
Abstract. Arnol'd's group-theoretical concept of generalized
rigid body includes the Euler equations of motion of the classi-
cal gyroscope and ideal homogeneous fluid as particular repre-
sentatives. Here, this concept is extended to motion in force
fields with a scalar or vector potential and in a Coriolis force
field. The concepts of generalized heavy top and generalized
MHD system are introduced. As particular cases, they include,
on the one hand, the Euler ± Poisson equations of the classical
heavy top and the Kirchhoff equations of motion of a solid body
in a potential flow of an ideal incompressible fluid and, on the
other hand, the Oberbeck ±Boussinesq equations of motion of a
heavy fluid and MHD equations. On this basis, mechanical
prototypes are constructed for all known fundamental hydro-
dynamic invariants and global geophysical flows, including a
prototype of the general atmospheric circulation.

1. Introduction

In 1879, the British hydrodynamicist Greenhill [1] noted that
the Euler equations of motion of a rigid body with a fixed
point strictly describe the flow of an ideal incompressible
homogeneous fluid inside an ellipsoid in the class of spatially
linear velocity fields. This fact was later widely applied to
studying the motions of solids with cavities filled with a liquid
(see, e.g., [2 ± 5]). However, we leave aside the utilitarian
significance of Greenhill's work. Something else is important
for us. Greenhill's result suggests that the mechanical and
hydrodynamic Euler equations share some common funda-
mental symmetries that should manifest themselves in
common properties of their solutions.

Almost a century later this ideawas realized byV IArnol'd
[6] (see also more easily available publications [7, 8]). He has
constructed equations of motion of a rigid body for an
arbitrary Lie group, which include the mechanical and
hydrodynamic Euler equations as special cases. This con-
struction, called by Arnol'd the generalized rigid body
(GRB), allowed him to give mechanical interpretations to
the Kelvin circulation theorem and the Rayleigh theorem on
the stability of two-dimensional ideal incompressible flows
without inflection points of the velocity profile. It turned out
that the conservation law for angular momentum is in a sense
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a mechanical prototype of the Kelvin theorem, and the
hydrodynamic Rayleigh theorem corresponds to the mechan-
ical Euler theorems on the stability of rotations about the
longest and shortest principal axes of inertia. These results,
slightly opening the mysteries of the Universe and, further-
more, giving aesthetic pleasure, in their turn suggest that there
are other nontrivial peculiarities of mechanical systems,
which can be carried over to hydrodynamic entities, at least
if global-scale flows are considered.

This article is completely dedicated to the problem
touched on. In the exposition of the material we will need
invoking the main concepts of the theory of Lie groups and
their representations, without which a strict proof of the
analogies between hydrodynamic and mechanical systems
becomes virtually impossible. Unfortunately, this may make
the article difficult to read for some. Therefore, in Section 2,
the invariant form of the Euler equations of motion of a
classical gyroscope is prefacedwith a description of its motion
and derivation of the corresponding equations in terms of the
well-known (for physicists) group of rotations of three-
dimensional Euclidean space, which is then easily extended
to an arbitrary Lie group. It is relevant to note as well that the
modern mathematicians have fairly long exploited the above
theory to investigate fundamental hydrodynamic problems
(see, e.g., the above-mentioned book [8], in which such an
approach is applied to studying the structural properties of
solutions of the hydrodynamic equations). Thus, it seems
timely to introduce more insistently the group-theoretical
concepts and approaches in theoretical fluid mechanics,
which, as a matter of fact, is part of field theory based
precisely on these concepts.

We extend the GRB concept to motions in external force
fields of scalar and vector potentials, as well as in the Coriolis
force field. Finally, we formulate the concepts of generalized
heavy top and generalized magnetohydrodynamic system
(GMHDS), which include, on the one hand, the mechanical
Euler ± Poisson equations of a heavy top and the Kirchhoff
equations of motion of a rigid body in a potential flow of an
ideal incompressible homogeneous fluid [9] and, on other
hand, the Oberbeck ±Boussinesq equations of motion of a
heavy fluid and magnetohydrodynamic equations as some
particular cases. It is relevant to emphasize that the Euler ±
Poisson and Kirchhoff equations, as the Euler equations,
allow dual mechanical and hydrodynamic interpretations.
They strictly describe the motions of an ideal heavy fluid and
an ideal liquid conductor inside an ellipsoid in the class of
spatially linear velocity fields and corresponding thermal and
magnetic fields.

On the basis of the introduced concepts, it has been shown
[10] that the mechanical `primogenitors' of potential vorticity
(PV) [11 ± 13] (in the book by Landau & Lifshitz [14] this
quantity is called the Ertel invariant) and hydrodynamic and
magnetohydrodynamic helicities [15 ± 17] are the projection
of the angular momentum of a heavy top onto the direction of
the force of gravity, the squared angular momentum of a
classical gyroscope, and the projection of the total angular
momentum in a solid ± fluid system onto the direction of the
total momentum, respectively.

The Kelvin theorem for the magnetic vector potential and
the invariance of the magnetic helicity [17] follow from the
immobility of the magnetic field with respect to the fluid, as
the constancy of the angular momentum of a classical
gyroscope in space implies the conservation of this quantity
squared in the frame of reference `frozen' in the body.

The next step includes the construction of some mechan-
ical prototypes for slow manifolds of rotating fluids. The
choice of a rotating fluid is not arbitrary since the quasigeos-
trophic approximation for its equations of motion naturally
singles out, on a global scale, the flows that are expected to
bear most similarity with corresponding motions of a rigid
body with a fixed point. The problem of the existence and
stability of the quasigeostrophic manifolds, first touched on
by Obukhov [13], is actively discussed in the modern
hydrodynamic literature (see, e.g., [18 ± 21] and references
therein). In Sections 9 and 10, the geostrophic trajectories of
the model equations are compared with their exact solutions,
which coincide with the exact particular solutions of the
original hydrodynamic equations.

The equations of motion of a normal gyroscope (without
gravity) in the Coriolis field are treated as a model of
barotropic flows of a rotating fluid. At small Rossby
numbers, it describes slow precessions of the top in the
direction opposite to the direction of the general rotation,
the projection of the angular momentum onto the direction of
the general rotation being approximately invariant up to the
Rossby number squared. These features of the motion of the
top resemble the behavior of planetary waves transferring
angular momentum in the westward direction or the approx-
imate invariance of the quasigeostrophic PV of global
barotropic geophysical flows expressed by the Charney ±
Obukhov equation, which is also valid up to the Rossby
number squared.

The stability of a slow baroclinic manifold with respect to
global disturbances of quasigeostrophic equilibrium is illu-
strated by comparison of the exact and quasigeostrophic
model solutions. The quasigeostrophic approximation for
the equations of motion of a heavy top in the Coriolis force
field is shown in Section 9 to coincide with the mechanical
Euler equations written in terms of the vertical vorticity and
thermal wind components, i.e., the main characteristics of
global baroclinic geophysical flows, and the stratification
parameter appears in the equations as a given one (similarly
to the case of the quasigeostrophic equations of motion of a
baroclinic atmosphere). The principle result is that the exact
phase trajectories `feel' the existence of the slow manifold
evenwhen themotion becomes strongly ageostrophic because
of large-amplitude inertial ± gravitational oscillations. The
motion resembles the interaction of the Rossby and iner-
tial ± gravitational waves in a reduced shallow water model
[19]. The slow manifold itself is a sort of two-sided curved
mirror from which the trajectories are reflected as long as the
stratification parameter does not exceed a certain critical
value. When the parameter reaches the critical value, the
trajectories pierce and smash the mirror, and chaos arises.

Section 10 is devoted to the investigation of a `toy' general
atmospheric circulation (GAC), which is described by the
equations of motion of a hydrodynamic heavy top in a
Coriolis force field, with the inclusion of dissipation, a
horizontally inhomogeneous external heat drive (imitating
the equator ± pole temperature difference), and the slope of
the general rotation axis relative to gravity. The dissipation is
taken into account by the inclusion of a linear (in velocity)
friction simulating the influence of the Ekman boundary
layer, while the external drive is calculated by Newton's
formula according to which the heat influx is proportional
to the deviation of temperature from some background
distribution.
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The stationary quasigeostrophic solutions of the model
equations are shown to reproduce the energy cycle and the
stability properties (including the asymptotics of the lower
branch of the stability diagram) of the fundamental Hadley
andRossby regimes observed under natural conditions and in
laboratory analogs of the GAC. The quasigeostrophic
approximation of the model taking into account the sloping
effect coincides with the slightly generalized, widely known
three-component Lorenz system [22] (see also Ref. [18], where
the quasigeostrophic approximation for the reduced viscous
shallow water equations is shown to be exactly the stochastic
Lorenz model). Therefore, special attention in Section 10 is
given to the comparison of quasigeostrophic strange attrac-
tors with the corresponding exact solutions of the primary
model equations. The sloping effect is indeed found to favor
(under certain conditions) the stochastization and, conse-
quently, the unpredictability of the phase trajectories. It is
worth noting that the mechanism of stochastization depends
on the sign of the sloping effect (the system is not invariant
with respect to the sign of the angle between the gravity and
the general rotation axis) and may have an origin other than
the Lorenz strange attractor, if the sloping effect is negative. It
is relevant to emphasize that the enumerated properties of the
global geophysical flows were obtained exclusively from
symmetry considerations on the basis of only one toy model
of a rotating heavy fluid without concrete definition of the
boundary conditions, geometry, or other features of the
system.

2. Arnol'd's construction
of a generalized rigid body

Themotion of a rigid body with a fixed point can be treated in
terms of the rotations of a coordinate system (CS) `frozen' in
the body with respect to the CS immobile in the space. The
origins of both CSs coincide with the fixed point. The totality
of such rotations forms an SO�3� group that can be
considered a space of generalized coordinates. It can be said
in such cases that the configuration space of a rigid body is a
group of rotations of the Euclidean space. In terms of the

Eulerian angles y, j, c (Fig. 1), any rotation g 2 SO�3� is
specified by the orthogonal matrix

g�y;j;c� � BjCyBc ;

whereBj andCy are thematrices describing rotations around
immobile axes Z and X by angles j and y, respectively;
Bc � Bj�c,

Bj �
cosj ÿ sinj 0
sinj cosj 0
0 0 1

0@ 1A ;

Cy �
1 0 0
0 cos y ÿ sin y
0 sin y cos y

 !
:

Let us remember that the Euler equations of motion of a
classical gyroscope can be written through the angular
velocities that are specified in terms of the Eulerian angles
by the following formulas [23] (project the angular velocities
_y, _j, _c onto the moving axes x1, x2, x3; see Fig. 1):

x� o1e1 � o2e2 � o3e3 ;

o1 � _j sin y sinc� _y cosc ;

o2 � _j sin y coscÿ _y sinc ;

o3 � _j cos y� _c :

Here, e1, e2, e3 are the basis vectors of the moving CS.
Projecting _y, _j, _c onto the immobile axes X, Y, Z yields

the components of the angular velocity in the space:

X � O1ex � O2ey � O3ez ;

O1 � _c sin y sinj� _y cosj ;

O2 � ÿ _c sin y cosj� _y sinj ;

O3 � _c cos y� _j ;

where ex, ey, ez are the basis vectors of the immobile CS.
The space of the vectors of the three-dimensional oriented

Euclidean space is isomorphic to the space of third-rank
skew-symmetric matrices. In tensor notations, this isomorph-
ism is described by the formulas ai j � ÿei j kak, ai �ÿei j kaj k=2
�i; j; k � 1; 2; 3�, according to which there is the following
one-to-one correspondence:

a � �a1; a2; a3� ,
0 ÿa3 a2
a3 0 ÿa1
ÿa2 a1 0

 !
� a ;

with

a� b, �a; b�; a � b � ÿ 1

2
tr �a � b� ;

here, � ; �means the commutation operation, the dot � and the
multiplication sign � denote the operators of the normal
scalar and cross multiplication of vectors in three-dimen-
sional Euclidean space, respectively, and the asterisk �
denotes the ordinary multiplication of matrices.

Thus, by the angular rotational velocities of a rigid body,
both vectors of the three-dimensional space and third-rank
skew-symmetric matrices can be meant. Now, it is easy to
verify by direct calculation that, if g � g t� � is a trajectory of
the rigid body in the configuration space, then

gÿ1 _g �: Lgÿ1 _g � o, x ; _ggÿ1 �: Rgÿ1 _g � O, X ;

j

_j

_c

c
x1

x2

x3

X

Y

Z

0

N

_y

y

Figure 1.TheEulerian angles y,j,cdefining the orientation of the axes x1,

x2, x3 of the coordinate system moving with respect to the immobile

coordinate system �X;Y;Z�; 0N is the nodal line [23].
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i.e., the angular velocities in the body and space are defined by
the linear mappings Lgÿ1 and Rgÿ1 of the vector _g of the
tangent space TGg of the group SO�3� at the point g onto the
Lie algebra of the SO�3� group (tangent space TGe�: ĝ at the
group unit); they are called the left and right translations,
respectively. It is easy to check that the angular velocities
themselves are related as follows:

O � Rgÿ1Lgo �: Adgo ;

where Adg is called the adjoint representation of the SO�3�
group; Adgh � AdgAdh for every g, and h 2 SO�3�.

The penultimate formulas can be used as the definitions of
angular velocities in the body and space, respectively, for the
classical gyroscope. To construct a dynamical system similar
to the Euler top on an arbitrary Lie group, these formulas
should be written in an invariant form, valid for the Lie
group, whose elements are not necessarily linear operators. In
this case,

o � Lgÿ1� _g 2 ĝ ; O � Rgÿ1� _g 2 ĝ ; �2:1�

where Lg� and Rg� are the linear mappings of the tangent
spaces induced by the left and right translations, Lg and Rg,
and ĝ is the Lie algebra (tangent space at the group unit) of the
group G. Now, the adjoint representation that maps the Lie
algebra onto itself can be written in the form

Adg � �Rgÿ1Lg��e : ĝ! ĝ ;

O � Adgo : �2:2�

Further consideration of the motion characteristics of the
classical gyroscope will be conducted in an invariant form
valid for an arbitrary Lie group.

The kinetic energy of a rigid body is independent of its
spatial location and is specified by a quadratic positive
definite function of the angular velocities in the body:

E � 1

2
Ii joioj �: 1

2
�Io;o� ;

where I is a time-independent symmetric matrix called the
tensor of inertiamomentawith respect to themovingCS. This
form determines a left-invariant metric for the whole Lie
group according to the relationships

E � 1

2
ho;oie �:

1

2
�Io;o� �: 1

2
h _g; _gig ; �2:3�

where h ; i denotes scalar multiplication on the appropriate
tangent spaces. Specifying the scalar product on the Lie
algebra is equivalent to specifying an isomorphic mapping
of the Lie algebra ĝ into the Lie coalgebra ĝ � (the space of
linear forms of Lie algebra elements). This mapping is done
by the operator I : ĝ! ĝ �. Therefore, the kineticmomentum,
or angular momentum, m � Io should be considered an
element of the Lie coalgebra, and the quantity
�Io;o� � �m;o� is the value of the linear form m at o.

Since the kinetic energy is independent of the choice of CS,
the following equalities should be valid:

�m;o� � �M;O� � �M;Adgo� �: �Ad�gM;o� :

Here, the operator Ad�g : ĝ � ! ĝ � is dual to Adg and realizes
the oncoming mapping induced with the adjoint representa-

tion [cf. (2.2)]:

m � Ad�gM; or M � Ad�gÿ1m : �2:4�

The operator Ad�g is called the coadjoint representation of the
Lie group G; Ad�gh � Ad�h Ad�g for every g and h 2 G. The
diagram of the operators [8] acting in the tangent and
cotangent spaces is shown in Fig. 2.

