
Abstract. This review outlines the principles of operation of
quantum computers and their elements. The theory of ideal
computers that do not interact with the environment and are
immune to quantum decohering processes is presented. Deco-
hering processes in quantum computers are investigated. The
review considers methods for correcting quantum computing
errors arising from the decoherence of the state of the quan-
tum computer, as well as possible methods for the suppression
of the decohering processes. A brief enumeration of proposed
quantum computer realizations concludes the review.
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1. Introduction

1.1 Classical and quantum devices
The main technical accomplishments of the XXth century are
inextricably entwined with the elucidation of the quantum
laws of the structure of matter. Laser technology is based on
the knowledge of quantum electronic spectra in gases,
semiconductors, and dielectrics. The quantum theory of the
band structure of electronic spectra in semiconductors under-
lies transistor physics. Nuclear power engineering relies on
the understanding of the quantum laws of atomic nuclear
structure.

Although the operation of lasers and transistors is based
on the use of the quantum properties of matter, these devices
nevertheless operate most often in the classical regime.
Indeed, the electron currents and the voltages across
transistor electrodes are classical quantities resulting from
averaging over a large ensemble of particles. Similarly,
coherent laser radiation is described by the laws of classical
electrodynamics.

The classical character of laser radiation stems from the
occurrence of a large ensemble of laser radiation photons. In
going over to a single-photon regime (single-atom lasers), a
laser becomes a quantumdevice in the sense that not only is its
operation based on quantum laws, but also its radiation is a
quantum object, for instance, a single photon. A transistor in
a single-electron regime may become a quantum device if the
electron dynamics is described by the quantum SchroÈ dinger
equation (the so-called ballistic transistor regime).

Therefore, one and the same device may operate both in
the classical regime and in the quantum regime. The notions
`a classical device' and `a device operating in the classical
regime' are to be considered identical. The operation of a
classical device is described by equations of classical physics
with classical variables.

The term quantum device is to be used in reference to a
device operating in the quantum regime. The quantum regime
implies that the dynamics of the device are described by the
SchroÈ dinger equation for the wave function. The arguments
of the wave function are quantum variables (coordinates,
momenta, particle spins). The wave function of a quantum
system has quantum coherence in the ordinary sense of the
capacity to manifest interference effects on combining
different components of the wave function. The coherence
property of the wave function describing a quantum device is
its most important distinguishing feature. We use the term
`quantum device' as a shortened version of the term
`quantum-coherent device'. 1

To date, all devices employed in practical human activities
have been classical. Nevertheless, the XXth century technical
revolution in informatics and power engineering can justifi-
ably be referred to as the first quantum revolution, so
indissolubly related is it to quantum physics. Now let us
imagine that we have overcome technological and other
difficulties standing in the way of the advancement of
quantum-coherent devices and have developed new-genera-
tion devices and technical systems that harness quantum

technologies in practical activity. This would be the imple-
mentation of the second quantum revolution [1].

The laws of classical and quantum physics exhibit
fundamental distinctions. Quantum-coherent devices and
quantum technologies are therefore expected to be categori-
cally different from classical devices and technologies of a
similar purpose. It would be of practical significance should
the dissimilarity between quantum devices and technologies
and their classical analogs imply their `advantages'. In other
words, quantum engineering and technology should be an aid
in overcoming the `limits' and restrictions inherent in classical
devices.

Theoretical analysis and experiments demonstrate that
such potentialities do exist. It is possible, for instance, to
overcome the diffraction resolution limit in quantum optical
microscopy and quantum optical lithography [2] and to
realize `perfectly secure' quantum communication lines
(quantum cryptography) [3]. In quantum metrology, it is
possible to raise the sensitivity of interference devices by
several orders of magnitude [2, 4]. For lack of space, these
interesting topics remain outside the scope of our review,
which is concerned with quantum computers and quantum
computations performed with their aid. Quantum computers
offer significant advantages over their classical counterparts
and may furnish solutions to problems that are reputed to be
insoluble with classical computers. The development of
quantum computers involves overcoming both technological
difficulties and the limitations arising from the decoherence of
the states of a quantum computer. These problems are
discussed in subsequent sections of this review.

The interest in experiments on quantum particle dynamics
was rekindled in the last quarter of the XXth century due to
the advent of radically new experimental techniques that
make it possible to retain single atoms, ions, and electrons,
cool them to ultralow temperatures (ranging down to
nanokelvins), transfer them, and, most importantly, control
their quantum dynamics. Techniques for confining charged
particles in electromagnetic traps have enabled increasing
their confinement time tomanyweeks, cooling the particles to
ultralow temperatures by lasers, and investigating their
spectra under extreme isolation conditions with the aim of
developing frequency and time standards.

