
Abstract. The origins and physical consequences of the tradi-
tionally used relation between the position measurement error
and the momentum perturbation, D 2

mxD
2
p p5 �h�h 2=4, are dis-

cussed. It is demonstrated that the corresponding increase in
the momentum variance for the aposteriori state occurs only in
some special cases. The product of D 2

mA and D 2
pB is shown to

essentially differ from the one given by the uncertainty relation
if the commutator �Â; B̂ � is an operator. The error quantum
limits for the joint homodyne measurement of quadrature am-
plitudes for an optical mode are found. It is shown that similar
results can be obtained if the quadratures of a harmonic oscil-
lator are estimated by means of continuous position measure-
ment.

1. Introduction

The fundamental relation between the position and momen-
tum variances, known as the Heisenberg uncertainty relation,

D2xD2p5
�h2

4
; �1�

is the quantitative formulation of the Heisenberg uncertainty
principle [1]. It characterizes the state of an object and directly

follows from the fact that the operators x̂ and p̂ do not
commute [2 ± 4]. By definition, the quantities D2x and D2p
depend only on the state of the object and are not related to
measurement errors.

Experimental verification of relation (1) implies the
following. One prepares an ensemble of many particles. For
half of the particles, the positions are measured precisely
(with an error much less than Dx), for the other half, the
momentum measurement is performed. The obtained sets of
numbers are then analyzed and the position and momentum
variances are calculated.

There are relations similar in form to relation (1) but with
a different meaning. Among them, the best known one is the
relation between the error in the position measurement and
the momentum perturbation. Traditionally, it is proved by
considering a position measurement with the help of a
microscope (the Heisenberg microscope) and written using
the same notation as in relation (1). We represent it in the
form

D2
mxD

2
p p5

�h2

4
; �2�

where D2
mx is the variance of the position measurement

error and D2
p p is the variance of the momentum perturba-

tion. The error (inaccuracy) of the position measurement is
understood as the difference between the measurement
result and the true value of the position. The momentum
perturbation is understood as the variation of the object
momentum as a result of the interaction between the object
and the measurement device (meter). According to the
definition, neither the measurement error nor the perturba-
tion depends on the state or dynamical parameters of the
object.
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It is commonly supposed that relation (1) leads logically
to the relation between the error variances in the case of a
joint (simultaneous) measurement of the position and
momentum,

D2
m:sxD

2
m:s p5

�h2

4
: �3�

A joint measurement of the position and momentum is
understood as a simultaneous interaction of the object with
twometers, one of themmeasuring the position and the other
the momentum.

Papers on the simultaneous measurement of the position
and momentum deal with the relation that is called the true
uncertainty principle for joint measurements in Ref. [5]. We
write it as [6]

Dx1 Dx2 5 �h ; �4�

where x1 and x2 are observables not of the object but of the
meters. The values Dx1 and Dx2 are not the measurement
errors but the standard deviations of the results of precise
measurements of x1 in one meter and x2 in the other.

Relations (1) ± (3) are as old as quantum mechanics itself.
Nevertheless, the connection between them and their con-
sequences are still subject to discussions and arguments.

At the dawn of quantum mechanics, there was a diffused
opinion that the uncertainty relation itself follows from the
abilities of the measurement devices and a quantum system
should be described statistically because of the fundamental
nature of the interaction involved in themeasurement process
[4, 7]. Traces of this viewpoint can still be found in modern
textbooks on quantum mechanics, see, e.g., [8 ± 10]. No
contradiction is observed between the two different inter-
pretations of the uncertainty relation: as a consequence of the
general quantum mechanics principles and as a consequence
of the abilities of measurement devices. From this standpoint,
the fact that relation (2) is proved using examples (as a rule,
involving a microscope) where the device itself (a light beam)
is assumed to obey the uncertainty relation is ignored.

Relation (2) is usually understood as follows: measure-
ment of the position of an object with an error D2

mx always
leads to an increase in the variance of the momentum by
D2
p p5 �h2=�4D2

mx�. This interpretation is erroneous. Under
certain conditions, an approximate measurement of the
position can bring the object into a state in which the
momentum variance is less than the initial one [11 ± 13] and
less than �h2=�4D2

mx� [14]. Themetermay even leave no trace of
its dynamical influence on the object, despite the decrease in
the position variance.

Relation (3) is certainly true if it is written for the errors
in the measurement of the position and momentum related
to the state after the measurement. Otherwise, one could
prepare a state contradicting the uncertainty principle. But
because the generalized momentum of the object ±meter
system can be defined in different ways, in some cases
relation (3) may not hold for values of the position and
generalized momentum during the interaction between the
object and the meters.

By analogy with the generalized uncertainty relation [3,
15, 16]

D2AD2B5
�h2

4

��hĈi��2 ; Ĉ � �Â; B̂ �
i�h

; �5�

one could try to write relations (1) ± (3) in the form

D2
mAD2

pB5
�h2

4

��hĈi��2 ; �6�

D2
m:sAD2

m:sB5
�h2

4

��hĈi��2 : �7�

But this would be a mistake!
The aim of the present paper is to investigate, in terms of

the modern theory of measurements, the origins and the
validity domains for relations (2) and (3) as well as to find
correct relations instead of erroneous (6) and (7).

In Section 2, it is explained how the state of an object is
understood in the quantum theory of measurements after its
measurement, and the notions of selective and nonselective
measurements are introduced. Using the standard quan-
tum scheme for position measurement, it is proved that
relation (2) follows from the uncertainty relation for the
observables of the meter. Further, relations DmADpB and
DmBDpA are investigated in the case where �Â; B̂ � � i�hĈ,
the transformation of the object state due to the measure-
ment is described mathematically, and examples are given in
which the change in the variance of the object momentum
contradicts relation (2).

Next, correlations between the errors in joint measure-
ments for noncommuting observables are investigated. In
Section 3, three known measurement models are considered:
(1) simultaneous interaction of the object with two meters,
one of them being sensitive to the position and the other to the
momentum; (2) joint measurement of the position and
momentum using an ancillary degree of freedom, such that a
joint measurement of noncommuting observables is replaced
by a joint measurement of commuting combinations of
observables; (3) homodyne measurement of the quadratures
and the number of quanta for a single radiation mode. In
addition, the origin of relation (4), as well as its connection
with relation (3), is pointed out. In Section 4, the errors for the
joint estimation of noncommuting observables via contin-
uous position measurement are analyzed, and the stationary
state of the object formed by such a procedure is described.

The main results of the work are summarized in Section 5.

2. Measurement error ± perturbation relation

A description of the study outlined above inevitably requires
using special terms and notions of the quantum theory of
measurement. We briefly review the basic ones.

2.1 Some notions of the quantum theory of measurement
Measurement is a fundamentally irreversible process. Irrever-
sibility can arise at the very first stage of the measurement, for
instance, when the position of an electron is measured by
observing a bright spot on a screen. Such a measurement is
called direct. But if the position of an electron is used to
measure another observable, for instance, the electric field
through which the electron beam is passing, then the second
stage of the measurement is irreversible. The first stage, i.e.,
the interaction of the electron with the field, is in this case
reversible. This way of measuring the electric field through
the position of an electron is called an indirect measurement.

In this scheme, the electron beam plays the role of a
quantum readout system (QRS) [17, 18], i.e., a quantum
converter or a microsensor [14]. After an indirect measure-
ment, the object remains in its initial surrounding. An indirect
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measurement provides information about both the initial
(apriori) state of the object and its final (aposteriori) state.

How does the measurement, i.e., interaction of the object
with the meter, differ from its interaction with any other
physical system? In a meter, the information about the object
is converted from the quantum level to the classical one.
According to the measurement results, the initial ensemble of
objects can be divided into subensembles by means of certain
classical operations. The states of these secondary ensembles
are called states after a selective measurement [14].

Although special quantum properties inhere even in a
single quantum system, the only way to verify that an object is
prepared in a certain quantum state is to perform experiments
on numerous indistinguishable objects or on a single object
that is returned to the initial state numerous times. Speaking
of the state of a single object always implies that the object is a
representative of a certain ensemble. In an experiment on a
single object, the selection process is virtual: it only consists of
registering the result of the measurement. The state of the
object after a selective measurement depends not only on the
accuracy but also on the measurement result.

If there is no selection according to the measurement
result, then the state of the object after the interaction with the
meter can be viewed as a mixture of states that could be
obtained through a selective measurement [11, 14]. In such a
mixture, the probability distribution for the measured
observable is the same as the initial one. Such measurements
are called nonselective [14].