The derivative of the adjoint representation at the group
unity in the direction of the vector x 2 ĝ, denoted as adx, is
defined by the formula

adx � d

dt
Adexp �tx�

����
t� 0

; �2:5�

where exp �tx� is a one-parameter group given by the vector
x 2 ĝ. From this, it follows that, for any x; Z 2 ĝ,

adx Z � �x; Z� ; �2:6�

where � ; � is the operation of commutation in the Lie algebra.
Proof :

d

dt
Adexp �tx�Z

����
t� 0

� d

dt
exp �tx� Z exp �ÿtx�

����
t� 0

� xZÿ Zx � �x; Z� :

The derivative of the coadjoint representation at the
group unity in the direction of the vector x

ad�x �
d

dt
Ad�exp �tx�

����
t� 0

�2:7�

is an operator dual to adx, i.e.,

�ad�x a; Z� � �a; adx Z� �2:8�

for every a 2 ĝ �and x; Z 2 ĝ. By introducing the notation
ad�x a �: fx; ag, the last formula can be rewritten asÿfx; ag; Z� � ÿa; �x; Z�� : �2:8a�

Now the equations of motion of a rigid body whose
configuration space is an arbitrary Lie group can be obtained
using the kinetic energy (2.3) as a Lagrangian function and

Adg

Ad�g

TgG

T�gG
R�gL�g

Lgÿ1� Rgÿ1�

ĝ

I Ig

ĝ� ĝ�

ĝ

_g

mg

O

m M

o

Figure 2. Diagram of the mappings acting in the tangent and cotangent

spaces of an arbitrary Lie group G [8]. TgG and T �g G are the tangent and

cotangent spaces at the point g of the Lie groupG. Other notation is given

in the text.
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applying the least action principle. According to it, the GRB
moves along a geodesic, which is not surprising because the
body moves inertially. However, to derive the equations of
motion, we will act somewhat differently. The least action
principle applied to the immobile CS means that the kinetic
momentum M is fixed with respect to the space (see, e.g.,
Ref. [23])

_M � 0 : �2:9�
From this, the equation of GRB motion in the moving CS
immediately follows. Indeed, differentiating (2.4) with respect
to time in the direction of the body trajectory and taking into
account (2.9), we obtain

0 � d

dt
Ad g �gÿ1�t�m

����
t� 0

� d

dt
Ad�exp �ÿto�

����
t� 0

m

�Ad�exp �ÿto�

����
t� 0

_m :

Then, according to (2.7) ± (2.8a),

_m � ÿad�ÿom � ad�om � fo;mg : �2:10�

In terms of angular velocity, the equation of motion in the
body takes the form

_o � B�o;o� ; �2:11�

where the bilinear function B�z; Z� is given by the formula [7,
8] 
�z; Z�; x� � 
B�x; z�; Z� �2:12�

for any z; Z; x 2 ĝ.
Proof of (2.11):

h _o; xi � � _m; x� � ÿfo;mg; x� � ÿm; �o; x��
� 
o; �o; x�� � 
B�o;o�; x�

for any x 2 ĝ.
As applied to SO�3�, equations (2.10) coincide with the

Euler equations of motion of the classical gyroscope. Indeed,
by using the above-mentioned isomorphism of the spaces of
skew-symmetric third-rank matrices and vectors of the three-
dimensional Euclidean oriented space, it is easy to show that

�a; z� � a � f

for any a 2 ĝ � and z 2 ĝ. Let z be an arbitrary skew-
symmetric third-rank matrix [an element of the Lie algebra
of group SO(3)]. Then, according to (2.10),

� _m; z� � ÿfo;mg; z� � ÿm; �o; z�� :
In terms of the vectors of the three-dimensional Euclidean
space, the last equality can be written as

_m � f � m � �x� f� � �m� x� � f :

Hence,

_m � m� x ; m � Ix �2:13�
because of the arbitrariness of f.

Important remark. In the case of a right-invariant metric,
the commutator and all related linear operations change their
signs. From the physical viewpoint, a passage from the left-
invariant to a right-invariant metric means that the moving
and immobile coordinate systems exchange their roles, i.e.,
the equations of GRBmotion should now be written not with
respect to the body but with respect to the space:

_M � ÿfO;Mg ; �2:14�
_O � ÿB�O;O� : �2:15�

3. What is Kelvin's circulation theorem
and the helicity invariant?

By construction, the energy (2.3) is the first integral of the
Euler equations of motion (2.11) or (2.10). The immobility of
the kinetic momentum in the space [see (2.9)] means that every
component of this vector in the Lie coalgebra ĝ � is preserved.
This gives in addition n independent first integrals of theGRB
(n is the dimension of ĝ �). Bearing in mind the application of
the GRB concept to describing infinite dimensional dynami-
cal systems, V I Arnol'd formulates the proposition (2.9) in an
invariant form:

Theorem 1. The orbits of the coadjoint representation of a
group in the dual space to the Lie algebra are invariant
manifolds for a flow specified by the Euler equations in this
space [7, 8] {.

Proof.The angular momentumm�t� can be obtained from
M�t� under the action of the coadjoint representation, while
M is immobile in the space � _M � 0�, Q.E.D.

Let us formulate another conclusion important for our
purposes, which follows from the proposition (2.9) and can
also be constituted in the form of a theorem.Note beforehand
that, if an element x 2 ĝ is immobile in the space, i.e.,

_xs � 0 ; �3:1�
then in a coordinate system frozen in the body (the subscripts
s and c originate from `space' and `corpus', respectively)

_xc � �xc;o� : �3:2�
Proof. The elements of a Lie algebra xs and xc are

associated via the relation xs � Adg�t�xc. Hence,

0 � _xs �
d

dt
Adexp �to�xc

����
t� 0

� adoxc � _xc � �o; xc� � _xc :

Theorem 2. For each x 2 ĝ immobile in the space, the
quantity

Hx � �m; xc� �3:3�
is the first integral for the flow given by the system (2.10), (3.2)
at ĝ � � ĝ.

Proof. According to (2.10) and (3.2),

d

dt
�m; xc� � � _m; xc� � �m; _xc� �

ÿfo;mg; xc�� ÿm; �xc;o��
� ÿm; �o; xc��� ÿm; �xc;o�� � 0 :

{ In the book [8], Theorem 1 is formulated as follows: Each solution m t� �
of the Euler equation belongs to the same coadjoint orbit for all t. In other

words, the group coadjoint orbits are invariant submanifolds for the flow

of the Euler equation in the dual space ĝ � to the Lie algebra. (Translator's

note.)
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Theorems 1 and 2 are equivalent for a GRB with a finite-
dimensional configuration space and lead to the same
consequences. This is not the case for an infinite-dimensional
Lie group. Consider for comparison two `limiting' cases of the
Lie groups acting in three-dimensional Euclidean space Ð
SO�3� and the group SDiffD of diffeomorphisms preserving
the volume element dm�x� �x 2 D� in a bounded three-
dimensional domain D with boundary qD.

In the first case (the configuration space of the ordinary
gyroscope), the Lie algebra and its dual space can be
identified with the physical space in which the body moves.
(As amatter of fact, six spacesÐR 3,R 3�, ĝ, ĝ �, tangent space
TGg, and cotangent space TG �g at point g 2 SO�3�, which
generally differ in their dimension, are identified. The tangent
and cotangent spaces of the group SO�n� have the dimension
n�nÿ 1�=2 6� n if n > 3.)

In the kinetic momentum space, the coadjoint orbits of the
mechanical top are spheres centered at the origin,

m 2
1 �m 2

2 �m 2
3 � const ; �3:4�

i.e., Theorem 1 means the conservation of the kinetic
momentum squared for equations (2.13). The same follows
from Theorem 2, since �m; x� � m � n (the dot � denotes the
usual scalar multiplication of vectors in the three-dimen-
sional Euclidean space) because of the identification of the
spaces, so that the kinetic momentum immobile in the space
can be taken as n. Thus, Hm � m �m � m 2

1 �m 2
2 �m 2

3 �
const, which coincides with (3.4).

The Lie algebra ĝ D� � of the group SDiffD consists of
divergence-free vector fields inD tangent to the boundary qD.
The inner product on ĝ D� � is defined by the formula

hn;gi �
�
D

n � g dm�x� ; �3:5�

where the dot � denotes the local scalar multiplication of the
vector fields n � n�x� and g � g�x� (see Refs [7, 8]). The role
of the commutator is played by the Poisson bracket taken
with the opposite sign, ÿf ; gP, i.e.,
�n;g� � ÿfn;ggP � �gH�nÿ �nH�g : �3:6�

The energy of a unit-density fluid,

E � 1

2

�
D

u2 dm ; �3:7�

where the Eulerian velocity field u � u�x; t� measured with
respect to the space plays the role of the angular velocity in the
space [7, 8]. Indeed (here, I almost literally reproduce
Arnol'd's reasoning), let the fluid flow fulfil the diffeomorph-
ism g t� � within the time t and, at this instant, the velocity is
given by the vector field u � u�x; t�. Then the diffeomorphism
is

g�t� t� � exp �ut� g�t� � o�t�

provided that t is small, exp �ut� being a one-parameter group
defined by the field u. By differentiating with respect to t, we
find u � _ggÿ1, i.e., the velocity field u results from the vector _g
tangent to the group at the point g by a right translation.

Therefore, E defines a right-invariant metric on the whole
group, and the equations of GRBmotion with the configura-

tion space SDiffD, i.e., the equations of motion of an ideal
incompressible homogeneous fluid can be written as

_u � ÿB�u; u� ; div u � 0 : �3:8�

The formula for B�a; b� is presented in Arnol'd's textbook
[7] (see also Ref. [8]). Since its derivation is not quite trivial, it
is worth carrying out the concrete calculations. To this end,
we use the definition of a bilinear form B [see (2.12)], which
assumes the following form in this case:
�a; b�; c� � ÿ
fa; bgP; c� � 
B�c; a�; b� �3:9�

for each a, b, c 2 ĝ�D�. In addition, we need two formulas of
vector analysis valid for divergence-free vector fields:

�a; b� � �bH�aÿ �aH�b � rot �a� b� ; �3:10�
div �a� b� � b rot aÿ a rot b : �3:11�

Then, according to (3.9) ± (3.11),
�a; b�; c� � 
rot �a� b�; c� � �
D

rot �a� b� � c dm

�
�
D

�a� b� � rot c dm�
�
D

div
��a� b� � c

�
dm

�
�
D

�b� rot c� � a dm�
�
qD

��a� b� � c
� � dr

�
�
D

�rot c� a� � b dm�
�
qD

��a � c�bÿ �a � b�c� � dr
� 
B�c; a�; b� :

The last integral vanishes because of the tangency of b and c to
the boundary qD. Therefore,

B�c; a� � rot c� a� gradj �3:12�

for each c; a 2 ĝ�D�, since, for a divergence-free vector field b
tangent to boundary qD,�

D

b � gradj dm �
�
D

div �jb� dm �
�
qD

jb � dr� 0 :

Here, j is a gauge function determined by the condition
B�c; a� 2 ĝ�D�, i.e., B�c; a� is divergence-free and tangent to
the boundary.

Thus, the first equation (3.8) coincides with the hydro-
dynamic Euler equation in the Bernoulli form,

qu
qt
� u� rot uÿ gradj ; �3:13�

j being usually written as the Bernoulli function
j � p� u2=2, where p is the pressure.

Now the question is: what plays the role of kinetic
momentum in fluid mechanics? To answer this question,
strictly speaking, it is necessary beforehand to clarify what
the hydrodynamic tensor of inertia momenta is and, more-
over (if we want to pass from the description in the space to a
description in the body, i.e., from the Eulerian to a
Lagrangian description), what the kinetic momentum in the
body m � Ad�gM is. Answers to those two questions are
contained in the book [8] and require invoking additional

1210 F V Dolzhansky Physics ±Uspekhi 48 (12)



group-theoretical knowledge, which, in my opinion, is
unjustified for consideration in this review because, first, the
review is addressed to a wide physical and hydrodynamic
readership and, second, we are only interested in the analogy
between the mechanical and hydrodynamic invariants.

However, the first question can be answered avoiding the
difficulty raised. It is enough to remember that, according to
the theory of the GRB with a right-invariant metric, the
kinetic momentum of the GRB is immobile with respect not
to the space but to the body, i.e., in our case, with respect to
the fluid. This means that the field lines of kinetic momentum,
which are tangent to its vector field, aremoving with the fluid,
or they themselves are fluid, which is the same thing.

In order for the field lines of a divergence-free vector field to
be fluid, it is necessary and sufficient that the vector field itself
obey the Helmholtz equation (see [24]):

qM
qt
� �MH�uÿ �uH�M � fM; ugP � ÿ�M; u� : �3:14�

The necessity can easily be proved. Let dl be an
infinitesimal element of the fluid line (an element tangent to
it). Then the variation rate of the length of this element is the
velocity difference between its end points:

ddl
dt
� �dlH�u ; or

qdl
qt
� �dlH�uÿ �uH�dl � fdl; ugP ;

�3:14a�

which is equivalent to (3.14). The proof of sufficiency will be
reproduced below.

The only vector field satisfying the Helmholtz equation
and consistent with the Euler equation (3.13) is the vorticity
X � rot u, whose equation can be obtained by the application
of the rot operation to (3.13):

qX
qt
� fX; ugP : �3:15�

Thus, in fluid mechanics, the vorticity plays the role of the
kinetic momentum, whose field lines, given by the equations

dx

Ox
� dy

Oy
� dz

Oz
; �3:16�

are immobile with respect to the fluid.
The incompressibility of the fluid means the Lagrangian

invariance of a volume element dm � dl � dr, where dl is a line
fluid element and dr is the area of an oriented surface element
transversal to dl:

ddm
dt
� d

dt
�dl � dr� � 0 : �3:17�

Since both dl and X satisfy the Helmholtz equation, the
quantity

K � X � dr�
�
C

u � dl �3:18�

is a Lagrangian invariant (C is the boundary of dr). The
invariance of (3.18) can be considered an infinitesimal
formulation of Kelvin's circulation theorem. It is evident
that, for an arbitrary reducible closed material contour C

bounding a surface S, the quantity

K �
�
S

X � dr�
�
C

u � dl ; �3:19�

is also a Lagrangian invariant by virtue of the Stokes
theorem. However, it follows from the equations of motion
that the velocity circulation is preserved along any closed
material contour, including an irreducible one, for example, a
contour encircling a hole in a multiply connected domain.
Therefore, velocity circulation is a broader concept than
vorticity; this is essential for defining the hydrodynamic
inertia operator, which is discussed in the book [8].

The following is important. In terms of Theorem 1, the
conservation of vorticity means that the image of the
coadjoint orbit in the Lie algebra of group SDiffD consists
of velocity vector fields isovortical to the given field and is an
invariant manifold for the flow described by the Euler
equations of motion of an ideal, constant-density fluid.
Thus, in fluid mechanics, Theorem 1 has the form of Kelvin's
circulation theorem, which is a corollary of the immobility of the
kinetic momentum rot u with respect to the fluid and of the
invariance of the volume element.

Note that, by virtue of (3.14a) and (3.17), dr is governed
by the equation

ddr
dt
� ÿdr qu

qr
: �3:20�

In fact, by substituting (3.14a) into (3.17) and passing to
tensor notation, we obtain the following equality equivalent
to (3.20):

dli

�
dsk

quk
qxi
� ddsi

dt

�
� 0

(here, summation over dummy indices is implied).
Now, it is easy to prove that, in order for the field lines of a

divergence-free vector field to be liquid, it is enough that the
vector field itself satisfy the Helmholtz equation. Indeed, by
the definition of the field lines [see (3.16)], an element dl of a
field line is also governed by the Helmholtz equation. Let us
consider, at the initial time, a volume element dm � dl � dr
centered at the point of intersection of a liquid surface S and
line l, where dr is an element of the liquid surface S transversal
to the element dl. Then, since dl and dr satisfy (3.14a) and
(3.20), respectively, dm is the Lagrangian invariant and hence
dl is a liquid element.

