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Abstract. The gauge/string theory duality in curved space is
discussed mainly using a non-Abelian conformal N = 4 super-
symmetric gauge theory and the theory of a closed superstring
in the AdSs x S°® metric as an example. It is shown that in the
supergravity approximation, string duality yields the character-
istics of a strong-coupling gauge theory. For a special shape of
the contour, a Wilson loop expression is derived in the classical
superstring approximation. The role of the hidden integrability
in lower-loop calculations in gauge theory and in different
approximations of string theory is discussed. It is demon-
strated that in the large quantum-number limit, gauge theory
operators can be described in terms of the dual string picture.
Examples of metrics providing the dual description of gauge
theories with broken conformal symmetry are presented, and
formulations of the vacuum structure of such theories in terms
of gravity are discussed.
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1. Introduction

The term ‘duality” has a rather long history. It came into being
in the theory of strong interactions when Veneziano proposed
describing hadron scattering amplitudes by formulas having
symmetries with respect to permutation of the s- and
t-channels. Such a symmetry implied the possibility of string
interpretation, but it took the qualitative picture almost thirty
years to acquire a clear quantitative pattern. These years have
brought several new types of duality that establish links
between varieties of string theory or the theory of strings
propagating in different background fields.

In parallel, the idea of duality has been developing in the
context of field theory, which makes it possible, for example,
to connect theories in the ‘electric’ and ‘magnetic’ formula-
tions. Therefore, it needs to be definitively stated what type of
duality is being discussed. The subject of the present review is
to formulate the duality between non-Abelian gauge theories
and the theory of a closed string propagating in a curved
space.

The idea of the gauge/string theory duality is most
profound in the realm of fundamental interactions. It is
intended to formalize the relation between string theory and
physically interesting field theories. A qualitative program
involving many key ideas was formulated by Polyakov in the
1980s and further elaborated afterwards.

After the duality hypothesis had been quantitatively
formulated in Refs [1—3], a number of new results, including
some unexpected ones, were obtained in field theory and in
string theory. In what follows, we try to formulate the ideas
underlying the notion of duality, confining ourselves to a



1094

A S Gorsky

Physics— Uspekhi 48 (11)

minimum of necessary technical details. Our principal
objective is to illustrate general ideas by concrete examples
of duality amenable to quantitative verification. We also
present examples of predictions ensuing from duality for
gauge theories in the strong-coupling regime.

During the period since 1997, almost 4,000 publications
have appeared concerning various aspects of the gauge/string
theory duality. It is therefore impossible to fully reflect all
interesting results obtained in recent studies. We hope that the
list of references below includes quite enough specialized
reviews from which the reader can derive information on
purely technical aspects of the problem.

The most optimistically inclined researchers see string
theory as the ‘theory of everything,” but the duality of gauge
and string theories dictates the necessity of a more moderate
interpretation. According to the duality hypothesis, the
Yang—Mills theory in four dimensions (supersymmetric in
the simplest case) is equivalent to the theory of a superstring
propagating in a nontrivial geometry in ten dimensions.

The initial idea suggesting such a relationship stems from
the duality between open and closed strings that, for example,
relates closed string propagation in the tree approximation to
the one-loop amplitude in the open string theory. Because the
open string has a massless gauge boson and the closed string a
massless graviton in their respective spectra, it is natural to
expect duality between gauge and gravity theories. However,
the closed/open string duality proves insufficient to formulate
the duality between gauge theory and string theory and
requires the use of additional data obtained during the last
decade.

An important part is played by D-branes, which are
soliton-like objects of string theory, with a nontrivial field
theory defined on their world surface. It is important that an
open string can end on a D-brane [4] and its massless gauge
mode generates an Abelian gauge field on the brane world
surface.

Moreover, the U(N.) non-Abelian gauge theory is
generated on the world surface of N, coincident branes [5].
This gives a tool that allows obtaining a gauge field theory at
the world surface of the branes with ‘predetermined proper-
ties.”

In considering the role of D-branes in the closed string
theory, it should be borne in mind that any massive object
deforms the metric around itself; the D-brane as an object
with a nonzero tension is no exception. Therefore, a closed
string emanated by a brane propagates in a nontrivial
geometry determined by the brane itself. In what follows, we
concentrate on the large-N limit of parallel branes and show
that the metric is markedly simplified in this limit. Moreover,
p-branes are sources of (p + 1)-form fields, in analogy with
the charged point-like particle that serves as a source of a
1-form field, i.e., the vector electromagnetic potential. For
this reason, closed strings feel not only metrics but also brane-
generated fields of higher forms. It appears that one can, in a
sense, forget about branes proper and study closed string
dynamics in an external gravitational field corresponding to a
large number of branes and in an external p-form field. We
try to show that the most difficult part of the task is to find a
geometry consistent with the gauge field theory.

Now, an excursion through history is in order. Polyakov
suggested the idea of the gauge fields/string theory duality ina
higher-dimensional space rather long ago and further devel-
oped it over a few decades. An important step was the
understanding of the role of one of the ‘additional’ coordi-

nates (supplementing the four usual ones) as a renormaliza-
tion-group scale in the four-dimensional field theory [6]. The
idea was further promoted by Klebanov [7], who demon-
strated the possibility of self-consistently taking into con-
sideration the back reaction of brane-emitted closed strings
on the gauge theory at the brane world surface.

These developments culminated in the work of Malda-
cena [1], who hypothesized that a closed string propagating in
the AdSs x S° geometry and in an external 4-form field of
constant strength was dual to the gauge theory with N =4
supersymmetries, maximally possible in four dimensions. In
Maldacena’s original formulation, importance was assigned
to massless string modes, that is, string theory was effectively
reduced to the theory of supergravity. Also, the holographic
principle was implicitly assumed [8] because the gauge theory
was formulated at the boundary of AdSs and supergravity in
the entire ten-dimensional space.

Very soon after the publication of Maldacena’s work, it
was recognized [2, 3] that the action evaluated on a solution of
classical equations of motion in supergravity at fixed values of
the supergravity fields is a generating functional for correla-
tors in the gauge theory at the boundary. Fields in the
correlators originate at the boundary values of the respective
modes from the supergravity Lagrangian. In the course of
time, metrics and fields were found whose form determined
the string geometry of a dual gauge theory with lower
supersymmetry [9—11]. Moreover, an example of the geome-
try was described in which string theory was exactly solvable;
its detailed comparison with the corresponding sector of the
gauge theory [12] confirmed the validity of the dual descrip-
tion.

This review is organized as follows. First, the necessary
notions are introduced and the hypothesis of Maldacena for
the N =4 supersymmetric Yang—Mills gauge theory is
formulated. In Section 3, duality for the N =4 theory is
examined in the supergravity approximation; also, it is shown
how correlators in gauge theory can be calculated with the aid
of solutions of the classical equations of motion in super-
gravity. By way of a beautiful illustration of duality in this
approximation, it is shown how the universal behavior of
viscosity in the strong-coupling region can be predicted in the
hydrodynamic regime of gauge theory. In Section 4, we
discuss a regime where the classical string approximation
holds, and a Wilson loop with the circular geometry is
computed in the N = 4 theory. In this geometry, computa-
tion with the aid of a classical string can be compared with the
explicit computation of Feynman diagrams in the case of an
arbitrary coupling constant.

Section 5 is concerned with predictions of duality for the
matrix of anomalous dimensions of operators with large
quantum numbers in a supersymmetric gauge theory. It
turns out that eigenvalues of the matrix of the anomalous
dimensions of such operators coincide with the classical
energy of a string rotating with the corresponding angular
momenta in AdSs x S°. In this case, the key role is played by
the hidden integrability that reflects a high degree of system
symmetry.

The integrability can be explicitly demonstrated in the
lower orders of the perturbation theory in gauge theory and
also for strings in AdSs x S’ in the classical approximation.
The next section presents a brief discussion of the limit where
AdSs x S° geometry reduces to the so-called pp-wave limit, in
which it is possible to exactly find a quantum string spectrum
coincident with the anomalous dimensions of the respective
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gauge-theory operators, in the lower orders of the perturba-
tion theory. In this limit, it is possible to exactly identify the
Hilbert spaces of the dual theories.

The following two sections are devoted to theories with
smaller (N = 2 and N = 1) supersymmetries, which are more
reminiscent of the realistic theory of strong interactions. It is
shown that the beta-function of the N =2 theory can be
obtained in the framework of the supergravity approxima-
tion, and a deformation of the AdSs x S° geometry into a
dual geometry of N =2 gauge theory can be explicitly
described. Further distortion of the dual geometry for the
N = 1 supersymmetric theory is studied in Section 8, where it
is shown that the main nonperturbative phenomena (a finite
number of vacuum states, gluino condensate, exact beta-
function) can be described in the dual string theory in the
supergravity approximation. Section 9 features some data
concerning nonsupersymmetric theories.