Because the notion of the state after the measurement is
ambiguous, it is important to specify what is meant by the
momentum perturbation due to the position measurement. It
is useless to define the variance of the momentum perturba-
tion as the variance of the difference p�t� ÿ p�0�, where p�t�
and p�0� are the respective momentum values after and
before the measurement, because the measurement of p�0� is
incompatible with the position measurement. As a value with
a physical meaning, one can take the difference of the
momentum variances

D2p�t� ÿ D2p�0� �
�ÿ

pÿ h pi�2 wt� p� dp

ÿ
�ÿ

pÿ h pi�2 w0� p� dp ; �8�

wherewt� p� andw0� p� are the respective probability densities
for the momentum in the final and the initial states of the
object. In Eqn (8) and in what follows, the integrals are taken
from ÿ1 to1.

Expression (8) depends on whether the measurement is
selective or nonselective.

2.2 Origins of the traditional measurement
error ± perturbation relation
We consider the standard quantum scheme for the indirect
measurement of the position. For the meter to acquire
information about the instantaneous values of the position,
the interaction Hamiltonian Ĥi for the object and the QRS
should be linear functions of the position operator. Let
Ĥi � ax̂Ŷ, where Ŷ is some operator related to the QRS
(position, momentum, position square, etc.) and a is the
coupling coefficient. We represent the Hamiltonian of the
object ±meter system as

Ĥ � Ĥo � Ĥi � Ĥa ;

where Ĥo and Ĥa are the respective Hamiltonians of the
object and the meter.

If Ŷ is the position operator for the QRS, the equations of
motion for the system can bewritten in theHeisenberg picture
as

�a� dp̂

dt
� 1

i�h
� p̂; Ĥo� � aŶ ;

�9�
�b� dP̂

dt
� 1

i�h
�P̂; Ĥa� � ax̂ ;

where P̂ is the QRS momentum operator, which is conjugate
to the position Y. It follows from Eqn (9a) that during the
position measurement, the meter acts on the object with a
force (the fluctuation back-action force) whose operator is
F̂b:a � aŶ.

If the measurement is `instantaneous', i.e., the duration t
of the interaction between the object and the meter is so short
that the evolutions of the object and the meter can be ignored
(t! 0, at is finite), then Eqns (9) imply that

�a� p̂�t� � p̂�0� � atŶ�0� ; �10�
�b� P̂�t� � P̂�0� � atx̂�0� :

For the meter, information about the object position is
contained in the variation in the QRS momentum. The meter
obtains the estimate for the position x�0� of the object by
measuring the QRS momentum P�t�. If the measurement
yields a value ~P, then the most probable value is taken as the
estimate of the object position,

~x � 1

at

ÿ
~Pÿ 
P̂�0��� ; �11�

where


P̂�0�� is the QRSmomentummean value in the initial

state.
The variance of the measurement error is defined as the

conditional (corresponding to a given position) variance of
the estimate. In this particular case, it is

D2
mx �

1

�at�2
ÿ
D2
m

~P� D2P�0��5 D2P�0�
�at�2 ; �12�

where D2
m

~P is the variance of the QRS momentum measure-
ment error and D2P�0� is the QRSmomentum variance in the
initial state. The distribution of possible estimates for a given
state of the object is characterized by the unconditional
variance of the estimate,

D2~x � D2
mx� D2x�0� ; �13�

where D2x�0� is the apriori variance of the object position.
After the interaction with the meter, according to (10), the

variance of the object momentum becomes

D2p�t� � D2p�0� � �at�2 D2Y�0� ; �14�

which exceeds the variance in the initial state by

D2
p p � �at�2 D2Y�0� : �15�

From (12) and (15), we have

D2
mxD

2
p p5D2P�0�D2Y�0� : �16�
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Hence, relation (2) is valid as long as the uncertainty
relation holds for the QRS state. (In the example with the
microscope, the validity of this condition is in fact
postulated for the QRS that is a light beam.) Therefore,
relation (2) between the position measurement error and the
momentum perturbation can only be considered a conse-
quence of the uncertainty relation. In fact, relation (2) is the
uncertainty relation for the meter written in terms of the
observables of the object.

Note. In some works, the product of relations (13) and
(14) is considered [19]. Written in a convenient form, it
becomes

D2~xD2p�t�5 �h2 ;

which is the relation between the unconditional variance of
the position estimate, which depends on the initial states of
the object and the meter, and the unconditional variance of
the object momentum after the measurement.

2.3 Relation between the measurement error of Â
and the perturbation of B̂ in the case where �Â; B̂ �
is an operator
The fundamental difference between the uncertainty relation
for the object and the measurement error ± perturbation
relation becomes evident in the case where the commutator
of the operator Â corresponding to the measured observable
and the operator B̂ corresponding to the perturbed observa-
ble is an operator: �Â; B̂ � � i�hĈ. For instance, if Â � x̂,
B̂ � p̂ 2, then it follows from (5) that

D2xD2p 2 5 �h2
��h p̂i��2 ; �17�

where h p̂i is the mean value of the object momentum.
If a relation similar to (5) were valid for the product of the

variances of the position measurement error and the
momentum square perturbation, then the variance of the
momentum square perturbation would depend not on the
initial variance of the momentum but only on its mean value.
However, according to (10a), the change in the variance of the
momentum square for the object is

D2p 2 � D2p 2�t� ÿ D2p 2�0�

� 4


p 2�0���at�2 D2Y� �at�4 D2Y 2 ; �18�

D2Y 2 � hY 4i ÿ hY 2i2 :

From (12) and (18), we obtain

D2
mxD

2
p p

2 � 4


p 2�0��D2PD2Y� �at�2 D2PD2Y 2 : �19�

According to relation (5),

D2PD2Y 2 5 �h2hY i2 :

Hence, for hY i � 0, the second term in (19) may be equal to
zero. The corresponding state was studied in Ref. [20]. In the
Hilbert space, a Gaussian state asymptotically tends to this
state as D2Y! 0.

Because

D2Y 2 � hY 4i ÿ hY 2i2 � 2�D2Y �2

for a Gaussian state of a QRS, the second term in (19) is

�h2�at�2
2

D2Y5
�h 4�at�2
8D2P�0� �

�h 4

8D2
mx

:

It follows that the relation between the position measurement
error and the momentum square perturbation can be
represented as

D2
mxD

2
p p

2 5 �h2


p 2�0��� �h 4

8D2
mx

: �20�

This relation is essentially different from uncertainty relation
(17), even in the case where the second term can be neglected.
The right-hand side of (20) depends on the mean value of the
momentum square, while relation (17) involves the square of
the momentum mean value.

One can easily prove that the relation between the
momentum square measurement error D2

m p 2 and the posi-
tion perturbationD2

px differs not only from the corresponding
uncertainty relation but also from the position measurement
error ±momentum square perturbation relation (20). By
representing the interaction Hamiltonian in the form
Ĥi � ap̂ 2Ŷ and solving the corresponding relations, we find
that

D2
m p 2 D2

px5 �h2


p 2�0�� : �21�

In general, the product of the measurement error and the
perturbation D2

mAD2
pB depends on the commutators

�Ĉ; Â�; ��Ĉ; Â�; Â�; ���Ĉ; Â�; Â�; Â�; . . . :

If �Ĉ; Â� � 0, then

D2
mAD2

pB5
�h2

4



Ĉ 2�0�� : �22�

If �Ĉ; Â� � i�hb, where b is a c-number, we have

D2
mAD2

pB5
�h2

4



Ĉ 2�0��� b 2 �h 4

8D2
mA

: �23�

Finally, if multiple commutators �. . . �Ĉ; Â�; Â�; . . . ; Â� are
nonzero, then the right-hand side of the relation under study
contains terms proportional to �hn=�D�nÿ2�m A�, with
n � 4; 6; 8; . . . .

To what state are inequalities (2) and (21) ± (23) related?
Relations (14) ± (23) were derived in the Heisenberg picture,
with all averaging performed over the initial states of the
object and the meter. In the SchroÈ dinger picture, this
corresponds to averaging over the entangled state of the
object and the meter, which is formed due to the interac-
tion.

We suppose that before the interaction, the object is in a
pure state jcoi and the QRS is in a pure state jcai. Then, after
the interaction (at time t) but before the measurement of P̂�t�
in the meter, the meter and the object are in the entangled
state

jCenti � exp �ÿiĤit�
��ca�0�

�
 ��co�0�
�
:

(Hereafter, we set �h � 1.) In the x- and Y-representation, the
wave function is given by

jCenti �
��
jY ico�x�ca�Y � exp �ÿiatxY � jxi dx dY : �24�

1002 Yu I Vorontsov Physics ±Uspekhi 48 (10)



The probability distribution of the object position
corresponding to entangled state (24),

went�x� � hCentjxi hxjCenti �
���ca�Y �

��2��co�x�
��2 dY � wo�x�;

is the same as in the initial state jcoi. This calculation does not
lead to wave packet narrowing due to the interaction. Hence,
we are dealing with a nonselective measurement of the
position.

For entangled state (24), the probability density of the
object momentum is

went� p� � hCentj pih pjCenti �
���jo�atY� p���2 ��ca�Y �

��2 dY ;
jo�atY� p� �

�
exp �ÿi� p� atY �x�co�x� dx ;

co�x� �


x
��co�0�

�
; ca�Y � �



Y
��ca�0�

�
:

The functionwent� p� is the probability density of a sum of two
independent random variables p� atY. This probability
distribution for the momentum corresponds to the variance
in (14).