By the way, let us note that the necessary and sufficient
condition of the immobility of the chosen surface with respect to
the fluid (i.e., of the fact that the surface is liquid as well) is that
any element dr of the surface satisfy equation (3.20).

Now let us turn to Theorem 2, which, in the context of the
case under consideration and in view of the metric right
invariance and the remark made in Section 2, can be
formulated in the following way.

Theorem 2a (theorem 2 in application to SDiffD). For any
Eulerian vector field n � n�x; t� 2 ĝ�D� immobile with respect
to the fluid, the quantity

Hn � �X; n��: �rot u; n� �3:21�

is the first integral for the flow specified by equations (3.15), and

qn
qt
� ÿ�n; u� � fn; ugP : �3:22�
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Let the field X�: rot u be tangent to the boundary qD. In
this particular case, X can be regarded both as an element of
the Lie coalgebra and as an element of the algebra of the
group SDiffD, which we take as n. Then, according to (3.21)
and (3.5),

HX � �rot u; rot u� � hu; rot ui �
�
D

u � rot u dm�x� : �3:23�

Remark. Recall that, for an arbitrary Lie algebra
equipped with the scalar product, the value of the cotangent
vector a 2 ĝ � at the tangent vector x 2 ĝ equals the scalar
product of the vectors Z and x, where Z � Iÿ1a is the element
of the Lie algebra corresponding to a, i.e.,

�a; x� � hIÿ1a; xi � hZ; xi �3:24�

for any a 2 ĝ � and x 2 ĝ. Although, in the case under
consideration, the definition of the hydrodynamic operator
of inertia momentum, I, was not given, we know that the
Eulerian velocity field u 2 ĝ�D� corresponds to the cotangent
vector rot u 2 ĝ ��D�. This is the basis on which formula (3.24)
is applied.

The first integral of motion (3.23) is the well-known
topological invariant of helicity [15, 16] characterizing the
degree of knottiness, or linkage, of the vorticity lines. For
example, in the case of only two singly linked vortex rings of
intensities w1 and w2, we have HX � �w1w2, where the sign
depends on whether each ring moves in the direction of its
`partner' ��� or in an opposing direction �ÿ�.

Thus, unlike the case of finite-dimensional GRBs, in the
case under consideration, theorems 1 and 2a correspond to
different first integrals: the first of them singles out the
Lagrangian invariant Ð the velocity circulation along a
closed material contour, whereas the second one selects the
integral invariant of helicity. Hence, a proposition follows
therefrom that can be formulated as

Theorem 3. Let GN be a finite-dimensional Lie subgroup of
SDiffD and be equipped with a right-invariant Riemannian
metric induced by the right-invariant Riemannian metric on the
SDiffD: Then the integral helicity HX of the flow of a
homogeneous incompressible fluid described by the equations
of motion of the GRB with the group GN as the configuration
space either vanishes or does not survive in the development.

Proof. The negation of the above statement would mean
that theorems 1 and 2a are not equivalent to each other for a
GRBwith a finite-dimensional configuration space. Theorem
3 does not contradict the existence of the invariant (3.23) since
the integral helicity must not be conserved if the vorticity field
is not tangent to the boundary qD.

Let us illustrate what has been said with the help of the
well-known hydrodynamic interpretation of the mechanical
Euler equations of motion (see, e.g., Refs [25, 26]). The group
SO(3) is isomorphic to the group P�3� of affine transforma-
tions that map a triaxial ellipsoid surface into itself. The
group P�3� is embedded in SDiffD if a three-dimensional
domain D is bounded with an ellipsoidal surface

S�: x 2
1

a 2
1

� x 2
2

a 2
2

� x 2
3

a 2
3

ÿ 1 � 0 ; �3:25�

where ai �i � 1; 2; 3� are its principal semiaxes. Therefore,
exact particular solutions of the hydrodynamic Euler equa-
tions corresponding to the group P�3� can be constructed in

the set of the spatially linear velocity fields

W1 � ÿ a2
a3

x3j� a3
a2

x2k ;

W2 � ÿ a3
a1

x1k� a1
a3

x3i ; �3:26�

W3 � ÿ a1
a2

x2i� a2
a1

x1j ;

which satisfy the conditions of orthogonality�
D

WiWj dm � 0 �i 6� j �

and boundary tangency �WiH�S � 0, where i; j � 1; 2; 3. The
velocity field itself has the form

u�x; t� �
X3
k� 1

ok�t�Wk�x� ; �3:27�

where quantities ok�t� �k � 1; 2; 3�, depending only on time
and called the PoincareÂ parameters, are related to X � rot u
by the formulas

ok � a1a2a3
akIk

Ok ; �3:28�

and Ik �
P 3

s� 1 a
2
s ÿ a 2

k are the nonzero elements of the
diagonal matrix I; k � 1; 2; 3.

By substituting (3.27), (3.28) into the Helmholtz equation
(3.15), we find that the PoincareÂ parameters satisfy the
following equations:

_m � x�m ; m � Ix ; �3:29�
which coincide with the mechanical Euler equations of
motion (2.13) up to the substitution o! ÿo. The necessity
of this substitution results from the fact that the kinetic
energies of the rigid body and fluid define left-invariant and
right-invariant metrics, respectively, on their configuration
spaces.

Now, let us evaluate the quantities corresponding to the
hydrodynamic invariant of energy,

E � 1

2

�
D

u2 dm ;

Kelvin's invariant (3.18), and the helicity invariant (3.23) for
the solution class under consideration. The substitution of
(3.27) and (3.28) into the expression for the energy gives

E � 1

5
mEm ; m � 4

3
pa1a2a3 ; Em � 1

2
x �m ;

where m is the total mass of the unit-density fluid in the
ellipsoid and Em formally coincides with the kinetic energy of
a mechanical gyroscope.

To evaluate the left-hand side of the equation

dK

dt
� d rot u

dt
� dr� rot u � ddr

dt
� 0 ; �3:30�

where

d

dt
� q

qt
� �uH� ;

in the application to the flow in question, we take as dr the
element of a plane P passing through the coordinate origin
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(ellipsoid center), as shown in Fig. 3. Since we consider the
flow with a spatially uniform vorticity, which preserves the
immobility of the fluid particle located at the origin, the
chosen element (regarded as an element of the liquid surface)
will only be deformed and rotated in the space without
changing the position of its center. This means that
dr� dr�t� depends only on time and is independent of the
spatial coordinates. Then, the substitutions of (3.27) and
(3.28) into (3.20) and (3.30) gives

_l � x� l ; li � ai dsi
a1a2a3

�i � 1; 2; 3� ; �3:31�

d�m � l�
dt

� 0 : �3:32�

Thus, for the flow set under consideration, the Kelvin
invariant is given by the formula

Km � m � l ; �3:33�
where l satisfies the Poisson equation (3.31), which reflects the
immobility of dr with respect to the fluid. Since the
immobility of X � rot u with respect to the fluid is expressed
by equation (3.29) formally identical to (3.31), then, sub-
stitutingm for l in (3.32), we find that the invariance ofm2 for
the hydrodynamic top is a corollary of Kelvin's theorem, or,
eventually, of Theorem 1 for the GRB. Note that, in this case,

m2 � pÿ2�G 2
1 � G 2

2 � G 2
3 � ;

where Gi are the velocity circulations along the boundaries of
the principal ellipsoid cross sections, i � 1; 2; 3.

In the case under consideration, the helicity invariant
selected by theorem 2a vanishes (otherwise the integral
helicity would not be preserved because of the invalidity of
the boundary conditions), in agreement with Theorem 3. It is
important to emphasize that, unlike the case of the hydro-
dynamic top, the invariant m 2 for the mechanical top follows
from both theorems.

Note that the hydrodynamic top was first realized in
laboratory experiments with solids that had ellipsoidal
cavities filled with mercury, which were put in motion by a
rotating magnetic field [27].

4. Construction of a generalized heavy top

The concept of generalized heavy top (GHT) introduced in
Ref. [28] (see also Ref. [29]) is a natural extension of the GRB
concept to motion in a potential force field. This concept is

introduced in complete accordance with the notions of the
motion of a normal heavy top, taking into account the
foliations on an arbitrary Lie group. The definition of the
GHT and details of the derivation of the equations of its
motion in application to the groups SO�n� and SDiffD are
given below.

Let G be a Lie group acting in a manifoldN [for example,
SO�3� acts in three-dimensional Euclidean spaceR3], i.e., the
map f : G�N! N is defined so that fg1g2�x� � fg1 fg2�x� for
any g1; g2 2 G and any x 2 N. The scalar function F�x� and
nonnegative function r�x�will be called here a potential in the
space and the density in the body, respectively. We assume the
map f to conserve the density r�x� and, therefore, a volume
element dm � N.

In addition, let E x� � be a positive definite quadratic form
specified on the Lie algebra ĝ, x 2 ĝ. Now we will act as if we
were dealing with a real rigid body with a fixed point. Let us
place the GRB with the density r�x�, the group G as the
configuration space, and the kinetic energy

E�g; _g� � E�Lgÿ1� _g� � E�o� � 1

2
�Io; o� �4:1�

in an external field with the scalar potential F�x�. The
function jg�x� � F

ÿ
fg�x�

�
is a potential in the body because

the point with a coordinate x in the body has the coordinate
fg�x� in the space. Therefore, the potential energy of the
dynamical system under consideration,

U�g� �
�
V

r�x�jg�x� dm�x� �
�
V

r�x�Fÿ fg�x�� dm�x� ; �4:2�
is a function specified on the group.

Definition of the GHT. The GHT is a dynamical system
whose configuration space is an arbitrary Lie group acting in
the manifold N and whose Lagrangian function is specified as

L�g; _g� � E�g; _g� ÿU�g� ; �4:3�

where E�g; _g� and U�g� are determined by (4.1) and (4.2),
respectively.

The equations of motion of the GHT are derived from the
least action principle and coincide with the Euler ±Lagrange
equations for extremals of the Lagrangian function L�g; _g�.
Let us formulate the functionalL�g; _g� only in terms of the Lie
algebra ĝ. A GHT trajectory g�t� on the Lie group G and its
image a�t� in the Lie algebra ĝ are linked via the relation
g�t� � exp a�t�, where the exponential mapping exp : ĝ! G
in the case of matrix groups is specified by the ordinary series:
exp a � e� a=1!� a=2!� . . . (e is the identity matrix). In the
vicinity of zero of the Lie algebra, the following expansion is
valid [6]:

o � _a� 1

2
� _a; a� �O�a 2� ; �4:4�

because

o � gÿ1 _g � exp
�ÿa�t�	� _a� 1

2
_aa� 1

2
a _a�O�a 2�

�
� ÿ1ÿ a�O�a 2��� _a� 1

2
_aa� 1

2
a _a�O�a 2�

�
� _a� 1

2
_aa� 1

2
a _aÿ a _a�O�a 2� � _a� 1

2
� _a; a� �O�a 2� :

x1

x2

x3

dr

P

Figure 3.Material element drof the plane P passing through the origin Ð

the ellipsoid center Ð does not change the location of its center in the

motion process.
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Substituting g�t� � exp a�t� into (4.3) and taking into
account (4.4) yield the following expression for the Lagran-
gian function in terms of a and _a 2 ĝ, which is valid in the
vicinity of zero of the Lie algebra:

L�a; _a� � E�a; _a� ÿU�a� : �4:5�

The Euler ±Lagrange equation can be written in the form

d�qL=q _a�
dt

ÿ qL
qa
� d�qE=q _a�

dt
ÿ qE

qa
� qU

qa
� 0 : �4:6�

The evaluation of the left-hand side of (4.6) is carried out
at t � 0 assuming that g�0� � e. This implies that an arbitrary
time is taken as the initial one and the moving CS coincides
with a frame of reference instantly immobile with respect to
the space. Therefore, the calculation result will be valid for
any time:

qL
q _a
� qE

q _a
� mÿ 1

2
ad�a m�O�a 2� ;

d�qL=q _a�
dt

����
t� 0

� d�qE=q _a�
dt

����
t� 0

� _mÿ 1

2
ad�_a m

����
a� 0

� _mÿ 1

2
ad�o m ;

because _a � o at t � 0. Hence,

qE
qa

����
t� 0

� 1

2
ad�_a m

����
a� 0

� 1

2
ad�o m :

Before calculating the moment of the external forces
kj � ÿqU=qa, let us recall that the function

j�x; t��: jg�t��x� � F
ÿ
fg�t��x�

� � F
ÿ
fexp a�t��x�

� �4:7�

is the potential in the body. Therefore, in accordance with
(4.7), the derivative ofF in the direction of the vector x 2 ĝ at
a � 0 is equal to�

qF
qa
; x
�

a� 0

� �dxj; f�x��:
ÿ
dxj; x�x�

�
; �4:8�

where dxj is the gradient of j at the point x 2 N and

f�x�: x�x� � d fexp ex�x�
de

����
e� 0

�4:9�

is the infinitesimal part of the action f, i.e., a vector field on
the manifold N.

It is now easy to calculate the moment of the external
forces:�

qU
qa

; x
�

a� 0

�
�
V

r�x�
�
qF
qa
; x
�

a� 0

dm

�
�
V

r�x�ÿdxj; x�x�� dm � ÿ�kj; x� : �4:10�
Thus, the Euler ± Lagrange equation describing the motion

of the GHT in the moving frame of reference can be written as

_m � ad�o m� kj ; m � Io ; �4:11�

where the moment of the external forces is given by the formula

�kj; x� � ÿ
�
V

r�x�ÿdxj; x�x��dm �4:12�

valid for every x 2 ĝ. The systems (4.11) and (4.12) are closed
with the evolution equation for the potential j�x; t�:

_j � ÿdxj;o�x�� ; �4:13�

which follows from the definition (4.7) after differentiating it
with respect to time at t � 0.

The motion of the GHT in the immobile frame of reference
is described by the equations

_M � KF ; KF � Ad�gÿ1kj ; �4:14�

where KF is determined as

�KF; x� � �Ad�gÿ1kj; x� � ÿ
�
V

R�x; t�ÿdxF; x�x�� dm : �4:15�
Here, x is an arbitrary element of the Lie algebra ĝ immobile
in the space, x�x� is the vector field on the manifold N
corresponding to x, and, by definition, the density of the
body in the space R x; t� � � r

ÿ
fgÿ1�x�

�
satisfies the equation

_R�x; t� � ÿÿdxR;O�t�� : �4:16�

Proof.

� _M; x�t� 0 �
d�M; x�

dt

����
t� 0

� d
ÿ
Ad�gÿ1�t�m; x

�
dt

����
t� 0

� d
ÿ
m;Adgÿ1�t�x

�
dt

����
t� 0

� ÿ _m;Adgÿ1�t�x
�
t� 0
�
�
m;

d
ÿ
Adgÿ1�t�x

�
dt

�
t� 0

:

Further,

d
ÿ
Adgÿ1�t�x

�
dt

����
t� 0

� d
ÿ
Adexp �ÿto�

�
dt

����
t� 0

x� _x � ÿado x ;

since _x � 0. Therefore,

� _M; x� � � _m; x� ÿ �m; ado x� ;

and, after substituting (4.11), we have

� _M; x� � ÿAd�gÿ1�t�kj; x
�
:

Therefrom, equations (4.14) follow. Since x is a vector in the
space, the density and the potential in the body that appear in
(4.12) should be substituted with the corresponding quantities
measured in the space:

r�x� ! R�x; t� � r� fgÿ1�t�x� ;
j�x; t� � F� fg�t�x� ! F� fgÿ1 fgx� � F�x� :

This yields (4.15).
To pass from the left-invariant to a right-invariant metric,

it is enough, asmentioned above, to exchange the places of the
moving and immobile frames of references and change the
sign of the commutator at all operators linearly depending
on it.
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Then, the motion of the GHT with an arbitrary Lie group G
equipped with a right-invariant metric as the configuration
space, is described by the equations:
� In the space,

_M � ÿad�OM� KF ; M � IO ; �4:17�
where KF and R�x; t� are given by formulas (4.15) and (4.16),
respectively. In terms of angular velocityO in the space, (4.17)
can be rewritten in the form

_O � ÿB�O;O� � K�F� ; �4:17a�

where B�O;O� can be calculated with the help of (2.12) and,
by definition,


K�F�; x� � �KF; x� �4:18�

for any x 2 ĝ. Equation (4.16) closes the system (4.17) ±
(4.18).
� In the body,

_m � kj ; �4:19�
where kj and j�x; t� are determined according to (4.12) and
(4.13).