The literature on the duality between gauge and string
theories is abundant and its full spectrum cannot be
covered in a short review. We therefore refer the reader
to the comprehensive bibliography and necessary intro-
ductory materials contained in the specialized reviews cited
below. An introduction to the duality under consideration
with a large number of relevant examples can be found in
reviews [13, 14]. The calculation of Wilson loops is described
in detail in [15] and various aspects of the hidden integrability
in Refs [16—18]. Duality in the supergravity approximation
for a string in the N =2 theory is discussed at length in
Ref. [11] and in the N = 1 theory in Refs [19, 20]. The exactly
solvable string limit in the geometry of a pp-wave and its
relation to the sector of special operators in the N = 4 gauge
theory can be found in Ref. [21].

2. Major elements of duality

Duality was first formulated for the conformal N = 4 super-
symmetric gauge theory with zero beta-function. The fields of
the theory include a gauge boson and six real scalar fields ®;
and their fermionic superpartners. All these fields are in the
adjoint representation of the gauge group SU(N,), and the
global SO(6) symmetry corresponds to the rotation of scalar
fields in a space. The theory incorporates an infinite number
of vacuum states, the moduli space of vacua, whose point is
parameterized by vacuum values of the scalar fields.
The action of the theory in components has the form

2 v

1
Sy_s = 7Jd4x Tr [F2, + (D®;)* + [, 9}]°]
Eym

+ fermions. (1)

The duality hypothesis implies that the gauge theory is dual to
the type-1IB closed superstring in the AdSs x S° metric [1].
The metric of the ten-dimensional space in the Poincaré
coordinates is given by

2

2 _
ds _ﬁ

R2
(—de? +dxf +dxf +dxi) + = dr? + R*dQ3,
(2)

where r is the radial coordinate in AdSs and the last term
corresponds to the Ss-geometry. This metric is actually a
metric generated by a D3-brane in a region close to the
horizon.

As mentioned above, the D3-brane is a source of the
4-form field Ay4; therefore, the external metric in which the

string propagates should be supplemented by a flux of the
4-form field strength, which, in accordance with duality,
coincides with the rank of the gauge group:

F5:dA4, J *F5:NC. (3)
S5

The radii of AdSs and S’ coincide and are equal to

R* = 4ng’N,, (4)

where g is identified with the string coupling constant.

The gauge theory is localized at the boundary of AdSs,
with the conformal group in four dimensions, SO(2,4), and
the R-symmetry group of the N =4 theory, SO(6), being
identified with the space isometries of AdSs and S°, respec-
tively. Six additional coordinates in the ten-dimensional space
are identified with the vacuum values of the six real scalar
fields of the gauge theory.

The key feature that allows duality to be verified at the
quantitative level is the coincidence of the dilatation operator
in the gauge theory and the string Hamiltonian in radial
quantization. Thus, eigenvalues of the dilatation operator
that determine the anomalous dimensions of operators in
field theory coincide with the string energy calculated in the
corresponding solutions of the equations of motion.

The next step must be the identification of parameters in
the dual theories. The gauge theory contains the coupling
constant gyy and the rank of the gauge group N., and string
theory involves the string tension 7, the string coupling
constant gs, and the radii specifying the curvatures of
external geometry.

The effective dimensionless tension of the string is related
to the radii by the equation

T=_"_ (5)

in other words, the key relations have the form

dngs = gsng ,

L, 12 1 1/2
T_zn(gYMNc) —Znﬂ .

Thus, at an arbitrary coupling constant in the gauge
theory, the dual description deals with a quantum string
propagating in a complex metric and in an external 4-form
field. Such a theory is very difficult to analyze, and no
acceptable quantum version of it has been proposed thus
far. Nevertheless, it is amenable to qualitative analysis in
different limits, and this circumstance is extensively used
below. In particular, it is possible to consider the limit as
gs — 0 at a fixed tension, when the classical string approx-
imation is applicable. If we also assume that 7"— oo, only
massless modes survive in string theory and it is effectively
reduced to the zero-mode theory or supergravity.

In what follows, we encounter situations in which one
limit or another proves effective. We show that many
phenomena in the strong-coupling regime of gauge theory
are successfully described in the supergravity approximation.
Calculations of the Wilson loop and the anomalous dimen-
sions of operators in gauge theory are convenient to compare
with calculations in the classical limit of string theory. We
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briefly consider the pp-wave limit for the metric in which the
quantum string spectrum is exactly calculated and compare it
with the anomalous dimensions of gauge-theory operators.

3. Supergravity approximation

We consider the limit of the large 't Hooft constantas T — oo
and all massive modes of the string decouple. It is such a
supergravity limit that was considered by Maldacena in his
pioneering work. In this limit, the string sigma-model is
substituted by the classical IIB supergravity action

Z(Gm'a 827 ¢7 A7 C27 A4)

= Jdlox (—det G)'? exp (—29)

1
X {R +4G" 0, 00,0 — 5 Hf}
1

= [dlox (—detG)"/? {G“" 0, A0, A+ (F; — AH;)*

1 1 2
—|—<F5—§ Cz/\H3+§BzAF3> :|

1( .
+§J d'' A4 A Hy A Fy + fermions, (7)

including the metric G, two scalar fields @ and 4, two
2-form fields C,,, = C> and B,,, = B, with tensions F3 and H3,
and the 4-form field 4, 4, 4, u, = A4 With the tension Fs. In
what follows, it is assumed that the self-duality condition is
imposed on Fs.

The first qualitative check of duality was undertaken in
Refs [2, 3], where correlators in the N = 4 gauge theory were
compared with solutions of the classical equations of motion
in supergravity. It was shown that the supergravity action
evaluated on the classical solution with given boundary data
is a generating function for correlators in the gauge theory:

(oo (Z00)),

= exp { =S5 [bi(x,2) — $(x)] } - (3)

Here, Oy is the operator in the gauge theory interacting with
the supergravity field ¢, (x,z) and taking the value ¢, (x) at
the boundary of the AdSs space.

3.1 N = 4 gauge theory in the supergravity
approximation; calculation of correlators

We investigate the simplest example of the calculation of a
gauge-theory correlator in the dual supergravity theory. We
consider the dilaton field @ in the background metric of the
AdSs space with the action

S(®) = const - Id“xdz % [(6295)2 + (am@)Q] , 9)

where m = 1,...,4; in the metric

2

R
ds? == (dz* +dx,), (10)
z

the boundary is at z = 0. The action evaluated on classical
solutions that are regular at the boundary and decrease at

large z diverges [2, 3], which suggests the introduction of an
infrared cut-off in AdSs atz = ¢.

The normalizable solution of the equations of motion for
the dilaton field with the boundary condition

®(z = ¢, x) = exp (ikx) = Py(x)
is given by

B, 2) = Z) exp (ikmxn), k= (k)7 (11)

(K, is the modified Bessel function). It is equally easy to
evaluate the action on the solution:

1

Xm — ym|2)

SocNJd4de4y B (x) Po(y) L+ 0(e?).

(e2+ (12)

We compare this result with the correlator computed in
the gauge theory. Because the dilaton interacts with the
operator Tr F2, the generating function is given by

Z(®g) = <exp <2LJd4x ®o(x) [TrF2+ .. ]>> . (13)

8ym

where the dots denote the contribution of superpartners and
averaging is made with the aid of the standard functional
integral of the N = 4 theory. In the quadratic approximation
in the dilaton field, we have

Z(®o)

o exp (—ain4x d*y @(x) ®o(y) (Tr F*(x) TrF2(y)>) ,
(14)

where a = const.

Conformal invariance of the theory uniquely fixes the
two-point functions

N2
(TrF2(x) TrF?(y)) o« ———— . (15)
|xm - ,,Vm|

It can be seen that calculations in supergravity and gauge
theory actually coincide if regularizations in the dual theories
are carefully correlated. The introduction of the ultraviolet
regularization parameter 1y at x,, = »,, and the assumption
of nyy = € lead to the equality predicted by the duality
hypothesis. The above example was generalized for a series
of correlators of more sophisticated operators, and the
duality hypothesis proved valid in all these cases.

3.2 N = 4 gauge theory in the supergravity
approximation: viscosity in the hydrodynamic regime

An interesting and somewhat unexpected application of the
duality between gauge theories and strings to the calculation
of hydrodynamic characteristics of gauge theory in the
strong-coupling regime was proposed in Ref. [23]. It turned
out that the ratio of the viscosity to the entropy density (a
macroscopic characteristic of the hydrodynamic system) can
be calculated in the dual supergravity theory. Solutions of
the black-hole type in the anti-de-Sitter space were con-
sidered as gravitational solutions consistent with field
theory at nonzero temperature, with the expression for the
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sought ratio having a form that depends on universal
constants alone.