2.4 Measurement error and perturbation
in the case of a selective measurement
We consider how the state of the object transforms when the
initial ensemble is divided into subensembles according to the
measurement result.

2.4.1 State of the object after a precise measurement in the
QRS. A precise measurement of P̂, giving a result ~P,
transforms any state into the state j ~Pi. This transformation
is performed by the projection operator j ~Pih ~Pj. Accordingly,
the object ±QRS system passes from the entangled state
jCenti into the (nonnormalized) state

j ~Pih ~PjCenti � j ~Pi 

��co� ~P�

�
;

where��co�P�
� � � ja�P� atx�co�x�jxi dx ;

ja�P� atx� �
�
hPjYica�Y � exp �ÿiatxY � dY :

Thus, a precise measurement of the QRS momentum trans-
forms the entangled state into the product of nonentangled
states j ~Pi and ��co� ~P�

�
. The state vector

��co� ~P�
�
represents the

state of the object after a selective measurement of the
position.

Because ~P sets the estimate ~x � ~P=at of the object
position, the state vector

��co� ~P�
�
can be represented as��co�~x�

� � � ja�~xjx�co�x� jxi dx ; �25�

ja�~xjx� � �at�1=2 ja� ~P� atx� : �26�

Transformation of the initial (apriori) state of the object

jcoi �
�
co�x1� jx1i dx1

into aposteriori state (25) can be considered the result of the
reduction operator acting on the state jcoi [17, 21],

R̂�~x� �
�
ja�~xjx� jxihxj dx � ja�~xjx̂� : �27�

The aposteriori state turned out to be pure because the initial
states of both the object and the QRS were pure and the
measurement of the QRS momentum was precise.

2.4.2 Aposteriori distributions of the position and momentum of
the object. The aposteriori distributions of the object
observables can be found from Eqn (25) in accordance with
the known rules (considering an idealized measurement).

The normalized wave function corresponding to vector
(25) is

c�xj~x� � ja�~xjx�co�x�
w 1=2�~x� ; �28�

where

w�~x� �
�
w�~xjx�wo�x� dx

is the unconditional distribution density for the estimate ~x.
Transformation (28) of the initial wave function is similar

to its transformation by means of a spatial filter with the
transmission coefficient ja�~xjx�. In other words, a selective
measurement of the position changes the state of the object in
the same way as a spatial filter whose transmission coefficient
depends on the initial state of the object and the result of the
position measurement.

According to (28), the aposteriori probability density
distribution for the object position,

w�xj~x� � w�~xjx�wo�x�
w�~x� ; �29�

is connected with the conditional density distribution for the
estimate, w�~xjx� � ��ja�~xjx�

��2, and the apriori density dis-
tribution for the position, wo�x� �

��co�x�
��2, by means of the

well-known Bayes relation [22].
By analogy with (29), formula (28), which contains wave

functions rather than the corresponding probability density
distributions, can be called the quantum analog of the Bayes
relation.

The aposteriori probability density distribution for the
object momentum is

w� pj~x� � 1

2p

����� ja�~x� x�co�x� exp �ÿipx� dx
����2 :

The aposteriori mean value of the momentum square is

h p 2i �
���c 0�~xjx���2 dx

�
���j 0a�~xjx�co�x� � ja�~xjx�c 0o�x�

��2 dx : �30�

2.4.3 Examples of the object state transformation due to
selective measurement. Example 1. If the initial states of the
object and the QRS are purely Gaussian, with minimal
uncertainties, the aposteriori state of the object is also
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Gaussian, the inverse variance of the position being given by

1

D2x�~x� �
1

D2
0x
� 1

D2
mx

:

The aposteriori distribution of the momentum is also
Gaussian, with the variance

D2p�~x� � �h2

4D2x�~x� :

Hence, the momentum variance is increased by

D2
p p �

�h2

4D2
mx

: �31�

Relation (31), describing a selective measurement of the
position, is the equivalent of relation (2). This example was
traditionally considered a proof of the validity of relation (2)
in the case of selective measurement of the position. At first
sight, it confirms the widespread opinion that a selective
measurement of the position inevitably increases the
momentum variance in accordance with relation (2). How-
ever, this statement is not true. After a selective measurement
of the position, the momentum variance may become smaller
than its initial value. To show this, one could again consider
Gaussian states, but with the correlation between the
position and momentum of the object [11]. This reasoning
can be made even more evident by considering other
examples [12, 13].

Example 2. Let the function co�x� have the shape of a
rectangular pulse:

co�x� �
1

�2l�1=2
for ÿ l < x < l ;

0 ; otherwise :

8<: �32�

The corresponding momentum variance is D2
o p � 1. Let

ja�~xjx�

�
�
k

3p

�1=2ÿ
1� cos k�xÿ ~x�� for ÿ p

k
4 xÿ ~x4

p
k
;

0 ; otherwise ;

8<:
�33�

where p=k < l.
We suppose that the measurement gives the value ~x such

that j~xj4 lÿ p=k. Functions (32) and (33) corresponding to
this case are plotted in Fig. 1. According to Eqn (28), the
a posteriori wave function coincides in shape with the meter
function ja�~xjx�.

The function ja�~xjx� in (33) and its first derivative are
continuous. Hence, the aposteriori variance of the momen-
tum is finite. Thus, the position measurement can transform
the initial state with an infinite momentum variance into a
state with a finite momentum variance.

In this example, it is not necessary to assume the apriori
momentum variance to be infinite. There are many functions
co�x� and ja�~xjx� for which, in the case of certain results of
the position measurement, the aposteriori momentum var-
iance becomes less than the apriori one.

The aposteriori variance of the momentum is finite in this
example only at j~xj < lÿ p=k. Otherwise, the aposteriori
momentum variance is infinite, similarly to the variance in

the initial state. Moreover, the aposteriori probability
distribution function of the momentum is lower than the
apriori distribution.

We note the following nontrivial fact. The aposteriori
variance of the object momentum corresponding to Fig. 1,

D2p�~x� � �at�2 D2Y ;

coincides with (15), i.e., is equal to the unconditional variance
of the momentum perturbation. Thus, in this example, the
apriori uncertainty of the object momentum has no influence
on the aposteriori state.

In the case shown in Fig. 1, the measurement acts as a
spatial filter and selects only particles whose positions are in
the domain wherec 0o�x� � 0. This looks as if all particles with
such positions had the same momentum before the measure-
ment. This statement does not contradict the uncertainty
relation because it describes the past, while the uncertainty
relation considers the present and the future.

Similarly to the previous example, this situation could be
erroneously considered as proving the statement that the
meter perturbs the momentum in accordance with relation
(2). The variance decrease in the aposteriori state could be
viewed as a consequence of the special initial state of the
object. However, under certain measurement conditions, the
variance of the object momentum can be equal to its initial
value. In other words, the meter can leave no trace of its
random dynamical influence.

Example 3. This time, we suppose that the function
ja�~xjx� is rectangular-shaped while the function co�x� is
bell-shaped:

ja�~xjx� �
1

�2l�1=2
; ÿl < xÿ ~x < l ;

0 ; otherwise ;

8<: �34�

co�x�

�
�
k

3p

�1=2ÿ
1� cos k�xÿ ~x�� ; ÿ p

k
4 xÿ ~x4

p
k
;

0 ; otherwise ;

8<:
�35�

where p=k < l. For j~xj < lÿ p=k, the aposteriori state is
identical to the apriori one. Despite the interaction with the
meter, which was in a state with D2Y � 1, corresponding to
D2
p p � 1, the variance of the object momentum has not

ja�~xjx�

~x

co�x�

x

Figure 1. Example 2 illustration.
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changed. True, the uncertainty of the position has not
changed, either.

But we next suppose that the initial wave function of the
object is a sequence of nonoverlapping identical bell-shaped
functions,

cN�x� �
1

cN�x�


1=2 X

N

m� 1

co�x�mL� ;

with L being the period and only a single `bell' being covered
by the meter function ja�~xjx� (Fig. 2). The aposteriori wave
function then consists of a single `bell', as in the previous
example.

The apriori uncertainty of the position is mainly deter-
mined by the distance between the first and the last `bells' of
the sequence, while the aposteriori one is given by the width of
a single `bell'. In this case, the measurement leads to a
decrease in the position variance. But what happens with the
momentum variance? It does not change!

Indeed, the mean momentum square calculated for the
sequence cN�x� is

h p 2
Ni �

1

kcNk
�1
ÿ1

��c 0N�x���2 dx � N

kcNk
� p=k

ÿp=k

��c 0o�x���2 dx
� 1

kcok
� p=k

ÿp=k

��c 0o�x���2 dx � h p 2
o i ;

where h p 2
o i is the meanmomentum square corresponding to a

single `bell' co�x�.
In this example, the fact that the momentum variance is

constant does not mean that the momentum distribution is
constant. The functionwo� p� for a single bell is smooth, while
the function wN� p� has a periodic modulation. The measure-
ment of the position has destroyed the quantum correlations
in the initial pure state. If the initial state were a mixture of
bell-shaped states, the aposteriori momentum distribution
would be the same as the initial one.