5. Application of the concept of generalized
heavy top to SO�n� and SDiffD

5.1 A multidimensional heavy top
Let F�x� be the potential of a homogeneous force field
g � ÿHF � const in which the n-dimensional �nD� Eucli-
dean space R n is situated. A GHT with the configuration
space SO�n�Ð rotation group of spaceR n Ðmoving in this
force field will be termed here an n-dimensional heavy top
�nDHT�. The gravity in the body depends on time and is
independent of the space coordinate x: ÿHj � c�t�, where
j � j�x; t� is the potential in the body. The origin of the
coordinates is at a fixed point of the top.

The Lie algebra of the group SO�n� consists of skew-
symmetric matrices of the nth rank. Therefore, in the case
under consideration, x�x� � xx, where the right-hand side of
the equality is the ordinary convolution of tensor x with
vector x. Then, (4.12) can be written in the form

�kj; x� �
�
V

r�x�c � xx dm � c � xl0 ; �5:1�

l0 �
�
V

r�x� x dm ; �5:2�

where l0 is the position vector of the center of inertia of the top
(the total mass of the nDHT is assumed to be unity) and the
dot � denotes the ordinary inner multiplication inR n defined
as follows:

a � b �
Xn
i� 1

ai bi

for any orthonormal coordinate basis.
The scalar product in the Lie algebra ĝ of SO�n� for any

x; Z 2 ĝ is expressed by the formula

hx; Zi � ÿ 1

2
tr �x � Z� �5:3�

and identifies ĝ and ĝ �. The asterisk � in (5.3) means the
ordinary multiplication of matrices. Therefore, (5.1) can be
rewritten as follows:

�kj; x� � c � xl0 � hc ^ l0; xi : �5:4�
Hence,

kj � c ^ l0 ; �5:5�

where c ^ l0 2 ĝ and^means theKroneckermultiplication of
vectors c and l0 2 R n. In an orthonormal CS, the Kronecker
product is defined as

�c ^ l0�i j � gil0j ÿ gjl0i : �5:6�

Due to the identification of ĝ and ĝ �, we have
ad�x a � ÿ x; a� �: As a result, the equations of motion of the
nDHT take the form

_m � �m;o� � c ^ l0 ; �5:7�
_c � ÿoc ; m � Io : �5:8�

In the case of SO�3�, any skew-symmetric third-rank
matrix can be identified with a vector in three-dimensional
Euclidean space, and vice versa, according to formulas,
xi � ÿei j kxj k=2, xi j � ÿei j kxk. Then, (5.7) and (5.8) can be
rewritten as

_m � m� x� l0 � c ; �5:9�
_c � c� x ; m � Ix ; �5:10�

which coincides with the classical Euler ± Poisson equations
of motion of an ordinary heavy top.

5.2 A generalized heavy top with the group SDiffD
as the configuration space
Let us apply systems (4.17a), (4.18), and (4.16) to SDiffD,
where D is a bounded domain of the three-dimensional
Euclidean space. Let R�x; t� be the density of an ideal
incompressible stratified fluid filling the domain D. By
definition of the incompressible fluid, R�x; t� is a passive
scalar, i.e., is conserved over time{. In the case under
consideration, the role of the angular velocity in the space is
played by the Eulerian velocity field u � u�x; t�
�O�t� � u�x; t��. The kinetic energy of the GHT can be
defined by the equality

E
ÿ
u�x; t�� � 1

2
r0

�
D

u�x; t� � u�x; t� dm ; �5:11�

which specifies a right-invariant metric on the whole group
SDiffD. The average density

r0 �
�
D R�x; t� dm�

D dm

is independent of time due to the conservation of the total
mass. The scalar product on the Lie algebra ĝ�D� correspond-
ing to (5.11) is


n�x�;g�x�� � r0

�
D

n�x� � g�x� dm

{ The density of a fluid element is conserved. (Translator's note.)
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for any n�x�, g�x� 2 ĝ�D�, i.e., for the divergence-free vector
fields tangent to boundary qD.

According to (4.15) and (4.18),ÿ
KF; n�x�

� � ÿ �
V

R�x; t�ÿdxF; n�x��dm
� ÿ

�
V

R�x; t� dxF � n�x� dm

� ÿrÿ10



R�x; t� dxF; n�x�

� � 
K�F�; n�x�� :
Furthermore,

ÿ
dxF; n�x�

� � dxF � n�x� because the manifold
N � R3 is equipped with the ordinary local scalar product,
denoted here by the dot. Hence,

K�F� � ÿrÿ10 R�x; t�HF ;

where the notation dx for gradient is replaced with the
traditional one. Then, equation (4.17a) for the generalized
angular velocity can be written, in view of (3.12), as

qu
qt
� u� rot uÿ Hjÿ rÿ10 RHF ; �5:12�

where j is a gauge function that makes the right-hand side of
(5.12) divergence-free. Equation (5.12) is closed with the
conditions of zero divergence of u and the Lagrangian
invariance of R�x; t� [see (4.16)]:

qR
qt
� �uH�R � 0 : �5:13�

We take into account that

u� rot u � ÿ�uH�u� 1

2
Hu2 ;

and carry out the formal substitutions ÿHF � g, p=r0 �
jÿ u2=2, and R=r0 � 1ÿ bT to obtain the well-known
Oberbeck ±Boussinesq equations of the adiabatic convec-
tion of an incompressible fluid (see, e.g., Ref. [14]):

qu
qt
� �uH�u � ÿHp

r0
ÿ bTg ; �5:14�

qT
qt
� �uH�T � 0 ; �5:15�

where p and b should be treated as the pressure and thermal-
expansion coefficient of the fluid, respectively, and T is the
deviation of temperature from the mean value T0 �
bÿ1 � const.

The equation for the kinetic momentumM � rot u�: X is
nothing but the Friedman equation (see, e.g., Ref. [24]):

qX
qt
� �uH�Xÿ �XH�u � bg� HT ; �5:16�

which results from applying the operator rot to (5.14):

6. Fundamental invariants
of a generalized heavy top

6.1 First integrals of the multidimensional heavy top
First, let us consider the first integrals of the nDHTassociated
with the invariance of its Lagrangian function with respect to
the transformations ofR n that conserve the gravity g � ÿHF
(see Section 5.1). The first integrals, which, according to the

Noether theorem, correspond to one-parameter subgroups
p�s� � SO�n� �p�s�g � g� preserving the Lagrangian function,
can be represented in an explicit form.

The equations of motion of the nDHT in the space can be
written as

_M � g ^ L�t� ; _L�t� � O�t�L�t� ; �6:1�

where L�t� � g�t�l0 is the position vector of the center of
inertia of the top in the space andO�t� � Adg�t�o�t� � gOgÿ1

�g�t� is a trajectory of nDHT on SO�n��.
Let A and B 2 R n be vectors immobile with respect to the

space and orthogonal to g. Then,

Pm � hM;A ^ Bi �6:2�

is the first integral of the nDHT corresponding to the
subgroup of rotations of R n that do not affect a subspace of
R n orthogonal to A and B: Indeed, according to the formula
(see Section 5.1) A � xB � hA ^ B; xi, valid for any skew-
symmetric matrix x 2 ĝ, we have

dPm

dt
� h _M;A ^ Bi � 
g ^ L�t�;A ^ B

�
� ÿ
L�t� ^ g;A ^ B

� � ÿL�t� � �A ^ B�g � 0 ;

since A � g � 0 and B � g � 0 imply �A ^ B�g � 0.
It is clear that the number of independent invariants of

this kind is C 2
nÿ1 � �nÿ 1��nÿ 2�=2, whereas the dimension

of the configuration space of the nDHT equals the dimension
of SO�n� plus n, i.e., n�nÿ 1�=2� n � �n� 1�n=2. In the
frame of reference frozen in the body, Pm � hm; a ^ bi
provided that _a � ÿoa and _b � ÿob. In addition, the
equations of motion (5.7) and (5.8) in the body possess the
energy integral E � hm;oi=2ÿ l0 � c (by construction), and
c 2 � c � c because of the immobility of the gravity in the
space. At n � 3, there is a unique first integral of the kind of
(6.2), which corresponds to the projection of the angular
momentum of the classical heavy top onto the direction of
gravity.

6.2 What is the potential vorticity?
Let us now compare the first integrals

Em � 1

2
m � xÿ c � l0 ; Pm � m � c ; c 2 � c � c �6:3�

of the Euler ± Poisson equations of motion (5.9), (5.10) for a
classical heavy top with the invariants of the hydrodynamic
equations (5.12) and (5.13),

Eh � 1

2
r0

�
D

u2 dmÿ
�
D

g � xR dm ; Ph � X � HR ; �6:4�

where R � R�x; t�, g � ÿHF, X�: rot u, dPh=dt � 0,
dR=dt � 0, and d=dt � q=qt� uH.

The total energy equal to the sum of the kinetic and
potential energies is conserved as theHamiltonian function of
the GHT independent explicitly of time. Therefore, Em is a
mechanical prototype of Eh by the construction of the GHT.
The invariance of c 2 is a corollary of the immobility of the
gravity in space, whereas the Lagrangian invariance of
R � R�x; t� means the immobility of the density with respect
to the `body' (fluid). Since the passage from the left-invariant
to a right-invariant metric means the exchange of roles
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between the mobile and immobile coordinate systems, c2 can
be regarded as a mechanical analog of the Lagrangian
invariant R�x; t�.

It is well known that, from the hydrodynamic viewpoint,
the invariance of the quantity Ph � X � HR (called the
potential vorticity) means the applicability of the Kelvin
circulation theorem to closed material contours entirely
lying on a surface of constant density, and vice versa.
Indeed, the evolution of an element dr0 of an oriented fluid
surface is governed by (3.20), which follows from the
conservation of the volume element dm � dl � dr0 (see
Section 3). By differentiating (5.13), it is easy to show that
HR�x; t� also obeys equation (3.20). Therefore, the Lagrang-
ian invariance of Ph � X � HR implies the Lagrangian
invariance of

K0 � X � dr0 �
�
C0

u � dl �6:5�

(and vice versa), where C0 is the closed material contour
bounding dr0. Generally speaking, without any connection to
the PV, the invariance ofK0 follows from the fact that motion
along a surface of constant density is the flow of an
incompressible homogeneous fluid for which Kelvin's theo-
rem is valid.

The invariance of the PV is associated with the invariance
of the potential and kinetic energies of the fluid with respect to
the following transformations of configuration space SDiffD
[30]. The right translation Rh : g! gh, g; h 2 SDiffD is a
transformation of the Lagrangian variables, which are
attached to fluid particles. The density R�x; t� is a Lagran-
gian invariant, i.e., it is also moving with the fluid. If
h 2 SDiffD preserves the density distribution, R�x; t� �
R�hx; t�, then the right translation Rh changes neither the
kinetic energy (by virtue of its right invariance) nor the
potential energy of the fluid:

U�g� �
�
D

R�x�F�gx� dm�x� �
�
D

R�hx�F�ghx� dm�hx�

�
�
D

R�x�F�ghx� dm�x� � U�gh� :

The PV corresponds to the indicated group of symmetries of
the Lagrangian function L�u; g� � E�u; g� ÿU�g�. In the
dynamics of the stratified fluid, the surface of constant
density plays the role of an equipotential surface. Therefore,
Ph � X � HR Ð the projection of the hydrodynamic kinetic
momentum M � X�: rot u onto the density gradient Ð is
conserved by analogy with the conservation of
Pm � m � c � ÿm � Hj, the projection of the mechanical
kinetic momentum onto the gravity, i.e., the gradient of the
potential. Thus, from the viewpoint of the GRB theory, both
invariants, Ph andPm, have the same origin.

It is particularly reasonable to note that, in a sense, the
revealed analogy extends to the equations of gas dynamics.
By analogy with an ideal inhomogeneous incompressible
fluid, which stratifies into nonintersecting surfaces of con-
stant density, an ideal compressible fluid stratifies into
nonintersecting isentropic surfaces because a material parti-
cle that belongs to an isentropic surface at the initial time will
always remain on it due to the Lagrangian invariance of the
specific entropy S � S�x; t� (according to the definition of an
ideal compressible fluid). Since Kelvin's theorem is valid for
isentropic flows, the following proposition holds.

In application to an infinitesimal closed material contour C0

that belongs entirely to an isentropic surface S�p; r� �
S0 � const, where p � p�x; t� is the pressure and r � r�x; t� is
the density of the fluid, the quantity K0 given by (6.5) is a
Lagrangian invariant.

Along with surface S�x; t� � S0, let us consider an
infinitesimally close isentropic surface S�x; t� � S0 � dS and
draw, through the contour C0, a cylindrical surface whose
intersection with the additional isentropic surface is also a
closed contour (Fig. 4). The end walls of the selected material
particle will reside on the corresponding isentropic surfaces.
Then, the mass of the material particle is

dm � rhn � dr0 ; �6:6�

where n is the normal to the surface S�x; t� � S0 directed
along gradS and h is the height of the cylinder.

Since the isentropic surfaces are infinitesimally close,

dS � gradS � n h : �6:7�

From formulas (6.6) and (6.7), it follows that

dr0 � dm
dS

gradS

r
: �6:8�

By substituting (6.8) into (6.5) and taking into account the
conservation of dS and of the mass of the chosen volume,
which consists of the same material particles, we find that the
invariance of K0 implies the invariance of the gasdynamic PV

PE � rot u � gradS
r

; �6:9�

called the Ertel invariant. Ertel [12] was the first to prove in
1942 the invariance of this quantity directly from the
equations of motion.

This highly elegant and physically transparent proof of
the invariance of the gas-dynamical PV, which has been
included in some textbooks on geophysical hydrodynamics
(see, e.g., Ref. [31]), was implemented for the first time by
Moran [32] also in 1942 and then, apparently independently,
reconstructed by Charney [33] in1948 in his celebrated article
dedicated to the dynamics of large-scale atmospheric
motions. This proof can also be found in later papers, e.g.,
Refs [34, 35]. A Hamiltonian treatment of Ertel's invariant
was proposed by Salmon [36 ± 38].

gradS S0 � dS

ds0

S0
C0

n

O
0

O

h

Figure 4. The material cylinder end-walls situated on the isentropic

surfaces S�x; t� � S0 and S�x; t� � S0 � dS at the initial moment will

remain on them all the time.
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The concept of PV and its interpretation in terms of
Kelvin's theorem are successfully used in processing atmo-
spheric observational data and describing the atmospheric
motions in the natural coordinate system defined by the
surfaces of constant PV and entropy [39 ± 43].

