[9] and later in his book [10], that the study of the relationships
between the dynamics and information in physical systems
constitutes only the first step; further studies must allow not
only for statistical laws of information transfer but also for
the goals and ways of using such transfer in the system. In
particular, he noted that “one should go further and study the
hierarchization of structures, the formation of structures with
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memory, the feasibility of acquiring information from out-
side, storing it in the memory, and using information to
control and process the stored information with the aim of
achieving optimal control” [9].

The decade that has passed since the publication of article
[9] has proven the validity of this prognosis. The number of
publications devoted to aspects of control in physical systems
or, in a broader sense, to the application of cybernetic
methods in physics has soared. The present review is devoted
to a discussion of some results in this area of research.

Cybernetics has a well-defined date of birth: the day in
1948 when book [15] by US mathematician Norbert Wiener
(1894 —1964) was first published. Wiener defined cybernetics
as “‘the science of control and communications in the animal
and machine.” Today, cybernetics is understood as control
theory in a broad sense, while cybernetic methods incorporate
not only control methods but also methods for estimating
variables and parameters of systems, methods of filtering,
optimization, pattern recognition, etc.

During the last decades, control theory has rapidly
developed in connection with engineering. Nevertheless,
cybernetic terms rarely appeared in the leading physics
journals and the effect of cybernetics on physics has been
practically nil. This comes as no surprise, because the two
sciences are very different: physics, and mechanics in
particular, is a classical descriptive science, while cybernetics
(control theory) is “in a certain sense a paradigm of
prescriptive sciences” [16]. This means that while the goal of
physics is to study and describe systems, the goal of
cybernetics is to transform the systems with the aim of
forming prescribed behavior.

We note that although automatic and automated
systems of measurement and control have been used in
experimental physical research for a long time and a
modern physical experiment cannot be conducted without
automatics, control usually plays an auxiliary role, ensuring
that the experimental parameters are kept within prescribed
limits. Here, there is certainly no new relationship between
physics and control theory, even when the use of cybernetic
methods reveals new theoretical results and essentially new
physical effects.

The situation changed dramatically in the 1990s with the
beginning of the rapid development of two new areas of
research: ‘controlling chaos’ and ‘controlling quantum
systems’. The history of controlling chaos is especially
graphic. In 1990, Physical Review Letters published an article
by E Ott, C Grebogi, and J A Yorke of the University of
Maryland (USA), which was titled “Controlling chaos” [17].
The response to the article was a real upsurge in publica-
tions. According to the Science Citation Index, by the
beginning of the 21st century, the overall yearly number of
publications in this field exceeded 400 papers, with the total
number exceeding 3000. In their paper, Ott et al. stated that
even weak control in the form of feedback applied to a
nonlinear (chaotically vibrating) system may dramatically
alter the dynamics and properties of the system, e.g., chaotic
motion may transform into periodic. This paper caused an
avalanche of publications in which experimentally, and very
often via computer simulation, it was shown how control
(with or without feedback) can affect the behavior of
various real and model physical systems. The method
became known as the Ott—Grebogi—Yorke (OGY)
method, and the number of citations of Ref. [17] in 2002
exceeded 1300. Most papers on this topic are published in

physics journals, and the authors of many studies are
physicists. Therefore, there is no doubt that the new area
of research belongs to physics. The development of control
methods for chaotic processes has been stimulated by the
new demands of the emerging applications in laser and
chemical technologies, communication techniques, biology,
and medicine.

We note that in the 1980s, in papers published by
researchers from Moscow State University, it was shown
that chaotic processes can be transformed into periodic
processes by applying an external harmonic excitation to the
system, which can be interpreted as feedforward control in the
system (e.g., see Refs [18 —24]). Unfortunately, there was no
substantial reaction to these publications in the scientific
community.

Strange as it might seem, in many works, the tools of
modern nonlinear control theory have been used very
sparingly, although the key role of nonlinearity of the
system in such phenomena has always been stressed. The
explanation is simple: the problems encountered often differ
from the traditional problems of automatic control —
instead of the classical control goals, such as taking the
path to a certain point (the regulation problem) and moving
it closer to a specified motion (the program-control problem
and the tracking problem), one sets goals that are less rigid,
namely, creating modes with partially specified properties,
qualitatively changing the phase portraits of systems, and
synchronizing chaotic oscillations. On the other hand, more
rigorous restrictions are imposed on the ‘weakness’ of the
control action, corresponding to the physically obvious
requirement that human intervention into the natural
course of the investigated process be minimal. Later, it
turned out that such statements are important and interest-
ing not only in relation to chaotic systems but also for a
broader class of problems of oscillatory-process control [25].
The next natural step that was taken dealt with the
statement of the general problem of studying the properties
of a physical system that can be created or altered by
applying (weak) feedback to the system [26—28]. There is
an increasing number of publications on employing the
methods of cybernetics — control theory — in the search
for new physical effects in various areas of physics and
mechanics: active control of vibration and noise, optimal
control of thermodynamic systems, control of particle
beams in accelerators, and plasma stabilization in problems
of controlled nuclear fusion.

The last decade has seen an upsurge in studies in the
field of controlling molecular and quantum systems. We
believe this area of research was permeated by the ideas of
control before any other area. The history of ideas of
controlling molecular systems goes back to the Middle
Ages, when alchemists looked for ways to influence
chemical reactions in their attempts to transform lead and
mercury into gold. The next important step was taken by
British physicist James Clerk Maxwell, who in 1871
invented a hypothetical creature (the Maxwell demon)
capable of measuring the velocities of individual molecules
of a gas in a vessel and of directing fast molecules into one
part of the vessel and slow molecules into another part.
20th-century physicists referred to the Maxwell demon
when they studied the relationship between energy and
information [1, 3, 4, 7, 29]. The understanding that any
measurements and calculations require resources and the
expenditure of these resources must be minimized [8, 14] led
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to the idea of designing quantum computers [13, 14].
Experimental implementations of the idea of the Maxwell
demon have been discussed in Refs [30, 31].

By the end of the 1970s, there appeared the first
statements and solutions of problems dealing with control-
ling quantum systems, based on methods of control theory; in
particular, criteria were set for the controllability of quantum
systems [32]. In the 1980s and 1990s, advances in laser
technology led to the design of lasers capable of generating
pulses of coherent radiation whose length was roughly several
femtoseconds. The pulse length of such a laser is comparable
to the period of the natural vibrations of molecules, which (at
least theoretically) makes a femtosecond laser a device for
controlling the behavior of individual atoms and molecules.
The development of new technologies has stimulated rapid
growth in research on coherent control of molecular systems
based on classical and quantum models [33, 34]. The number
of publications in the area of control of quantum systems
alone exceeds 600 papers per annum. The use of the methods
of control theory has opened new horizons in studying and
changing the motion of atoms and molecules and determines
the means and, obviously, the natural limits of interference
with the intricate natural processes occurring in the micro-
world.

The usefulness of cybernetic methods in physics has been a
topic for a long time. For instance, in Turchin’s book The
Phenomenon of Science, written in the 1960s, there is the
following passage: ‘“‘Physicochemical, biological, and social
phenomena are described in terms cybernetic concepts with
equal success” [35]. In our opinion, however, no unified
description of the various applications of cybernetic methods
in physics has been done so far. The goal of the present review
is to focus attention on the rapidly developing field of studies
of physical systems by cybernetic methods and to formulate
and illustrate, using examples, the various general principles
that underlie such research.

2. Peculiarities of using cybernetic methods
in physics

For brevity, by cybernetic physics we understand the area of
research that studies physical systems using cybernetic
methods. Below, we describe the main features of the subject
of this area of research, which includes the models and
problems in controlling physical systems and the methods
based on those of control theory.

2.1 Models of the controlled system dynamics

The formal statement of any control problem begins with the
selection of a model of the dynamics of the controlled system
and the model of the control goal. Even if the controlled
system model is not given or is unknown, it must be defined in
one way or another. The difference between cybernetic
models and traditional dynamical models used in physics
and mechanics is that in the former, the inputs and outputs of
the system are specified explicitly, because this is needed in
order to build feedbacks. Several classes of controlled system
models have been considered in the literature on the control
of physical systems. Here, we limit ourselves to the often
encountered models with lumped parameters, models
described by ordinary differential equations (ODEs) in the
state space,

%= F(x,u), (2.1)

where x = x(¢) is an n-dimensional vectors of the variables of
the controlled system state,! % = dx/dz; and u = u(z) is an
m-dimensional vector of inputs (controlling variables). We
let the components of a state vector be denoted by x1,...,Xx,
and the components of the control action vector by
uy,...,uy,. Thus, equation of state (2.1) is simply a compact
notation for the ODE system

dx,‘

E i:1,2,...,n.

(2.2)

:Fi(x17x27"'7xilyu17u27"'7””1)7

Models of type (2.1) can be used to describe two physically
distinct controlled system classes.

(1) Objects with coordinate control. The input variables are
certain physical quantities, such as forces, moments, electric
and magnetic field strengths, etc. For instance, the model of a
controlled oscillator (pendulum) is given by

Jp + 0 +mglsing = u, (2.3)
where ¢ = () is the angle of deflection of the pendulum
from the vertical line (output quantity); u = u(¢) is the
controlling torque (input quantity); and J, m, [, g, and g are,
respectively, the moment of inertia, mass, length of the
pendulum, acceleration of gravity, and friction coefficient.
Equation (2.3) can be reduced to (2.1), with the state vector of
the form x = (¢, ¢)".

(2) Objects with parametric control. The input parameters
are variations of the physical parameters of the system, e.g.,
u(t) = p — po, where py is the nominal value of the physical
parameter p. For instance, we suppose that the pendulum is
controlled by slowly changing its length. Model (2.3) then
becomes

Jp+ 0p +mg(ly+ u(r)] singp =0, (2.4)

where [y is the initial length of the pendulum.

The authors of some publications prefer to speak of the
above two variants of controlled system as entirely
different controlled systems. However, from the stand-
point of cybernetics, this difference is unessential when we
are dealing with processes described by nonlinear models of
type (2.1). Examining the cases of coordinate and para-
metric control separately is meaningful only in a linear
controlled system model, because a linear system with a
feedback linear in the coordinates retains its linearity, while
the same system with a feedback linear in the parameters
does not retain its linearity (becomes bilinear) and requires
the use of more complex methods for analysis and
synthesis.

In addition to being capable of describing the dynamics,
an controlled system model must incorporate the description
of measurements (of observable quantities). Let / variables
V1, ..,y be available for observation. We call these variables
the system outputs or observables, and assume that the effect
of the measurements on the controlled system dynamics and

! The following notation is adopted in this review: x € R" is a real-valued
n-dimensional vector (column); x = col (xy, X2, ..., x,) is a column vector
with components xj, X2, ..., X,;

x| = (22 4. 42D
is the Euclidean norm of x; if X is a vector or matrix, X" is the result of
transposition (in particular, if X is a column vector, X" is a row vector); we
also let 7, denote the identity n x n matrix.
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the measurement noise are negligible.?> Then, the measure-
ment can be described by an /-dimensional vector function

¥ = h(x).

2.2 Control goals
It has proved convenient to classify control problems
according to the type of control goal.

2.2.1 Regulation (stabilization). Regulation is understood to
be the reduction of the vector of the state variables of the
system, x(7), or the vector of output variables, y(¢), to certain
equilibrium states x, and y,., respectively. In stating the
problem, the time it takes to attain the goal as such is not
considered; instead, the control goals are specified as limit
relations

tlim x(1) = xu (2.5)
or
’lim (1) =y.. (2.6)

Under limited disturbances, the attainment of goals (2.5)
and (2.6) is usually impossible, and they are therefore
replaced by estimates for the upper bound on the limit error,

i J+(1) — x| < 4 C7)
or
Tim [y(r) — .| < 4, (2.8)

— 00

where 4 is the magnitude (parameter) of the admissible error.
When random disturbances or interferences act on the
controlled system, the usual approach is to consider aver-
aged goal conditions of the type

tlim M|x(1) — x.| < 4 (2.9)
or
lim M|y(t) —y.| < 4, (2.10)

11— 00

where M denotes the expectation value.

Attaining goals (2.5)—(2.10) becomes more complicated if
the desired equilibrium state x, is unstable in the absence of
control. This is typical of problems of control of chaotic
systems. It may also be possible that without control, the state
X, is not an equilibrium one, but this case introduces no
additional difficulties because the control action does not
then disappear as the path approaches the point x,.

2.2.2 Tracking. In tracking problems, one is asked to ‘move’
the controlled system state variable vector x(7) or the output
vector y(t) closer to the desired time functions x,(z) or y.(¢),
respectively, i.e., the following control goals are set:

rlinc}c [x(1) = x.(1)] =0, (2.11)
lim [y(7) — y.(¢)] = 0. (2.12)

t— 00

2 Generally speaking, this assumption does not hold for processes
occurring in the microworld, in particular for quantum mechanical
properties, because a macroscopic measuring device can strongly affect
the microscopic system and may even destroy such a system. Each problem
of this type must be examined separately.