The absence of the fluctuation influence of the meter on
the aposteriori state of the object does not mean the absence
of any dynamical effect. In the state of the meter described by
(34), the mean value athY i of the back-action force is zero. If
one changes hY i without changing the absolute value of the
function ja�~xjx�, the mean momentum of the object in the
aposteriori state changes by athY i. (This is the difference
between the measurement considered here and the so-called
interaction-free measurement [23].)

The situation considered in this example can occur if the
position of a body is measured through the arrival time of a
reflected photon, the departure time of the photon having a
rectangular probability distribution w�t�. The picture looks
as if photons for which w�t� is flat had the same momenta.

A similar situation can occur if the phase of an oscillator is
measured by means of a position null detector accompanied
by the interaction of the oscillator with the meter in the
vicinity of zero position [24].

It is also worth noting that the variance fully characterizes
the distribution of an observable only for Gaussian states. In
other cases, using the momentum variance as a characteristic
of a state is justified by the fact that this variance determines
the minimal value of the mean kinetic energy of the object.

2.4.4 Relation between the aposteriori momentum variance and
the position measurement error. The relation between D2p�~x�
and �h2=�4D2

mx� has been studied in detail in Ref. [14]. As we
have seen, the aposteriori momentum variance D2p�~x� can be
less than the apriori one and can be equal to the momentum
perturbation variance. But can it be less than �h2=�4D2

mx�?
Mensky has shown that such a situation is possible (Fig. 3).
After the position measurement, the momentum variance
remains the same as in the initial state. As regards the value

D2
mx �

�
�~xÿ x�2 ��ja�~xjx�

��2 dx ;
for relatively low wings of the function ja�~xjx�, it depends
only on the width of its central part, which can be arbitrarily
small. Hence, the value of �h=�Dmx� can be larger than Dp�~x�.
However, the momentum variance for entangled state (24) is
equal to (14) and always exceeds �h2=�4D2

mx�.

3. Errors in the joint measurement
of position and momentum

A joint (simultaneous) measurement of two observables is
usually understood as a measurement in which two meters
simultaneously interact with the object. There are two
versions of the mathematical model describing such a
measurement for the position and momentum. In the first
version, one of the QRS's is directly sensitive to the position
and the other to themomentum [5, 6]. TheHamiltonian of the
interaction between the object and themeter is given by a sum

ja�~xjx�

~x

co�x�

x

Figure 2. Example 3 illustration.

ja�~xjx�

~x

co�x�

x

Figure 3. An example demonstrating that the aposteriori variance of the

object momentum can be less than �h2=�4D2
mx�.
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of two terms,

Ĥi � ÿax̂Ŷ� bp̂Ẑ :

In the other version, the measurement scheme involves
another degree of freedom (y; py) in the minimal-uncertainty
state (DyDpy � �h=2).

The interaction Hamiltonian is taken in the form

Ĥi � ÿa�x̂ÿ ŷ�Ŷ� b� p̂� p̂y�Ẑ : �36�

This enables converting the joint measurement of noncom-
muting variables x̂ and p̂ into the joint measurement of
commuting variables

Q̂ÿ � x̂ÿ ŷ ; P̂� � p̂� p̂y :

(A measurement of this kind is considered optimal in
Ref. [25].) Formally, the measurement accuracy for the
observables Q̂ÿ and P̂� is not limited. According to this, the
error limits of estimating x and p are equal to the
uncertainties of y and py.

In reality, joint measurements of noncommuting observ-
ables are performed in completely different schemes, which
do not correspond to the interactions introduced above. In
what follows, we consider some examples of such as a
homodyne measurement of quadrature amplitudes for a
radiation mode and a scheme of continuous position
measurement.

We first consider the features of standard schemes using
the example of a nonselective joint measurement of position
and momentum. (The state after the selective measurement in
the first scheme was studied in Refs [5, 6].)

3.1 Direct joint measurement of position and momentum
The total Hamiltonian of the object and the QRS in this
scheme is

Ĥ � Ĥo ÿ ax̂Ŷ� bp̂Ẑ� Ĥa;x � Ĥa; p ; �37�

where Ĥa; x, Ĥa; p and Ŷ, Ẑ are the Hamiltonians and the
position operators of the QRS that are sensitive to x and p,
respectively.

We assume that Ĥo � p̂ 2=2m. Hamiltonian (37) leads to
the equations

�a� dx̂

dt
� p̂

m
� bẐ ; �38�

�b� dp̂

dt
� aŶ ;

�a� dP̂y

dt
� 1

i�h
�P̂y; Ĥa; x� � ax̂ ; �39�

�b� dP̂z

dt
� 1

i�h
�P̂z; Ĥa; p� ÿ bp̂ :

In the instantaneous-measurement approximation �at 2 ! 0,
bt 2 ! 0�, their solutions are
�a� x̂�t� � x̂�0� � btẐ ; �40�
�b� p̂�t� � p̂�0� � atŶ ;

�a� P̂y�t� � P̂y�0� � at x̂�0� � 1

2
abt 2Ẑ ;

�41�
�b� P̂z�t� � P̂z�0� ÿ bt p̂�0� ÿ 1

2
abt 2Ŷ :

After Py�t� and Pz�t� have been measured, one can
estimate the position and momentum of the object at any
time instant. In particular, one can obtain their estimates
before the measurement �x�0�; p�0��, at the final moment of
interaction �x�t�; p�t��, and at the moment t=2
�x�t=2�; p�t=2��. If



Py�0�

� � 
Pz�0�
� � hY i � hZ i � 0,

then in all three cases, the estimate of the position, according
to the maximum probability method, is ~Py=at and the
estimate of the momentum is ~Pz=bt, where ~Py and ~Pz are the
results of the QRS momentum measurement. The estimation
errors are different.

Estimation errors for x�0� and p�0�. It follows from (41)
that the estimation error variances for x�0� and p�0� in the
approximation of the precise measurement for Py�t� and
Pz�t� are

�a� D2
m:s x�0� � D2

mx�
1

4
D2
px ; �42�

�b� D2
m:s p�0� � D2

m p� 1

4
D2
p p ;

where

D2
mx �

D2Py�0�
�at�2 ; D2

px � �bt�2 D2Z ;

D2
m p � D2Pz�0�

�bt�2 ; D2
p p � �at�2 D2Y

are the variances of the measurement errors and the
perturbation variances for separate measurements of posi-
tion and momentum. The second terms on the right-hand
sides of relations (42) appear due to the influence of the cross-
perturbation of the position by the momentum meter and the
cross-perturbation of the momentum by the position meter
on the measurement errors. After simple transformations of
the product D2

m:s x�0�D2
m:s p�0�, taking into account that

D2Py D
2Y5

�h2

4
; D2Pz D

2Z5
�h2

4
;

D2Py D
2Pz �

�
abt 2

2

�4

D2YD2Z5
1

8
�abt 2�2�h2 ;

we obtain

D2
m:s x�0�D2

m:s p�0�5
�h2

4
: �43�

The minimum is achieved at

D2YD2Z � �h2

�abt 2�2 : �44�

In principle, the second terms in (42) can be eliminated by
measuring in the QRS not Py�t� and Pz�t� but the combina-
tions

Q̂x � P̂y ÿ 1

2
abt 2Ẑ ;

Q̂p � P̂z � 1

2
abt 2Ŷ :

However, this cannot change relation (43). A joint precise
measurement of these combinations is impossible because
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they do not commute. On the right-hand sides of (42), D2
px

and D2
p p then appear instead of D2

mQx and D2
mQp.

Estimation errors for x�s� and p�s�. Relations (41) can be
represented in the form

�a� P̂y�t� � P̂y�0� � atx̂�t� ÿ 1

2
abt 2Ẑ ;

�45�
�b� P̂z�t� � P̂z�0� ÿ btp̂�t� � 1

2
abt 2Ŷ :

For the estimates that we consider, the variances are the same
as in (42). Their product,

D2
m:s x�t�D2

m:s p�t�5
�h2

4
; �46�

as expected, confirms the rule that one cannot prepare a state
contradicting the uncertainty relation.

The origin and physical meaning of relation (4). Setting
x1 � Py�t�=at and x2 � Pz�t�=bt, we obtain from Eqns (41)
that

D2x1 � D2
mx� D2x�0� ; D2x2 � D2

m p� D2p�0� :

After simple algebra, we find that

D2x1 D
2x2 5 �h2 :

This is the relation between the unconditional variances of the
measurement results in two QRS's.