We find a metric responsible for the dual description of
the gauge theory at nonzero temperatures. An important role
is played in what follows by the five-dimensional part of the
total geometry, which was identified with the black-hole
metric in AdSs in Ref. [22]:

ds2—ﬁ[—<1—ﬁ>dzz+dx2+d 24452
T R2 ré Y ‘
R2
SN P
+17r6‘/r4 '

We note that this metric may be regarded as a metric
generated by the brane configuration in the ten-dimensional
space.

The temperature in field theory coincides with the
Hawking black-hole temperature and the entropy in the
field theory coincides with the event horizon area

A
S—E,

(16)

(17)

where G is the gravitational constant. It is natural to consider
the entropy density, obtained by means of division by an
infinite factor corresponding to the volume of a space parallel
to the horizon.

Viscosity is computed using the Kubo formula in terms of
the equilibrium correlation function of the energy —momen-
tum tensor components Ty, in the supersymmetric gauge
theory:

n— limoﬁjdtdxﬂ"xy(ux) T,,(0,0)) exp (iwr). (18)

The optical theorem permits us to relate the correlator to the
cross section of absorption of a graviton propagating
normally to the brane on which the four-dimensional field
theory is defined and polarized in the xy plane [7]:

Gabs(@w = 0)

- l6nG (19)

On the other hand, it can be shown that the graviton

absorption cross section in the given problem coincides with

the scalar absorption cross section and, in the low-energy

limit, depends on the geometric area of the horizon. Thus, for
the ratio of interest, the following equality holds [23]:

n h

s 4rky

(20)

Surprisingly, the answer is universal. Moreover, it was
demonstrated that it is independent of the metric character-
istics in the dual theory provided the event horizon is present.

The universality of the answer made it possible to
hypothesize that the result obtained in the supersymmetric
theory actually represents the lower boundary for the ratio in
any relativistic field theory at a finite temperature and zero
chemical potential. Corrections to this value obtained in
nonconformal theories confirm the hypothesis [24], but its
status in the general case remains to be elucidated. It is
worthwhile to mention an optimistic view expressed by
certain authors that this characteristic may prove very
helpful in the studies of collisions between heavy ions, where
its universality can be verified.

4. N = 4 gauge theory and classical string:
calculation of the Wilson loop

In the limit where explicit quantitative calculations are
feasible, the string tension remains finite and the string
constant is small; in other words, the classical approximation
for strings is valid. Therefore, in solving the classical
equations in the sigma-model on AdSs x S° with the chosen
boundary conditions on the string world surface, it is possible
to find quantities of interest in the dual gauge theory in the
strong-coupling regime.

As an example illustrating the efficiency of this approx-
imation, we consider the computation of the Wilson loop in
the N =4 gauge theory with a circular geometry. The
Wilson loop is naturally associated with the world line of
the W-boson. It is convenient to examine the case where the
SU(N + 1) gauge symmetry is broken to SU(N) x U(1) and
the vacuum average of the scalar field that determines the
scale of this violation is sufficiently large. In this case, the
W-boson is a heavy object.

By virtue of supersymmetry, the phase factor of the heavy
boson includes contributions by the vector and scalar fields:

W(C) :% Tr Pexp H;dr (iAH(x)jc“ + @;(x) 9i|x\) . (2D

Here, Cis the closed contour parameterized by x*(z) and 0" is
the unit vector in the ‘internal’ space in the direction of the
symmetry breaking. We show that the vacuum average of the
circular Wilson loop in the strong-coupling regime coincides
with the result in the dual classical sigma-model.

In dual theories,

S =exp [-ML(C)[(W(C)) (22)
can be calculated in the limit of the large W-boson mass M.
The string theory considers the sigma-model action calcu-
lated on the string world surface whose boundary coincides
with the Wilson loop at the boundary of AdSs. The path
integral is represented in the form

S= JDXﬂDY”DhabD@“
X exp ,LJ dzah'/zh—ab(ﬁ X'OpX" +0,Y'0,Y")
47_[ > Y2 a b a b

+ fermions, (23)

where X and Y are coordinates in the ten-dimensional space in
which the sigma-model is defined.

At a large string tension, the functional integral is
computed semiclassically and the saddle-point value is [26]

)»1/2
2n

—In(W(C)) = 5— A(C) = ML(C). (24)

The world-surface area of a string in AdSs with the
boundary contour C diverges; nonetheless, it can be shown
that the divergence is absorbed by the renormalization of
the W-boson mass.

Thus, the finite part of the area implies the following
prediction for the average of the Wilson loop in the strong-
coupling regime:

(W(C)) = exp (cA'?), (25)
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where ¢ is a contour-dependent positive number. Taking
zero modes in the classical solution into account, the
prediction for the Wilson loop on the string-theory side can
be written as

w(C)) = 234 2 A(C N A2 26
(W) =3 Vew |54 e )

For an arbitrary contour, the check of duality is a difficult
task because it is impossible to obtain an exact result in the
strong-coupling regime on the gauge-theory side. But such a
comparison is possible for a circular loop. The leading term

2 12
<W(C)> = (E) ) exp 212

(27)
obtained in the classical sigma-model for the circular contour
can be compared with the answer obtained by the summation
of loop corrections in gauge theory.

High supersymmetry makes it possible to sum the loop
corrections for a circular loop in the N = 4 theory [27]. The
central point in Ref. [27] is the discovery of the cancellation of
diagrams with internal vertices for a circular contour in high
orders of the perturbation theory. In other words, the
problem is effectively reduced to the summation of ladder
diagrams. The explicit summation of planar ladder diagrams
in the strong-coupling regime yields a result fully coincident
with relation (27). Thus, calculation of the Wilson loop
provides an accurate test for duality in the classical string
approximation.

5. N = 4 theory in the classical string
approximation: integrability and anomalous
dimensions of operators

5.1 Integrability in gauge theories

In this section, we try to demonstrate that a hidden
integrability allows verifying duality in lower orders of the
perturbation theory in the coupling constant. Of primary
importance is the identification of the anomalous dimensions
of operators in the gauge theory with the energies of classical
string configurations. We show below that in certain cases,
the integrability allows predicting anomalous dimensions in
the gauge theory.

We start the discussion with the explanation of the role of
integrability in the four-dimensional gauge theory. At first
sight, the appearance of integrable systems with a finite
number of the degrees of freedom in gauge field theory may
seem unexpected. Indeed, an integrable system with a finite
number of the degrees of freedom has canonical variables
defined in terms of phase space, while the Hamiltonian
depending on the canonical variables determines evolution
in ‘physical’ time. On the other hand, there is a field system in
four dimensions with an infinite number of the degrees of
freedom that is not integrable per se.

It turns out that integrability emerges in string theory in
different limits [31 —34] at a certain effective description. The
meaning of the degrees of freedom in such integrable systems,
and the identification of a time variable and the correspond-
ing Hamiltonian are not self-evident; they are brought out in
each concrete limit being considered. We discuss integrable
systems that describe renormalization-group evolution of the
local operators in QCD and supersymmetric theories.

The renormalization-group equation can be represented
in the Hamiltonian form if the scaling logarithm is interpreted
as a time variable in a dynamical system. It turns out that the
corresponding Hamiltonian in the one-loop approximation
coincides, in the simplest case, with the Hamiltonian of the
Heisenberg spin chain

L

1
H5:1/2 = - Z(SIISVI+| - Z) )

n=1

(28)

where S, = (S}, Sy, S7) is the operator of spin 1/2 in the nth
site of a chain L, with the assumed periodic boundary
conditions Sy = S).

Heisenberg model (28) is integrable and the spectrum can
be found using the Bethe ansatz. Generalization to an
arbitrary-spin magnet has been performed in Refs [28, 29],
and the corresponding Hamiltonian of a spin-s magnet has
the form [29]

L

H, = Z H(Jn‘nJrl) ) Jn,l1+1(Jl1,n+l + 1) = (Sn + Sn+l)2 .

" (29)

The operator J,, ,+| is connected with the sum of spins on the

neighboring sites, S? = s(s + 1), and the function H(x) is
expressed through the harmonic sum:

o

iy =S % s+ 1) = Ylx 1),

X

(30)

-~
Il

b =2

— InTI'(x).
—In ()

For s = 1/2, the two-particle spin can take the values
Jons1 =0 and J, 41 =1. In this case, H(0) =1 and
H(1) = 0; therefore, in accordance with (28), the Hamilto-
nian H(J, ,4+1) is given by the projector on the subspace
JnAnJrl =0:

H(Jnﬁnntl) = % - SnSn+1 .