The desired output y.(¢) can be interpreted as the goal, or
command signal. The function x, (¢) or y.(t) can be specified as
an explicit function of time or can be measured as the process
develops. It may also be defined in terms of the motion of
another, auxiliary, system, called the reference model or the
goal model. In this case, the problem of finding the regulator
that ensures the attainment of goal (2.11) or (2.12) is called the
control problem with a reference model. The typical problem of
controlling chaos, the stabilization of an unstable periodic
solution (orbit), also belongs to tracking problems where
x.(1) is a T-periodic solution of a free (u(¢) = 0) system (2.1)
with the initial condition x,(0) = x,, i.e., Xx.(t + T) = x.(¢)
forallz > 0.

2.2.3 Excitation (swing-up, spin-up, speeding-up) of oscilla-
tions. In problems associated with the excitation of oscilla-
tions, it is assumed that the system is initially at rest and
must be set into oscillatory motion with given character-
istics, where the path along which the tip of the phase vector
of the system moves is not specified in advance or is
unknown or its shape has no effect on the attainment of
the goal. Such problems are widely known from electrical
engineering, radio engineering, acoustics, and laser and
vibrational technologies, where the process of generation of
periodic oscillations must be set into motion. This class of
problems also incorporates problems of dissociation and
ionization of molecular systems, escape from a potential
well, chaotization, and other problems associated with an
increase in energy that can lead to a phase transition in the
system. Formally, such problems are reduced to tracking
problems, but the desired motions in this case become
irregular and the goal trajectory x.(f) can be specified only
partially.

The problems of exciting oscillations can often be
reformulated via a scalar goal function G(x) by specifying
the control goal as attaining the limit relation

lim G(x(1)) = G,

t (2.13)
or an inequality for the lower bound on the goal function,

lim G(x(1)) > G, .

11— 0

(2.14)

Often, the goal function is simply the total energy of the free
system, H(x).

2.2.4 Synchronization. By synchronization, we mean coin-
cidence or convergence of the state variables of two or more
systems or the matched variation of some of the quantita-
tive characteristics of the systems. A synchronization
problem differs from a control problem with a reference
model, because it allows for temporal shifts between the
matched variables. These shifts may be either constant or
tending to constants (asymptotic phases). Moreover, in
many synchronization problems, the links between the
systems are bidirectional, which means that the limit mode
in the system (a synchronous solution) is not known in
advance.

A common feature of excitation and synchronization
control problems is that the desired behavior is not uniquely
fixed — its characteristics are specified only partially. For
instance, in the oscillation excitation problem, restrictions are
imposed only on the size of the oscillation amplitude, while
the frequency and shape of the oscillation may vary within
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certain limits. The main requirement in synchronization
problems is often the coincidence or matching of the
oscillations of all subsystems, while the characteristics of the
motion of each subsystem may vary within broad limits.

If the required relation is established only asymptotically,
as t — 0o, one can speak of asymptotic synchronization. But
if synchronization in a control-free system (i.e., u = 0) is
absent or the synchronous mode is either unstable or has a
very narrow attraction range, the synchronization control
problem can be formulated as a problem of finding the
control action that ensures a synchronous mode. Synchroni-
zation then acts as a control goal. For instance, a goal
corresponding to ensuring asymptotic synchronization of
the state vectors (phase coordinates) of two systems can be
written as

lim [x(r) = x2(1)] = 0. (2.15)

1 — o0
This relation expresses the condition required for the
convergence of the states x(r) = (x1(¢),x2(¢)) in the united
space of the states of the two system to the diagonal set
x| = xp. Often, it has proven convenient to write goal
conditions (2.11)—(2.13) or (2.15) in terms of an appropriate
goal function Q(x, 7) in the form of a limit relation:

Jlim O(x(1),1) =0. (2.16)
For instance, to reduce goal (2.15) to (2.16), one can use the
quadratic goal function Q(x) = |x; — x2|*. Instead of the
Euclidean norm, another norm can be used to specify the
same goal, for instance, the quadratic goal function

O(x,1) = [x —x.()] T'[x — x.(1)] ,

where I' is a positive definite symmetric matrix. Goal
functions corresponding to other types of synchronization
(frequency, phase, extremum, etc.) can be found in Refs [28,
36, 37].

2.2.5 Modification of limit sets (attractors) of systems. This
class of goals incorporates particular goal types such as

e a change in the type of equilibrium (e.g., the transforma-
tion of an unstable equilibrium position into a stable one, or
vice versa);

e achange in the type of the limit set (e.g., the transforma-
tion of a limit cycle into a chaotic attractor or vice versa, a
change in the fractal dimension of the limiting set); and

e a change in the position and type of a bifurcation point
in the system’s parameter space (e.g., see Ref. [38]).

Goals of this type often correspond to phase transitions.
In many works on chaotic mode control, the quantitative
characteristics of the desired motion are not assumed to be
predetermined; instead, the desired qualitative type of the
limit set (attractor) is specified. For instance, it may be
required to transform chaotic irregular oscillations into
periodic or quasiperiodic oscillations. If it is necessary to
specify the desired degree of irregularity quantitatively, the
goal functions can be formed in terms of the well-known
characteristics of chaos, such as the Lyapunov exponents,
fractal dimensions, and entropy (see reviews of works on
controlling chaos in Refs [28, 39, 40]).

In addition to the main control goal, additional goals or
restrictions may be specified, one of which is the requirement
that the control goal be attained through weak (low-power or

cost-effective) control. The requirement that the control be
weak is important for physical problems, because it means
that external actions do not destroy the intrinsic properties
inherent in the physical system, in other words, do not
‘assault’ the system.

Whether or not the control goal is attained may depend on
the way the initial conditions of the system are specified. If the
goal is attained with any initial conditions, one can speak of
global attainability. Otherwise, the initial condition must be
specified or a set of initial conditions 2 must be specified such
that the goal is attained for every solution x(7) of system (2.1)
with control for initial conditions belonging to this set, i.e., at
x(0) =xp € Q.

2.3 Control algorithms

In physics, one often speaks of controlling a system when a
certain parameter of the system (or its model) is specified.
This parameter is known as the input, bifurcation, or control
parameter, and its variation leads to changes in a certain
characteristic of the system’s behavior, known as the output
parameter. One then speaks of the controllability of the
system if under variations of the input parameter within its
range of admissible values, the range of the output parameter
encompasses the values corresponding to the desired opera-
tion modes of the system.

Rigorously, we cannot speak of control within this
problem setup. There is only the possibility of achieving a
given value of the output parameter for a constant value of
the input parameter. Actually, feeding a calculated but time-
constant action to the system may not lead to the desired
goal. For example, we consider the problem of stabilizing
the unstable equilibrium at ¢ = 7 of the pendulum in (2.3),
with the control action assumed to be constant. The
equilibrium condition ¢ = implies that u(f) =0. But
because of the instability of the equilibrium at ¢ = &, very
small deviations in the initial conditions or very small
disturbances may lead to large deviations in the control
goal.

Control that is a function of time presents many more
possibilities. If the control action (variable or parameter)
depends solely on time, u = u(t), such action is called
program action and the way the control is achieved is called
program control, open loop control, or feedforward control.
Actually, program control may also depend on the para-
meters and initial conditions of the control system,
u(t) = U(t, x0). The possibility of a qualitative variation of
the system’s dynamics when control is specified in the form of
a high-frequency time function was first discovered in
experiments conducted by P L Kapitza at the end of the
1940s. He found that the upper, unstable, equilibrium
position of a pendulum becomes stable if the pendulum
suspension axis is made to vibrate in the vertical direction
with a high frequency [41] (also see Refs [42, 43]). Similar
ideas formed the basis for a branch of control theory known
as vibrational control [44, 45].

A substantial number of papers have been devoted to the
study of vibration-induced or noise-induced effects, which
can be interpreted as control problems with a controlling
function depending solely on time. Such effects include
vibration-induced (vibrational) resonance [46], vibration-
induced transport (vibrotransportation) [43], stochastic
resonance [47], noise-induced transitions [48 — 50], stochastic
ratchets [49—51], and synchronization by periodic action of
an external or random force [52].
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The principle of phase stability operating in accelerators,
proposed independently by V I Veksler and E McMillan in
19441945, can be seen as control by action with a slowly
varying frequency. Such a method of control (sometimes
called the dynamic autoresonance [53] or chirping [54])
makes it possible to accumulate the energy of a nonlinear
system while the system remains in the resonant mode, and at
present is used to excite atoms [55], plasma [53], molecular
systems [54], hydrodynamic solitons [56], etc. We also note
that averaging is used to study such systems [57].

Control action in which one uses the results of measure-
ments of the system state or outputs (observables) in
calculating u(f) presents even greater possibilities. Such
control is called state feedback,

u(t) = U(x(1)), (2.17)
or output feedback,
u(t) = U(y(1)) . (2.18)

Often, all three types of control — constant, program, and
feedback — are present in physical problems. Because
feedback control requires that the measurement of quantities
needed for the control design be available (which is often not
the case), the study of the properties of the control system
begins with the study of the lowest form of control, constant
control, then the possibilities of open loop control (program
control) are studied, and finally feedback control (if such a
problem setup is possible) is studied.

A typical formulation of a control problem that takes the
physics of the problem into account is as follows.

Find all possible types of the system’s behavior attainable
through the use of controlling functions whose norm does not
exceed a fixed (small) value and, possibly, with given restric-
tions applied.

In solving this problem, it may prove useful to solve an
auxiliary problem more suited for control theory:

Find a controlling function (or a feedback law) with a
minimal norm that ensures the given behavior of the system
(the specified control goal).

2.4 Methods of designing control algorithms

The methods of cybernetic physics are based on the well-
developed methods of control theory: linear, nonlinear,
optimal, and adaptive control; identification (reconstruc-
tion) of parameters and filtering and estimating the states
(parameters); and optimization of systems. Usually, some of
the parameters of the physical system are unknown, while
others are inaccessible for measurements, i.e., according to
the terminology used in control theory, we are forced to
synthesize the control under conditions of uncertainty. To
solve such problems, methods of robust and adaptive control
have been developed.

The above methods form the basis of courses in automatic
control theory in engineering departments of universities, and
numerous books on this subject have been written (e.g., see
Refs [5S8-61]).

We briefly discuss a quite general approach to designing
control algorithms for nonlinear systems, an approach often
mentioned in the present review, known as the speed-gradient
(SG) method [62]. The method is used to solve problems of
controlling continuous-time systems in which the control goal
is specified in terms of a goal function. We describe the design

of such algorithms by calculating the speed gradient for the
continuous nonstationary system

X = F(x,u,t) (2.19)
with the control goal defined in (2.16), where Q(x,7) > 0isa
smooth goal function.

To design the algorithm, we first calculate the scalar
function O = w(x, u, 1), the speed of variation of the quantity
0 = Q(x(1), 1); along the trajectories of Eqn (2.19),

00(x, 1)
ot

o(x,u,t) = + [ViO(x, t)}TF(x7 u,1).

We then find the gradient of w(x, u, ) with respect to the input
variables:

Vo (x,u,t) = (@a_c:)T = (Z—f)T V0(x,1).

Finally, the following differential equation specifies the
algorithm of changing u(7):

% = -TI'V,o(x,u,t), (2.20)
dt
where I' = I'T > 0 is a positive definite symmetric matrix, for
example, I' = diag {y,..., 7.}, 7: > 0. It is only natural to
call algorithm (2.20) the speed-gradient algorithm (SGA),
because the variation in u(f) is proportional to the speed
gradient of Q.

The origin of algorithm (2.20) can be explained as follows.
To attain control goal (2.16), it is advisable to vary u(z) such
that Q(x(7), ) decreases. But because Q(x(7), 1) is indepen-
dent of u(1), it is difficult to find the direction of such decrease
(in particular, this is due to the need to find the sensitivity
functions). Instead, we decrease Q by ensuring that O < 0,
which is the condition that Q (x(7), 1) decreases. The function
0 = o(x,u,t) explicitly depends on u, which makes it possible
to design algorithm (2.20).

To illustrate the above, we write the SGA for the problem
of controlling a system that is linear in its inputs,

X =A(x,t)+ B(x, t)u, (2.21)

where A(x, ) is an n-vector and B(x, ) is an n X m matrix.
Equation (2.21) can also be written as

m

X = A(x,1) + Z Bi(x, t)u;

i=1

(2.22)

where the u; are the components of the vector u € R™, and the
Bi(x, 1) are the columns of the matrix B(x, ), B;(x,1) € R".
Let the goal function be

0(x.1) = 3 [v—w (0] Ply—r.(0)], (2.23)

where y = G(x,1) € R!; y.(¢) is the reference signal (the
desired output path), y.(7) € R'; G(x, ) is a smooth vector
function, and P is a positive definite symmetric / x / matrix.

The speed of variation of Q(x(¢), ?) is
o(x,u,) = [y = 3. (0] P[CA(x, 1) + CB(x, )~ .(0)]
(2.24)
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where C = C(x, t) = 0G(x,1)/0x, and the speed gradient and
SGA become, respectively,

Vuo(x,u, 1) = B(x,1)"C"P[y — y.(1)] (2.25)
% = —I'B(x,1)'C" P[y — y.(1)] . (2.26)

The gain matrix I is often chosen in the form of a diagonal
matrix (I" = diag{y;}) or a scalar matrix (I" = yI), where 7y,
and y are positive numbers. Algorithm (2.26) with
B(x,1) = const and C(x, ) = const constitutes the well-
known integrated control law.