6.3 The direct hydrodynamic interpretation
of the Euler ±Poisson equations and their invariants
Let us remember that the group P 3� � of the affine
mappings of an ellipsoid into itself is isomorphic to SO�3�
and is a subgroup of SDiffD, where D is the domain
bounded by the given ellipsoid (3.25). Therefore, the
Euler ± Poisson equations describe exact particular solu-
tions of the Oberbeck ± Boussinesq equations [26, 28].
Indeed, consider the motion of an ideal, weakly stratified
incompressible fluid inside the ellipsoid (3.25) with the
principal semiaxes a1 6� a2 6� a3 6� a1 in the class of spatially
linear velocity fields (3.27) and temperature fields

T�x; t� � x � HT � qT
qx1

x1 � qT
qx2

x2 � qT
qx3

x3 ; �6:10�

where HT is independent of x.
In terms of X�: rot u and q � bHT, equations (5.16) and

(5.15) can be rewritten as follows:

qX
qt
� fu;XgP � g� q ; �6:11�

qq
qt
� �uH�q � ÿq qu

qr
; �6:12�

where fA;BgP � �AH�Bÿ �BH�A denotes the Poisson brack-
ets of the vector fields A and B, and the right-hand side of
(6.12) in the tensor notation has the form ÿqs qus=qxi.

By substituting (3.27) and (6.10) into (6.11) and (6.12) and
taking into account 3:26� �, it is easy to show that the vector
x� �o1;o2;o3� determined by the PoincareÂ parameters and
the vector

r� b
�
a1

qT
qx1

i� a2
qT
qx2

j� a3
qT
qx3

k

�
�6:13�

satisfy the equations

_M � x�M� gl0 � r ; �6:14�
_r� x� r : �6:15�

Here, M � Ix, and I is a diagonal matrix with the nonzero
elements I1 � a 2

2 � a 2
3 , I2 � a 2

3 � a 2
1 , I3 � a 2

1 � a 2
2 and

l0 � a1 cos a1i� a2 cos a2 j� a3 cos a3k ;

where cos ai are the direction cosines of the gravity g with
respect to the ellipsoid principal axes, i � 1; 2; 3.

The equations (6.14) and (6.15) coincide, up to the formal
substitutions x! ÿx, M! ÿm, and gr! ÿc, with the
Euler ± Poisson equations (5.9) and (5.10). As was mentioned
above, this substitution is dictated by the contradistinction of
the mechanical and hydrodynamic metrics specified on the
corresponding configuration spaces.

The first integrals of system (6.14), (6.15)

E � 1

2
M � x� gl0 � r ; P �M � r ; Y � r � r

express the conservation of the total hydrodynamic energyEh

and the Lagrangian invariance of the PV, Ph, and tempera-
ture [for the density, see (6.4)] for the class of exact solutions
under consideration.

It is interesting and important to note that the hydro-
dynamic heavy top has also been realized in extremely
sophisticated laboratory experiments with convection inside
an ellipsoidal cavity [44].

Remark. The first integrals of the nDHT (at n > 3) should
be compared with the invariants of the equations of motion
for an ideal n-dimensional stratified incompressible fluid, i.e.,
the GHT with the configuration space SDiffD, where D is a
bounded domain of the n-dimensional Euclidean space R n.
The dynamics of the ideal n-dimensional homogeneous
incompressible fluid is discussed in Ref. [8] and is more likely
of mathematical interest.

7. Generalized magnetohydrodynamic system.
What are Woltjer's invariants?

7.1 Equations of motion and their invariants
Let us consider a generalized rigid body whose kinetic energy

E�O� � 1

2
�M;O� � 1

2
�IO;O� � 1

2
hO;Oi �7:1�

is a positive definite quadratic function of the angular velocity
O � Rgÿ1� _g in the space. The kinetic energy E O� � specifies a
right- invariant metric on the entire configuration space G of
the GRB and the symmetric inertia operator I identifies ĝ and
ĝ �. The element h 2 ĝ, immobile in the body, will be called
here the magnetic-field strength in the body. Then, H � Adgh
is the magnetic-field strength in the space. The quantity
J � IH 2 ĝ � is, by definition, the electric-current density in
the space and j � Ad�gJ is the electric current in the body.

Definition of the GMHDS. A dynamical system with an
arbitrary Lie group as the configuration space and with the
Lagrangian function

L�g; _g� � E�O� ÿ 1

2
�J;H� � 1

2
�M;O� ÿ 1

2
�J;H� �7:2�

is called the generalized magnetohydrodynamic system
(GMHDS).

In accordance with the least action principle, the motion
of GMHDS is described by the equations [29]:
� in the space,

_M � ÿad�OM� ad�HJ ; �7:3�
_H � �O;H� ; �7:4�
� in the body

_m � ad�h j ; _h � 0 : �7:5�

In terms of the angular velocity, equation (7.3) can be written
in the form

_O � ÿB�O;O� � B�H;H� ; �7:6�

where the bilinear operator B�x; Z� is given by formula (2.12).
These equations can be derived using the approach similar

to that used in Section 4 to obtain the GHT equations of
motion. A detailed discussion of the GMHDS and its
applications is contained in Ref. [8]. In almost exact
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correspondence to Section 3, the following propositions
analogous to Theorems 1 and 2a are valid due to the
immobility of the magnetic field with respect to the body.

Theorem 4. The orbits of the adjoint representation of the
Lie group G in its Lie algebra ĝ are invariant manifolds for the
flow given by equation (7.4) in the algebra.

Proof. The magnetic-field strength H�t� in the space can
be obtained from h via the action of the adjoint representation
and h is immobile in the body, Q.E.D.

Theorem 5. For any element a 2 ĝ �, immobile with respect
to the body � _a � 0�, the quantity

HA � �A;H� �7:7�

at A � Ad�gÿ1a is the first integral of the system given by (7.3),
(7.4), and the equation

_A � ÿad�OA : �7:8�

The last proposition follows from the immobility of the
element a 2 ĝ � in the body (cf. theorem 2a).

Theorem 6. The quantity

Hc � �M;H� �7:9�

is the first integral for the flow given by equations (7.3), (7.4) on
ĝ� ĝ.

Proof.

d�M;H�
dt

� � _M;H� � �M; _H�
� ÿ�ad�OM;H� � �ad�HJ;H� �

ÿ
M; �O;H��

� ÿÿM; �O;H��� ÿJ; �H;H��� ÿM; �O;H�� � 0 :

Except the above-mentioned invariants, system (7.3),
(7.4) preserves the total energy

E � 1

2
�M;O� � 1

2
�J;H� �7:10�

by construction.

7.2 Application to SDiffD and SO(3)
The equations of motion (7.6) and (7.4) for the GMHDSwith
the configuration space SDiffD can be written, using formula
(3.12), in the form of the magnetohydrodynamic equations
for an ideal, perfectly conducting, incompressible homoge-
neous fluid of unit density:

qu
qt
� rot u� u � rotH�Hÿ Hj ; �7:11�

qH
qt
� ÿfu;HgP : �7:12�

They are closed by the zero-divergence conditions for the
Eulerian fields of velocity u � u�x; t� and magnetic strength
H � H�x; t�

div u � 0 ; divH � 0 : �7:13�
Here, j is the above-mentioned Bernoulli function
j � p� u2=2 (see Section 3), p is the pressure, and f ; gP
denotes the Poisson brackets of the vector fields [see (3.6)].

Equation (7.12) is nothing but the Helmholtz equation for
H and means the immobility of the magnetic field in the
`body' (the `frozenness' in the fluid). The first integrals (7.10)

and (7.9) (Theorem 6) correspond to the total MHD energy

Eh � 1

2
hu; ui � 1

2
hH;Hi � 1

2

�
D

�u2 �H2� dm �7:14�

and to the cross-helicity invariant [17]

Hc � hu;Hi �
�
D

u �H dm �
�
D

u � rotA dm ; �7:15�

A � A�x; t� being the vector potential of the magnetic field.
It follows from theorem 4, i.e., from the immobility of H

with respect to the fluid and the conservation of the volume
element, that the orbits of the adjoint representation of the
flow (7.12) are isovortical fields of the magnetic vector
potential. In other words, the quantity

KH � H � dr�
�
C

rotÿ1 H � dl ; �7:16�

where dr is the area element of an oriented surface bounded
by the material contour C, is the Lagrangian invariant
(Kelvin's circulation theorem for the magnetic field).

If the vector magnetic potential A � rotÿ1 H belongs to
the Lie algebra of the group SDiffD (which can be achieved
using the gauge invariance), then H can be regarded as an
element of the Lie coalgebra immobile in the fluid, to which
theorem 5 is applicable. As a result, we obtain the invariant of
the magnetic-field helicity

HW � �H;H� � hrotÿ1 H;Hi �
�
D

rotÿ1 H �H dm ; �7:17�

which is also associated with the name of Woltjer [17].
Remark. Generally speaking, what has been said of the

invariant (7.16) is a heuristic consideration rather than an
exact proof because the definition of the inertia tensor has not
been given. Therefore, the fact that A is an element of the Lie
algebra of the group SDiffD, i.e., a divergence-free vector
field tangent to the boundary, strictly speaking, does not
imply that rotA is an element of the Lie coalgebra ĝ ��D�. The
rigorous approach described in Ref. [8] is based on the
construction of the GMHDS not simply on an arbitrary Lie
group but on the semidirect product G� ĝ �.

The equations of motion of theGMHDS (7.3) and (7.4) as
applied to SO�3� can be written in the form

_M � X�MÿH� J ; M � IX ; �7:18�
_H � X�H ; J � IH ; �7:19�

and their first integrals, corresponding to the hydrodynamic
invariants (7.14) ± (7.16), are expressed by the formulas

Em � 1

2
M �X� 1

2
J �H ; �7:20�

Hcm �M �H ; HWm � H �H : �7:21�

Equations (7.18) and (7.19) coincide up to the substitution
X! ÿX, with theKirchhoff equations ofmotion [9] (see also
Ref. [8]) of a rigid body in a potential flow of an ideal
incompressible fluid immobile at infinity. The equations are
written in the CS immobile with respect to the body.
According to such mechanical interpretation, M and H
mean the total angular momentum and the total momentum
of the body ± fluid system, respectively. The first integrals
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represent the total energy, the projection of the total angular
momentum onto the direction of the total momentum, and
the immobility of the total momentum in the space, respec-
tively. The correspondence of the second of invariants (7.21)
to the invariant (7.16) becomes obvious if we recall that the
latter is a corollary of the immobility of the magnetic field in
the fluid.

It is reasonable to note that the Kirchhoff equations
describe exact particular solutions of the MHD equations
(see Refs [10, 26]) as the mechanical Euler and Euler ± Poisson
equations describe exact particular solutions of the equations
of motion of ideal homogeneous and inhomogeneous fluid,
respectively. The system of equations

_M � X�M� gl0 � rÿH� J ; M � IX ; �7:22�
_r� X� r ; �7:23�
_H � X�H ; J � IH �7:24�

describe exact particular solutions of the equations of
convection of ideal incompressible, stratified, electrically
conducting fluid in a magnetic field.

8. A generalized rigid body
in the Coriolis force field:
mechanical and hydrodynamic treatments

First, let us formulate the equations of motion of an ordinary
rigid body with a fixed point in a CS rotating with a constant
angular velocity x0. It should, however, be specified more
exactly what kind of rotating coordinate system is meant.
From a group-theoretic viewpoint, as was shown in Section 2,
a substantial difference between the mechanical and hydro-
dynamic systems is that their kinetic energies define different
invariant metrics on the corresponding configuration spaces.
In practice, this particularly means the following. When
hydrodynamically interpreting the solutions of mechanical
equations, and vice versa, we should take into account that
the corresponding mobile and immobile frames of reference
exchange roles. For example, a Lagrangian description of
fluidmotion conforms inmechanics to the description in a CS
immobile in space, and an Eulerian description to the
description in a frame of reference `frozen' in the body.
Therefore, in view of the application of the mechanical
equations for the Eulerian description of fluid motion in the
Coriolis force field, we are interested in the motion of a rigid
body in the frame of reference that rotates with a constant
angular velocity x0 around the axis immobile with respect not
to the space but to the body. Otherwise, the equations of
motion of the mechanical and hydrodynamic gyroscopes will
not be equivalent to each other, at least because the angular
velocity of rotation of the CS in the body depends on time and
obeys the Poisson equation.

Let us exploit the known formula that relates derivatives
with respect to time for an arbitrary vector A in an immobile
and rotating frames of reference,

dA

dt
�
�
dA

dt

�
r

� x0 � A ; �8:1�

where the subscript r marks the derivative with respect to time
in the rotating frame of reference.

Let X and M be the angular velocity and kinetic
momentum with respect to the space, respectively, and xr

and mr be the angular velocity and kinetic momentum with
respect to the new frame of reference, so thatX � xr � x0 and
M � mr �m0 �m0 � Ix0�. We apply formula (8.1) and take
into account the fact that dM=dt � 0 (the conservation of
angular momentum), thus having�

d�mr �m0�
dt

�
r

� �xr � x0� � �mr �m0� � 0 : �8:2�

Now let us pass to the frame of reference immobile with
respect to the body, which rotates relative to the original
frame of reference with the angular velocity ÿx0. Then,
according to (8.1),�

d�mr �m0�
dt

�
r

�
�
d�mr �m0�

dt

�
c

ÿ x0 � �mr �m0� ;

where the subscript cmarks the derivative with respect to time
in the coordinate system immobile in the body. Substituting
the last formula into (8.2) and taking into account that
_m0 � 0 in the chosen coordinate system, represent the
equations of motion of a rigid body with a fixed point in
the form

_m � �m�m0� � x ; m � Ix ; m0 � Ix0 �8:3�

(where the subscripts r and c are omitted), the tensor of inertia
momenta I being independent of time.

It is evident that, in the invariant form, i.e., in the form
applicable to an arbitrary Lie group equipped with a left- or
right-invariant metric, equations (8.3) and the equation for
the generalized angular velocity in the notation of Section 2
take the form

_m � �fo;m�m0g ; m � Io ; m0 � Io0 ; �8:4�

_o � �B�o;o� o0� ; �8:5�

where the � and ÿ signs refer to the left- and right-invariant
metrics, respectively.

Now, let us apply the concept of the GRB in the Coriolis
force field to the group SDiffD with a right-invariant metric.
In this case, o � u�x; t� is the Eulerian velocity field,
m � rot u � X�x; t� is the vorticity, o0 � u0�x; t� is the
Eulerian velocity field corresponding to the rotation of the
fluid with a constant angular velocity X0, and f ; g � f ; gP
are the Poisson brackets of the vector fields, i.e.,�
a�x�; b�x�	

P
� �aH�bÿ �bH�a. Then,

m0 � rot u0 � rot�X0 � x� � 2X0 ;

and, in view of (3.12), equations (8.4) and (8.5), whose right-
hand sides are taken with the minus sign, can be written in the
form of the equations of motion for a rotating ideal,
incompressible homogeneous fluid:

qX
qt
� fX� 2X0; ugP �

qX
qt
� �uH�Xÿ ��X� 2X0�H

�
u � 0 ;

�8:6�
qu
qt
� 2X0 � u � u� rot uÿ gradj ; �8:7�

wherej is the Bernoulli function that includes the potential of
the centrifugal forces.
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Thus, the coefficient 2 at the Coriolis term in the
hydrodynamic equations appears because the vorticity, in
terms of which the equation for the generalized kinetic
momentum is written, is equal to the doubled angular
velocity of local fluid rotation.

9. The motions of Euler and Euler ±Poisson tops
in the Coriolis force field as mechanical
prototypes of global geophysical flows

The existence of mechanical prototypes of the fundamental
hydrodynamic invariants suggests that there are other
mechanical characteristics reflecting less obvious but impor-
tant properties of fluid motion.Most interesting is predicting,
on the basis of mechanical equations, such qualitative
features of fluid behavior that are difficult (if possible at all)
to find by means of the numerical integration of the
hydrodynamic equations. We should obviously begin with
the comparison of mechanical motions with global-scale
flows, since in this case we can expect most similarity. The
quasigeostrophic approximation for the equations of motion
of a rotating fluid is a natural filter eliminating small-scale
components. In this context, let us consider the behavior of
the classical gyroscope and a heavy top in the Coriolis force
field at various Rossby numbers; by comparing the quasigeo-
strophic and exact solutions of their equations of motion, we
will try to assess the possibility of extracting certain conclu-
sions about the global geophysical flows from such a
comparison [45].