Estimation errors for x�s=2� and p�s=2�. From (40) and
(41), it follows that

�a� P̂y�t� � P̂y�0� � atx̂
�
t
2

�
;

�47�
�b� P̂z�t� � P̂z�0� ÿ btp̂

�
t
2

�
:

The variances of the estimates

D2
m:s x

�
t
2

�
� D2Py

�at�2 ; D2
m:s p

�
t
2

�
� D2Pz

�bt�2

are not related to each other and can be arbitrarily small
simultaneously. This can be written as

D2
m:s x

�
t
2

�
D2
m:s p

�
t
2

�
> 0 : �48�

It turns out that a joint measurement of the position and
momentum can yield their exact values at the time instant
corresponding to the middle of the interaction interval. This
does not mean that one can prepare a state contradicting the
uncertainty principle. (In the framework of quantum
mechanics, one cannot obtain a correct result contradicting
its foundations.)

We note that at time t=2, the object is interacting with the
QRS, and according to (38), the operator p̂ � m _̂xÿmbẐ is
not equal to the momentum operator for the free object ( p̂ is
the generalized momentum operator in a coupled system). In
theoretical mechanics, the generalized momentum is defined
as the derivative of the Lagrangian with respect to the
velocity. Because the Lagrangian, in its turn, is defined up to
a full time derivative of an arbitrary function of the
coordinates, it is possible to redefine the generalized momen-
tum of the coupled system conjugate to the position x such

that it becomes equal to the kinematic momentum m _x.
However, the Hamiltonian and the corresponding equations
are then changed. For this redefined generalized momentum,
it is also impossible to precisely measure its value at the time
moment t=2.

We consider themeasurement error for the valuem _x�t=2�.
According to (38a),

m _x

�
t
2

�
� p

�
t
2

�
ÿmbZ :

Accordingly, the measurement error variance is

D2
m:s�m _x� � D2

m:s p

�
t
2

�
� �mb�2 D2Z

� D2Pz

�bt�2 � �mb�2D2Z5
�hm

t
:

The expression
�����������
�hm=t

p
is the so-called standard quantum

limit for the accuracy ofmomentummeasurement [26, 27]. As
t! 0, we obtain D2

m�m _x� ! 1. Hence, precise measurement
of the kinematic momentum at a time instant during the
interaction with the meter is impossible.

3.2 Joint measurement of position and momentum
by means of an ancillary degree of freedom
In the measurement scheme described by interaction Hamil-
tonian (36), the total Hamiltonian of the object, the ancillary
system, and the QRS interacting with them takes the form

Ĥ � Ĥo � Ĥy ÿ aQ̂ÿŶ� bP̂�Ẑ� Ĥa; x � Ĥa; p : �49�

Without the loss of generality, we can assume that
Ĥo � P̂ 2=2m and Ĥy � p̂ 2

y =2my.
In the instantaneous-measurement approximation

�at 2 ! 0, bt 2 ! 0�, the corresponding Heisenberg equa-
tions have the solutions

P̂y�t� � atQ̂ÿ � P̂y�0� ; P̂z�t� � btQ̂� � P̂z�0� ;
Q̂ÿ�t� � Q̂ÿ�0� ; P̂��t� � P̂��0� ;
ŷ�t� � ŷ�0� � btẐ ; p̂y�t� � p̂y�0� ÿ atŶ :

Measurement of P̂y�t� and P̂z�t� yields the estimates

~Qÿ �
~Py

at
; ~P� �

~Pz

bt
:

Their conditional variances are

D2
mQÿ �

D2Py�0�
�at�2 ; D2

mP� �
D2Pz�0�
�bt�2 :

From the estimates ~Qÿ and ~P�, we obtain the estimates

~x�0� � ~Qÿ �


y�0�� ; ~p�0� � ~P� ÿ



py�0�

�
;

~x�t� � ~Qÿ �


y�t�� ; ~p�t� � ~P� ÿ



py�t�

�
;

whose conditional variances are

D2
m:s x�0� � D2

mQÿ � D2y�0� ;
D2
m:s p�0� � D2

mP� � D2py�0� ;
D2
m:s x�t� � D2

mQÿ � D2y�t� ;
D2
m:s p�t� � D2

mP� � D2py�t� :
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The values D2
mQÿ and D2

mP� can be arbitrarily small
simultaneously. In this approximation, the product

D2
m:s x�0�D2

m:s p�0� � D2y�0�D2py�0�5 �h2

4

is the same as in (43) in the scheme of the direct joint
measurement of position and momentum.

The situation is much worse with the variances of the
estimates ~x�t� and ~p�t�. The product

D2
m:s x�t�D2

m:s p�t�5
9�h2

4
�50�

is nine times larger than its optimal value. This is because after
the precise measurement of Py and Pz, the object remains
entangled with the ancillary degree of freedom. This entangle-
ment can be eliminated by either precisely measuring one of
the observables y�t� and py�t� or performing their joint
measurement. After a precise measurement of y�t�, we have
D2
m:s x�t� � D2

mQÿ. Further, as D
2Py�0�=�at�2 ! 0, we have

D2
m:s x�t�D2

m:s p�t�5
�h2

4
:

The same result is obtained in the case of the joint
measurement of y�t� and py�t� with the errors satisfying the
relation D2

m:s y�t�D2
m:s py�t� � �h2=4.

Thus, a jointmeasurement of the position andmomentum
of an object using an ancillary degree of freedom provides the
optimal result, similarly to the direct measurement of the
position and momentum in the initial state �x�0�; p�0��.
However, as a procedure for preparing the state of the object
[measuring x�t� and p�t�], this scheme is far from optimal if it
is not accomplished by a measurement of the ancillary degree
of freedom.

In some papers, the product of apriori variances of the
observables Q̂ÿ�0� and P̂��0� is considered:

D2Qÿ�0�D2P��0�
� ÿD2x�0� � D2y�0��ÿD2p�0� � D2py�0�

�
5 �h2 : �51�

This relation is the analog of (4). However, it should be
stressed that relation (51) does not result from the non-
commutativity of the operators Q̂ÿ and P̂�. These operators
do commute. Relation (51) results from the independence of
the states of the object and the ancillary degree of freedom.

There have been no experimental realizations of joint
indirect measurements corresponding to Hamiltonians (37)
and (49). No realistic method of performing such a measure-
ment has been proposed, either. It is therefore interesting to
discuss the known practical schemes that do not correspond
to the standard joint measurement scheme but actually
provide simultaneous estimation of several noncommuting
observables. These are the scheme of homodynemeasurement
of observables for a single radiation mode and the scheme of
continuous position measurement.

3.3 Joint measurement of quadrature amplitudes
for a radiation mode
The classical quadrature amplitudes (QAs)

X1 � A cos y ; X2 � A sin y ;

defined as the real and imaginary parts of the complex
amplitude ~A � X1 � iX2, correspond in quantum optics to
the following operators of an oscillation mode:

x̂y � x̂ cos yÿ p̂ sin y �
�

�h

2

�1=2ÿ
ây exp �ÿiy� � â exp �iy�� ;

p̂y � p̂ cos y� x̂ sin y � i

�
�h

2

�1=2ÿ
ây exp �ÿiy� ÿ â exp �iy�� ;

x̂ �
�

�h

2

�1=2

�ây � â� ; p̂ � i

�
�h

2

�1=2

�ây ÿ â� ;

where ây and â are the creation and annihilation operators.
The commutator �x̂y; p̂y� � i�h corresponds to the commu-
tator of the position andmomentum operators. The phase y is
a classical value depending on the choice of the time origin (in
experiments, it is defined with respect to the phase of the
reference oscillator).

To measure QAs, one can use the heterodyne method [29]
or the homodyne method [30 ± 32]. In both cases, the object
under measurement is a wave incident on the detector during
the measurement time.

A joint measurement of xy and py was performed in
Ref. [30] using an eight-port (with four inputs and four
outputs) homodyne scheme. A simple homodyne scheme
consists of a �50 :50�-beamsplitter and two photodetectors
(Fig. 4) and hence has two input ports and two output ports.
The signal is fed to one of the input ports of the beamsplitter
and the reference wave having the same frequency is fed to the
other port.