A similar approach can be used in the design and
generalization of another classical control law, the propor-
tional law. The algorithm is known as the speed-gradient
algorithm in finite form,

u(t) = up — I Vyor (x(2), u(2), 1) (2.27)
where u is an initial (reference) control value (it is usually
assumed that uy = 0). Algorithms of a more general structure
are also used,

u(t) = uo — W (x(0), u(2), 1) , (2.28)

where y > 0 is the scalar step factor (gain) and the vector
function v (x, u, t) satisfies the pseudogradient condition

W(x,u,t)" Vo(x,uf) = 0. (2.29)

An algorithm of type (2.28) is known as the speed-pseudo-
gradient algorithm. A particular case of this algorithm is the
sign, or relay, algorithm

u(t) = ug — ysign V,o(x(1),u(1), 1), (2.30)
where the ‘sign’ of a vector is understood to apply to each
component separately: for x = col (xy,...,x,,), we have

sign x = col (sign xy, ..., sign x,,) .

Making a meaningful and justified selection of SGAs
requires verifying the applicability of such algorithms. The
applicability conditions for various cases can be found in Refs
[60, 62]. The main conditions are the convexity of the function
o(x,u,t) in u, and the existence of ‘ideal control’, a vector u,
such that w(x,u., f) < 0 for all values of x (the attainability
condition).

The speed-gradient algorithm is closely related to the
Lyapunov function V(x), the system’s state function, which
decreases along the path. The Lyapunov function is an
abstract analog of physical characteristics such as energy
and entropy. It is important that the Lyapunov function can
be used not only for the analysis but also for the synthesis of
systems, i.e., for solution of the inverse problems. In
particular, we have the finite form of SG algorithms if we
take the goal function V(x) = Q(x). The differential form of
SG algorithms is obtained if we assume that
Vix,u) = Q(x) +0.5(u — u,) " T ' (u — u.), where u, is the
desired (‘ideal’) value of the controlling variables.

2.5 Results
A considerable part of the results in traditional areas of
physics is represented (or can be represented) in the form of

conservation laws, which reflect the fundamental laws of
nature and state that certain quantities do not change as the
system evolves. In studying systems with control, the results
must show to what extent the evolution of the system can be
changed by control. Hence, the results in cybernetic physics
are formulated not as conservation laws but as transforma-
tion laws determining the class of possible types of behavior
attainable by control from a given class (the limit of
control).

An example of a transformation law is the following
principle proposed in the seminal paper by Ott—Grebogi—
Yorke (the OGY law) [17]:

Each controllable chaotic motion can be transformed into a
periodic motion by an arbitrarily small control.

The term ‘controllable’ in the above law indicates that the
problem can be solved in principle. Conditions sufficient for
controllability depend on the problem and constitute a topic
for a separate investigation. Other examples of transforma-
tion laws can be found in Sections 3 and 4.

Summarizing, we note once more that the subject of
cybernetic physics is the study of physical systems in the
presence of direct and/or reverse (feedback) links with the
surrounding medium. This makes it similar to the theory of
open systems [63]. What makes it different from the theory of
open systems is that feedback is not assumed to be fixed but
must be synthesized. In the process of synthesizing feedback,
one uses methods developed in cybernetics.

3. Control of conservative systems

One of the most important quantities in physics is energy,
which is not only the main invariant of a system and the key to
a description of a system on the basis of the Hamiltonian
formalism but also a measure of interaction between different
systems. The equations of dynamics in the Hamiltonian form
are used to describe quite different physical systems and
phenomena, from celestial bodies to molecular ensembles.
Hence, it is only natural to begin the study of the fundamental
laws of transformation of the properties of systems via
control with the energy transformation laws. In this section,
we assume that the investigated system is conservative, i.e., we
ignore losses and dissipation. Then, in free motion (i.e., in the
absence of external forces), the system’s energy is an
invariant. Hence, the statement of the problem of transfer-
ring the system from one energy level to another by weak
(ideally, arbitrarily weak) control makes sense.

For brevity, we limit ourselves to examining control
problems in which the mathematical model of the system is
given in the Hamiltonian form,

OH OH
Qi: (q’p7u)7 ﬁizf (q’p7u)7 izlw"a”a

opi 0q;
(3.1)

where #n is the number of the degrees of freedom; ¢ =
col(qi,...,q,)and p = col (py,. .., p,) are vectors of general-
ized coordinates and generalized momenta, which form the
state vector of the system, x = col (¢q,p); H = H(q, p,u) is the
Hamiltonian of the controlled system; and u(7) is the
dimensionless input (the vector of external generalized
forces), u(r) € R™.

The result below can be extended to systems that are more
general than Hamiltonian systems, including systems whose
models involve the controlling variables nonlinearly [64].
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In the vector form, model (3.1) can be written as

q = VpH(C]J’: 1/[) ) (32)

[) = _VqH(‘Lﬂ Z/I) .

We examine the problem of approaching a given energy
level H, of a free (uncontrolled) system, i.e., specify the
control goal as

lim Hy (q(t)7 p(l)) =H, P

11— 00

(3.3)

where Hy(q,p) = H(q,p,0) is the Hamiltonian of the free
system described by Eqn (3.1) with # = 0. We assume that the
Hamiltonian is linear in control,

H(q,p,u) = Ho(q,p) + Hi(q,p)"u,

where Hy(q,p) is the Hamiltonian of the free system and
H,(q,p) is an m-dimensional vector whose components are
the so-called interaction Hamiltonians.

To solve the problem, we use the SG method (see
Section 2.4). We introduce the goal function

—_

0(x) = 5 (Holg.p) — H.)" (3.4)

with x = col (g, p). The control goal in (3.3) then becomes

lim O(x(1)) =0. (3.5)
To apply the SG method, we calculate the speed (rate) of
variation of the goal function caused by the control of the

system,
0H, 0H,

0=t~ ) (50 0+ 5

aq ap > = (HO_H*){H07H1}u7

(3.6)

and then calculate the speed gradient in u, V,Q =
(H — H.){Hy, H,}", where {Hy, H,} is the Poisson bracket?
of the Hamiltonians H, and H;. We can write the SGA in a
finite form, e.g., in the linear and relay variants:

u= 7?(1‘[0 7H*){H07H1}T, (37)
u = —ysign [(Hy — H.){Ho, H\}"], (3.8)

where y > 0 is the gain. Other variants of the general
algorithm can also be employed by choosing i/ in the relation

u=—y|(Hy— H){Ho, H}'] (3.9)

3 We recall that the Poisson bracket of smooth functions f(q, p) and g(¢, p)
is the sum

“.(0f 0g Of Og
U= ( it )
; Oqi Op;  Opi Oq;

If fand g are vector functions whose respective dimensions are / and m, the
Poisson bracket can be defined component-wise and is the / x m matrix

=3[ (E) T ()],

In particular, if f is a scalar and g an m-dimensional column vector, { f; g}
is an m-dimensional row vector (covector). Similarly, if fand g are vectors
with the respective dimensions / and m, then {f, g} is an / x m matrix.

to be a vector function with values in R” and to satisfy the
condition Y(z)"z > 0 for z € R", z # 0 (the strict pseudogra-
dient condition).

The possibilities of changing the properties of a control-
lable Hamiltonian system by controlling it are determined by
the properties of the closed system built. The following
sufficient conditions for attaining goal (3.3) have been
obtained in Refs [25, 28].

If the first and second partial derivatives of Hy and H in
the set Qo={x: Q(x)<Qq} are bounded for a certain Qy > 0
and the function \y(z) in (3.9) is continuous and satisfies the
strong pseudogradient condition Y(z)'z>0 for z € R", z # 0,
then algorithm (3.9) for system (3.2) with the initial condition
x(0) € Q ensures that u(t) — 0 as t — oo and, moreover,
either goal (3.3) is attained on the path x(t) or the
convergence {Hy, H1}(x(¢)) — 0 is ensured on the same path
as t — oo.

In addition, let the following auxiliary conditions be
satisfied.

Al. For each ¢ # H,, there exists a positive & such that
every nonempty connected subset of the set

D, = {x: ’{Ho(x),Hl(x)H <eg, ‘Ho(x) - c| < s} N Qo

is bounded.

A2. The largest invariant set M C Dy of a free system (i.e.,
the set of the entire trajectories of system (3.2) at u=0
contained in Dy), where Dy= {x : {Ho(x), H; (x)} = 0} N Qo,
consists of not more than a countable number of isolated points
without finite accumulation points.

Then every solution of system (3.2), (3.9) either ensures the
attainability of goal (3.3) or tends to a certain point belonging to
Dy and corresponding to equilibrium of the free system.
Furthermore, the set of initial conditions at which the solution
of system (3.2), (3.9) tends to an unstable equilibrium of the
system has the measure null.

Let the Hamiltonian of a controlled system have the form

H(q,p,u) = Ho(q,p) + Hi(q,p)"u with

Holg,p) =~ p"A(g)'p + 11(q)

5 Hy(q,p) =q, (3.10)

where ¢ and p are n-dimensional generalized coordinates,
A(q) is a positive definite symmetric kinetic-energy matrix,
and II(q) =0 is the potential energy. We then have
p = A(q)q, and the equations of the system can be reduced
to the Lagrangian form

d N

)
— (4 ——q" —(4 ] II(g) =u. 1
3 (A@d) =54 6q( (@) + Vg Il(q) =u (3.11)
In terms of the coordinates (g, ¢), the energy becomes
R e .
Ho(q,4) =5 q"Alq)q + 11(q) - (3.12)

2

The free system has equilibrium states of the form (0, g),
where g is the stationary (critical) point of the potential I1(g)
(VII(g) = 0). We assume that all stationary points of the
function II(g) are isolated. The above result then implies that
if the initial energy layer

Qo ={(q,p): Ho < Ho(q,p) < H.} for Hy<H,
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or

Q= {(¢,p): H.<Ho(q,p) < Ho} for Ho> H.

does not contain minima of the potential I1(g), then goal (3.3)
is attained for almost all solutions. Moreover, if the matrix
A(q) is positive definite, i.e., if pTA(q)p = u| p|* for a positive
u and all p € R", it can be easily shown that almost all
solutions of a closed system approach the set

S={(¢,p): Holg,p) = H.} .

Example. For the simple pendulum model, the free-system
Hamiltonian is
2

p
Ho(q,p) = T mgl(1 — cos q) ,

(3.13)
where ¢(7) is the angular coordinate (¢(r) € R!), p is the
system’s momentum, J is the moment of inertia with respect
to the rotation axis, and / is the distance between the rotation
axis and the pendulum’s center of mass. If we choose the
control action as the torque applied to the suspension axis,
the equations of motion in the Hamiltonian form can be
written as

Gg=J"'p, p=—mglsing+u(t), (3.14)
where u(t) is the controlling torque. Equation (3.14) implies
that p = J4, and the interaction Hamiltonian has the form
H(q,p) = q. Goal (3.3) corresponds to the stabilization of
the pendulum in its lowest position (for H, = 0), the swinging
of the pendulum to its amplitude

< * >
q. = arccos | 1
mgl

(for 0 < H, < 2mgl), and the rotation of the pendulum (for
H, > 2mgl). The value H, = 2mgl is the energy correspond-
ing to the motion along the separatrix, which is the set
consisting of a countable number of smooth curves separat-
ing the regions of oscillatory and rotational motion in the
phase plane. For pendulum (3.14), speed-gradient algorithms
(3.7) and (3.8) acquire the simple form

it = —9(Ho — H.)q, (3.15)

u = —ysign [(Hy — H.)q] . (3.16)
The above result for the case of controlling the pendulum
energy implies that if the initial energy layer between the levels
Hj and H, does not contain equilibrium states, the level H, is
to be reached for all initial conditions, while if the initial layer
contains only the unstable equilibrium states (n(2k + 1),0),
k=+1,42,..., goal (3.3)is to be attained at almost all initial
conditions.

In particular, for any Hamiltonian system that satisfies
conditions Al and A2 (see above), goal (3.3) is attained
when an arbitrarily weak control action is applied to the
system and for almost all initial conditions if the stationary
points of the potential I1(gq) are isolated and the initial
energy layer contains no stable equilibrium points of the
system, i.e., if H. > sup,II1(g), where the upper bound is
taken over all local minima of II(g) that are in the initial

connected component of the energy layer Q,. Indeed, the
right-hand sides of the closed system are bounded in the
region €, and control can be made as small as desired by
selecting a small value of the gain y. Of course, a decrease in
y makes the time needed to attain the goal longer, but the
goal is still attained.

By interpreting conditions Al and A2 as the sufficient
conditions for the controllability of the system in energy, we
can formulate the results in Refs [25, 28] as a transformation
law of the system by feedback.

If a system is controllable in energy, the value of the free-
system energy can be changed by an arbitrary quantity via
arbitrarily small feedback.

The above results can be extended to problems in which
the attainable goals are more complicated and, in particu-
lar, to the problem of stabilization of several invariants
(first integrals of motion) of a free system at given levels
[61, 64].