Calculations of the anomalous dimensions and asympto-
tic forms of the scattering cross sections in the Regge regime
[30] in QCD showed that the evolution operator is
[W(J) —(1)], where J has the meaning of the Lorentz SL(2)
spin in the computation of anomalous dimensions or
conformal spin in the analysis of the cross section asymptotic
forms. Also, it was explicitly demonstrated that the appear-
ance of the y-function is a universal feature of gauge theories
associated with the presence of a massless vector particle.
Comparison of explicit calculations in QCD and spin-chain
Hamiltonians revealed the hidden integrability of the evolu-
tion equations in QCD [31-34].

In Bjorken’s kinematic limit of scattering processes at
high energies in QCD, the short-distance dynamics is
separated from the nonperturbative infrared dynamics and
is described in terms of the renormalization-group logarith-
mic evolution of local composite operators constructed from
the fundamental fields and covariant derivatives. In general,
operators of the same canonical dimension mix during the
evolution described by the Callan—Symanzik renormaliza-
tion group equations

d
1oy Onlo) = D v ilg) Ok(x),

k

(31)
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where 7y, , is the mixing matrix calculated in the form of a
perturbation series in powers of the coupling constant
g=2g(u?).

The size of the mixing matrix is determined by the
symmetries of the operators being considered, and the
matrix itself may be interpreted as a Hamiltonian acting in
the operator space [35]. The logarithm of the renormaliza-
tion-group scale t = In pu plays the role of a time variable,
and Eqn (31) takes the form of the Schrédinger equation. It
turns out that the one-loop evolution of a broad class of
operators is described by the Heisenberg magnets of
different spins, each being realized in terms of the SL(2, R)
generators [34, 36, 37]. The number of sites in the spin chain
coincides with the number of fundamental fields of the
theory from which a given composite operator is con-
structed. If the operator contains quark fields in the
fundamental representation, its evolution is typically
described by an open spin chain; if the operator contains
only fields in the adjoint representation, the spin chain is
closed.

The appearance of the SL(2, R) group as a spin-chain
structure group is not accidental and results from the fact that
it is a reduction of the total conformal group SO(2, 4) in four
dimensions to the light-cone kinematics, relevant in the
Bjorken limit. As shown in Ref. [38], operators that realize
conformal group representations are multiplicatively renor-
malized in the one-loop approximation.

In Ref. [40], the integrability was used for an in-depth
study of the anomalous dimensions of the twist-3 operators
important for the description of power corrections in QCD.
We note that the simplest integrable structure for higher-twist
operators arises in the large-N, limit. For arbitrary N, the
situation is much more complicated because it is necessary to
take into account the interaction between the degrees of
freedom at all sites of the lattice, and not only between
nearest neighbors, as in the large- N, limit.

Although the one-loop integrability of the evolution
equations was first described in QCD, it also aroused great
interest in the context of supersymmetric gauge theories.
Integrability was rediscovered for a class of scalar operators
in the N = 4 theory in Ref. [43] and formulated for the generic
operators in the N = 4 theory in Ref. [41], where it was shown
that the full structure group in the supersymmetric case was
the supergroup SU(2,2|4). Consecutive simplification of the
structure group from the N =4 theory to a nonsupersym-
metic theory (N = 0) was evident in the light-cone gauge as
described in Ref. [42]. We note that in the supersymmetric
case, the simplest description is that of the integrable
structure for the mixing matrix of scalar operators of the
type Tr { @] (0) #;>(0) ®;°(0) }; this mixing matrix is identi-
fied with the Heisenberg SO(6)-magnet of length J; + J; + J3
[43, 44].

Our purpose is to study the role of integrability in the
context of duality between gauge theories and string theory.
The string excitation spectrum to be compared with the
spectrum of anomalous dimensions in gauge theory is
generally unknown, with the exception of the limiting
pp-wave geometry [12]. Therefore, the anomalous dimen-
sions of operators with large quantum numbers have to be
studied in order to compare string energy with perturbative
calculations in field theory; this allows using the classical
approximation for the string. We show that the classical
string described as a sigma-model can be obtained from a
magnet in the thermodynamic limit. There is good agree-

ment between the spectrum of anomalous dimensions of a
broad class of operators and classical energies of the
corresponding string configurations. We also discuss an
example of inverse relations when for special solutions the
string equations of motion are reduced to the equations of
motion of a finite-dimensional integrable system.

5.2 String as the thermodynamic limit of a spin chain

The dilatation operator in the Yang—Mills theory in the one-
loop approximation coincides with the Hamiltonian of a spin
chain in which the number of sites coincides with the number
of fields involved in the composite operator. For example, the
operator Tr @’ (where @ is a certain field in the theory)
corresponds to a chain of length J; in other words, at large J, it
is natural to consider the thermodynamic limit of the spin
chain. We show that the thermodynamic limit of the spin
chain may be identified with the Hamiltonian of a string
propagating over a certain submanifold of AdSs x S°. Thus,
the spin chain may actually be regarded as a string discretiza-
tion in the AdSs x S° geometry.

As an example illustrating such an interpretation, we
show that the XXX spin chain with the structure group
SU(2) determining the one-loop evolution of the operators
composed of products of powers of two complex scalar fields
@, and @, describes, in the thermodynamic limit, a classical
string propagating in the S*-submanifold of AdSs x S°. The
sigma-model corresponding to such a string arises from the
spin chain in the long-wave approximation. Corrections to
the classical sigma-model behave as 1/J and are suppressed in
the thermodynamic limit.

Technically, the transition from a chain to a classical
string is realized using the coherent-state formalism [47]. Let
|ss) be the state with the total spin s and projection on the
z axis S; =s. The coherent state corresponding to the
representation —s of the SU(2) group is defined as

In) = exp (iS+¢) exp (iS,0) |ss) , (32)
where n is the unit vector, n* = 1,
n = (sin 6 cos ¢, sin 0 sin ¢, cos 0) , (33)
and 0 and ¢ are the spherical angles.
The Hamiltonian of the spin chain
H= /1 i ! SiS (34)
- 47'[2 — 4 ke k-1

can be expanded in coherent states. The partition function
Tr exp (—Ht) can be represented as a functional integral over
the variables S, = sn; with the action

J 1
Smy=s>» sz J dng [0 O.ny]

k=1 0

! 4
—WSZJdl Z(nk—nkH)Z, (35)

k=1

with the condition ny ;| = ny.

In the long-wave approximation, the vectors ni(z) vary
only insignificantly along the spin chain. This allows introdu-
cing the function n(o,t), continuously dependent on the
variable ¢, that takes values from zero to the chain length J
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with the action

S = —stth 0;¢pcos O

;L.

8

S 57 Jdldo [(3,0)% + (8,¢)° sin® 0] . (36)
As shown in Ref. [47], the action for spin s = 1/2 coincides
with action

2

R v 1 v
Ssr = dea dt (G 0. X" 0. X" — Gy 0, X" 0, X"] (37)

for a classical string propagating in the metric

ds? = —de? +dy? +de? + de? 4 2cos (2¢) de, dg, . (38)

To obtain the string action, it is convenient to fix the
gauge ¢ = yt, consider the limit as 8,X’ — 0 and y — oo at
%0 X’ = const, and identify the variables

1 1

P==5¢, ¥=50. (39)
Elimination of the variable ¢, with the help of the classical
equations of motion immediately yields (36).

In a similar way, it is possible to find the classical field
action from a more general spin chain with the structure
group SU(3) [48] and also for the string configuration having
both the Lorentz spin S and the R-charge J [49]. Corrections
to sigma-model action (36) containing higher field derivatives
can also be taken into account.

5.3 Classical string configurations and integrable systems
We have shown that string configurations arise in the
consideration of the thermodynamic limit of integrable spin
chains. In this section, we demonstrate that the inverse
relation is equally valid; in other words, special solutions of
the string equations of motion in AdSs x S’ reduce to finite-
dimensional integrable systems. For this, it is convenient to
consider the string action

212 s
S = 4—Jda dt[GAS 8y, dy, + G dx*ox']

mn
T

(40)

with the string tension determined by the coupling constant of
the gauge theory. By introducing constraints with Lagrange
multipliers, the above action can be rewritten in a somewhat
different form:

)NI/Z o
S = HJ do dr [0X,,0X,, + A(X? — 1)

+ovfoyt + 4,(Y* +1)], (41)
where X,, (n=1,...,6) and Y (k=0,...,5) are two sets of
coordinates describing the embedding of our geometry into
R® with the respective signatures (6,0) and (4,2). In addition
to analyzing the action, we must impose Virasoro constraints
on the dynamical variables. The Virasoro constraints reflect
the vanishing of the two-dimensional energy —momentum
tensor on the string world surface:

YViYi+ VY + XX, + X)X, = Vi Y+ X, X, =0, (42)

We also impose the periodic boundary conditions

Yi(o+2n) = Yi(o), Xu(o+27m) = X,(0). (43)
The global symmetries SO(2,4) and SO(6) allow defining
a set of conserved charges:

S/d:il/zJ\dG(YkY[— Y[Yk),
(44)

Jnm = )‘1/2 Jda (XHY)11 - XmYII) .