The output modes of an ideal beamsplitter are related to
the input ones as

b̂1 � 1���
2
p ÿ

â1 exp �iy� � iâ2
�
; b̂2 � 1���

2
p ÿ

â2 � iâ1 exp �iy�
�
:

The photon number difference for the output beams is

N̂21 � b̂
y
1 b̂1 ÿ b̂

y
2 b̂2 � i

ÿ
â
y
1 exp �ÿiy�â2 ÿ â1 exp �iy�ây2

�
: �52�

Averaging the right-hand side of (52) over the coherent
state jai of the reference wave (having zero phase), we

a1

a2

b2

b1
N1

N2

Signal

Reference wave

BS

Figure 4.Homodyne measurement of quadrature amplitudes.
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obtain

ijajÿây1 exp �ÿiy� ÿ â1 exp �iy�
�

�
�
2

�h

�1=2

jaj p̂y �
�
2

�h

�1=2

hnLOi1=2 p̂y ;

where hnLOi is the mean number of the probe wave quanta
hitting the detector during the measurement time. Measuring
N21, we find the maximum-probability estimate:

~py �
�

�h

2

�1=2 ~N21

hnLOi1=2
:

The estimate variance depends on the amplitude and
phase variances of the reference wave. The conditional
variance of the difference number of quanta,

D̂NLO
21 � hajN̂ 2

21jai ÿ hajN̂21jai2 � âyâ ; �53�

is related to the amplitude and phase uncertainties of the
reference wave and depends on the state of the signal wave.
Correspondingly, the variance of the QA estimate is also an
operator:

D̂m py � �hD̂NLO
21

2hnLOi �
�hâyâ
2hnLOi : �54�

Practical optical homodyne schemes use laser radiation as
a reference. The laser radiation is called coherent, but this
does not mean that a single mode is in a pure coherent state
jai. For laser radiation, the phase variance is not constant; it
grows in accordance with the diffusion law. Phase diffusion
can be neglected compared with the phase uncertainty of the
coherent state only within a time interval tc satisfying the
inequality �Dtc�1=2 5 1=hni, where D is the phase diffusion
coefficient. For D � 103, tc 5 10ÿ3=hni2. Therefore, for
instance, in experiments on squeezed light generation, the
signal wave and the reference wave are obtained from the
same beam by splitting it [33]. In this case, both waves have a
random phase, but the influence of diffusion on the phase
difference of the signal and reference waves is substantially
reduced. (In real experiments, the measurement error is also
largely influenced by the quantum efficiencies of the detec-
tors.)

We note that even the usual homodyne scheme is in fact a
scheme for the joint measurement of noncommuting obser-
vables: a QA and the number of photons. The number of
photons for the signal wave can be estimated by subtracting
the mean number of photons in the reference wave from the
total number of registered photons. For such an estimation,
the error variance is equal to the photon number variance of
the reference wave hnLOi. Hence, the product of the QA
measurement error variance D2

m:s py � hDm pyi averaged over
the state of the signal field and the variance D2

m:s n of the
photon number measurement error is

D2
m:s py D

2
m:s n �

�h

2
hâyâi : �55�

This product essentially differs from the one entering the
uncertainty relation

D2py D
2n5

1

4

��hxyi��2 �56�

corresponding to the commutator � p̂y; n̂� � ÿix̂y.

A scheme for the joint measurement of two QAs is shown
in Fig. 5. First, both the signal and the reference waves are
split into two beams by two beamsplitters. Then one of the
secondary signal beams and one of the secondary reference
beams are sent to a homodyne detector. The other homodyne
detector registers the second signal beam and the second
reference beam, into which a phase shift of p=2 is introduced.
As a result, the first homodyne detectormeasures oneQA and
the othermeasures the other QA. The scheme performs a joint
measurement of two QAs for a single radiation mode. But in
contrast to the schemes described by Eqns (37) and (49), the
object (a wave) is here absorbed at the end of the measure-
ment.

This joint measurement of noncommuting variables has a
payoff: there is a fundamental limitation of the measurement
accuracy. The measurement has inevitable errors that are
caused by the vacuum fields entering the scheme through the
free ports of the signal and reference beamsplitters. As a
result, the signal and reference waves arrive to the homodyne
detectors together with the vacuum fields a01 and a02:

â11 � 1���
2
p ÿ

â1 exp �iy� � iâ01
�
; â22 � 1���

2
p �â2 � iâ02� :

The difference in the photon numbers on the photodetectors
is given by

N̂21 � i���
2
p �ây11â22 ÿ â11â

y
22� :

Averaging the right-hand side of this relation over the
coherent state for the reference wave and over the vacuum
state for â02, we obtain

1

2�h1=2
jaj� p̂y � x̂01� ;

where x̂01 � ��h=2�1=2�ây01 � â01� is the quadrature of the
vacuum field a01.

a2

a02

a21

l=4 plate

a12

a01

a11

a1

BS3

D2

D1

D3

D4

BS2 BS4

BS1

a22

Reference wave

Vacuum

Signal

Vacuum

Figure 5. Eight-port homodyne scheme for the joint measurement of

quadrature amplitudes.
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After measuringN21, one obtains the estimate for the sum
py � x01. The error of this estimate, similarly to (54), tends to
zero as the energy of the reference wave increases. The
variance of the py estimation error tends in this case to

D2
m:s py � hx̂ 2

01i5
�h

2
:

Similarly, the other half of the scheme provides the estimate
for the sum �xy � p02�. The limit of the estimation error of xy
is

D2
m:sxy � h p 2

02i5
�h

2
:

The product

D2
m:s py D

2
m:sxy 5

�h2

4
�57�

is the same as for schemes (37) and (49).
From the viewpoint of accuracy and simplicity, the eight-

port setup has no advantage over the usual homodyne
scheme. The eight-port setup has been developed not for the
measurement of QAs but as a scheme for the operational
definition of the sine and cosine phase difference operators
[28, 30]. A joint estimate for both QAs of a single mode of
optical radiation can also be obtained by means of the
heterodyne technique, with the same accuracy. The same
limiting accuracy can be achieved for a joint estimate of both
QAs of a harmonic oscillator by means of a continuous
position measurement.

4. Measurement errors and perturbation
for the continuous position measurement

A measurement involving a single QRS is only interesting
from the methodological standpoint. In real schemes, multi-
ple quantum readout systems are used, such as beams of
electrons or photons.

4.1 Classical characteristics of a continuous measurement
A real measurement of the position results in a sequence of
position estimates ~x�tj� taken at different times. Under certain
conditions, a discrete sequence can be represented by a
function ~x�t�. (One can use another representation of
continuous measurements [14].) The fluctuation back-action
force, which in the case of a single measurement corresponds
to the operator a�tÿ t0�Ŷ, in this case corresponds to the
operator

F̂b:a �
X
j

a�tÿ tj� Ŷj ;

whereYj is the position and tj is the time at which the jth QRS
starts interacting with the object. Each interaction has a finite
duration t.

For a single measurement, the approximate estimate ~x of
the position can be represented as the result of a precise
measurement of the observable ~̂x � x̂� x̂er, where x̂er is the
operator of error for a single measurement and x̂er � P̂�0�=at
in accordance with (11). Similarly, for a continuous measure-
ment, the function ~x�t� can be regarded as a result of a precise
measurement of the observable

~̂x�t� � x̂�t� � x̂er�t� ; �58�

where x̂�t� is the operator of the object position and x̂er�t� is
the operator of error for a continuous measurement of the
position.

In the continuous measurement regime, the object
position differs from its unperturbed value x̂0�t�. In a linear
system,

x̂�t� � x̂0�t� �
� t

0

F̂b:a�t 0�K�tÿ t 0� dt 0 ; �59�

where

K�tÿ t 0� � 1

i�h

�
x̂�t�; x̂�t 0��

is the Green's function of the object. (Other approaches to
the continuous measurement problem are considered in
Ref. [14].)

To quantitatively characterize the measurement error and
the back-action force, one uses the covariance functions

Bx�t1; t2� � 1

2


�
x̂er�t1�; x̂er�t2�

	�
;

BF�t1; t2� � 1

2


�
F̂b:a�t1�; F̂b:a�t2�

	�
;

BxF�t1; t2� � 1

2


�
x̂er�t1�; F̂�t2�

	�
:

In the case of stationary measurements, they correspond to
the spectral densities Sx�o�, SF�o�, and SxF�o� that satisfy
the relation equivalent to the uncertainty relation [17, 21, 34]:

Sx�o�SF�o� � D2Y�0�D2P�0�5 �h2

4
; �60�

and, taking the correlation into account [17, 21],

SF�o�Sx�o� ÿ jSxFj2 5 �h2

4
� �ho

��ImSxF�o�
��2 : �61�

In the approximation of instantaneous interaction
between separate quantum readout systems and the object,
correlation functions are d-shaped and the spectral densities
are frequency-independent. In this case, the error variance for
the measurement of the position averaged over time �t is

D2
m�x � D2

�
1

�t

� �t

0

x̂er�t� dt
�
� Sx

�t
:

The variance of the momentum perturbation during the same
time is

D2
p p � D2

�� �t

0

F̂b:a�t� dt
�
� SF �t :

The relation

D2
m�xD2

p p � SxSF 5
�h2

4

is the analog of relation (16).
The result ~x�t� of a continuous position measurement is a

classical object. To obtain the necessary information, one can
apply any number of classical transformations tor this result.
In the classical calculation, the only quantum limit is given by
relation (61).
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4.2 Errors in the joint estimation
of quadrature amplitudes for a harmonic oscillator
As an example, we consider the errors in the joint estimation
of quadrature amplitudes for a harmonic oscillator,

X̂1 � x̂�0� � x̂y

�mo�1=2
; X̂2 � p̂�0�

mo
� p̂y

�mo�1=2
;

where m and o are the mass and the frequency of the
oscillator. In this case, the function ~x�t� is a realization of
the random process

~̂x�t� � X̂1 cosot� X̂2 sinot

� 1

mo

� t

0

F̂b:a�t 0� sino�tÿ t 0� dt 0 � x̂er�t� : �62�

It is not only the randomness of xer�t� that hinders the
estimation of X1 and X2, but also the random perturbation
of the oscillator by the force Fb:a�t�.