Let k scalar invariants G;(q,p), i = 1,...,k, be specified,
ie., {Hy,G;} =0, i=1,...,k, and let the control goal be
chosen in the form

lim G;(p(1),4(1)) = G,

11— 00

i=1,...,k, (3.17)

where G are fixed numbers. We introduce the goal function

1

Q(4.p) =5 (G(a,p) - G*) R(G(g,p) = G) , (3.18)
where

G((Lp) = col {Gl (qap)7 LR Gk(qvp)} )

G* :col{Gl’*,...,Gg},

and the k& x k matrix R= R" is positive definite and
symmetric. Then the SGA built according to goals (3.17)
and (3.18) can be written as

u=—y{H,0} = —y{H,G}R(G(g,p) - G"),  (3.19)
where H is a column vector with the entries given by the
interaction Hamiltonians H;, j=1,...,m, i.e., the bracket
{H,Q} is a column vector with the entries {H;, O} and the
bracket {H,G} is an m x k matrix function with the entries
{H;, G;}. We can consider a broader class of algorithms,

where /(y) is a vector function that satisfies the condition
W(z)'z > 0forz #0.

In Refs [61, 64], the controllability conditions were
derived for the Hamiltonian system

m
q=V,Ho(q,p) + ) _V,Hu;,
,; (3.21)

m
p=—VyHo(q,p) = > _VHju;.
j=1

The results of these works can be interpreted as follows:

If a system is controllable with respect to a set of invariants,
the values of these invariants can be changed by arbitrary
quantities by arbitrarily weak feedback of form (3.19).
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4. Control of dissipative systems

4.1 Excitability index
We examine Hamiltonian systems with dissipation, *

P D)
Opi (4.1)
: OH(q,p, u) ‘
pi=——""%—Riq,p), i=1,...,n,
o0 (¢:p)

where ¢ =col(qy,...,q,) and p=col(py,...,p,) are the
vectors of generalized coordinates and generalized momenta
that form the system’s state vector x =col(q,p); H=
H(q, p,u) is the Hamiltonian of the controlled system; u(z) is
the dimensionless input (the vector of the external generalized
forces), u(r) € R"; and R(q,p) = col (Ri(q,p); - -, Ru(q,p))
is the dissipation function, which satisfies the condition

+ 0Hy(q,p)

R(q,p) o

>0, (4.2)

where Hy(q,p) = H(q,p,0) is the free-system energy.
Inequality (4.2) means that dissipation of energy occurs
during free motions of the system: Hy < 0.

Clearly, dissipation hinders controlling the system’s
energy. It is therefore interesting to estimate the possibi-
lity of transforming the energy of systems with given levels
of control and dissipation. It is especially interesting to
study the case of small dissipation (weakly damped
systems), for which the oscillatory behavior of processes
in the system and the presence of resonance phenomena
are characteristic features. We estimate the limits of
possible energy transformations with given levels of
control and dissipation and the possibility of initiating
resonant modes via feedback control for linear-input
Hamiltonian systems with dissipation, systems with the
Hamiltonian H(q, p,u) = Ho(q,p) + Hi(q, p)u.

To analyze the variation of the system characteristics as a
result of control, we must introduce a quantitative measure of
the limits of such variation, which may depend on the
selection of the system input and output and on the
acceptable value of the control action. For definiteness, we
take the free-system energy E(x) = Hy(q,p) as the output,
while the input is measured by its maximum (in time) absolute
value. The rate of variation of the energy of the free system
with dissipation is given by the expression
T aI'IO

Hy={Hy,H}u—R —

o = {Ho, Hi}u (¢,p) op
i.e., in the absence of control, £(x) has a tendency to decrease,
characterized by the dissipation rate

0H,
= R(q,p)" =2
o(x) = R(g,p) A
Hence, the characteristic describing the degree of increase of
E(x(1)) caused by control is important. Such a characteristic
determines the measure of excitability of motion (oscillations)
in the system and may be called the excitability index.

4 The results for a broader class of systems can be found in Ref. [28].

To find the excitability index, one should calculate the
maximum value of E(x(7)) asymptotically attainable under
limited control, i.e., as t — oco. But computer experiments
have shown that there may be no limit as t — oo. Hence, we
consider the upper and lower limits and say that the functions
x5(y) and x5 (7), defined for y > 0 as

7£(7) = lim sup E(x(1)), (43)
¥(0)=0
75(y) = lim sup E(x(r)), (4.4)

1= 00 ()| <7

x(0)=0
are the upper and lower excitability indices of system (4.1) with
respect to the output E(x).

The excitability index can be measured in experiments in
the same way as the ordinary frequency response of a linear
system. In contrast to measurements of the frequency
response, where a harmonic signal with a constant amplitude
and varying frequency is fed to the system’s input, the
amplitude (level) of the input signal is varied in measure-
ments of the excitability index and the input signal is specified
as feedback. From the results in Ref. [28] (p. 60), it follows
that if the output £(x) and the dissipation rate o(x) for certain
positive g, o1, 00, 01, and d satisfy the relations

2l < E(x) <oy +d, (4.5)
ool < o(x) < oy, (4.6)

where y = {Hy, H;}, and the set

, 2
Q" = {x: {Hy,H\} =0, E(x) <a0<ﬁ) }

does not contain the entire paths of free system (4.1) (at
u =0), then the excitability indices y}(y) and yxz(y) with
respect to E(x) satisfy the inequalities

2 2
% (ﬁ) <) <15 () < moy <l> +d, (4.7)

Qo

while the excitability indices )(;“ () and y; (y) with respect to y
satisfy the inequalities '

VI SOV S0 < o)V (49)
The lower estimate is then attained for
u(t) = ysigny(r). (4.9)

We note that control law (4.9), which places a lower
bound on the excitability indices, is independent of the
parameters of the controlled system: the potential energy,
kinetic energy, and dissipation functions.

The above estimates can be applied to controlled mechan-
ical systems described by equations in the Lagrangian form.
Inequalities (4.5) then act as conditions of uniform nonsingu-
larity and boundedness of the kinetic-energy matrix A(q) (a
standard assumption for mechanical systems) and the
bounded nature of the potential-energy function. Inequal-
ities (4.6) correspond to viscous friction that grows not faster
than a linear function.

Inequalities (4.7) may be interpreted as the laws of the
energy transformation by limited control for systems with
dissipation. For instance, let R(p) = o4 and ¢ — 0. Then, for
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a controlled Lagrangian or Hamiltonian system with small
dissipation of degree o, the level of energy attainable by control
of a level vy is of the order of(y/g)z.

We reconsider the pendulum in the example in Section 3
and allow for friction with a coefficient p. The above estimates
for n = 1 can be written as

2 2
0.5 (i) <H< (i) +2072
0 0
and the law of control (4.9) becomes u = ysign (¢).
Inequalities (4.7) and (4.8) make it possible to estimate the
degree of excitability and the resonance properties of non-
linear systems by supplying additional quantitative informa-
tion concerning the dynamical characteristics of such systems.

(4.10)

4.2 Feedback resonance

Using the above general results, we can establish some
properties of physical systems through action with feedback
in the measurements. As an example, we describe resonance
with feedback.

Resonance plays an important role in physics and
technology, causing both useful and dangerous effects.
Apparently, the first to study and describe the phenomenon
of resonance was Galileo Galilei, who in his treatise Dialogues
Concerning Two New Sciences, published in 1638, wrote [67]:
“... a pendulum at rest, even a very heavy one, can be set in
motion (and a very noticeable one) by simply blowing on it if
we hold our breath when the pendulum is moving toward us
and blow when it is moving away, at the proper moment of its
swinging motion.”

For oscillatory systems, the resonant mode corresponds
to excitation of significant oscillations of the system by
applying a weak control action and, hence, by ensuring the
most effective transfer of energy from the exciting system to
the excited one. The laws of resonance have been thoroughly
studied for linear systems. But for nonlinear oscillatory
systems, even the very definition of the resonance concept
requires refining. We now discuss this aspect in greater detail.

Let a controlled nonlinear oscillator with one degree of
freedom be described by the equation

b+11'(g) = u, (4.11)
where ¢ = @(¢) is a scalar phase coordinate, u = u(t) is the
scalar control action, and I1(¢) > 0is the potential. The state
of system (4.11) is represented by the vector x = col (¢, ¢),
and the total energy of the system is H(¢p, ¢) = ¢*/2 + I1(¢).
We ask the question: To what extent can an arbitrarily weak
external action u(¢) change the path of system (4.11)?

It is well-known that for a quadratic potential I1(¢) =
3¢?/2, i.e., for a harmonic oscillator described by the linear
equation ¢+ wip =u, a harmonic external action
u(t) = ysinwt with = @y and an arbitrarily small ampli-
tude y leads to the occurrence of unbounded solutions, e.g., of
the form

which is commonly called the resonance.

But the dynamics of nonlinear systems is more compli-
cated. Even for a simple pendulum, driven oscillations may
have a more complicated, irregular form [65, 66]. The

complexity of creating and studying resonant modes in
nonlinear systems can be explained by the fact that the
frequency in such systems is amplitude-dependent. It is only
natural to think that oscillations in a nonlinear system can be
generated by varying the frequency of the external action as a
function of the amplitude of oscillations. This means that u(z)
must depend on ¢(7), which actually means that the scalar
control action is formed by feedback. The results in Section 3
show that action of type (4.9) makes it possible to achieve any
given level of energy, i.e., to create something similar to a
resonant mode in the system.

We now introduce losses (dissipation) of the viscous-
friction type into system (4.11), i.e., instead of (4.11), we
consider the equation

¢ +op+1'()=u, (4.12)
where ¢ > 0 is the dissipation factor. For linear systems of
type (4.12) [with I1(¢) = w}¢?/2] what is known as resonance
is the mode in which the amplitude of oscillations is at its
maximum, and this occurs for the action u(f) = y sin wr with
? = w} — ¢*/4. At small values of p, the oscillations in
system (4.12) with u(¢) = ysinwt then have the amplitude
4~ y/(owo) and the energy (averaged over one period)
0.5(y/0)”. The oscillation amplitude for nonlinear oscillator
(4.12) with the action in (3.15) or (3.16) can also become very
large. The estimates in Section 4.1 imply that the energy
attained in systems (3.16) and (4.12) is no lower than

7=3()
H=-(+
2\e
if the parameters in law (3.16) are selected such that H, > H.
Thus, we can say that feedback (3.15) [or (3.16)] creates a
resonant mode in nonlinear system (4.12), with the energy of
the mode (in the particular case of a harmonic oscillator)
being no lower than the oscillation energy of the harmonic
excited at the resonance frequency. We call this phenomenon
[26, 27] the feedback resonance, or f-resonance.

It must be noted that the understanding of resonance in
physics has remained practically the same since the time of
Galileo. In most works on the subject, the input action is
usually assumed to be harmonic (periodic, at the most). In the
book by Andronov et al. [68], whose first edition appeared in
1938, the authors introduced the concept of autoresonance as
a ‘resonance generated by a force caused by the motion of the
system’, i.e., they pointed to the possibility of actions in the
form of feedback. However, in Ref. [68], they considered only
the case of a linear system of the second order with a relay in
feedback and only made estimates of the size of the limit
cycles. The system was assumed to be closed, i.e., what was
actually studied was the internal resonance in the system,
which probably explains the origin of the term ‘autoreso-
nance’.

Autoresonant modes in nonlinear systems were analyzed
in Refs [69, 70]. In particular, the researchers proposed using
SGAs to tune the parameters of a nonlinear system to
guarantee that the mode was resonant [70]. Other researchers
assumed the excitation to be either a periodic function, with
only an ‘adiabatic’ frequency variation allowed (i.e., a
variation that is slow compared to the fundamental tone of
the oscillations) [53, 71] or a stochastic action (stochastic
resonance; see Refs [47, 49, 50]). The phenomenon of
feedback resonance described above occurs when an external

(4.13)
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action that changes its spectrum in the course of the process is
applied to the system.

It is interesting that Galileo’s description of resonance
does not contradict the existence of feedback. In addition, it
suggests how feedback can be used to force the pendulum into
the resonant mode: one simply needs to blow “at the proper
moment of its swinging motion.”

5. Examples

5.1 Controlled Kapitza pendulum
The mathematical model of a pendulum controlled by
changing the position of the suspension point is given by

Jp + op + mglsin ¢ = mlusin ¢, (5.1)

where ¢ = ¢(t) is the angle of the pendulum’s deflection from
the lower vertical position, u = u(¢) is the vertical acceleration
of the suspension point (which is the control action), J = m/>
is the pendulum’s moment of inertia, and g > 0 is the friction
coefficient.