The motion of an ideal, weakly stratified, incompressible
rotating fluid is described by the equations

qu
qt
� �uH�u� 2X0 � u � ÿHp

r0
ÿ g bT ; �9:1�

qT
qt
� �uH�T � 0 ; div u � 0 �9:2�

[cf. (5.14) and (5.15)]. The respective equations for the
vorticity X � rot u and q � bHT can be written in the form
[cf. (6.11), (6.12), and (8.6)]:

qX
qt
� fX� 2X0; ugP � g� q ; �9:3�

qq
qt
� �uH�q � ÿq qu

qr
: �9:4�

Substituting (3.27) and (6.10) into (9.3) and (9.4) and taking
into account (3.26) yield the equations [cf. (6.14), (6.15)]

_M � x� �M� 2M0� � gl0 � r ; _r� x� r ; �9:5�

which describe the fluid motion inside the ellipsoid (3.25) that
rotates with a constant angular velocityX0 about the axis that
passes through the center of the ellipsoid. Here,M � Ix, and
M0 � Ix0, the components of x0 being expressed through the
components of X0 via relations analogous to (3.28). Other
notation is the same as in Section 6.3. We will also use the
additional relations

o1 � ÿ a3
a2

qv
qz
; o2 � a3

a1

qu
qz

; �9:6�

which follow from (3.26) and (3.27).

Up to the substitutions x! ÿx, 2x0 ! ÿx0, and
r! ÿc, system (9.5) coincides with the equations of motion
of a heavy top in the Coriolis force field [cf. (5.9), (5.10) with
(8.3) taken into account]:

_m � �m�m0� � x� gl0 � c ;

_c � c� x ; m � Ix ; m0 � Ix0:

In the absence of stratification �q � bHT � 0�, the fluid
motion is governed by the equation

_M � x� �M� 2M0� ; �9:7�

which we will call the equation of motion of a barotropic top,
and system (9.5), the equations of motion of a baroclinic top.

9.1 The motion of a barotropic top
In terms of Ma �M� 2M0, equation (9.7) can be rewritten
as

_Ma � x�Ma : �9:7a�

Multiplying (9.7) by x and (9.7a) by Ma, we obtain two first
integrals,

2E � x �M � I1o2
1 � I2o2

2 � I3o2
3 ; �9:8�

M2
a � �M1 � 2M01�2 � �M2 � 2M02�2 � �M3 � 2M03�2 ;

�9:9�
which mean the conservation of kinetic energy and the
validity of Kelvin's circulation theorem (see Section 3),
respectively, for the flows under consideration.

By using invariants (9.8) and (9.9), as in the case X0 � 0
(see, e.g., Ref. [23]) , we can form an idea of the behavior of the
barotropic top without integrating its equations of motion. In
the kinetic momentum space, a trajectory of the top is the
intersection of the `energy' ellipsoid

M1

2EI1
� M2

2EI2
� M3

2EI3
� 1

with the `circulation' sphere

�M1 � 2M01�2
M 2

a

� �M2 � 2M02�2
M 2

a

� �M3 � 2M03�2
M 2

a

� 1

of radiusMa � jM� 2M0j centered atM � ÿ2M0:
Typical phase portraits of the dynamical system (9.7) are

shown in Fig. 5 for various values of the Rossby number
e � jMj=j2M0j. These portraits are of a certain hydrodynamic
interest since they illustrate the process of gradual disappear-
ance of the complex elements of motion with the enhance-
ment of the Coriolis force influence. It can be seen that the
hyperbolic points successively vanish as the Rossby number
diminishes from e � 1. The global geophysical flows
correspond to small Rossby numbers at which the trajec-
tories of the barotropic top are formed in essence by the
intersections of the energy ellipsoid with the family of planes
orthogonal to the vectorM0. Hence, two conclusions follow:
(a) the phase portrait of the geophysical motions of a
barotropic top consists of closed elliptical trajectories and
has no hyperbolic point; (b) at small Rossby numbers, the
projection of the kinetic momentum onto the direction M0 is
virtually [up to O�e 2�] conserved in time.
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The description of motion along a closed trajectory is
most simple if M0 coincides in its direction with one of the
principal axes of the ellipsoid. LetM0 be directed along the x3,
or z, axis. Then the coordinate form of (9.7) is

I1 _o1 � �I3 ÿ I2�o2o3 � 2I3o0o2 ;

I2 _o2 � �I1 ÿ I3�o1o3 ÿ 2I3o0o1 ; �9:10�
I3 _o3 � �I2 ÿ I1�o1o2 :

At a small Rossby number, e5 1, we have _M3 � O�e 2�,
M3 �M30 �O�e 2�, and M30 � const � O�e�. In terms of
the variables X � ����

I2
p

M1 and Y � ����
I1
p

M2, the equations of
motion can be rewritten, up to O�e 2�, in the form

_X � 2
I3��������
I1I2
p o0Y ; _Y � ÿ2 I3��������

I1I2
p o0X : �9:11�

Hence, it follows that the endpoint of the vector M, or Ma

(which is the same), moves along the elliptical orbit
M 2

1 =I1 �M 2
2 =I2 � const with the angular velocity

s � ÿ2 I3��������
I1I2
p o0 � ÿ2 a1a2��������

I1I2
p O0 ; �9:12�

i.e., in the direction opposite to that of the revolution of the
coordinate system.

In view of the dual treatment of the equations ofmotion of
a rigid body with a fixed point, such precessions of a
barotropic top, as well as the approximate invariance of the
projection of its kinetic momentum onto the M0 direction,
could be regarded, to a certain degree of scepticism, as
mechanical prototypes of the Rossby waves transporting the
atmospheric kinetic momentum in a direction opposite to the
Earth's rotation, and of the approximate Lagrangian invar-
iance of the vertical vorticity (the Charney ±Obukhov
equation) of global geophysical flows, respectively.

9.2 The quasigeostrophic approximation for the equations
of motion of a baroclinic top
The three first integrals of system (9.5),

E � 1

2
x �M� gl0 � r ;

�9:13�
P � �M� 2M0� � r ; Y � r � r ;

express the conservation of the total energy

Eh � 1

2
r0

�
D

u2 dm� r0 b
�
D

g � xT dm

and the Lagrangian invariance of the PV,

Ph � �X� 2X0� � HT ;

and of the temperature, T, for the considered class of
solutions of the original hydrodynamic equations (9.1), (9.2)
[cf. (6.3), (6.4)]. Thus, we have a complete collection of
necessary tools to construct the desired approximation. Let
us recall in this context the general scheme that is employed in
geophysical hydrodynamics to derive the quasigeostrophic
approximation for the equations of motion of a baroclinic
atmosphere. This scheme is as follows (see, e.g., Ref. [31]).

I. The Rossby number e � U= f0L � O�o= f0� and the
dimensionless quantities

x � f 2
0 L2

gH0
� O�e� ; Z � N 2H0

g
� O�e� �9:14�

are assumed to be small parameters, the same order of their
smallness being not necessary but chosen to simplify the
calculations. Here, f0 is the Coriolis parameter (the doubled
latitudinal average of the vertical component of the angular
velocity of the Earth's rotation), L and H0 are the character-
istic horizontal and vertical scales of the global flows,U ando
are their characteristic velocity and vertical vorticity, andN is
the Brunt ±V�ais�al�a frequency; in application to equations
(9.1) and (9.2), it is given by the relationship N 2 � gb qT=qz,
provided that qT=qz > 0:

II. The motion is assumed to be quasistatic and quasigeo-
strophic, i.e., to satisfy the thermal wind equations up toO�e�
(from the mechanical viewpoint, they mean an approximate
equilibrium between the Coriolis force and pressure,
expressed in terms of vorticity Ð see below).

III. The derivation is based on the conservation equations
for the PV and potential temperature (in the case under
consideration, this role of the latter is played by T ), which
are expanded in powers of the small parameter e up to the
terms O�e 2�.

Let g coincide with the principal axis Oz of the ellipsoid
(semiaxis a3) about which the ellipsoid rotates with the
angular velocity O0. Let us apply the above-described scheme
to obtaining the quasigeostrophic approximation for equa-
tions (9.5).
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Figure 5. The phase portraits of a barotropic top in the angular momentum space at various Rossby numbers.
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As the parameters e, L2, and H0, it is natural to take the
quantities

e � o
2o0

�
o �

����������������������������
o2

1 � o2
2 � o2

3

q �
;

�9:15�
2L2 � I3 � a 2

1 � a 2
2 ; H0 � a3 :

Then,

x � 4o2
0�a 2

1 � a 2
2 �

2ga3
� 2o2

0I3
ga3

� O�e� ; �9:16�

N 2 � g b
qT
qz
� gs3

a3
; Z � N 2a3

g
� s3 � O�e� : �9:17�

For the original hydrodynamic equations (9.1) and (9.2),
the thermal wind equation is

ÿ2�X0H�u � bg� HT�O�e� ; �9:18�
meaning that the ratio of the omitted to the retained terms is
O�e�. In the coordinate form, this equation can be rewritten as
follows:

qu
qz
� ÿ gb

2O0

qT
qy
�O�e� ; qv

qz
� gb

2O0

qT
qx
�O�e� : �9:18a�

For the model equations (9.5), the thermal wind equation
takes the form

x� 2M0 � gl0 � r� O�e� ; �9:19�

or, in the coordinate form �l0 � �0; 0;ÿa3��,
o2 � ÿ a3gs2

2I3o0
�O�e� ; o1 � ÿ a3gs1

2I3o0
�O�e� : �9:19a�

By taking into account (9.6) and (9.19a), we find thatÿo2 and
ÿo1 can be treated as the components of the thermal wind up
to contraction ± expansion transformations:

ÿo1 / qv
qz
/ qT

qx
; ÿo2 / ÿ qu

qz
/ qT

qy
:

Further, for the sake of convenience, the quantitieso1 ando2

will be called the thermal wind components, which is correct,
however, up to their sign.

According to (19.19a) and (19.16),

o2

o0
/ o1

o0
/ O�e� / s2

O�e� /
s1
O�e� ;

hence,

s1 / s2 � O�e 2� : �9:20�
Let us write the model equations (9.5) in the coordinate

form:

I1 _o1 � �I3 ÿ I2�o2o3 � 2I3o0o2 � ga3s2 ; �9:21�
I2 _o2 � �I1 ÿ I3�o1o3 ÿ 2I3o0o1 ÿ ga3s1 ;

I3 _o3 � �I2 ÿ I1�o2o3 ;

_s1 � o2s3 ÿ o3s2 ; �9:22�
_s2 � o3s1 ÿ o1s3 ;

_s3 � o1s2 ÿ o2s1 : �9:23�

The system (9.21) ± (9.23) has, in particular, the following
families of fixed points describing stationary regimes of
rotations about the principal axes:

�A� o1 � o2 � 0 ; s1 � s2 � 0 ; o3 � o30 ; s3 � s30 ;

�B� o1 � o3 � 0 ; s1 � s3 � 0 ; o2 � o20; s2 � s20 ;

2I3o0o20 � ga3s20 � 0 ;

�C� o2 � o3 � 0 ; s2 � s3 � 0 ; o1 � o10 ; s1 � s10 ;

2I3o0o10 � ga3s10 � 0 :

The variables with the subscript 0 can assume arbitrary
real values (do not confuse the variables with the external
parameter o0). It is easy to see that any representative of
family (B) or (C) is a nontrivial, strictly geostrophic stationary
regime at anyo0 6� 0. In accordance with the above estimates
(9.20) and the thermal wind equations (9.19a), in view of
(9.16), the equation (9.23) gives _s3 � o�e 3�. Therefore,
s3 � s30 is a constant to a high accuracy, and the last two
equations of system (9.22) can be rewritten in the form

_s1 � o2s30 ÿ o3s2 ; _s2 � o3s1 ÿ o1s30 : �9:24�

Now, by eliminating s1 and s2 from (9.24) with the use of
(9.19a), we obtain the system

_o1 � ÿ
�
ga3s30
2I3o0

� o3

�
o2 ;

�9:25�
_o2 �

�
ga3s30
2I3o0

� o3

�
o1 ;

which can be interpreted as an analog of the equation for the
`potential' temperature (more precisely, the equations for the
components of the potential temperature gradient) reduced
by means of the expansion in powers of e and written in terms
of the thermal wind components.

Now, it remains to clarify what the quasigeostrophic PV
is. By virtue of the above estimates, the expression for

P � �M� 2M0� � r� I1o1s1 � I2o2s2 � I3o3s3 � 2I3o0s3

[see (9.13)] can be rewritten in the form

P � I3�2o0 � o3�s30 �O�e3� :
Therefore, the quasigeostrophic PV is

PG � I3�2o0 � o3�s30 ; _PG � 2I3s30 _o3 ; �9:26�

and its evolution is described by the first equation of system
(9.22).

Thus, the quasigeostrophic approximation of the sixth-
order system (9.21) ± (9.23), describing the motion of a
baroclinic top, reduces to the three-component dynamical
system

I3 _o3 � �I2 ÿ I1�o1o2 ;

_o1 � ÿ
�
ga3s30
2I3o0

� o3

�
o2 ; �9:27�

_o2 �
�
ga3s30
2I3o0

� o3

�
o1 :

System (9.27) corresponds to the equations for the slow
variables in the theory of relaxation oscillations (see, e.g.,
Ref. [46]) and, in the case under consideration, describes the
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slow evolution of the main components of the global
geophysical flows, i.e., the vertical vorticity and thermal wind.

Let us divide the left- and right-hand sides of equations
(9.27) by o2

0. Then, in view of (9.15), (9.17), and the
relationship 4o2

0 � f 20 , the additive constant that appears in
the parentheses in the last two equations takes the form

S � ga3s30
2I3o2

0

� N 2H 2
0

f 2
0 L2

: �9:28�

Here, S is a similarity criterion, well known in geophysical
fluid dynamics and appearing in the quasigeostrophic
equation of the PV for a baroclinic atmosphere as a given
parameter called the stratification parameter (see, e.g.,
Ref. [31]).

In the dimensionless variables X � ÿo1=o0, Y �
ÿo2=o0, Z � S� o3=o0, and t � o0t (slow time), system
(9.27) can be rewritten in the following, extremely simple
form:

_X � ÿYZ ; _Y � ZX ; _Z � GXY ; �9:29�

where G � �I2 ÿ I1�=I3 � �a 2
1 ÿ a 2

2 �=�a 2
1 � a 2

2 �.
Further, we can assume that a1 > a2 without a loss of

generality, so that 0 < G < 1. The system (9.29) has two
positive definite invariants,

2EG � GX 2 � Z 2 ; YG � X 2 � Y 2 : �9:30�

According to Obukhov's theorem (see Ref. [26]), this means
that the quasigeostrophic approximation for the equations of
motion of the baroclinic top is equivalent to the Euler equations
of motion of a classical gyroscope whose dependent variables
are the vorticity and the components of the thermal wind. It is
worth noting in this context that the quasigeostrophic
approximation for the reduced equations of motion for
rotating shallow water also coincides with the mechanical
Euler equations and describes a slow evolution of the Rossby
waves [19].

The families (A) ± (C) of stationary solutions of the
original system (9.21) ± (9.23) exhaust the set of fixed points
of the reduced equations (9.29); in terms of the new variables
they can be written as

�A� X � Y � 0 ; Z � Z0 ;

�B� X � Z � 0 ; Y � Y0 ;

�C� Y � Z � 0 ; X � X0 :

Here, the quantities marked with the subscript 0 can assume
arbitrary real values; the zero solution X � Y � Z � 0 at
S 6� 0 describes circulation around the vertical axis and is in
essence also a nontrivial representative of family (A).