Among them, six symmetry algebra generators are naturally
distinguished: the energy E = Sys, the Lorentz spins Sy, and
S34, and the angular momenta Ji,, J34, and Js¢ corresponding
to rotations in S°. The set of conserved charges (44)
parameterizes the general solutions of the classical equations
of motion in the sigma-model [50].

To characterize the gauge theory operator in the dual
description of the string, it is necessary to find an appropriate
solution of the string equations of motion satisfying con-
straints (42) and boundary conditions (43). A simplest
example is

Ys+1Yy = exp (i), (45)

Xai—1 +1Xo = ri(o) exp [iw,"r + iO(i(O')} ,
where i =1,2,3 and Y-coordinates are taken to be zero.

Substitution of this ansatz into the sigma-model action leads
to [51]

3 3

L= Z(r,—'z +rfa)? — w?riz) — A, Z(riz — 1) .

i=1 i=1

(46)

The solution of the equation of motion for o; yields
of = v/ rl.z, where v; are integration constants.

The emerging Lagrangian describes the finite-dimen-
sional integrable Neuman—Rosochatius system with five
integrals of motion. Three of them are identified with vy, v,,
and v3 and the remaining two are

3 1 U.2r.2 v,2r.2
Li=r}+ Z P o {(rf rl—ri rj’)2 + lrizl + /r,-zl , (47)

As a result, the energy of the system depends on the
frequencies w; and five integers interrelated by the Virasoro
constraint.

Thus, by computing the classical energy of a finite-
dimensional dynamical system as a function of all integrals
of motion, we automatically calculate the anomalous dimen-
sions of the operators in the gauge theory with the same set of
quantum numbers relative to global symmetries [52, 53]. To-
day, there are many solutions of the sigma-model equations
of motion for which the anomalous dimensions of the
corresponding operators have been obtained [50, 16]. When-
ever a comparison with the data of explicit calculations in the
field theory is feasible, the results of the two computations
coincide.
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We note that a system with a finite number of degrees of
freedom can at first sight describe only a very narrow class of
solutions of the equations of motion and, accordingly, of the
gauge theory operators. However, because the given sigma-
model on AdSs x S° is integrable at the classical level, it is
possible to use powerful tools known in the theory of
integrable systems. Specifically, the so-called Bicklund
transformation may be applied to the simplest solutions
corresponding to the Neuman-—Rosochatius system in
order to generate more sophisticated solutions in the sigma-
model corresponding to the general operators in the field
theory [53].

5.4 General structure of the relation

between spin chains and strings

We have considered examples of the relation between the spin
chains determining the evolution of the operators in gauge
theory and the solutions of the equations of motion in a string
sigma-model. We now discuss the general structure of this
relation. In the first place, it is necessary to elucidate the
relation between the structure group of the chain and the type
of solution of the string equations of motion. We recall that
the general string configuration in AdSs x S° is determined
by five quantum numbers S, S», J1, J2, J3, where S| and S,
define charges in the Lorentz group and the J; correspond to
charges in the R-symmetry group in the gauge theory.
Because the quantum numbers of the operators must
coincide with the quantum numbers of the string solution, it
is easy to see that renormalization of the operators with two
nonzero R-charges, J; and J,, is described by SU(2) spin
chains and that of operators with one nonzero Lorentz spin S
by the SL(2, R) chain. The most general operators in the
supersymmetric theory are described by a chain with the
structure supergroup SO(4,2|2) x SO(6).

Another obvious problem is the coupling constant
dependence. The energy evaluated on the classical solution
in string theory shows a complex dependence on the coupling
constant. For the comparison with perturbative calculations,
it is necessary to expand the exact string answer in a series.
Generally speaking, analyticity of the exact answer with
respect to the coupling constant cannot be warranted, but it
does hold for a broad class of operators with large quantum
numbers. As an example, we give the first term in the
expansion of the string energy in the coupling constant for a
state with large quantum numbers (J1,J>) [16],

B = 2 K9 [E() = (1= K]
(48)
Jz - E(X)
I+ K(x)’

where K(x) and E(x) are the standard elliptic integrals of the
Ist and 2nd kinds, respectively. Expression (48) appears to be
rather complicated, but it exactly coincides with the anom-
alous dimension of the Tr (PIJ ! ¢2J 2-type operators calculated
as the energy of state in the SU(2) spin chain with (J, + J;)
sites; this demonstrates the validity of duality in the one-loop
approximation for the given class of operators.

The agreement between the results of calculations in the
spin chain and the string raises the problem of integrability of
the next terms of expansion of the dilatation operators in the
coupling constant. It turns out that explicit computation
leads to an integrable Hamiltonian that describes evolution

of the operators in the scalar sector in two loops:
21 e
HP = =N (1 — Py
8TE2k:1( e k1)

12 J
+ m;(—4 + 6P ki1 — Prkr1 Prst k2

— Pyt kr2Prsr) +0(27),

where P; ; is the operator of permutation of the ith and jth
sites. For S=1/2, it can be represented in the more
traditional form (S;S; — const). Calculations of the spectrum
of the two-loop Hamiltonian exactly reproduce the string
solution energies expanded to the second order in the
coupling constant.

Despite success in the first two loops of the N =4
theory, the situation in the next loops cannot be considered
fully satisfactory. A few candidate integrable systems
responsible for the higher-loop dilatation operators have
been proposed [67, 68]. However, starting from three loops,
discrepancies arise between anomalous dimensions of the
operators with a large R-charge J in the nonleading term in
1/J computed in the perturbation theory and in the classical
string approximation [69]. A new candidate integrable
structure has recently been proposed that takes all loops
into account [45] and reproduces the highly nontrivial three-
loop result for the anomalous dimensions of operators with a
large Lorentz spin [70]. However, its status as an exact answer
remains to be clarified.

We note that it is possible to compare integrable
structures in the spin chain and the classical string in terms
of geometric objects, i.e., higher-genus Riemann surfaces.
The fact is, the Jacobians of such Riemann surfaces are
complex Liouville tori along which the classical evolution
develops. Parameters of these surfaces are given by a
complete set of the integrals of motion of a dynamical system
(in this case, the spin chain). On the other hand, classical
solutions of the string sigma-model are also parameterized by
moduli of Riemann surfaces. Reference [66] demonstrated
coincidence of Riemann surfaces occurring in the gauge
theory through spin chains and in the description of classical
solutions of sigma-models. This gives hope that the hidden
integrability will make it possible to more exactly formulate
the dual description in higher orders of the perturbation
theory.

(49)

6. N = 4 gauge theory and quantum string;
the pp-wave limit

At present, there is no explicit quantum answer for the
spectrum of a string propagating in AdSs x S°, which makes
a comprehensive comparison of Hilbert spaces of gauge and
string theories impossible. However, there is a special
degeneration of the AdSs x S° geometry to the Penrose limit
where the exact answer is nevertheless possible to obtain [54].
The Penrose limit describes a region near the special null-
geodesic, with the string effectively reducing to a point-like
particle. The string spectrum in the pp-wave limit was found
and studied in Refs [12, 55, 56].

For the explicit description of the metric in the pp-wave
limit, it is convenient to introduce the variables

W= =R ),

2 (50)
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where y is the angular variable on S° and u is an auxiliary
scale. Considering the limit as R — oo, we obtain the pp-wave
metric in the form

8
ds? = —4dxtdx™ —z2dx " + Zdzf.

i=1

(1)

Eight flat coordinates z; correspond to a part of the
coordinates from AdSs x S°, and the string behaves as a
particle rotating with a large angular momentum J about the
angular coordinate y in S°.