Kapitza examined the harmonic law of displacement of
the suspension point and experimentally established that the
pendulum is stabilized near its upper, unstable, equilibrium
position. Many theoretical studies, done before and after
Kapitza’s experiments (e.g., see Refs [43, 72]), have shown
that stabilization of unstable equilibrium as the suspension
point moves with a frequency @ and an amplitude 4, for
which u(¢) assumes the form u(7) = Aw? sin wt, sets in at high
frequencies w, i.e., when the input action in (5.1) is large or,
more precisely, when the condition Aw > Jw} is satisfied,
where wg = 1/2g/!1is the frequency of small oscillations of the
pendulum about the lower equilibrium position (see Refs [41,
43, 73]). The displacement of the suspension point may then
remain small, which makes the effect even more paradoxical.
Thus, stabilization of unstable equilibrium by a high-
frequency harmonic action is possible, but requires the
application of considerable force.

Can a similar behavior of the Kapitza pendulum be
achieved with a smaller amplitude of u(¢) when feedback is
used in the law of vibrations of a suspension axis?

An approach that is common in automatic control theory
based on linearization of the system’s model does not work
here. Indeed, linearization produces good results only near
the equilibrium position or a certain path, but we are
interested in a global solution, applicable in the entire state
space of the pendulum.

We set an auxiliary control goal,

lim H(z) = H., (5.2)
1 — 00
where H is the pendulum’s total energy,
J, .
H= 3 () + mgl(1 — cos @) . (5.3)

Goal (5.2) differs somewhat from the ordinary goals in
control theory, regulating and tracking. It looks more like
the goal of a person sitting on a swing. A similar problem may
emerge in the actuation of a vibration device, the design of a
walking robot, the operation of a pendulum clock, etc.
Human wisdom suggests that swinging requires much
weaker forces than keeping the pendulum (or the hand of a

robot) in a fixed position. Can a small force bring a heavy
swing to its upper position?

For the goal function, we take the standard deviation
0= (H- H*)2/2 of the pendulum’s total energy from the
desired value H,. Using the SG method, we obtain the simple
algorithms

u=—y(H—-H,)psing, (5.4)

u=—ysign [(H— H,)¢sine]. (5.5)
We take algorithm (5.5) and select the value of the pendulum
energy in the upper position, H, = 2mgl, as the desired energy
level. Then the results in Section 4.1 suggest that the energy
level attained in systems (5.1) and (5.2) is no lower than

2

IGR

2\o
which means that the level H, =2mgl is reached for
y > 20mg. In particular, at o = 0, stabilization of the energy
level surface H = H., is reached even with a very small control
amplitude y. In the event of underdamping (o is small), the
control can be weak (y is small).

That the desired level of energy is reached does not
necessarily mean that stabilization of the equilibrium
corresponding to this level is reached. But as shown in
Refs [64, 74], if o = 0, algorithm (5.5) at H, = 2mgl ensures
the convergence H(¢(1), (1)) — H, and the convergence
(o(1), ¢(t)) — (m,0) as t — oo for almost all initial condi-
tions, with y > 0 as small as desired.

The problem of controlling a pendulum by moving its
suspension point has an interesting feature. Because the
control action u(¢) is the acceleration, the general properties
of an SGA imply that u(f) — 0 as t — oco. It is unclear,
however, what happens to the speed and position of the
suspension point. The formal model suggests that the speed
and position of the suspension point may even increase
indefinitely, which strips the problem of all practical
importance.

Following Ref. [74], we describe a modification of the
control algorithms that is free from the above defect. For this,
we introduce the extended goal function

(5.6)

01 = Q+%ZTPZ, (5.7)

where z = col ({, C), with { and { being the height and speed of
the suspension point, respectively, and P=P" >0 is a
positive semidefinite weight matrix. Then, the equality { = u
may be interpreted as an additional equation of motion, i.e.,
the system transforms into one with two degrees of freedom
and the state x = col (¢, ¢, (, ().

Using the SG method, we arrive at the control algorithm

u=—y(Hy— H.)gsing — pl —v{, (5.8)
where y > 0, u > 0, and v > 0 are the gains.

The results in Section 3 cannot be used to study this
system because the control goal is not specified in terms of
the system energy. Nevertheless, using the general results in
Refs [27, 61], one can show that the new control goal is
attained and {(¢) — const for almost all initial conditions at
v=0. If x>0 and v > 0, the system exhibits a stronger
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property, {(z) — 0, i.e., the deviation of the suspension
point from the initial position asymptotically tends to zero.

Similar argument leads to the swinging algorithm in the
case where the suspension point moves horizontally or
obliquely. Additional difficulties may emerge because of the
incompleteness of or inaccuracies in the measurements, e.g., if
the angular velocity ¢(¢) cannot be measured. Incompleteness
of control may also have a negative effect, e.g., when the
inertia of an engine rotating the pendulum cannot be ignored
and the dynamics of the controlled system is described by the
equations

Jp +mglsing =mlusing, Tut+u=wv, (5.9)
where v = v() is the new control signal. Indeed, the control
action v(¢) is not present on the right-hand side of the first
equation in (5.9) and the speed gradient vanishes.

The modern theory of nonlinear and adaptive control has
a big arsenal of approaches that can be used to overcome the
above difficulties [60, 61].

5.2 The problem of escape from a potential well
The problem of escape from a potential well (or of over-
coming a barrier) under the action of external forces is
encountered in many areas of physics and mechanics,
beginning with the 1930s [75]. Sometimes, the escape is an
undesirable effect (buckling of membranes and shells or
capsizing of vessels and vehicles), while in other cases escape
is useful and necessary. Overcoming a potential barrier often
corresponds to a phase transition in the physical system. In all
cases, certain conditions that guarantee the presence or
absence of the overcoming of the barrier must be met. The
majority of researchers study the case of a typical external
action, harmonic or noise-type [46, 49, 50]. But how weak can
the action causing the escape be?

In many works, this phenomenon is studied for nonlinear
oscillators with one degree of freedom described by the
equation

¢+op+1'(p) =u, (5.10)
where ¢ > 0. For instance, the minimum amplitude of the
harmonic action

u(t) = ysinwt (5.11)
causing escape of the solution of (5.10) from the potential
well was found in Ref. [76] via computer simulation
involving two typical potentials: I1(p) = ¢*/2 — ¢3/3
(sometimes called the Helmholtz potential) and I1(¢) =
¢*/2 — ¢*/4 (which corresponds to the Duffing equation
and has two potential wells that are symmetric with respect
to the zero point).

In particular, it was shown in Ref. [76] that with the
Duffing potential, escape inevitably occurs in system (5.10)
and (5.11) at p = 0.25 for y > 0.212 and w ~ 1.07, while no
escape occurs for y < 0.212 and any frequencies of the
external action (Fig. la with y = 0.211 and & = 1.08).°

But can escape be induced at mush smaller action
amplitudes by creating conditions needed for feedback
resonance? Selecting H as the height of the potential barrier

3 Here and in what follows, the values of all variables are given in relative
units.
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Figure 1. Ejection from a potential well for the Duffing system:
(a) harmonic excitation, (b) excitation by the SG algorithm.

and solving (4.13) for y, we arrive at expression (4.9), which
guarantees escape. For instance, for the Duffing equation,
H = 0.25, and hence y = 0.1767, which is 83% of the value
found in Ref. [76]. For systems with one degree of freedom,
law (4.9) becomes

u(t) = ysign¢. (5.12)
We note that both law (5.12) and law (4.9) are independent of
the type of the potential IT(¢) and, hence, can be used to
generate the resonant mode in any oscillator described by
model (5.10).

Computer simulation has shown that escape occurs at
even smaller values of the amplitude of input signal (5.12)
(e.g., see Fig. 1b with y = 0.125). Generally, the power gain
obtained when the system is excited by feedback is inversely
proportional to the degree of dissipation and can be made as
large as desired for lightly damped systems.

5.3 Control of synchronization of two oscillators

We examine the problem of synchronizing the oscillations of
two coupled one-dimensional oscillators with one degree of
freedom, e.g., simple pendulums. Such a model is encoun-
tered in the description of various physical and mechanical
problems (e.g., see Ref. [66]). If we assume that dissipation is
linear, the system of two coupled oscillators is described by
the equations

@1(1) + 0@y + ' (1 (1)) = k(@2(1) = @1 (1)) + u(r),
(5.13)

P2(1) + 09y + ' (91 (1)) = k(1 (1) — 9a(1))

where ¢,(7) is the generalized coordinate of the ith oscillator
(e.g., the angle of swing, or rotation angle), i = 1,2; u(¢) is the
control action (e.g., the external force torque expressed in
units of angular acceleration); p is the friction coefficient (the
degree of dissipation); k is the coupling constant (e.g., the
spring constant); and II(¢) is the potential [e.g., for the
pendulum, I1(¢p) = w3(1 — cos ¢)].
We introduce the system’s state vector

x(1) = col (@, @1, ¢, 6,) € R*.
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The total energy H(x) of system (5.13) with the coupling
energy taken into account is given by the expression

_ 91t 9 k(s — ¢1)°
2 2 '
We examine the problem of exciting synchronous antiphase
oscillations in this system with a given amplitude by
introducing additional limited feedback. Such a problem
can be interpreted as the problem of attaining a given level
of energy of the system with an additional requirement that
the oscillators be in antiphase. We synthesize the control
algorithm by the SG method by introducing the partial goal
functions

H(x) + () + 1 (e,) + (5.14)

2

. . 5([)
Q(p(@lv ‘Pz) = B

(H(x) — H")®

On(x) =2 (513)

where 8, = ¢ + ¢,, H(x(1)) is the total energy of the system,
and H* is its fixed value.

The minimum value of Q,, corresponds to the requirement
that the oscillations are in antiphase (for small initial phases
¢1(0) and ¢,(0) at least, the identity Q,(¢,,®,) =0 holds
only when ¢, = —¢,). Minimization of Oy means that the
desired oscillation amplitude has been attained. The total
goal function Q(x) is defined here as a weighted sum of the
partial goal functions,

0(x) = 00y (1, ¢2) + (1 — ) Qu(x), (5.16)
where o is a weight factor, 0 < o < 1. Calculating the speed
gradient, we arrive at the control algorithm

u(t) = =y[ady (1) + (1 = 2) 3u(1)] ¢ (1) , (5.17)
where 0,(1) = ¢,(?) + ¢,(), ou(t) = H,— H*, and y > 0 is
the gain.

The results in Section 3 cannot be directly applied to the
given problem because J,, is not an invariant of the system
even when g = 0 (it retains its value in the motions of the free
system only on the goal set). Hence, we are confronted with
the problem of analytically studying the attainability of the
goal in systems (5.13) and (5.17). At the same time,
computational experiments have shown that synchroniza-
tion algorithm (5.17) works.

Here are some results of modeling the process of
excitation and synchronization of oscillations by algorithm
(5.17) in the system consisting of two identical pendulums.
The following values of the parameters were chosen: k = 5,
wy=04n,7=0.8,0=0.7, and H* = 4.0. All initial condi-
tions were assumed to be zero conditions with one exception,
¢,(0) = 0.05m.

We begin with the case where ¢ = 0. Figures 2—5 show
that after a certain transient processes, both pendulums
perform oscillations with opposite phases and the two partial
goal functions approach the desired values. The times of the
transient process are the same for both H, and O, (about
20 rel. units). The relation between the times of transient
processes in H, and in Q, can be changed by varying the
coefficient «. The amplitude of the control action may be
made as small as desired by reducing the gain y.

In the presence of dissipation, synchronization of the
pendulums at a given energy level can also be achieved, but
the size of control cannot be arbitrarily reduced. Figure 6 with
the results of modeling at o = 0.05 shows that as the same

@1, @y, rel. units

t, rel. units
Figure 2. Excitation of antiphase oscillations of pendulums.
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Figure 4. Dynamics of the synchronization goal function Q,, (¢, (1), ¢,(¢)).
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Figure 5. Dynamics of the oscillation energy H,.

energy level H* = 4.0 as in the case without dissipation is
attained, the amplitude of the control action approaches the
value
Uso = lim |u(t)| ~0.5.
11— 00

Calculations by formula (4.1) yield a result of the same order
of magnitude, i.e., there is good agreement between theory
and experiment. We note when the sign in the expression for
the synchronization error is reversed, i.e., 6, = ¢; — @,, in-
phase synchronization may be achieved [36].
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Figure 6. Synchronization processes in the presence of dissipation.

6. Control of distributed systems

6.1 Problems and methods of control
in distributed systems
In many respects, the methods of controlling oscillations in
distributed (spatial-temporal) systems are based on the ideas
developed for lumped systems. Moreover, many researchers
use finite-dimensional models of the control system of ODE
systems to synthesize control. Such models can be obtained
by discretization over the space of distributed models
described by partial differential equations or as a set of
ODE describing separate spatial elements (cells) or by
discarding the ‘tail’ in the expansion over the basis in the
initial infinite-dimensional state space (Bubnov—Galerkin
methods). In this section, we discuss the first two variants
and assume that the cells interact with each other via ‘bonds’
that reflect the spatial structure of the entire system, often
called an array or a lattice.