The estimates for the quadrature amplitudes (QAs) have
been obtained in Ref. [17] using the classical method of
optimal estimation. The conditional variances for these
estimates are

D2
m:sX1 � D2

m:sX2 � �SxSF�1=2
mo

5
�h

2mo
: �63�

Their product

D2
m:sX1 D

2
m:sX2 5

�
�h

2mo

�2

� 1

4

��
�X̂1; X̂2�
���2 �64�

is similar to (57). (The estimates were calculated under the
condition that SxF � 0 and in the approximation
SF=Sxmo2 5 1, which means that the perturbation of the
oscillator position during a single oscillation period is
relatively small.)

Knowing the estimates for ~X1 and ~X2, one can estimate the
initial energy and phase of the oscillator:

~W � mo2

2
� ~X 2

1 � ~X 2
2 � ; ~j � ÿ arctan

~X1

~X2

:

For Dm:sX1; 2 5 hX1; 2i, the variances of the estimation errors
are

D2
m:sW � 2ohWi�SxSF�1=2 ;

�65�
D2
m:sj �

o
2hWi �SxSF�1=2 :

In the quantum limit,

D2
mW � �hohW i � ��ho�2hni ; D2

mj �
�ho

4hWi �
1

4hni : �66�

The product

1

��ho�2 D2
m:sX1 D

2
m:sW �

�hhni
2mo

is similar to (55).
Square roots of the limit measurement errors in (63) and

(66) are called the standard quantum limits (SQLs) of the
measurement errors for the corresponding observables of the

oscillator. (By definition, an SQL of a measurement error is
the limit mean square value of the estimate for some
observable calculated from the results of the position
measurement.)

We note the following. The time moment to which the
estimates of observables are related is not connected with the
beginning of the positionmeasurement. Estimation errors are
the same for the values of observables related to the
unperturbed state (before the measurement) and the current
state formed by the measurement.

4.3 The state produced via continuous
selective measurement
In practice, a continuous measurement is a rather dense
sequence of discrete measurements. Each measurement
reduces the state of the object. Between the measurements,
the object evolves without any interaction. In the instanta-
neous-interaction approximation, the change of the state is
described by means of reduction and free-evolution opera-
tors, which in turn act on the object starting from its initial
state. If separate measurements have little influence on the
state and the intervals between them are small, the discrete
variation of the state can be regarded as a continuous one.
The rate of the free evolution and the rate at which the state
changes due to reduction contribute to the rate of the state
variation with time [35]. The equation describing the time
variation of the state depends on the states of the quantum
readout systems and further measurements in them.

For a pure Gaussian state of the QRS, the reduction
operator corresponding to a single position measurement has
the form

R̂�~xj� � G exp

�
ÿ�xÿ ~xj�2

4D2
mx

�
;

where G is a normalization factor. After n measurements
takenwithin a time interval dt, the state is (without an account
for the evolution)

��c�t�� �Yn
j� 1

R̂�~xj�jc0i

� Gn exp

�
ÿ
X
j

�x̂ÿ ~xj�2
4D2

mx

�
jc0i

� B exp

�
ÿ
ÿ
x̂ÿ ~x�t��2n
4D2

mx

�
jc0i

� B exp

�
ÿ
ÿ
x̂ÿ ~x�t��2n dt

4D2
mx

�
jc0i ; �67�

where ~x�t� is the average number of counts in time dt, n is the
measurement rate, and B is a normalization factor.

The error variance of the position multiple measurement
during a time dt is related to the spectral density Sx of the
measurement error as

D2
mx

n dt
� Sx

dt
:

It follows from (67) that

d

dt

��c�t�� � ÿkÿx̂ÿ ~x�t��2 ��c�t�� ; k � 1

Sx
: �68�
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Adding a term corresponding to the free evolution to the
right-hand side of (68), we obtain the equation for the
variation of the state in the course of a continuous position
measurement. Its generalization to the case of an arbitrary
initial state of the object has the form

dr̂
dt
� 1

i�h
�Ĥ0; r̂� ÿ k

�ÿ
x̂ÿ ~x�t��2; r̂	 ; �69�

where r̂ is the density operator of the object.
Equation (69) was first obtained by Mensky [14] using a

different approach to the problem of continuous measure-
ments, namely, the method of restricted path integrals. The
approach discussed here was used earlier by Rembovsky [35],
who derived an equation taking the errors of measurement in
the QRS, correlations in the QRS state, and the degeneracy of
the QRS observables into account.

We note that Eqn (69) could be obtained with the
position operator replaced by the operator of any other
observable. Hence, the symbol x in (69) can denote any
observable. The state r̂�t� is a state after a selective
measurement and it corresponds to the record ~x�t� obtained
during the measurement. The function ~x�t� is a realization of
random process (62).

Solutions of Eqn (69), as well as of a more general
equation, have been studied in Ref. [36]. It was found that
regardless of the initial state, the state of the object tends to a
Gaussian one, with the position and momentum variances
being constant but the time dependence of the mean values
given by the realization functional ~x�t�. A special feature of
the state formed this way is the correlation between the
position and momentum.

Under ideal measurement conditions, which correspond
to Eqn (69), the quasi-stationary state of a harmonic
oscillator is a pure Gaussian state with the parameters

D2x � �h

2mo
;

D2p � �hmo
2

"
1�

�
�hk

mo2

�2
#
;

D2�xp� � �h2k

2mo
;

which satisfy the uncertainty relation

D2xD2pÿ D2�xp� � �h2

4
;

where m and o are the mass and the frequency of the
oscillator.

Continuous measurement of the position of a free particle
produces a pure Gaussian state with the parameters

D2x �
�

�h

4km

�1=2

; D2p � ��h 3km�1=2 ; D�xp� � �h

2
:

From the recorded results of the continuous measurement
of some observable, one can calculate the state of the object at
any time moment. As in the case of a single measurement, the
aposteriori state of the object depends on its initial state, the
state of theQRS, and the accuracy of theP�t�measurement in
the QRS.

5. Conclusion

The analysis presented above was focused on the measure-
ment error Ð perturbation relation and the relation between
the measurement errors of noncommuting variables.

The study of the standard scheme for the position
measurement has shown that relation (2) between the
position measurement error and the perturbation of the
object momentum results from the uncertainty relation for
the observables of the measurement device. In other words,
relation (2) is secondary with respect to the uncertainty
relation. This is why interpretation of the uncertainty
relation as a consequence of both the general principles of
quantum mechanics and the capabilities of measurement
devices is contradictory.

It is erroneous to understand relation (2) as stating that a
position measurement with an error D2

mx would always lead
to a D2

p p5 �h2=�4D2
mx� increase in the variance of the object

momentum compared to its initial value. An increase in the
momentum variance in accordance with (2) occurs only
during a nonselective measurement and in some special
cases of selective measurements.

For a selective measurement, the aposteriori momentum
variance is determined not by its apriori value and the
accuracy of the position measurement but by the aposteriori
state of the object, which depends on the apriori states of the
object and the meter and the measurement result ~x. For pure
initial states and a precise measurement in the meter, the
aposteriori wave functionc�xj~x� is equal to the product of the
initial wave function of the object co�x� and the meter
function ja�~xjx� [see (28)]. A selective measurement of the
position changes the state of the object as a spatial filter with
the transmission function depending on the state of the meter
and the measurement result.

With other conditions being permanent, the aposteriori
momentum variance depends on the measurement result and
can be larger or smaller than the initial one. In some cases, the
momentum variance of the object in the aposteriori state (a) is
independent of its initial value and the fluctuation back-
action of the meter; (b) can be less than �h2=�4D2

mx�.
It is only the unconditional momentum variance, i.e., the

momentum variance in the aposteriori state c�xj~x� averaged
over all ~x, that increases in accordance with relation (2).

In general, where an observable Â is measured with an
error DmA, an observable B̂ is perturbed by DpB, and the
commutator of Â and �Â; B̂ � � i�hĈ is an operator, the
product D2

mAD2
pB is essentially different from the corre-

sponding uncertainty relation and depends on the second-
ary commutators �. . . �Ĉ; Â�; Â� . . . ; Â� [see (22), (23)]. If
�Ĉ; B̂ � 6� �Ĉ; Â�, then the product of the measurement error
and the perturbation is not symmetric:D2

mAD2
pB 6� D2

mBD2
pA.