The above-mentioned first integrals should be treated as
the total energy and an analog of the Lagrangian invariance
of potential temperature. At S � 0, the second term in the
energy expression is the kinetic energy of vertical vorticity,
whereas the first term defined by one of the thermal wind
components should in fact be interpreted as a measure of the
available potential energy. The reason for this is as follows.
The kinetic energy of the horizontal vorticity, neglected in the
quasigeostrophic approximation, is generated by the hor-
izontal inhomogeneity of the potential temperature and,
therefore, is attributed to the potential energy of the
quasigeostrophic system. (This is a general statement valid

for any global geophysical flow.) In the dimensional vari-
ables, the stationary solution of system (9.29)

X � X0 6� 0 ; Y � Z � 0 ; �9:31�
with a nonzero X component of the thermal wind has a
horizontal vorticity o10 / ÿqT=qx to which the kinetic
energy

EX � 1

2
I1o2

10 �
1

2
�a 2

2 � a 2
3 �o2

10 :

corresponds. The same value of the vorticity directed in the
Y direction corresponds to the stationary solution

X � 0 ; Y � X0 6� 0 ; Z � 0 ; �9:32�

and the corresponding kinetic energy is

EY � 1

2
I2o2

10 �
1

2
�a 2

1 � a 2
3 �o2

10 :

Note that the first integrals do not prohibit a transition from
the state (9.31) to the unsteady state

X � 0 ; Y � X0 6� 0 ; Z �
����
G
p

X0 ;

in which the components X and Y exchange their roles but
forbid an inverse transition because of the violation of the law
of conservation of energy. Therefore, the difference between
the kinetic energies corresponding to the horizontal vorticities
of the states (9.31) and (9.32),

DE � EY ÿ EX � 1

2
�a 2

1 ÿ a 2
2 �o2

10 ;

is the excess potential energy of the state (9.31) with respect to
the state (9.32), i.e., the available potential energy that can
generate the vertical vorticity.

It follows from the phase portrait of system (9.29), shown
in Fig. 6, that the fixed point (B) is stable, whereas (C) as a
hyperbolic point is unstable. In essence, Fig. 6 illustrates the
Eady's results [47], who was the first to find the baroclinic
instability in the case of a horizontally uniform zonal flow
with a vertical velocity shear due to the pole ± equator
temperature difference. In other words, Eady found that a

X

Y

Z

Figure 6. The phase portrait of the quasigeostrophic motion of the

baroclinic top in the space of dimensionless components of thermal

wind,X andY, and the vertical vorticityZ, which illustrates the baroclinic

instability mechanism.
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flow with zero vertical vorticity and a nonzero thermal wind
qu=qz �ÿ�gb=2O0� qT=qy turns out to be unstable because of
the excess of available potential energy, which is transformed
into the kinetic energy of vertical vorticity, giving rise to the
atmospheric cyclogenesis. It is this mechanism that describes
model (9.29).

If S 6� 0, we cannot treat quantity Z 2 as a measure of the
kinetic energy. Therefore, it is not an accident that the exact
and quasigeostrophic solutions come to best agreement at
S � 0, as we will see in Section 9.3: the larger the departure of
S from zero, the larger the divergence between the exact and
quasigeostrophic trajectories. Therefore, the stratification
parameter can in a sense be regarded as a measure of the
deviation of the original model trajectories from the slow
manifold described by system (9.29).

Remark. The following question may arise: why is
S � O�1�, rather than S � 0, the best value for the atmo-
sphere? The point is that the equations of atmospheric motion
are formulated for the deviations from the static equilibrium
state, with a stable vertical profile of potential temperature to
which a positive N 2 corresponds. However, in our case, we
started with an equilibrium state with N 2 � 0, which is
explained by the choice of the Oberbeck ±Boussinesq
approximation for the deviations from the static equilibrium
state with a uniform profile of the average temperature,
T0 � bÿ1 � const.

9.3 Comparison of the quasigeostrophic and exact motions
of a baroclinic top depending on stratification parameter
at small initial Rossby numbers
For a spherical �a1 � a2 � a3� or cylindrical symmetry, the
analytical solutions of the quasigeostrophic triplet can be
compared with the known analytical solutions of the original
model equations. Such a comparison was done for a
spherically symmetric top in Ref. [48]. However, these are
the least interesting examples, in which the nonlinear
interaction of the o components responsible for the genera-
tion of the ageostrophic component of motion are partly or
entirely excluded [see (9.21)]. To avoid such simplifications,
we preferred to integrate the approximate and primary model
equations numerically, usingmethods that allow checking the
calculation errors to a high accuracy. (The nonintegrability of
the equations of motion of an asymmetric heavy top was
already proven by S Kovalevskaya. A modern proof is
presented in Ref. [49].) Specifically, the question is the use of
the following two criteria of integration accuracy: (a) the
degree to which the invariants (9.13) and (9.30) are really
conserved and (b) the precision towhich the trajectory returns
to the starting point if the backward integration is carried out.

In all examples given below, the errors in the conservation
of the above-mentioned invariants and in the return to the
initial point did not exceed 10ÿ6 and 10ÿ4%, respectively. All
numerical experiments aimed at the comparison of the
quasigeostrophic and `exact' trajectories were implemented
for an ellipsoid with principal semiaxes of a1 � 3, a2 � 1, and
a3 � 2. The unstable stationary point of the quasigeostrophic
triplet model, x=o0 � �0:1; 0; 0�, initially perturbed to
x 0=o0 � �0; 0; 10ÿ5�, was taken as the initial state, the
corresponding values of s1 and s2 were calculated using the
thermal wind formulas (9.19a). The stratification parameterS
was the only quantity varied from run to run.

The calculation results are presented in Figs 7 and 8 in the
form of the projections of the approximate and `exact' phase
trajectories onto the two-dimensional �X;Y � and three-

dimensional �X;Y;Z� subspaces for different positive and
negative initial S values (recall that S is an invariant only for
the quasigeostrophic model). The parameter S was varied
within the range 04 jS j4 1.

First of all, we note that, at jS j5 1, the phase portraits of
the approximate and primary models virtually coincide. This
suggests the very existence of a slow manifold. At small and
moderate S values, the `exact' trajectories are reflected inside
or outside from the slowmanifold, depending on the sign ofS,
as if the manifold were a curved mirror. The higher the value
of jS j, the larger the deviation amplitude. We emphasize that
the above-noted property persists even when the ageostrophic
amplitude becomes comparable in its magnitude with the
geostrophic component (or even exceeds it), at positive
changes in the stratification parameter up to S � 1 and, at
its negative changes, up to jS j � 0:64. The transpiercing of
the mirror occurs from outside at S � ÿ0:65, and the
trajectory fills the previously unavailable domain within a
finite time interval �Dt � 102�, which seems to be accom-
panied with the origin of chaos. This is illustrated in Figs 9
and 10, which show the PoincareÂ maps and frequency spectra
for subcritical and supercritical S values. The hierarchy of
models occupying intermediate positions between the quasi-
geostrophic and exact equations of motion of a baroclinic top
were constructed in Ref. [50]. These models permit analyti-
cally describing the regular oscillations of a baroclinic top at
moderate values of the parameter S.

It is interesting to note that the described situation is
reminiscent of the results of Lorenz [19], who compared the
exact solutions of the truncated (according to the Galerkin
method) equations of atmospheric motion with the solutions
of their quasigeostrophic approximation. In Lorenz's model,
the roles of slow and fast motions are played by the planetary
and inertial gravitational waves, respectively. In our case, at
S 6� 0, the slow evolution of the vertical vorticity and thermal
wind is accompanied by high-frequency inertial gravitational
oscillations, which periodically move the phase trajectories
away from the slow manifold (see Figs 7 and 8).

10. The motion of a baroclinic top
under the action of external heating,
friction, and the beta effect

10.1 Taking into account friction and external heating
As is well known, kinetic energy dissipates in geophysical
hydrodynamic systems mainly in the planetary boundary
layer, which slows down the motion of the free atmosphere
according to a nearly linear (in velocity) friction law. The
external heating, as is not infrequently done in theoretical
studies, can be taken into account using Newton's formula.
According to it, the heat influx is proportional to the
temperature deviations from the background value. The
temperature field that is established in the motionless fluid
due to the nonuniform external heating and the thermal
conduction of the fluid is called the background temperature
distribution. Then, under these assumptions, the viscous
motion of a baroclinic top is described by the equations

_M � x� �M� 2M0� � gl0 � rÿ lM ; �10:1�
_r� x� r� m�rB ÿ r� :

Here, the quantities l and m having the dimension of inverse
time can be treated as some effective coefficients of friction
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and heat conductivity, respectively, and rB corresponds to the
spatially linear distribution of the background temperature.
Other notation is as before.

10.2 `Toy' Hadley and Rossby circulations
Let us consider the typical geophysical situation in which a
viscous baroclinic top moves under the action of horizon-
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X

Y b

X

Y c

X

Y d

X

Y e Y f

X

Figure 7. The phase portraits of quasigeostrophic and `exact' motions of the baroclinic top in the plane �X;Y � for various values of the parameter S:

(a) S � 0:2, (b) S � ÿ0:2, (c) S � 0:6, (d) S � ÿ0:6, (e) S � 0:65, (f) S � ÿ0:65. The heavy curves correspond to quasigeostrophic trajectories; the light

curves, to `exact' trajectories. At S � 0, the approximate and exact trajectories virtually coincide.
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tally nonuniform external heating. As before, we assume
that a1 > a2 and vectors g and X0 have opposite directions
and are parallel to the x3 axis. To switch on the mechanism
of baroclinic instability, we direct the gradient of back-
ground temperature along the x1 axis. In this case,
rB � �sB1; 0; 0�.

The quasigeostrophic approximation for system (10.1)
can be obtained using the procedure described in Section 9.2:

I3 _o3 � �I2 ÿ I1�o1o2 ÿ lI3o3 ;

_o1 � ÿo2o3 ÿ mo1 ÿ mga3sB1
2I3o0

; �10:2�
_o2 � o3o1 ÿ mo2 :

Note that the quantity s3 appears in the system (10.2) neither
as a parameter [cf. (9.27)] nor as a variable with its own
equation, since s3 finally vanishes because of the homogene-
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Figure 8. The phase portraits of quasigeostrophic and `exact' motions of the baroclinic top in space �X;Y;Z� for subcritical values of the parameter S,

(a) S � 0:6, (b) S � ÿ0:2, (c) S � ÿ0:6, and the supercritical value (d) S � ÿ0:65. The heavy curves correspond to quasigeostrophic trajectories, the light

curves, to `exact' trajectories.
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Figure 9. The PoincareÂ maps in planes �X;Z� and �Y;Z� at (a) subcritical value S � ÿ0:6 and (b) supercritical value S � ÿ0:65.
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ity of the background temperature distribution (the result of
numerical integration).

In the dimensionless dependent variables

X � o1

m
; Y � o2

m
; Z � o3

m
; t � mt ;

system (10.2) takes the form

_X � ÿYZÿ XÿD ; _Y � ZXÿ Y ; _Z � GXYÿ zZ :

�10:3�

Such a choice of the slow time is dictated by the fact that, for
geophysical systems, as a rule, mÿ1 0lÿ1 4Oÿ10 (for exam-
ple, the cooling time of the Earth's atmosphere is about
10 days). The quantity z � l=m can be interpreted as an
effective Prandtl number and D � ga3sB1=2I3o0 m is the
dimensionless thermal drive.

Let the vector rB point in the negative direction of axis x1;
i.e., D � ÿjDj. In this case, the natural convection due to
external heating can be described by positive values of o2.
System (10.3) has two types of stationary solutions. One of
them is the Hadley regime (H) and the other corresponds to
the Rossby regimes �R��:
�H� X � jDj ; Y � Z � 0 ; �10:4�

�R�� X � D0 �
�
z
G

�1=2

;

Y � �D 1=2
0

ÿjDj ÿD0

�1=2
; �10:5�

Z � �Dÿ1=20

ÿjDj ÿD0

�1=2
:

The meaning of these solutions becomes clear if we compare
their energetic characteristics with the energetic character-
istics of the real global geophysical flows. We begin with the
fact that, according to the analysis of the solutions of the
primary model (see Refs [26, 51, 52]), in the H regime both the
quantitiesY andZ are negligibly small but strictly positive for
any D 6� 0 if the quasigeostrophic equilibrium is valid. The
smallness and positiveness of Y mean that the natural
convection, arising in the cross sections orthogonal to the x2
axis, is extremely inefficient from the viewpoint of heat
transport from the heater to refrigerator. The intense
circulation about the x1 axis does not increase the efficiency
of this regime. As a result, the temperature field established in
the fluid virtually coincides with the background distribution
(according to the thermal wind relations, X � ÿD and Y � 0
mean that HT � HTB). From the energetic viewpoint, the
Hadley regime observed in laboratory and numerical experi-
ments onmodeling the global atmospheric circulation (GAC)
is characterized by similar peculiarities, i.e., by a powerful but
inefficient zonal flow orthogonal to the pole ± equator
direction and very weak natural convection in the meridional
(radial) plane (see Fig. 11a). The intensity of the meridional
circulation is two orders of magnitude less than that of the
zonal flow [53].

In R� regimes, the situation is radically different. The
intensity of circulation about the x1 axis and, according to the
thermal wind equations, temperature difference along the
same axis are independent of D, i.e., of the power of external
heating. IfDT is the above-mentioned temperature difference,
then DT=DTB � jD0=Dj < 1, i.e., in R� regimes the heat
engine under consideration becomes substantially more
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Figure 10. The frequency spectra corresponding to the cases represented by (a) Fig. 7c, (b) Fig. 7d, (c) Fig. 7e, and (d) Fig. 7f.
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efficient. The intensities of fluid rotations about the axes
orthogonal to HTB increase according to the law

������������������jDj ÿD0

p
with the growth of jDj. In the R� regime, both these rotations
favor the heat transport from the heater to the refrigerator,
whereas, in the Rÿ regime, the circulation about the x2 axis
occurs in the direction opposite to that of the natural
convection. Previously, researchers associated this phenom-
enon, observed under natural and laboratory conditions, with
the so-called negative viscosity effect [54]. Again, from the
energetic viewpoint, the above-mentioned situation is similar
to atmospheric and laboratory Rossby regimes. Indeed,
Fig. 11b, in which the results of laboratory experiments on
modeling the GAC are schematically presented (see, for
example, the monograph [53] and reviews [55, 56]), shows
that the negative influence of `contranatural' convection in
the radial (meridional) plane is compensated by a powerful
horizontal jet stream, which transfers heat in the required

direction due to alternating contacts with the heat and cold
sources. This effect is also stimulated by large-scale vortices
circumflexed by the jet stream, and the role of these vortices in
the `toy' Rossby regimes is played by the vertical vorticity o3.
A similar pattern is also observed in the atmosphere (see
Fig. 11c [57] based on observational data from the USSR
Hydrometeorological Center).

In the context of the above-mentioned properties of the H
and R� regimes, it seems to be interesting to investigate their
domains of existence and stability, to compare them with the
domains of the corresponding regimes of global geophysical
flows, natural and simulated in laboratory. According to
(10.5), jDj � D0 is the lower boundary of the region of
existence of the R� regimes. In geophysical hydrodynamics,
the convection of a rotating fluid is described in terms of the
thermal Rossby number RoT and the Taylor number Ta,
which, as applied to the model in question, can be defined as
follows:

RoT � ga3jsB1j
2I3o2

0

; Ta � o2
0

l2
: �10:6�

In terms of these parameters,

D � sign �sB1�RoT Ta
1=2 z : �10:7�

Then, in the plane of external parameters �Ta;RoT�, the
above-mentioned lower boundary is the curve

RoT � �zGTa�ÿ1=2 ; �10:8�

which, in the quasigeostrophic approximation, coincides with
the lower boundary of the stability region for the regimes R�.
This is not surprising. Another thing is surprising: this curve
coincides with the asymptotic for the lower boundary of the
existence and stability region of the laboratory Rossby
regimes observed in annular channels, as determined theore-
tically by Lorenz [58] on the basis of a truncated two-layer
model of the baroclinic flow.