A typical representative of the class of models of
physicochemical processes is the so-called reaction—diffu-
sion equation

a—x:(sAx—l—F(x,u),

= (6.1)

where x = x(r, 1) is the function (possibly, a vector function)
of the spatial variables r € D C R" and time ¢ that determines
the state of the system;

is the Laplace operator, which specifies the diffusion type of
the spatial interaction of the elements; and ¢ is the diffusion
coefficient. Usually, the boundary conditions are either
periodic, x(a,t) = x(b,t) at D = [a,b] C R', or describe the
absence of a flux through the boundary,
&) -6
or)|,_, or)|,_,

When equation (6.1) is discretized over the space, the set D is
replaced by a finite number of points (nodes) r;,
i=1,2,... N, to each of which there corresponds a state
variable x;(#). The dynamics of the x;(¢) is determined by both
the internal dynamics of F(x;, u;) and the interactions with the
neighboring nodes. For instance, if the space is one-dimen-
sional, r € [a, b], and the interactions are of a diffusion nature,
we obtain the systems of equations

X =e(xio = 2x + X)) + Flxgu),  i=1,2,...,N—1.

(6.2)

If the boundary conditions are periodic, an additional
constraint x(7) = xy(7) is specified, while in the absence of
flux through the boundaries, additional constraints
x0(2) = x1(¢) and xy_;(¢) = xn(¢) are imposed. The case of
zero boundary conditions is often considered: x;(¢) = 0 for
i <0 and for i > N. In many works, the systems are also
discretized in time, which leads to what is known as coupled-
map models, or cellular automaton models:

xi(n+1) = xi(n) + e[xi_1 (n) — 2x;(n) + x;11 (n)]
—&—hF(xi(n),u;(n)), i=1,....N—1, n=0,1,2,....
(6.3)

In models (6.1) and (6.3), control affects the dynamics of
each cell, which corresponds to the case of spatial (field)
control. Another class of problems, boundary control,
emerges when the right-hand sides of (6.2) and (6.3) are
control-independent, i.e., F(x,u) = F(x), but control enters
the boundary cell equations, Xy = &(x; — xo) + Fo(x,u) (for
periodic boundary conditions). The most general systems are
the spatially inhomogeneous systems described in the one-
dimensional case by the model

Xp = Fi(Xi, Xiz1, Xig1, 1)

)'C() = F()(X(),xhu)7 (64)

Xy = Fy(xy,Xy_1,u) .

Various types of the interaction of oscillations in neighboring
cells are considered as the control goal, in addition to
ordinary goals, which are the same as in lumped systems. As
in lumped systems, the attainment of the goal does not
determine the process in the system in full. An interesting
research direction is to determine the possible types of
behavior of systems with and without control.

The specific control goals in distributed systems are:

e stabilization of a given uniform (homogeneous) or
spatially periodic stationary field (standing wave);

e stabilization of a given spatially periodic nonstationary
field (traveling wave);

e generation or destruction of a helical wave (for the
number of spatial dimensions no smaller than two);

e generation or destruction of a given nonuniform field (a
contrast structure, clusters, patterns); and

e control of self-organization and disorganization of
systems.

Problems of controlling distributed systems have been
discussed in control theory since the 1960s (e.g., see Ref. [77]).
However, judging by publications, the interest in this topic
increased considerably only in the mid-1990s in connection
with the interest in controlling chaos in distributed systems.
The methods that were used in the first works on controlling
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chaos in distributed systems were basically those that had
been developed for lumped systems: the OGY method,
delayed feedback, etc. [78]. In the works that followed, other
approaches were also studied (numerically, as a rule).

For instance, the authors of Ref. [79] examined a one-
dimensional array with N = 100 cells that were described by a
logistic map with F(x,u) = 1 — ax? + u, where the parameter
o 1s specified such that the oscillations in each cell at u = 0 are
chaotic. Computational experiments have shown that at
sufficiently large values of gain y, the local feedback

1 X
ui(n) = y{xi(n) —mfo(n - l)} , i=12,...,N—1
j=0 (6.5)

stabilizes a spatially homogeneous distribution, x; = x,,
i=0,1,2,...,N. For smaller values of y, an inhomogeneous
distribution consisting of several homogeneity clusters sets in,
with each cell oscillation in the periodic mode. Similar
behavior of the system was observed in the presence of local
feedback in the discrepancy (error),

ui(n) = y(x(n) — x.) (6.6)
and when ‘global’ feedback (which reflects reality more
adequately) is introduced. Such feedback depends on the
observable mean values of the variables,

N
ui(n) = =5 D bn) = (= 1) (6.7)
Jj=0
or
y N
ui(n) = =57 D) = .. (6.8)

j=0

The results were substantiated in Ref. [80].

The case of pinning control of a one-dimensional lattice,
where control acts only on each pth cell described by the
Lorentz system, was considered in Ref. [§1]. The researchers
showed that it is possible to approach a spatially homo-
geneous (coherent) motion that is nevertheless chaotic,
provided that control varies in time in a discrete manner
according to law (6.6) with y = 1 and is applied to the first
equation in the Lorentz system. In Ref. [82], this result was
extended to a two-dimensional lattice of Lorentz systems by
using integral feedback, which the researchers called adap-
tive. Similar results were obtained in Ref. [83] for the complex
Ginzburg—Landau equation

2

p ., 04 .
A=A+ (1+iy) R (1+im)| 4’4

(6.9)
and in Ref. [84] for the Swift—Hohenberg equation, which
describes the dynamics of lasers. The Ginzburg—Landau
equation with pinning control applied to a finite number of
points has been studied in Refs [85, 86]. The equation
describes a broad range of phenomena in laser physics,
hydrodynamics, chemical turbulence, etc. and can represent
various types of complex behavior. As a result of computa-
tional experiments, the authors of Ref. [85] found the
largest distance between the points to which control is
applied that ensures the attainment of the control goal. A
similar result with boundary control was obtained in
Ref. [86].

It was shown in Ref. [87] that solutions of the Kuramoto —
Sivashinsky equation

dp 09 O ¢
o TP T e T

u (6.10)
can be stabilized by periodic delayed feedback in the speed
u=¢'0¢(t — 1)/0t, where 7 is the delay time.

Pinning control was used in Ref. [88] to stabilize the zero
solution (x;(¢) = 0) of the system of coupled oscillators with
diffusion — gradient bonds,

. &
X; :f(x,-) +§(xi,1 —2x; + X,'+1) +

NSRS

(Xim1 — xip1) +uy,
(6.11)

and to solve the Ginzburg—Landau equation with the initial
condition corresponding to the chaotic mode. The researchers
used linear feedback with large gain in each /th oscillator. The
stability of the closed system was analyzed by using models
that were linearized near the goal solution.

The minimum number density of local control points and
their optimum arrangement in a one-dimensional array of
coupled logistic systems, f(x) =ax(l —x) in (6.11), with
stabilization by linear feedback, have been determined in
[89]. In Ref. [90], a method for stabilizing an unstable spatially
homogeneous solution of the reaction—diffusion equation
was developed and its applicability was demonstrated using
the complex Kuramoto—Tsuzuki equation. A method of
suppressing chaos and helical waves in the Maxwell — Bloch
equations with diffraction bonds by a weak spatial perturba-
tion was proposed in Ref. [91].

Interesting problems of ‘cluster synchronization’ in two-
and three-dimensional arrays of nonlinear oscillators have
been examined in Refs [92—-95]. Lyapunov functions of a
special type were used to find the conditions needed for the
partitioning of the array into a given number of compact
clusters of oscillators that vibrate synchronously. The
researchers found that as the degree of the interrelationship
increases, the number of clusters decreases to unity, i.e., the
entire array becomes synchronized. Although control is not
present explicitly in the above papers, the results of these
works can be interpreted as a choice (synthesis) of the
coupling constant k& that ensures the given degree of
clusterization in the system.

6.2 Energy control in the sine-Gordon

and Frenkel — Kontorova models

We now show how the SG method can be used to control
systems of the sine-Gordon type according to energy criteria.
We introduce the notation

. Ox B Ox
Xt a ) X m s

ox ’x ’x
Mg Y T gna YT

i
and examine a system described by the sine-Gordon equation

Jx; = kAx — Esinx, (6.12)
where x = x(r, ) is the system’s state function, r € X C R",
Ax =3""_| Xy, J and k are the parameters of the system,
and E = E(t) is the external action (e.g., the external electric
field strength). We assume that £ = Ey + u(t), where Ej is the
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base level of the field and u(¢) is the control action. System
(6.12) can be interpreted as a model of an array of diffusion-
coupled oscillators (pendulums, liquid crystals, etc.), each of
which is placed at the point r;. Then, x(r;, t) is the rotation
angle (angle of swing) of an oscillator.

We now pose the problem of bringing the energy values of
the free system

1 ; 2
H:—J J(CE Lk VAP 4 2E0(1 — cosx)| dr (6.13)
2 )y ot

to the given level H,, which corresponds to the control goal

lim H(r) = H.,.

11— 00

(6.14)

Introducing the function V(¢) = (H(r) — H*)2/2 and
examining the relation

v

V=—=—u(t)(H(t) —H*)J x,sinxdr, (6.15)
dt X
we find that I < 0 at
u(t) =y(H(r) — H.) J x;sinxdr, (6.16)
X

i.e., action (6.16) brings the system to the goal.
We examine the spatially one-dimensional and spatially
discrete problem,

T8 = 13 (61 = 2%+ x1) = (Eo + u(t)) sinx;, - (6.17)
j=12...)N,

which corresponds to the continuous system
Ix; = kx, — (Eo + u(t)) sin x (6.18)

in the set X = [a, b], where x; = x[a + j(b — a) /(N + 1)].
System (6.17) is simply the controlled version of the
classical Frenkel— Kontorova model proposed in 1939 (e.g.,
see Ref. [66]). Many researchers have studied this problem.
The common approach to studying system (6.18) without
control is to impose either zero boundary conditions
x(a,t) = x(b,t) = 0, which correspond to

xo(t) =xy11(1) =0 (6.19)

in discrete model (6.17), or conditions of zero flux through the
boundary x,| W= x,.| b= 0, which are given by

r= r=

X0 = X1, XN = XN+1 (620)

in (6.17).
The problem of controlling the chain’s energy can be

solved on the basis of the results in Section 3. The energy
control algorithm obtained by the SG method is

u(t) =y (H(t) = H.) Y Ssinx;,
Jj=1

(6.21)

with y > 0. The conditions needed for the attainability of a
goal of this type (see Section 3) suggest that control goal (6.14)
in systems (6.17) and (6.21) is attained if the energy layer
between the levels H(0) and H., contains no equilibrium states
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of the system satisfying the conditions sinx; =0,
j=1,...,N.

We note that in the particular case where N =2 with
boundary conditions (6.20), the system becomes

JX| = i—l;()cz - X]) — (EO + u(t)) sin x1 ,
(6.22)
. 2k .
JXy = ﬁ(xl —x) — (Eo + u(t)) sin x; .
In this case, the problem of controlling the energy becomes
similar to the problem of synchronizing two pendulums,
examined in Section 5.3.
The discrete analog of control algorithm (6.16) is

u(t) =y(H(1) — H,) (x> — x1)(sinx; —sinx),  (6.23)

where H(t) is defined as the discrete representation of (6.13):

J . . k
H=2(x24%2) 4+ = (x1 — x2)* + Eo(2 — cos x| — cos x) .

2 2
(6.24)

The constructed control algorithms can be used to study
the properties of nonlinear oscillatory systems in various
problems, including problems of controlling the vibrations
of oscillating particles, of the orientation of particles in a
given direction, etc.

The problem of controlling the excitation and synchroni-
zation of oscillations in a chain consisting of N simple
pendulums connected in series is examined in Ref. [36] (for
the particular case of N = 2, see Section 5.3).

7. Control of molecular and quantum systems

7.1 Laser control of molecular dynamics

Problems associated with controlling processes in the micro-
world have a rich history. The Maxwell demon has already
been examined in Section 1. In the 20th century, various
problems of controlling chemical technology processes
(within what became known as chemical cybernetics, which
was being rapidly developed in the 1960s and 1970s), nuclear
reactors [62, 97], particle beams [98], processes in solids via
laser radiation [99], etc., were studied.

The main difficulties in controlling processes on the
atomic—molecular level are related to the small spatial size
of the controlled systems and the high rates of the processes in
them. The average size of molecules (monomers) is around
10 nm, the average distance between the atoms in a molecule
is 1 nm, and the average speed of the atoms and molecules at
room temperature is 10 —10° m s~! and the period of natural
oscillations of the atoms in a molecule is 1—10? fs. Building
devices for measurement and control on such a spatial-
temporal scale constitutes an extremely complicated scienti-
fic and technological problem. We note that the operation of
the existing chemical and nuclear reactors is based on using
natural moderation of fast processes. For instance, imple-
mentation of systems for controlling nuclear processes is
possible only because the rate of neutron-physical processes
is moderated substantially by the presence of what is known
as delayed neutrons, whose motion is characterized by time
constants of the order of several seconds to several dozen
seconds. The speed of molecules involved in chemical
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reactions decreases because of diffusion, which creates the
prerequisites for controlling chemical technology processes.
However, for intricate control problems, e.g., for breaking a
strong chemical bond while leaving a weaker bond intact (this
is known as selective chemistry), we need selective inter-
ference into processes with characteristic time constants in
the femtosecond range. Until recently, no technological
possibilities for controlling such rapid processes existed.