It is easy to see that the light-cone string Hamiltonian is

H=2p =i(0,+9,)=A—-J, (52)
and its spectrum is exactly calculable in the limit
2
R—o00, A~J—o00, = const. (53)

R4

String quantization in the pp-wave metric is reduced to
the quantization of a system of oscillators; as a result, the
string spectrum takes the form

ﬂ.kz 1/2
A—J:ZNk(1+7> ,
k

where k corresponds to the number of the Fourier harmonic,
Ny is the total occupation number of the oscillatory mode,
and the Virasoro constraint imposes additional restrictions
on the quantum numbers:

P:Zka:O.
k

(54)

Our objective is to identify the string spectrum with the
spectrum of anomalous dimensions of a class of operators in
the N = 4 gauge theory. In the first place, it is necessary to
identify operators dual to the string states in the Penrose limit.
We recall that the effective string length J must be identified
with the number of fields contained in the composite
operator. The string ground state can be identified with an
operator composed of scalars Z = @ + i®,:

0,J) — Trz’. (55)
This operator has the charge J with respect to the rotation
plane in the pp-wave.

Oscillatory excitations of the string correspond to the
inclusion of other scalar fields from the Lagrangian of the
N = 4 theory to the composite operator. The best known are
the so-called BMN-operators, which are identified with the
string excitation modes as

ait10,J) « Tré, 27,
(56)

o . nl
ayall|0,J) <> exp (21:1 %) Tro, Z'e; 27~
7

Using this correspondence, it is possible to compare eigen-
values of the anomalous dimension matrix of the operators
that mix among themselves and the string energy spectrum.
The string energy is an exact function of the ratio 1/J>
of the coupling constant to the angular momentum. Thus,

we have the first example of a prediction of the anomalous
dimension of operators in string theory in an arbitrary order
of the coupling constant. For comparison with the known
loop computations, it is necessary to expand the exact
spectrum in the perturbative region. The first terms of the
expansion in the coupling constant exactly reproduce
calculations in the framework of the supersymmetric gauge
theory; this provides an explicit example of duality verifica-
tion in a situation where the string is regarded as a quantum
object.

We note that in the one-loop approximation, the
dilatation operator in the N =4 theory in the sector of
scalar operators coincides with the Hamiltonian of a spin
chain having the structure group SO(6) [43]. It also permits
us to reflect string states in the spin-chain states. Specifi-
cally, if the consideration is restricted to operators com-
posed of only two complex scalar fields, the structure group
reduces to SU(2). The string ground state corresponds to all
spins aligned in one direction and string excitations to the
flip of part of the spins.

7. Dual descriptions of nonconformal theories;
N = 2 supersymmetric gauge theory

In this section, we discuss the dual description of the N =2
gauge theory in the supergravity approximation. Metrics in
the dual description and higher-form fields have a more
complicated structure compared with the N = 4 case; none-
theless, they can be directly represented. We demonstrate how
the simplest facts known in the gauge theory can be
reproduced in the dual description. We start by recalling the
main facts about the N = 2 supersymmetric theory.

The gauge theory without additional matter fields is
described by a supermultiplet of fields in the adjoint
representation that includes the gauge vector field, two
Majorana fermions, and a complex scalar @. The theory is
asymptotically free and the -function arises only in one loop.
The classical theory has the global SU(2) x U(1) R-symmetry
group, but the U(1)-part is broken to Z4y, at the quantum
level. An infinite number of the vacuum states of the theory
are parameterized by vacuum values of the complex scalar.
The nonperturbative energy action taking instanton effects
into account was found in Ref. [57].

In the dual description in the supersymmetric theory, the
metric is [11]

ds? = Hﬁl/zn“v dx#dx"

+ H'2[dp? + p?dO? + 8, dx" dx"], (57)

and the higher-form field corresponding to the N = 2 gauge
theory is given by

Fs=d(H "dx®A...dx?) ++d(H 'dx" A ... dx?), (58)
¢+ ib = 4na’'g N, In =z ,

Po %)

where p2 = (x7+x2), z=pexp (i), r?=x2+...+x¢,
and H is the known function of radial coordinates. We note
that the solution involves a complex scalar field ¢ + ib and a
set of various-degree form fields from the NS—NS and R—R
sectors:
Fs=Fs— Cy A Hs,

Hy = dB,. (60)
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In brane terms, the solution can be described as a set of adjoint representation. The action of the theory

fields induced by the bound state of D3-branes that are

defined on the orbifold C?/Z,. Following the general logic, Ly_| = 27Jd4x (Tr F? +1i.DJ) (66)
the gauge theory is identified as a theory on the branes’ &ym

world surface.

To describe a few quantitative characteristics of the
theory, it is necessary to find parameters of the gauge theory
in the low-energy limit from the Born—Infeld action at the
brane world surface. Rather simple calculations for the
coupling constant and Oy lead to

1 1 N p
— = |B = In — 61
gim 167520‘/854[ P nPo7 (61
Lt
- |c= 2N, 2
Oym 2n2a’gsJC2 0 (62)

The solution of the equations of motion in supergravity
has a symmetry of the form

nk

9H9+2Nc.

(63)

Using the relation with 6yy;, we note that it corresponds to
the known Zgy -symmetry in the N =2 supersymmetric
gauge theory.

Another essential characteristic of gauge theory is its
p-function. In order to find the f-function in the dual theory,
itis necessary to carefully relate the scale p in the gauge theory
to coordinate p in the gravitational solution.

We consider an operator with simple renormalization-
group properties. The most convenient for this purpose is a
scalar field whose vacuum expectation value can be related to
the coordinate z as ¢ = (2na’) " 'z. Then, it is easy to obtain
the relation

p=2mna'u. (64)
Substitution of this relation into gravitational solution (61)
gives the behavior of the running coupling constant

1 Ne o u

- nt, 65
g%M 4n2 A (65)

which exactly reproduces the f-function of the N = 2 theory.

We note that the perturbative behavior of the N =2
theory is fairly well reproduced in the framework of the dual
theory, while the complete nonperturbative low-energy
action remains to be found, the reason being the singular
behavior of the function H that determines the solution in the
infrared region [11]. The singularity is believed to disappear if
string modes are taken into consideration, but this has never
been demonstrated explicitly.

8. Dual descriptions of nonconformal theories;
N =1 supersymmetric gauge theory

The N = 2 supersymmetric theory is essentially different from
realistic models by virtue of its having an infinite number of
vacuum states. It would therefore be interesting to find a dual
description for the more realistic N =1 supersymmetric
gauge theory. We recall its main features that differentiate it
from N =2 gauge theories. The N =1 theory includes a
vector gauge field and the Majorana gluino field in the

has much in common with QCD. Specifically, the theory is
asymptotically free and has a mass gap.

Unlike the N = 2 theory, the N = 1 theory has the finite
number N, of vacua for the gauge group SU(N.). The
anomaly multiplet includes anomalies in the dilatation
current, the supercurrent, and the current corresponding to
the R-symmetry. The respective symmetries are already
broken in the one-loop approximation. In contrast to the
one-loop f-function in the N = 2 theory, that in the N = 1
theory is constructed from the contributions of all loops and
the exact answer can be obtained as [58]

= _Ncg%M 1— Ncgsz(M B
16m2 8n? '

(67)

We note that all loop contributions, starting from the second
loop, are of the infrared origin. Therefore, generally speaking,
it is possible to determine the S-function in the Wilson sense,
as containing only the one-loop contribution.

In what follows, we discuss the dual description of the
R-symmetry broken to Z,y, by the one-loop anomaly.
Moreover, nonperturbative effects generate a gluino con-
densate in the theory, which leads to further spontaneous
symmetry breaking to Z,. The expression for the condensate
is

)2 3 .k
(TrA)y =4 exp<2mﬁ>, k=0,1,...,N.—1, (68)
C
where A is the infrared scale of the theory. The gluino
condensate is an order parameter of the theory and the
number k in (68) labels the vacuum state.

8.1 Solution of the equations of motion in supergravity
Currently, there are two solutions of the supergravity
equations that provide for the dual description of the N =1
gauge theory: the Maldacena—Nunez [9] and Klebanov—
Strassler [10] solutions interrelated through a sequence of
transformations. This section deals with the Maldacena —
Nunez solution generated by branes wrapped around
compact submanifolds. We recall that in the previous
solutions dual to the N =4 and N = 2 gauge theories, we
had to consider D3-branes embedded in ten-dimensional
space. However, in the N =1 case, we must consider N,
coincident D35-branes wrapped around a compact two-
dimensional cycle.

The gauge theory is defined at the world surface of the N,
DS5-branes in the background metric

ds® = exp @ dx? + giNcexp @ [exp (2h) (dO} + sin? 0, dop})

3
+dp? + Z(w“ - A”)z] , (69)
a=1
_ sinhp
exp (20) =5 op i’ (70)

3 3
Fy =2gN, [[ (0" — 4%) = gNe Y " F Ao,

a=1 a=1

(71)
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where shift
IZ_L 0,, Y — Y+ 21N, (78)
2a(p)
42— 1 sin 0, do, , (72) remains a symmetry Qf thp soluFion, which gorresponds to the
2a(p) Z,>-symmetry remaining in the infrared region.