The relation between the errors of a joint measurement of
noncommuting observables has been investigated for both
commonly used models of position and momentum joint
measurement and other examples, such as the homodyne
measurement of quadrature amplitudes for a radiation mode
and the continuous position measurement.

In a standard joint measurement of position and momen-
tum, directly [described by Hamiltonian (37)] or with the help
of an ancillary degree of freedom [described by Hamiltonian
(36)], the variances of the measurement errors for the position
and momentum values before the interaction with the meter
�x�0�; p�0�� and after the interaction �x�t�; p�t�� satisfy
relation (3). The product of joint measurement errors for the
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position and momentum values taken in the middle of the
interaction with the meter depends on the definition of the
generalized momentum of the object. For Hamiltonian (37),
the estimate variances D2

m:sx�t=2� and D2
m:s p�t=2� can be

arbitrarily small simultaneously. However, the generalized
momentum is then not equal to the kinematic one:
p�t=2� 6� m _x�t=2�.

For a joint measurement of observables Â and B̂ whose
commutator is an operator, the product of error variances
differs from the value given by the corresponding uncertainty
relation, similarly to the product D2

mAD2
pB.

The eight-port homodyne scheme for the measurement of
QAs of a radiation mode, considered in Section 3.3 and
shown in Fig. 5, is an example of a measurement with an
ancillary degree of freedom. In this scheme, the errors of the
joint QAmeasurement for the initial mode satisfy relation (3).

A simple (four-port) homodyne scheme, which is usually
considered as measuring only QAs, is in fact a scheme for the
joint measurement of a quadrature amplitude and the photon
number. In the case of a coherent reference wave, the variance
in the QA estimation error has been shown to essentially
depend on the uncertainty of not only the amplitude of the
reference wave but also its phase. Therefore, the estimation
error for a single QA depends on the values of both QAs. As a
result, the variance of a QA estimation error is proportional
to the number of quanta in the signal wave [see (55)]. The
relation between the mean error variances for the joint
measurement of a QA and the number of quanta,

D2
m:s py D

2
m:sn5

�hhni
2

; �70�

is considerably different from the uncertainty relation for the
same observables.

Joint estimation of observables can be alternatively
performed by means of a continuous position measurement.
The estimates can be obtained from the realization ~x�t� in the
framework of the classical estimation theory. Their quantum
limits are determined by the quantum restrictions on the
fluctuation spectral densities in the meter. The relations
between the error variances for a joint estimation of QAs of
a harmonic oscillator and the number of quanta are the same
as in the homodyne scheme. The estimation error variances
correspond to the fact that any initial state of the object is
transformed into a Gaussian one with constant variances.

The author is much grateful to V B Braginsky and
F Ya Khalili, who took it upon themselves to read the paper
and made several valuable remarks.

This work was supported by the Russian Foundation for
Basic Research (project 03-02-16975a).

References

1. Heisenberg W Die physikalischen Prinzipien der Quantentheorie

(Leipzig: S. Hirzel, 1930) [Translated into English: The Physical

Principles of the Quantum Theory (Chicago, Ill.: The Univ. of

Chicago Press, 1930); Translated into Russian (Moscow: Gostekh-

teorizdat, 1932)]

2. Elyutin P V, Krivchenkov VDKvantovayaMekhanika s Zadachami

(Quantum Mechanics with Tasks) (Moscow: Nauka, 1976)

3. Dodonov V V, Man'ko V I Tr. Fiz. Inst. Akad. Nauk SSSR 183 200

(1987)

4. Louisell W H Radiation and Noise in Quantum Electronics (New

York: McGraw-Hill, 1964) [Translated into Russian (Moscow:

Nauka, 1972)]

5. Arthurs E, Kelly J L Bell Syst. Tech. J. 44 725 (1965)

6. Stenholm S Ann. Phys. (New York) 218 233 (1992)

7. Mandelstam L I Lektsii po Optike, Teorii Otnositel'nosti i Kvantovoi

Mekhanike (Lectures in Optics, Relativity Theory, and Quantum

Mechanics) (Moscow: Nauka, 1972) p. 325

8. Wichmann E H Quantum Physics (Berkeley Physics Course, Vol. 4)

(New York: McGraw-Hill, 1967) [Translated into Russian (Mos-

cow: Nauka, 1974)]

9. Blokhintsev D I Osnovy Kvantovoi Mekhaniki (Foundations of

Quantum Mechanics) (Moscow: Nauka, 1983) p. 75

10. Wigner E P Symmetries and Reflections: Scientific Essays (Bloo-

mington ±London: Indiana Univ. Press, 1970) [Translated into

Russian (Moscow: Mir, 1971), p.143]

11. Vorontsov Yu I Vestn. Mosk. Univ. Ser. 3. Fiz. Astron. (6) 7 (1998)

12. Vorontsov Yu IVestn. Mosk. Univ. Ser. 3. Fiz. Astron. (1) 24 (1999)

13. Vorontsov Yu I Opt. Spektrosk. 96 747 (2004) [Opt. Spectrosc. 96

679 (2004)]

14. Mensky M B Kvantovye Izmereniya i Dekogerentsiya. Modeli i

Fenomenologiya (Quantum Measurements and Decoherence.

Models and Phenomenology) (Moscow: Fizmatlit, 2001); Quantum

Measurements and Decoherence. Models and Phenomenology (Dor-

drecht: Kluwer Acad. Publ., 2000)

15. Robertson H P Phys. Rev. 35 667 (1930)

16. SchroÈ dinger E Izbrannye Trudy po Kvantovoi Mekhanike (Selected

Works in Quantum Mechanics) (Moscow: Nauka, 1976)

17. Vorontsov Yu I Teoriya i Metody Makroskopicheskikh Izmerenii

(Theory and Methods of Macroscopic Measurements) (Moscow:

Nauka, 1989)

18. Braginsky V B, Vorontsov Y I, Thorne K S Science 209 547

(1980)

19. Braginsky V B et al. Phys. Rev. D 67 082001 (2003)

20. Vorontsov Yu IVestn. Mosk. Univ. Ser. 3. Fiz. Astron. (4) 12 (1996)

21. Braginsky V B, Khalili F Ya Quantum Measurement (Cambridge:

Cambridge Univ. Press, 1992)

22. Korn G A, Korn T M Mathematical Handbook for Scientists and

Engineers 2nd ed. (NewYork: McGraw-Hill, 1968) [Translated into

Russian (Moscow: Nauka, 1978)]

23. Vyatchanin S P, Khalili F Ya Usp. Fiz. Nauk 174 765 (2004) [Phys.

Usp. 47 705 (2004)]

24. Braginsky V B, Khalili F Ya, Kulaga AA Phys. Lett. A 202 1 (1995)

25. Holevo A S Veroyatnostnye i Statisticheskie Aspekty Kvantovoi

Teorii (Probabilistic and Statistical Aspects of Quantum Theory)

(Moscow: Nauka, 1980) [Translated into English (Amsterdam:

North-Holland Publ. Co., 1982)]

26. Braginski|̄ V B, Vorontsov Yu I Usp. Fiz. Nauk 114 41 (1974) [Sov.

Phys. Usp. 17 644 (1975)]

27. Vorontsov Yu I Usp. Fiz. Nauk 164 89 (1994) [Phys. Usp. 37 81

(1994)]

28. Vorontsov Yu I Usp. Fiz. Nauk 172 907 (2002) [Phys. Usp. 45 847

(2002)]

29. Shapiro J H, Wagner S S IEEE J. Quantum Electron. QE-20 803

(1984)

30. Noh J W, FougeÁ res A, Mandel L Phys. Rev. A 45 424 (1992)

31. Mandel L Opt. Commun. 42 437 (1982)

32. Smithey D T et al. Phys. Scripta T48 35 (1993)

33. Bowen W P et al. J. Opt. B: Quantum Semiclass. Opt. 4 421 (2002)

34. Giffard R P Phys. Rev. D 14 2478 (1976)

35. Rembovsky Yu A Phys. Lett. A 297 300 (2002)

36. Rembovsky Yu A Phys. Lett. A 305 1 (2002)

October, 2005 Uncertainty relation and the measurement error ë perturbation relation 1013


	1. Introduction
	2. Measurement error--perturbation relation
	2.1 Some notions of the quantum theory of measurement
	2.2 Origins of the traditional measurement error--perturbation relation
	2.3 Relation between the measurement error of {\hat A} and the perturbation of {\hat B} in...
	2.4 Measurement error and perturbation in the case of a selective measurement

	3. Errors in the joint measurement of position and momentum
	3.1. Direct joint measurement of position and momentum
	3.2 Joint measurement of position and momentum by means of an ancillary degree of freedom
	3.3 Joint measurement of quadrature amplitudes for a radiation mode

	4. Measurement errors and perturbation for the continuous position measurement
	4.1 Classical characteristics of a continuous measurement
	4.2 Errors in the joint estimation of quadrature amplitudes for a harmonic oscillator
	4.3 The state produced via continuous selective measurement

	5. Conclusion
	 References