The situation changed at the end of the 1980s with the
appearance of ultrafast femtosecond lasers that generated
pulses with a length of several dozen femtoseconds (today,
this figure amounts to several femtoseconds) and of ways of
controlling the shape of the laser pulses by computer. A new
area of chemistry came into being, femtochemistry, for which
A Zewail was awarded the Nobel Prize in Chemistry in 1999
[100]. With the development of ways of using femtosecond
lasers, the term ‘femtosecond technology’, or ‘femtotechnol-
ogy’, emerged.

Several approaches to controlling molecular systems have
been proposed. In Shapiro and Brumer’s approach [101],
control is based on the interference of two laser beams with
different frequencies, amplitudes, and phases, which became
known as the pump—dump scheme. Tannor and Rice [102]
proposed using two-pulse pump-—dump schemes in the
temporal region. Later, to optimize the pulses, methods of
optimal control, in particular, one based on Krotov’s method
(see Ref. [103]), were employed. Rabitz et al. [104—107]
studied various variants of optimal control in the classical
and quantum mechanical descriptions of the dynamics of
molecular motion. Judson and Rabitz [105] proposed
implementing adaptive laser control of chemical reactions
combined with search optimization methods (genetic algo-
rithms), an idea that was later repeatedly corroborated in
experiments [108 — 110]. The current state of the problem can
be examined by turning to the article collections [111, 112].

One of the simplest problems in this class is the problem of
dissociation of a diatomic molecule [54, 113—115]. At the
same time, the problem is typical and can be used to compare
the advantages and drawbacks of various methods. The
possibility of dissociation of hydrogen fluoride HF in the
presence of a periodically varying field (monochromatic laser
radiation) was studied numerically in Ref. [113]. Using a
similar method, the same researchers (see Ref. [114]) studied
dissociation by a two-frequency (bichromatic) action and
found that the intensity of the dissociating field can be
substantially reduced. In Ref. [54], the intensity of the
dissociating field was estimated by chirping, which amounts
to uniform variation of the frequency of the external action.
The researchers showed that it is possible to reduce the field
intensity required for dissociation even more.

New possibilities for changing the physicochemical state
of matter emerge when there is nonperiodic action in the
form of feedback. In Section 5.2, we used the problem of
escape from a potential well to show that feedback makes it
possible to reduce the intensity of the action needed for
overcoming a potential barrier by several orders of magni-
tude. When the action is selected by the SG method, the
intensity needed for attaining a certain level of energy proves
to be inversely proportional to the degree of dissociation of
the system (see Section 4.1), and for conservative systems,
the appropriate effect can be achieved (at least in theory) by
an excitation intensity as small as desired. It is therefore
interesting to use feedback for synthesizing control of
molecular systems.

The main problem with feedback control lies in the
difficulties related to measurements of the state of the system
and the implementation of the control action over time
periods comparable to the period of natural vibrations of
the molecule.

Various algorithms of feedback control, including
algorithms of optimum control, were proposed in
Refs [106, 107, 115] and other papers. The general feature
of these algorithms is that they are used in a model of a
molecular system to synthesize the control action as a
function of time. In computational experiments, one can
assume that all the necessary signals are measured and the
synthesized algorithm is carried out in a computer. As a
result, a controlling signal is generated as a function of time,
and its implementation is done without measurements and
feedback. What impedes the practical application of this
approach is the very large number of indeterminancies: the
initial state of the system is not known precisely and the
constructed controlling function is calculated and imple-
mented with errors. Finally, the very model of the molecule
is imprecise, because its parameters have not been reliably
determined and, furthermore, the choice between classical
and quantum mechanical descriptions is often a subject of
discussion.

In Section 7.2, we describe a new approach to the problem
of the dissociation of a diatomic molecule based on the SG
method with an energy goal function [116, 117]. The obtained
algorithms are robust, because they are independent of the
shape of the intermolecular interaction potential. They make
it possible to achieve dissociation at a lower intensity of the
controlling field compared to chirping and are simpler to
synthesize and calculate compared to optimal control
methods.

7.2 Controlled dissociation of a diatomic molecule
The idea of the approach is that the problem of controlling
dissociation is posed as one of achieving a given level of
energy of the molecule (the dissociation threshold). To
simplify matters, we assume that the given level of energy
is somewhat lower than the dissociation threshold, i.e., we
begin with the predissociation problem. The goal function is
formed as the square of the deviation of the current energy
from the fixed value. The control algorithm is built
according to the standard SG scheme (see Section 3) and
is applied to the standard model of a molecule (a ‘standard
molecule’) in the course of time 7 sufficient for dissociation
of the molecule. If the control signal generated in this way
as a function of time is fed to a real molecular system, its
action leads to the dissociation of only those molecules
whose initial state is close to the initial state of the standard
molecule x¢ (the dissociation zone). But if the control signal
fed to the system is in the form of pulses of length 7T} with
the distance between the pulses being large, some molecules
approach the state xy during the pause between the pulses
(in the course of their chaotic thermal motion), enter the
dissociation zone, and are dissociated by the next control
pulse. If the algorithm is sufficiently robust, we can expect
that the fraction of the molecules that are in the dissociation
zone is not very small and the process is a rapid one. We
now examine this approach in greater detail, following
Ref. [117].

We adopt the classical description of the dynamics of an
individual molecule in the form of Hamiltonian model (3.1).
The interatomic distance r(¢) acts as the coordinate in (3.1),
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and the Hamiltonian is

p2
H="—+1T1(
P 1)+ ),

(7.1)

where m is the mass of the molecule, I1(r) is the interatomic
interaction potential, u(r) is the molecule’s dipole moment,
and u = u(t) is the external controlling field. To describe the
interatomic interaction, we use the Morse potential

I(r) = D{1 — exp [—a(r — a)] }2 -D
= D{exp [-20(r — a)] — 2exp [~a(r—a)]|}, (7.2)
where D is the coupling energy and «a is the equilibrium

interatomic spacing. The dipole moment is specified in the
form [115, 118]

w'(r) = A(1 — 4&r*)exp (=&r?),
(7.3)

u(r) = Arexp(—g’r“) ,

where A4 and ¢ are constant parameters. If a? is small
compared to unity, the dipole moment can be approximated
by the linear function u(r) = Ar, u’(r) = A. The equation of
controlled systems in the Lagrangian form becomes

mit = 20D{exp [20(r — a)| — exp [—a(r — a)] } + Au(r).
(7.4)

This description assumes that the molecular motion is one-
dimensional and its axis is parallel to the force lines of the
controlling external field, i.e., effects associated with a change
in orientation and rotation of the molecules are ignored.

In formulating the control goal, we allow for the fact that
as the total energy of the molecule approaches
II, = lim, , , II(r), dissociation becomes more and more
likely. Obviously, in the case of Morse potential (7.6), we
have IT, = 0.

For the goal function, we take the standard deviation

0(q,p) = (Ho(q,p) — H.)*/2,

where Hy(q,p) = p?/(2m) +1II(r) is the energy of a free
molecule and H, is the fixed energy value close to the
dissociation threshold IT,. Calculating the speed gradient in
the same way as we did before, we arrive at the simple
feedback laws

U= —E(Ho(q,p) — H*) r, (7.5)

u = —Esign (Ho(qhn) — H*) sign 7, (7.6)
where E >0, sign(H) =1 for H >0, sign(H) = —1 for
H < 0, and sign (0) = 0. For modeling, we use a simplified
version of algorithm (7.6) obtained under the assumption that
the molecule’s energy is always lower than the dissociation
threshold H.,:

u= EsignF. (7.7)

Algorithm (7.7) does not require the exact knowledge of the
dissociation threshold H, and can be used in other problems,
e.g., to localize a molecule in the region of elevated energy
(predissociation).

7.3 Simulation results for classical

and quantum mechanical descriptions of molecules
Computational experiments with systems (7.4) and (7.7) were
conducted with the numerical values of the parameters

corresponding to the HF molecule [115, 118]: m = 1732,
D=02101,0=1.22,a=1.75 A = 0.4541, £ = 0.0064, and
E =0.1. The values are given in Hartree atomic units (a.u.).
To calculate the control action, the initial conditions were
chosen near the equilibrium state r =a and 7 =0 (the
standard molecule). The field intensity was chosen low:
E = 0.005 a.u. The result of the calculations was the function
u(t)for0 <t < Ty.

The calculated control action u(#) was applied to a model
of an ensemble consisting of N = 1000 molecules. It was
assumed that the molecules do not interact with each other or
the boundary. The initial conditions for the molecules of the
ensemble were specified as random values uniformly distrib-
uted over the surface of the fixed level of energy
Hy = —0.8689D. The control action was fed in the form of
repetitive pulses with the pulse repetition period 7, suffi-
ciently long for the molecules to have time to ‘spread’ during
the pause between the pulses. In experiments, 75 = 2007,
where T is the period of small vibrations of the molecule near
the equilibrium position. The fraction of the dissociated
molecules (a percentage of the total number of molecules)
was taken as the measure of the efficiency of control.
Dissociation (more accurately, predissociation) was under-
stood to occur when the molecule’s energy was above the
energy level H, = —0.1185D.

The efficiency of the proposed algorithm was compared to
that of the standard chirping algorithm u(f) =
Ecos (¢py + Qot — et?/2). Figure 7a shows the time depen-
dence of the fraction of the dissociated molecules under
control by a linearly chirped field. The chirping rate ¢ (the
rate of variation of the pulse frequency) was adjusted in the
experiments to achieve the highest efficiency (the largest
fraction of the dissociated molecules) and amounted to
e =0.01Qy/T) in the experiments. Figure 7b shows a similar
dependence for the SG algorithm. The two figures clearly
show that the efficiency of this algorithm is severalfold
higher than the efficiency of linear chirping. It is important
that the system with chirping is extremely sensitive to the
chirping rate ¢. The selection of the parameter ¢ requires much
computer time and more exact knowledge of the parameters
of the molecular Hamiltonian and the dipole moment than
the efficient operation of algorithm (7.7) requires.

The interesting question about the meaningfulness of
using classical description in modeling and controlling
molecular processes is the cause of much discussion. The
dynamics of a diatomic system are described more accurately,
compared to the description provided by classical model (7.4),
by a quantum mechanical model (more precisely, by a
semiclassical model) represented by the time-dependent
Schrédinger equation

BGL N S 4

ih E:mﬁ—&-ﬂ(i’)?’—ﬁ—Aru(I)‘P, (7.8)
where ¥ = ¥(¢,r) is the wave function and II(r) is Morse
potential (7.2). However, in many cases, classical calculations
yield a result that is very close to reality. Hence, the results of
modeling processes of controlled dissociation in the classical
and quantum mechanical settings were numerically com-
pared.

To numerically analyze quantum model (7.8), a finite-
level approximation of the model was built by expanding the
solution in eigenfunctions of the unperturbed Schrédinger
equation with the Morse potential [119]. The control action

and the modeling time were chosen the same as in the classical
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Figure 7. Controlled dissociation in a classical ensemble: (a) linearly chirped pulses and (b) pulses calculated by the SG method; # is the fraction of the
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Figure 8. Dissociation probability for quantum mechanical modeling for £ = 0.005 a.u.: (a) linearly chirped pulses and (b) pulses calculated by the SG

method.

case. The initial state of the system was assumed pure and
having an energy equal to the second energy level, while the
dissociation threshold H, corresponded to the 15th energy
level of the HF molecule, just as in the classical case. The
dissociation probability (the fraction of the dissociated
molecules) was defined as the probability of states with the
energy exceeding the dissociation threshold H,.

The results of quantum mechanical modeling are shown in
Fig. 8. Clearly, the SGA ensures a 15% dissociation
probability after five pulses, which is much higher than the
dissociation probability for a chirped pulse and agrees with
the results obtained in the classical case (10—12%).

8. Laws of control
and laws of dynamics of systems

Below, we study the links between the laws of control in
technical systems and the laws of dynamics of physical
systems. We show that the methods used to synthesize
control algorithms, e.g., the SG method, make it possible to
derive the laws of dynamics of physical systems, provided that
the proper goal function is chosen.

8.1 Variational principles. The speed-gradient principle
We turn to the class of open physical systems, for which the
models of the dynamics are described by systems of differ-

ential equations

X =f(x,ut), (8.1)
where x € R" is the state vector of the system, u is the vector
of the input (free) variables, and ¢ > 0. The problem of
modeling (building a model of) the system can be interpreted
as the problem of finding the law of variation (evolution) of
u(t) that meets a certain criterion of ‘naturalness’ of the
system’s behavior and imparts properties observed in the
real physical system to the model being constructed.

In physics, such problems are widely known. Variational
principles of building model systems gained acceptance long
ago. A variational principle usually presupposes that a certain
integral functional (e.g., the action functional in the principle
of least action [120]) has been specified. Minimization of the
functional yields the possible paths actually taken by the
system, {x(z),u(t)}, as points in the appropriate functional
space. Well-developed tools of variational calculus are used to
explicitly determine the law of dynamics of the system.

It is interesting that the variational approach formed the
basis for an entire area of research in control theory, the
theory of optimal control, in which minimization of a
functional is used to find the law of controlling a technical
system that is appropriate in the given sense. In turn, methods
of optimal control (Bellman’s dynamic programming, the
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Pontryagin maximum principle, etc.), which constitute
developments of the methods of classical variational calcu-
lus, can be employed in building models of the dynamics of
mechanical [121], thermodynamic [122], and other systems.