1
A = —300591 do,,

exph coth (2p) r !
xph = —_——
pR=r P ink? (2p) 4

(73)
2p
a(p) = sinhp
The left-invariant forms are given by
20" = cosydb; + sinisin 0> dep, ,
20 = siny df, — cos i sin 6 dep, , (74)

20° = dy + cos 0, d¢y,

and F*=VA".

Unlike the N =2 geometry, the solution defines a
nonsingular metric and depends on five angular variables
and a radial variable p, which we again connect with the
energy scale in the gauge theory. The parameters of the gauge
theory, as in the N =2 case, can be obtained by the
substitution of the solution of the supergravity equations of
motion into the low-energy expansion of the Born—Infeld
action:

1 1

g\Z(M lemig,

1
- Cy,=—N.y.
2mgs JSz ? 4

Ne
L“ exp (— ) (det G)l/2 =42 P tanhp, (75)

Oym = (76)
It easy to see from the solution that the limit of large values of
the radial coordinate p corresponds to the ultraviolet region
of the field theory, where the coupling constant is small, and
U(1)-rotations associated with the R-symmetry correspond
to shifts in the angular variable .

8.2 The physics of N =1 gauge theory

in the dual description

We now move to the dual description of the main character-
istics of the N =1 theory; we first discuss the geometry of
R-symmetry breaking. As mentioned earlier, U(1) may be
expected to break down to Z,y, in the ultraviolet region; it is
natural to reproduce this symmetry breaking in the dual
description. We recall that the ultraviolet behavior corre-
sponds to large p, when a(p) — 0. In this limit, rotation about
the angular coordinate { is a metric isometry and the
symmetry breaking is due only to the C,-form field flux. It is
easy to see that the shift

2nk
b=

(77)

is a symmetry of the solution of the equations of motion
in supergravity, in excellent agreement with the expected
Z)n,-symmetry in the dual description.

For the analysis of further symmetry breaking to Z>, it is
necessary to consider arbitrary values of the radial coordinate
p and study how the solution-giving functions depend on it.
The most essential fact is that the function a(p) is multiplied
by cos ¢ and siny; in other words, at arbitrary p, only the

In order to determine the f-function, it is necessary to find
the relation between the radial coordinate p of the solution
and the energy scale u in gauge theory. For this, it is
convenient to use the dual identification of the operator in
the gauge theory that is not deformed at the quantum level,

(2) = alp), (79)
which implies the relation
A? 2
p (80)

13 sinh (2p) -

Now, it is possible to find the -function of the theory as

0gym Op
= 81
ﬂYM a,() a(ll’l(,u//l)) ( )
At large p,

ogym  Negym

ap - 87'[2 I (82)

2 -1

_%% 3 < - N°gYM> , (83)
6(ln (u/A)) 2 8m2

The combination of these two equations immediately leads to
an answer for the f-function that exactly coincides with the
perturbative result obtained in the gauge theory [59]. We note
that the gravitational computation predicts the existence of
nonperturbative corrections to the ‘exact’ f-function,
although the origin of possible corrections in the gauge
theory remains to be clarified.

9. Duality and anomalous dimensions
of operators in the nonsupersymmetric
Yang — Mills theory

We now discuss examples of duality for a nonsupersymmetric
gauge field theory. For all the difficulty of analysis of
nonsupersymmetric theories, we consider two well-estab-
lished results concerning anomalous dimensions of the
operators, leaving aside other, less rigorous assertions
encountered in the literature. First, we discuss the integrable
structure of the one-loop dilatation operator in the sector of
self-dual gluonic operators and its string realization. Second,
we demonstrate how a universal prediction for the anomalous
dimensions of certain gauge-theory operators in the strong-
coupling regime can be obtained.

9.1 Classical string and gluonic operators

We consider a class of local operators of high canonical
dimension composed of gluon fields

(84)

We show that renormalization of these operators in one loop
is described by an integrable Heisenberg spin chain with unit
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spins at each site [60]. For the description in what follows, it is
convenient to pass to Euclidean space and decompose the
tensor into irreducible components using the ’t-Hooft
symbols:

(85)

The self-dual and anti-selfdual components are trans-
formed under the Lorentz group as tensors of the respective
types (1,0) and (0, 1). Straightforward calculations indicate
that the Hamiltonian describing renormalization-group
equations in one loop preserves the number of fields in a
composite operator (or, equivalently, the number of sites in
the spin chain). The total Hamiltonian of the interaction
between nearest neighbors can be expanded in the projectors
P(l_;lim for the spin components j and parity P [60]:

Hiy =7(Pa.0) + Po,2)) + Pu.o) + Po,

- 11(P<;,0) + Pgg) 3P ) (86)

If the operators composed only of self-dual operators F!
are considered, the Hamiltonian reduces to

H[s;i = 7P(2’0) + P(I,O) — 11P(070> . (87)

The respective projectors in (87) are given by

2
3

1
AR B ApB BpA
P(2¢0)F+F+:_<F+F++F+F+_

AB, Cr C
> 5 F+F+),

1
AR B ApB BpA
P(1<0)F+F+:E(F+F+_F+F+)7

1
A B AB - Cr C

These projectors can be reduced to the operators of permuta-
tion PF/F5=FBF! and of taking the trace KF/F% =
5*BFCF £ and to the identity operators [F//F? = FAFE:

1

1
P(2_0>=§(1+P)—§K,

1
P(LO):E(I_P):

1
P(O,O):gK'

Therefore, the Hamiltonian of two-particle interactions

Hlsg24112+3P12—6K12:7+35152(1 —5152) (88)
coincides with the Hamiltonian of a spin chain with unit spin
that was studied earlier and can be diagonalized by the Bethe-
ansatz method [28, 29].

The main peculiarity of the given class of operators is the
proportionality of their anomalous dimension to the total
spin operator S or, accordingly, to the total length of the spin
chain. For the dual description of such operators, it is
necessary to find an appropriate solution of the equations of
motion of the classical string. It turned out that the adequate
solution describes a string rotating in two independent planes
of AdSs with quantum numbers (S, S, 0, 0, 0).

At small S, the energy of the classical string is given by [61]

E=2(mS)"* + 0(5*), (89)

where m is the string winding number, in agreement with the
results in the flat case. However, if operators with a large
quantum number (S > 1) are considered (which justifies the
classical string approximation), the energy behaves as

E:2S+%(4m2S)1/3+..,, (90)

in accordance with the one-loop answer. We note that in the
region of very large S, the classical string solution becomes
unstable.

In the foregoing, we discussed integrable structures in the
N = 4 gauge theory and in the nonsupersymmetric theory.
Similar integrable structures were found in other cases.
Suffice it to mention that the one-loop renormalization of
the scalar operators in the N = 2 theory is described by the
XXZ spin chain [62].

9.2 Anomalous dimensions in the strong-coupling regime

It seems appropriate to briefly mention certain general
properties of the operators in the nonsupersymmetric theory
that can be obtained with the use of the dual string
description. Operators with a large Lorentz spin S corre-
spond to the string rotating with a large angular momentum
in AdSs. In the strong-coupling regime, the anomalous
dimensions of the twist-2 operator F+L(D+)SF+l coincide
with the energy of a doubly folded classical string rotating in
AdSs [25]:

)LI/Z

(tw=2) _ 1 2
' =—1InS~. 91
))S 27'E ( )
To obtain (91), it is convenient to consider a string with its
center at p = 0 in the global coordinates with the Nambu—
Goto action. In the gauge o, = 7, 6, = p, the induced metric
entering the action takes the form

2 1212
Gn 0. XM 0 XN = <7cosh pT)(/) sinh” p (1)>7 (92)

where ¢ = ¢ (1) is the azimuthal angle of a point of the string,
7 plays the role of time in AdS, p is the radial coordinate, and
¢ = 0¢ /07 is the corresponding angular velocity.

Hence, the action is given by

2 Po .
e o - i
0

2mo’

zjuLwy (93)

The factor 4 accounts for the number of segments of the
folded string rotating about p = 0, and the maximum value of
the radial coordinate p < p, is derived from the condition

coth? p — ¢p2(1) = 0. (94)

Equation (93) describes a classical mechanical model of a
rotating bar with the Lagrangian £[¢], the energy

E:¢%L[¢1—L

p cosh? p
(cosh® p — ¢h2 sinh? p)'/2 ’

(95)
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and the spin

0
5= 1o

— 4 (“*_NC> " qu d
T 0

Integrals of motion on the classical trajectory take the
values E and S, and action (93) on the classical trajectory is

$sinh? p
p - .
(cosh? p — ¢ 2 sinh? p)'/?