A detailed investigation carried out in Refs [26, 52] on the
basis of the primary model equations (10.1) and corrected by
our additional calculations shows that the existence and
stability domains of Rossby regimes have shapes similar to
that presented in Fig. 12, the top branch asymptotically
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behaving as RoT � Ta1=2. This does not mean that the
existence and stability domains for the R� and Rÿ regimes
coincide. In particular, the solid curve in Fig. 12 reproduces
the stability boundary for regime Rÿ, whereas regime R� is
stable not only inside the domain bounded by this curve but
also in its outer vicinity.

The stability curve of the Rossby regimes in annular
channels found by Lorenz in his above-cited work differs
from the curve shown in Fig. 12 by the behavior of the top
branch, which, according to Lorenz, asymptotically
approaches a constant. It would be too bold to give a strict
explanation to this distinction because the models are
different. We only note that, unlike Lorenz, we did not use
the quasigeostrophic approximation in constructing the top
branch.

Now, comparing the theoretical stability boundaries of
the Rossby regimes with the experimental critical curve
presented in Fig. 13, we can see that, although all the curves
are anvil-shaped, the lower branch of the experimental curve
behaves as RoT � Taÿ1 rather than as RoT � Taÿ1=2. For the
top branch, the experimental data are insufficient. The reason
for this disagreement remained obscure until recently.Wewill
return to this question in Section 10.3.

To conclude this section, let us note two points. First, the
critical curve for regime R� was not constructed because of
the weak difference between regimesR� andHnear the upper
branch. Second, although regimes R� are equivalent in the
quasigeostrophic approximation from the stability view-
point, the transition H! R� dominates over H! Rÿ in
the framework of the original model.

10.3 The influence of the slope of the general rotation axis
with respect to gravity
One can see from the experimental diagram in Fig. 13 that, in
the domain bounded by the critical curve of the Rossby

regimes, both strictly periodic and irregular auto-oscillations
are observed along with stationary regimes. However, in the
framework of the problem considered in Section 9, we failed
to find self-oscillations in system (10.1). We overlooked the
important factor that a global geophysical flow is nothing but
the oblique convection of a rotating fluid developing in
conditions where the axis of general rotation is not parallel
to the gravity.

Let x0 and g form an angle j, as shown in Fig. 14 for two
orientations of the ellipsoid with respect to the gravity and
general rotation. The angle j is assumed to be so small that it
does not affect the thermal wind relations (9.19a). To a certain
extent, this imitates the situation related to the presence of the
so-called beta effect on the Earth Ð the latitudinal depen-
dence of the vertical projection of the Earth's angular
velocity. The point is that the equations of atmospheric
motion are formulated precisely in terms of this projection,
but the derivation of the quasigeostrophic approximation
neglects the dependence of the projection on the latitude in
the thermal wind relations, being based on the latitudinal
average.

Since j is small, the quasigeostrophic approximation of
system (10.1) for both orientations can be written in terms of
X, Y, and Z as

_X � ÿYZÿ XÿD ;

_Y � XZÿ Y ; �10:9�
_Z � GXYÿ bYÿ zZ ;

where b � b0Ta
1=2z and b0 � 2�a1=a3�j or b0 � 2�I1=I3�j,

depending onwhether the orientation corresponds to Fig. 14a
or 14b.

At G � 0 �a1 � a2�, the change of variables

X � z
b
zÿD ; Y � ÿ z

b
y ; Z � x

reduces system (10.9) to Lorenz's deterministic stochastic
equations [22]:

_x � z�yÿ x� ; _y � ÿxzÿ y� rx ; _z � yxÿ bz ;

�10:10�

where b � 1 and r � �b=z�D � sign �sB1�b0zRoT Ta.
Therefore, under specific conditions discussed below,

system (10.9) describes the stochastic regimes of `toy'
geophysical flows. System (10.9) and its irregular solutions
were first obtained in 1980 [48], but, at that time, the
investigation was restricted to studying these solutions with-
out comparisons with the corresponding solutions of system
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(10.1) and without a geophysical treatment of the results. In
the same year Lorenz found that equations (10.10) describe
not only Rayleigh convection but also a slow manifold in the
reduced system of interacting Rossby and inertial gravita-
tional waves.

Let us note that equations (10.9) and (10.10) are invariant
with respect to the substitution D! ÿD, b! ÿb
�sB1 ! ÿsB1, j! ÿj�. Thus, we define the beta effect to
be positive (negative) if Db > 0 or sB1j > 0 (Db < 0 or
sB1j < 0). Since the beta effect violates the symmetry of the
original force configuration, there are two different types of
Rossby regime, depending on its sign. As before, we assume
that sB1 < 0. Therefore, for a positive beta-effect, i.e., at
D < 0 and b < 0, the Hadley and Rossby stationary regimes
are described by the formulas{

�H� X � jDj ; Y � Z � 0 ;

�R�� X � D1 �
������������������
b 2

4G 2
� z
G

s
ÿ jbj
2G

;

Y � �D 1=2
1

ÿjDj ÿD1

�1=2
;

Z � �Dÿ1=21

ÿjDj ÿD1

�1=2
:

For a negative beta effect, i.e., at D < 0 and b > 0;

�H� X � jDj ; Y � Z � 0 ;

�R�� X � D2 �
������������������
b 2

4G 2
� z
G

s
� jbj
2G

;

Y � �D 1=2
2

ÿjDj ÿD2

�1=2
;

Z � �Dÿ1=22

ÿjDj ÿD2

�1=2
:

Therefore, the equalities jDj � D1; 2 specify the lower
boundaries of the existence domains of the Rossby regimes.
In the plane of external parameters �Ta;RoT�, these bound-
aries are described by the curves [according to (10.6) and to
the corresponding expression for b]

RoT �
���������������������������
b 2
0

4G 2
� 1

zGTa

s
� jb0j

2G
; �10:11�

which behave asymptotically, at Ta!1, as RoT �
�zjb0jTa�ÿ1 and RoT � b0=G � const for positive and nega-
tive beta effects, respectively.

It is easy to show that, in the framework of the reduced
equations (10.9), formulas (10.11) also describe the critical
curves for regimes H and R. It can be seen from a comparison
between (10.8) and (10.11) that the beta effect destabilizes or
stabilizes the H regime depending on the sign of the beta
effect.

The results of our numerical investigation of the stability
of regimes H and Rÿ on the basis of the unreduced equations
of motion (10.1) are shown in Fig. 15 for z � 1 and both
positive and negative beta effects; Fig. 16 for z � 3 and
sB1j > 0; and Fig. 17 for z � 0:4 and sB1j < 0. The
calculations were carried out at principal semiaxes of a1 � 3,
a2 � 2, and a3 � 1 and at an angle of jjj � 1� betweenÿg and
X0. For each of these examples, the asymptotics of the lower

critical branch agrees with the corresponding `quasigeos-
trophic' stability curve. Contrary to our expectations, the
quasigeostrophic equations of motion satisfactorily describe
or, at least, reflect the principal features of the exact phase
trajectories even at `ageostrophic' (insufficiently small) RoT
provided that Ta0 50.

In the domains bounded by the critical curves of the
regime Rÿ shown in Fig. 15 �z � 1�, we have found no self-
oscillations. The figure illustrates the influence of the beta
effect on the stability of stationary Rossby regimes. The
critical curve displaces down or up, and the decay rate of the
lower branch increases or decreases depending on whether
sB1j > 0 of sB1j < 0. However, the growth of the upper
branch slows down noticeably under the action of any
nonzero beta effect. It is worth noting that the beta effect
favors the transitionH! Rÿ, which dominates under certain
conditions.

Curve 1ÿ1 0 in Fig. 16 separates the stability domains of
stationary H and Rÿ regimes. A chaotic regime related to

{ In the case under consideration, the term `beta effect' should be regarded

as a conventional term not corresponding to the generally used term. It

should be replaced with `sloping effect'. (Translator's note.)
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Lorenz's attractor is observed in domain L bounded with
curves 2ÿ2 0 and 3ÿ3 0. Note that the dependence
RoT � Taÿ1 corresponding to branch 2ÿ2 0 was found
numerically and has no theoretical explanation. At z > 1,
the critical curves move into the region of small Rossby
numbers, which favors the mutual approach of exact and
quasigeostrophic phase trajectories. In particular, Fig. 18a
illustrates the proximity of the exact and quasigeostrophic
stochastic attractors, which is typical of the overwhelming
part of domain L.

The following observations were made in the numerical
simulation of chaos in domain L.

(1) The quasigeostrophic model (10.9) describes well the
established regimes, but the exact and quasigeostrophic
transients can be substantially different. Furthermore, the
well-established exact and quasigeostrophic trajectories differ
substantially in phase.

(2) As a rule, the `exact' chaos is accompanied by a
quasigeostrophic chaos, whereas the inverse is not true. In
particular, the quasigeostrophic chaos persists in the outer
vicinity of branch 3ÿ3 0.

(3) Sometimes the Rÿ ! L transition means a passage
into a metastable state. The Lorenz attractor persists for a
long time, after which it slowly degenerates into a R� regime,
i.e., a double transition Rÿ ! L! R� is realized. The
situation is typical of the neighborhood of curve 2ÿ2 0,
which makes its construction difficult. If the period of
general rotation is assumed to be a day, the metastable state
can last from several months to several decades. It is worth
emphasizing that R� and L regimes coexist, i.e., both are
stable in domain L or, at least, one of them is metastable.

No self-oscillations are observed in the numerical experi-
ments at a negative beta effect and z > 1. This is not too
surprising, since, at z > 1, the quasigeostrophic model
satisfactorily describes the motion of a baroclinic top in the
overwhelming part of the stability domain of Rossby regimes
and the sign reversal of the beta effect implies the sign reversal
of the coefficient r in Lorenz's system (10.10). According to
the original Lorenz's treatment, this system describes the
Rayleigh convection of fluid heated from below and r is the
Rayleigh number. A sign-reversed r means heating from
above. In this case, the onset of self-oscillations can hardly
be expected.

The situation changes if z < 1 with the beta-effect
remaining negative. This is illustrated in Fig. 19, which
corresponds to z � 0:4 and sB1j < 0 �jjj � 1��. In this case,
the critical curve shown in Fig. 17 is shifted into the region of
`ageostrophic' Rossby numbers. Therefore, the quasigeos-
trophic equations (10.9) work only in the vicinity of the lower
critical branch. Regular self-oscillations and chaos of an
unknown origin emerge in domains C and X (see Fig. 17),
respectively, and they are described only by the unreduced
equations.

To summarize this section, it is worth noting two points.
First, which is most important, under the influence of the beta
effect, the asymptotics of the lower branch of the critical curve
RoT � Taÿ1=2 is replaced with the asymptotics RoT � Taÿ1

or RoT � const, depending on the positiveness or negative-
ness of the beta effect, respectively. These changes emerge at
jjj � 1� and at quite realistic values of the Taylor number,
typical of the majority of the laboratory experiments
discussed in Refs [53, 55] (see also the diagram in Fig. 13).
The experiments were carried out with rotating annular
containers filled with a fluid with a free surface. The
deformation of the free surface under the influence of the
centrifugal force produces a positive beta effect correspond-
ing to small but finite j values. The smallness of this angle
seemingly prompted Lorenz [58, 59] to neglect the beta
effect due to the centrifugal force in constructing his 8- and
12-component models. This led to the asymptotics
RoT � Taÿ1=2. Our investigation shows that taking into
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symbol X means that the origin of chaos is not known.
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account the small slope ofX0 with respect toÿg gives a result
consistent with experiment, which was noted by A E Gledzer
[60] (see Fig. 13).

Second, it is the beta-effect that induces regular and
chaotic self-oscillations in the model under consideration,
which are really observed in laboratory experiments (see
Fig. 13). To discover and describe them, Lorenz constructed
a 12-component system instead of the 8-component one. The
degree of consistency between the self-oscillations found here
and reality remains to be evaluated, which requires, in
particular, a more accurate determination of the coefficients
of friction, l, and heat conductivity m, corresponding to the
experiments. However, the very fact of the onset of low-order
turbulence in global geophysical flows due to the beta effect
seems to be important for understanding the nature of their
unpredictability. A detailed and more dedicated discussion of
these questions is given in Ref. [60].

11. Conclusion

The revealed analogies between the fundamental mechanical
and hydrodynamic invariants indicative of the generality of
their origin will, I hope, be fairly satisfying to hydrodynami-
cists and theoretical physicists, irrespective of practical
applications. This refers to both the quasigeostrophic
approximations for a baroclinic top, which coincide (in the
specific cases mentioned in Sections 9 and 10) with the
mechanical Euler equations, and to the well-known Lorenz
system that describes low-order turbulence. They are for-
mulated in terms of the principal characteristics of the global
geophysical flows and, therefore, can be regarded as `toy'
models of the general circulation of the inviscid and viscous
atmospheres, respectively, that share common symmetries
with the real atmosphere.

The observations made can be conceptually useful for the
interpretation of hydrodynamic phenomena using the funda-
mental invariants of motion and for the construction of

simplified hydrodynamic models retaining the principal
symmetry of the primary hydrodynamic equations. In this
respect, Theorem 3 is of some interest. It has recently been
recognized that the helicity of the velocity field plays an
essential, if not decisive, part in the development of tornados
and tropical cyclones. In view of the complexity of these
meteorological objects and of the difficulty of their descrip-
tion, a temptation arises as to construct a finite-dimensional
model of the hydrodynamic Euler equations describing the
nonstationary motion of an ideal homogeneous fluid with a
nonzero helicity. According to Theorem 3, there are no time-
dependent solutions of the equations of motion of an ideal
homogeneous fluid strictly described by a finite-dimensional
dynamical system that belongs to the GRB class and has a
nonzero helicity invariant. In this context, Professor
V I Yudovich expressed in a private discussion ``a very strong
suspicion that the group SDiffD does not have totally
geodesic subgroups other than those generated by spatially
linear fields.'' To a certain extent, I share this suspicion.
However, as long as this is nothing more than a suspicion,
Theorem 3 is not useless.

In this review, we tried to show that global flows really
`inherit' fundamental features of mechanical motions. From
this viewpoint, a top in gravitational and Coriolis force fields
can be regarded as a mechanical prototype of rotating
planetary atmospheres and their laboratory analogs: it
reproduces motions analogous to Rossby waves, the approx-
imate invariance of the vertical vorticity of a homogeneous
incompressible rotating fluid, Eady's mechanism of barocli-
nic instability, the energetic cycle and stability domain of the
fundamental Hadley and Rossby regimes, and the low-order
turbulence and unpredictability of global geophysical flows.
In essence, this means that these properties of geophysical
flows could be predicted based on the analysis of motions of
the barotropic and baroclinic tops. A sceptical reader would
say that this forecast has been done post factum. This is
correct or almost correct. Nevertheless, we succeeded in
explaining an experimental result related to the lower branch
of the critical curve of theRossby regime and disagreeing with
theory. In addition, we hope that the results of Section 10
could be of interest to climatologists. The point is the
possibility of the coexistence of essentially different Ð
regular and stochastic Ð regimes of motion and the nonzero
probability of spontaneous transitions from one metastable
regime to another.

What has been said also gives the hope that system
(7.22) ± (7.24) with a general rotation taken into account
could be used to predict fundamental features of global
motions in the Earth's inner liquid core and on the Sun and
other stars, whose hydrodynamics has not yet been ade-
quately studied. The hydrodynamic helicity can be taken
into account by combining spatially linear fields with the
fields describing Hill's vortex [61] (see also more easily
accessible publications [62, 63]).
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