In addition to integral principles, differential principles
(i.e., principles that are local in time) have been proposed,
among which are Gauss’s principle of least constraint and the
principle of minimum energy dissipation. As noted by Planck
[123], local principles have some advantages over integral
principles, because they do not make the current state and
motion of the system depend on the later states and motions.
Following Ref. [62], we can formulate one more local
variational principle based on the SG method.

The speed-gradient principle. Among all possible motions of a
system, only those for which the input variables vary in
proportion to the speed gradient of a certain ‘goal’ functional
Q are realized.

The speed-gradient principle gives the researcher a choice
between two types of models of the system’s dynamics:

(a) models that follow from SGAs in the differential form,

u= 7FVL!Q.; (82)

(b) models that follow from SGAsS in the finite form,

u=-Irv,Q. (8.3)
Here, Q is the rate of variation of the goal functional along a
path of system (8.1).

We describe the way to use the principle in the simplest,
but important, case where the class of the models of dynamics
(8.1) is specified by the relation

(8.4)

X=u.

This relation simply implies that we seek a law of variation of
the rates of the state variables of the system. In accordance
with the SG principle, we must first introduce a goal
functional (function) Q(x). The choice of Q(x) must be
based on the physics of the real system and reflect the
presence in the system of a tendency to decrease the current
value Q(x(1)). After this is done, the law of dynamics can be
immediately written in form (8.2) or (8.3).

Specifying the law of dynamics in form (8.2) generates
second-order differential equations of motion, which are
invariant under time reversal ¢t — —t, i.e., correspond to
reversible processes. But if we choose finite form (8.3), we
are usually dealing with irreversible processes.

In Section 8.2, we use examples to demonstrate how the
introduced principle can be applied.

8.2 Examples of the speed-gradient laws of dynamics

8.2.1 Particle motion in a potential field. For the first example,
we take the problem of describing the motion of a particle in a
potential field. The coordinates of the point are the state
variables, i.e., x = col (xy, x2, x3). For the goal function, we
take the potential of the field, Q(x), and derive the SG law of
motion in a differential form. We calculate the speed gradient

0= [V.0(x)]"u, V.0=V.0(x).

By choosing the positive definite diagonal matrix I’ as
I' = m~'Iy, where m > 0 is a parameter and I3 is the 3 x 3
identity matrix, we arrive at Newton’s classical law of

dynamics &t = —m~ 'V, Q(x), or

mX = —=V,0(x). (8.5)

Here, the parameter m is interpreted as the particle mass.

This example allows far-reaching generalizations. For
systems whose motion is caused by potential forces, the field
potential may act as the goal function Q(x) and the inertia
matrix determines the gain matrix in the algorithm. If the
inertial properties of the system are different at different
points of the configuration space, the metric varies in the
space of velocities (the controlling variables). In this way, we
can build models of the dynamics of complex mechanical
systems described by Lagrangian equations of the second
kind.

The SG principle can also be used in building models of
the dynamics of distributed systems, described in infinite-
dimensional state spaces. In particular, x can be a vector in a
Hilbert space X and f(x, u, f) a nonlinear operator defined in
a dense set Dp C X (here, the solutions of Eqn (8.1) are
interpreted as generalized solutions).

8.2.2 The wave equation and the heat conduction equation. Let
x = x(r) be the field of temperatures or concentrations of
matter defined on a certain domain QC R r=
col (r,r2,r3) € Q. For the goal functional, we take the
measure of the field’s inhomogeneity,

Q(x) = %JQ‘V,X(I”, z)‘z dr, (8.6)

where V,x(r, ) is the spatial gradient of the field x = x(r).
Assuming zero boundary conditions for simplicity, we
calculate the speed gradient of functional (8.6). From the
Green’s formula with zero boundary conditions, we obtain

0= J (V,.x(r7 t))TV,u(r7 t)dr = —J Ax(r,t)u(r,t)dr,
Q Q
(8.7)

where

3 62
=2

is the Laplace operator. Bearing in mind that the gradient of a
dot product with respect to one factor is equal to the other
factor,® we find that the SG operator in the given case is
simply the Laplace operator, V,Q = —Ax(r, ). Hence, the
speed-gradient law of evolution of the system in differential
form (8.2) becomes

0%x(r, 1)

2 = yAx(r, 1),

(8.8)

which is the wave equation.
If we choose the algorithm in finite form (8.3), the
corresponding dynamics equation
0x(1)
ot

= VAx(rv t) (89)

coincides with the simplest heat conduction equation.

¢ To make this reasoning more meaningful, we must assume that both
integrands belong to a Hilbert space, e.g., L,(Q), which, however, imposes
no serious restrictions on the general nature of such reasoning.
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8.2.3 Dynamics of a viscous fluid. Suppose that an infinite-
dimensional state vector of a system is formed by two
functions, x = col (v(r, 1), p(r, 1)), where v(r, ) is the velo-
city of the three-dimensional flow of the liquid, v(r, ) € R?,
and p(r, ) is the pressure. We introduce the goal functional as

0= J p(r,t)dr+ VoJ |Vrv(r, t)‘zdr, (8.10)
Q Q

where vy > 01is a weight factor. Calculating the speed gradient
of functional (8.10) in u given by (8.4), we obtain
VuQ =V, p — vAv. Hence, the differential form of the SG
law is simply the Navier — Stokes equation, which describes
the motion of a viscous fluid,

ou(r, 1)
ot

==V, p(r,t) + vAv(r 1), (8.11)

1 1

where v = vyy~" is the viscosity and p =y~ is the density of
the fluid.

Other examples of derivation of the dynamics equations
for mechanical, electrical, and other systems can be found in
Ref. [62]. The SG principle can be used to describe a broad
class of physical systems under potential or dissipative forces.
On the other hand, the principle must be modified if we want
it to be applicable to systems that are in vortex motion, e.g., to
mechanical systems subjected to gyroscopic forces.

We note once more that this principle is of a dual
nature: the differential form of the SG law corresponds to
reversible processes, while the finite form corresponds to
irreversible processes. The choice between the two forms,
just as the choice of the goal and of the goal functional,
entirely pertains to the physical setting of the problem. In
some cases, this choice is ambiguous: for instance, a process
that is reversible on one time scale may be irreversible on
other time scales. Thus, this principle does not free the
physicist from the need to choose or build a model of the
system — it only helps to reduce the number of options in
taking the decision and in establishing the ‘purposefulness’
in the system’s behavior.

8.3 Onsager relations

The speed-gradient principle offers a new angle on some well-
known physical facts and phenomena. For instance, we derive
a generalized variant of the well-known principle of the
symmetry of kinetic coefficients (the Onsager principle) in
thermodynamics [124, 125]. We take an isolated physical
system whose state is characterized by a set of thermody-
namic variables £, &, ..., &,. We let x; = & — & denote the
variations in the variables from the equilibrium values

&,8,...,&,. Let the dynamics of the quantities
X1, X2,...,X, be described by the differential equations
Xi=ui(x1,x2,...,x,), i=1,2,...,n. (8.12)
We linearize Eqns (8.12) near equilibrium:
Xi==Y Juxk,  i=1,2...,n. (8.13)
k=1

The Onsager principle [124, 125] states that the kinetic

coefficients /;; are symmetric, i.e.,
iLhk=1,2,...,n.

Aik = Aki s (8.14)

The Onsager principle does not hold for all systems. Its
proof (e.g., see Refs [124, 125]) rests on additional postulates.
In particular, it is assumed that the system is near thermo-
dynamic equilibrium. Below, we give a new proof that shows
that for speed-gradient systems, the generalized variant of the
Onsager principle holds without any additional assumptions
and does not require that the system’s model be linearized in
advance.

We must formulate this variant first. Clearly, for the linear
model of the system in (8.13), symmetry relations (8.14) are
equivalent to the identities

Ou; Ouy.

axk(xl7x2a"'7xn) =

(1, X2,y X0) (8.15)
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We say that the generalized Onsager principle holds if
identities (8.15) hold for systems described by nonlinear
equations (8.12).

It turns out that if there is a smooth function Q(x) for
which dynamic equations (8.12) can be derived from the SG
principle in the finite form, then identities (8.15) hold for all
X1,X2,...,Xp, 1.€., the generalized Onsager principle holds.

Indeed, Eqns (8.12) express the SG law for Q(x), and
hence their right-hand sides can be represented in the form

u = —y@Q/@ui, i=1,2,...,n. Then, u;=—y(0Q/0x;)
[because Q = (V.0Q)"u)] and

w00

axk - / @x,- an - Gx,- ’

which implies identities (8.15).

Obviously, symmetry relations (8.14) constitute a parti-
cular case of (8.15) for linear dynamic equations. Thus, for
systems obeying the SG principle, the generalized Onsager
relations in (8.15) are true without the assumption that the
dynamic equations are linear, i.e., not only near equilibrium.
Because the above derivation is based on differentiation, the
right-hand sides of (8.12) are assumed smooth. It would seem
that this excludes problems with nonsmooth or discontinuous
functions, i.e., problems involving the propagation of shock
waves. But in such cases, we can use variants of the SG
algorithms developed specially for nonsmooth problems, in
which the gradient is replaced by the subgradient [62].

8.4 Dynamics and the goal
It would be interesting to compare the above approach with
the results obtained by a British expert in control systems,
H H Rosenbrock [126, 127], who found that the Schrédinger
equation can be derived from the Hamilton—Jacobi— Bell-
man principle of optimality.

Although the approach to construct dynamic equations of
physical systems on the basis of extremum principles is widely
known, in physics it is not connected to the concept of a goal,
which means the attainment of the extremum of the goal
functional. This is an illustration of the difference in
approaches in physics and in the engineering sciences, where
optimality as the goal of building an artificial (technological)
system is of paramount importance. On the other hand, the
use of the concepts of goal and expediency of behavior has in
the past raised objections from some physicists and other
researchers in the natural sciences. Such an attitude was most
strongly expressed by Einstein [128] in 1950: “For the
scientist, there is only ‘being,” but no wishing, no valuing, no
good, no evil, no goal.”
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Rosenbrock criticises Einstein’s point of view and
adduces arguments in favor of the idea that the concept of a
goal is natural for both animate and inanimate nature. He
notes that the rejection of the concept of a goal is a reaction to
the 17th-century conflict between the Church and the
emerging science and is not relevant today. In the 20th and
21st centuries, machines that act ‘purposefully’ and embody
the goals set by humans have spread to all parts of the world
and have become common fixtures in our environment. This
fact forces us to treat the concept of a goal more seriously in
physics as a science that deals with the most general laws
governing the systems in the environment, animate, inani-
mate, and artificial (built by humans). Rosenbrock writes [33,
127]: ““As an example, living organisms exhibit clear purposes,
and if the substrate of quantum mechanical particles from
which life evolves is described as purposeless the question
arises how can purpose arise from a purposeless substrate?”’

Rosenbrock’s viewpoint is in common with the conclu-
sions drawn by Kadomtsev [10], who wrote: ““...there are
many common traits in the behavior of complex systems,
organic and inorganic, and inorganic systems with a complex
structure are also not simple both structurally and in the
nature of their behavior,” and “...the expediency and
possibility of selecting a goal may be assumed a natural
product of the development of complex systems with
information-related behavior.”

The local evolution principle described above on the basis
of the speed gradient rests on the concept of a goal to a greater
extent than the integral extremum principles. Hence, in the
cases where the concept of a goal and a goal function emerge
in a natural way, the local evolution principle may prove more
convenient and useful for designing models of the dynamics
of systems. Incidentally, it must be noted that the SG
principle agrees with the well-known biological principle
according to which organisms and populations develop in a
way to ensure a maximum increase in their biomass [62, 129].

9. Conclusion

We have analyzed the main features of the problem of control
in physical systems and described the general approaches to
solving the problems of controlling a fundamental character-
istic of systems, the energy. We have established the laws of
energy transformation for the main classes of systems,
conservative and dissipative. New statements of the problem
required new concepts (the excitability index, for instance)
and led to a description of new effects (feedback resonance).
The examples in which the problems of controlling physical
systems were solved show the fruitfulness of the new
approaches to the study and control of phenomena of the
microworld and the macroworld.

In a single journal publication, it is impossible to cover all
the research done in the field that is the topic of this review,
and hence many important applications of the methods of
control theory in physics had to be ignored. I believe that
modern physics education must include a course in cybernetic
physics that will incorporate areas such as the optimization
thermodynamics [122], particle-beam control [98], theory of
dynamical materials [130], controlling chaos [39, 40], control-
ling synchronization [28, 36], and controlled nuclear fusion.

This work was made possible by the financial support of
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00765), the Basic Research Program of the Presidium of the
Russian Academy of Sciences No. 19 ‘Controlling mechanical
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physico-technical systems’), and the Grant Council of the
President of the Russian Federation for the Support of Young
Scientists and Leading Scientific Schools (Grant NSh-
2257.2003.1). I am grateful to Polina Solomonovna Landa
for her useful remarks.
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