(96)

H rmélX
Sa = [ de (6~ £) = 2500 n (97)
where
Tmax, min — In Fmax, min »
: w)—ljhﬁfw¢—5)—1(f5+5@ (98)
s\ =31, 2x =2 ’

and @ = ¢ is the angular velocity of the bar.

The anomalous dimension is defined as the coefficient in
the action in front of time in the AdS space. In the long-wave
limit,

1

1
POZ*IHE>1a o=1+2n; (99)

\S)

as # — 0, it is possible to find the string energy and angular
momentum:

1/2
E= 2<LM) (™" —1np),

n (100)
N\ 2
S = 2(L> (" +1npy).
T
Substitution of these relations in (98) yields
N\ 2
y5(0) :2<°‘T) InsS, (101)

which gives the anomalous dimension of the operator in the
strong-coupling regime.

The generalization to the case of higher-twist operators
F+LDi‘ F. .. .Di"*'Fﬂ is possible. In this case, the string
effectively splits into L components, each reaching the
boundary of AdSs. The energy of the corresponding string
configuration is [63]

21/2
w=L 7
yéllw-,glfl = % lnqL(Sl, .. .,SL,]) .

(102)
In this expression, ¢; may be identified with an integral of
motion for classical string. For Sy~ S> 1 with k=
1,...,L—1, g, ~ SE. It should be borne in mind that the
logarithmic behavior of the anomalous dimensions of
operators with large quantum numbers is universal for all
gauge theories [64, 65].

9.3 Calculation of anomalous dimensions

in the open string theory

We demonstrate that the logarithmic growth of the anom-
alous dimensions of operators with large Lorentz spins (91)

and (102) can be obtained in terms of Wilson lines in the gauge
theory or, equivalently, with the use of an open string in the
AdSs metric. The key factor is the relation between the
anomalous dimensions of the operators with a large number
of covariant derivatives along the light cone and the so-called
anomalous renormalization of the Wilson line for a contour
with a cusp [64, 65].
It was found rather long ago [71] that the Wilson loop

WI[C] =Tr {Pexp <ig JC dx“AM(x)) }

acquires a nontrivial anomalous dimension I'cysp (4, 0) if the
integration contour contains a cusp,

(W[C]) ~ ulew®0), (103)
where u is the ultraviolet cut-off. The relation between the
anomalous dimensions of the twist-3 operators with Lorentz
spin S and the anomaly is given by [64, 65]

7 =2 (3) = 2T euep (7,0 = In S) (104)
and holds at all values of the coupling constant 1. In the weak-
coupling region at 6 > 1, we have

7

A

’@MLQZQP_+OW4’ (105)

4n2

with a few of the following terms of the perturbative
expansion being known.

The dual string description allows Icysp(4,0) to be
computed in the strong-coupling region using an open
string. In this limit, it is possible to consider the Wilson
contour with a cusp that bounds the world surface of an open
string propagating in the AdSs metric. The answer for the
vacuum value of the Wilson contour at § > 1 reduces to the
computation of the minimal surface [72, 73]:

RW@M—OK£JW+OWﬂ- (106)

Using Eqns (104) and (106), it is possible to reproduce the
result in the strong-coupling region (91) obtained with the
help of a closed string [25].

The correspondence in (104) can be extended to higher-
twist operators. If an operator contains L fundamental fields
and the total number of covariant derivatives is S > L, its
anomalous dimension can be obtained from a contour
composed of L Wilson contours in the fundamental repre-
sentation of the gauge group, with the number of cusps
varying from 4 to 2L [63]. At large N, the vacuum value of
Wilson loops is factored into the product of vacuum averages;
therefore, the minimal surface of L contours with cusps
calculated in the strong-coupling region and corresponding
to the product of k = 2, ..., L cusped contours is given by the
sum of k ‘elementary areas’:

2 Teusp(4,0 =108) < 79 (1) < LTeup(4,0 = In S).
(107)
We note that the anomalous dimensions of the higher-

twist operators are not determined by their Lorentz spin S
alone. In fact, a band structure emerges for the anomalous
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dimensions parameterized by the additional hidden quantum
numbers [63]. An explicit example of such a band structure
can be studied in the weak-coupling regime, where the
internal band structure is parameterized by the higher
integrals of motion in the SL(2) spin chain.

10. Conclusion

In this brief review, we have tried to cover the most promising
(in our view) lines of research on the gauge/string duality and
the results obtained thus far in this field. Evidently, only the
very first steps have been made on this path; nevertheless,
even some modest progress achieved during recent years
emphasizes the essential advantages of the approach being
considered. For a few decades, the concept of duality
discussed in the present review seemed to be a rather
academic area of research until the results of the studies
demonstrated their applicability to the analysis of the most
intricate problems concerning the behavior of gauge theory in
the strong-coupling regime.

We emphasize that the dual string description yielded
concrete quantitative predictions for gauge theories, part of
which have subsequently been confirmed by explicit calcula-
tions in field theory. Also, it is worthy noting that duality has
and will have a counter-influence on string theory. Even now,
it is clear that the transitional behavior between the
perturbative and nonperturbative regimes in field theory
requires knowledge of quantum gravity; therefore, well-
known phenomena of field theory may shed light on a
number of deep-lying problems in the gravity sector.

Of course, it would be most interesting to have the dual
string description of the Standard Model. However, neither
the metric in the dual description nor the corresponding
higher-form fields has been found, despite extensive studies
to this effect and the indisputable applicability of the general
scheme to this case. According to the most optimistic point of
view, the dual description will also give a powerful impetus to
the solution of the confinement problem.

As regards the weak-coupling regime, the main hopes are
linked with the summation of the perturbation theory series in
the dual theory. Although numerous cancelations occur only
in the N =4 theory, some examples considered in the
foregoing text indicate that the string description permits us
to fix universal properties of the perturbation theory series.
Specifically, it would be extremely interesting to find the
string realization of the Regge regime in QCD along with the
corresponding effective degrees of freedom. The first steps in
this direction have been made in Refs [74—76].

We tried to substantiate the extremely important part
played by the hidden integrability of dual theories, at least in
certain sectors or regimes. Indeed, the integrability reflects the
existence of additional symmetries that were not found in
preceding studies; it most strongly manifests itself in the
reduction to the appropriate kinematic sectors. In particu-
lar, its role was explicitly observed in renormalization-group
dynamics of the operators on a light cone in QCD and for
generic operators in supersymmetric gauge theories.

Notwithstanding indubitable progress in this field, the
most essential question, ““what kind of hidden symmetry is
responsible for the integrability in gauge theory?”, remains
open. The first attempts to consistently elucidate this
symmetry showed [77—79] that it must be associated with
the so-called nonlocal conservation laws known from the
theory of integrable systems.

Apart from general questions pertaining to integrability, a
few specific problems are worth mentioning. They include,
among others, verification of the integrability of the dilata-
tion operators in higher loops in the gauge theory and of the
dual sigma-model at the quantum level. In any case, the
methods of integrable systems have already demonstrated
their efficiency in the studies of duality between gauge
theories and strings; there is little doubt that they will find
further application in the class of problems being considered.

In conclusion, we mention certain results obtained quite
recently. For example, it was shown how the U(1)-problem is
solved in the dual gravity theory [80]; also, a metric for
nonconformal supersymmetric gauge theories with funda-
mental matter was found [81]. Some authors undertook to
obtain the physical characteristics of mesons in the standard
QCD in the dual theory [82].

We barely touched on the problem of the dual string
description of gauge theory from first principles. Only
minimal progress has been made thus far toward resolving
this issue. Nevertheless, a few seemingly promising results
deserve to be mentioned. A new approach to the summation
of instanton effects has been developed [83], which has
provided a basis for the hypothesis that gauge theory
actually plays the role of an effective theory of microscopic
gravitational degrees of freedom [84].

On the other hand, it has been noticed [85] that loop
calculations in four-dimensional field theory may be refor-
mulated as tree diagrams in five-dimensional space in the
AdSs metric. Finally, a new mechanism of generating an
effective gravity theory from the ‘condensation’ of special
states in gauge theory was proposed in Ref. [86]. At the same
time, the key problem of physical mechanisms underlying the
generation of the metric condensate in quantum gravity
remains to be solved despite some positive trends and
advancements.
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chemsky for their collaboration and A Gerasimov, K Za-
rembo, Yu Makeenko, A Marshakov, A Mironov, A Moro-
zov, N Nekrasov, and A Tseytlin for helpful discussions of the
problems considered in this review. The work was supported
in part by the grants from CRDF (RUP2-2611-M0O-04) and
RFBR (project 04-011-00646).
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