The states of substances termed one-dimensional ionic
crystals have been realized in Paul traps [5]. Static and
alternating external electric fields prevent the chain of ions
in the trap from dispersing due to the Coulomb repulsion of
the ions. The fields can be selected such that the equilibrium
ion separation is equal to several micrometers, making it
possible to separately act upon every ion with, for instance, a
focused laser beam, to control the quantum evolution of the
ion state. This structure is a popular model for experiments
aimed at making one of the prototypes of a quantum
computer [6]. In the construction of this model, advantage
was taken of the progress in ultrahigh vacuum technology,
original electric traps, laser cooling, and laser control of
quantum dynamics.

A similar one-dimensional chain of phosphorus atoms 31P
can be embedded in the spinless dielectric crystal of 28Si
cooled to a temperature of the order of 1 mK [7]. The
quantum dynamics of the nuclear and electron spins of the
31P atoms can be controlled by pulsed nuclear and electronic
magnetic resonance techniques. Selective access to an
individual atom is achieved by tuning its resonance frequen-
cies by way of control of the electronic structure of the atom

1 This generates the necessity to clarify the content of the term `quantum-

electronics device'. This term is not equivalent to the term `quantum

device'. As shown above, a quantum-electronics device (a laser) may be a

classical device (the classical regime) as well as a quantum device (the

quantum-coherent regime). Inmodern optics, the description of quantum-

coherent effects and devices is singled out as the area of `quantum optics'.
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through electric fields across nanoelectrodes. Constructing
this structure calls for the development and use of the
methods of so-called atomic scale resolution nanotechnol-
ogy. Other proposals to make the elements of a quantum
computer involving a solid rely on the physics of low-
dimension electronic systems in semiconductors Ð two-
dimensional electron gas, electrons in quantum wires, and
quantum dots. These structures are fabricated by molecular
epitaxy and nanolithography.

1.2 Algorithms: their complexity classes
To solve a problem, a computer, be it classical or quantum,
performs a certain sequence of operations (instructions). The
description of this sequence of operations is called an
algorithm for the solution of the problem. The problem is
characterized by its dimension n equal, for instance, to the
number of binary digits in a number over which the algorithm
is executed. The algorithm is realized by some operation
circuit Nn, which depends on n; the circuit Nn�1 is obtained
from Nn by simple rules.

In the algorithm complexity theory for classical compu-
ters, the practice is to divide algorithms into the categories of
efficient and inefficient. An algorithm belongs to the class of
efficient ones if the circuitNn consists of a polynomial number
of operations O�nd�, where d � const and n is the dimension
of the problem. The time required for the execution of an
efficient algorithm increases polynomially with the dimension
of the problem: tn / nd. In this instance, the resource utilized
for solving the problem is the computer operation time.
Among other resources are the computer memory capacity
and (for a quantum computer) the accuracy of operation
execution. An efficient algorithm should utilize a polynomial
amount of resources that are limited. Efficient algorithms are
also termed polynomial (P class).

Efficient P-class algorithms can be contrasted with
inefficient ones, which require exponentially large resources
(of time, memory, and accuracy). For instance, if tn / 2 n, the
algorithm is classed with inefficient ones. An example of a
problem for which no efficient algorithm for solving with a
classical computer has been found is the task of calculating
prime factors for large n-digit numbers (the task of number
factorization). 2 The best-known probabilistic algorithm for
classical computers requires 2 a�n log2 n�1=2 operations [8].

In 1994, Shor constructed an algorithm for the solution of
this problem with a quantum computer, which turned out to
be of polynomial complexity: the requisite number of
operations is O

ÿ
n 2 log2 �log2 n log2 e

ÿ1��, where e is the
error per single computational operation [9]. Shor's result
was a sensation. It refuted the so-called Church ±Turing
thesis (empirical law), which states that all computers are
equivalent in the sense that changing from one computer to
another does not change the task complexity class. The thesis
was formulated for the ensemble of classical computers; the
thesis is broken when the ensemble comprises quantum
computers.

This result came as no surprise to physicists. Information
is not a purely mathematical concept. It has a physical carrier:
it is coded, stored, processed, transmitted, written, and erased
by changing the state of the information carrier. Information
is physical [10]. The existence of an intimate linkage between
physics and information comes to light when the thermo-

dynamic entropy in physics is compared with Shannon's
information entropy in information theory: they coincide up
to a constant factor.

The fundamental differences between classical and quan-
tum laws of physics underlie the fundamental differences
between classical and quantum information as well as
between the methods for processing them. The physical
information theory comprises the classical and quantum
information theories, and in a broader sense (with the
introduction of the corresponding technical means into the
concept) comprises classical and quantum informatics.
Among the remarkable achievements of classical informa-
tion theory is the solution of the paradox of the Maxwell
demon, which violates the second law of thermodynamics.
The paradox vanishes when one takes the properties of
information erasing into account [10]: erasing 1 information
bit is accompanied by the expenditure of the energy kT ln 2
and an increase in entropy by k ln 2 (Landauer's principle,
1961).

2. Qubits: properties
and mathematical description of states

2.1 Bits and qubits
The terms `bit' and `qubit' denote the units of classical and
quantum information, as well as classical and quantum
systems, that are carriers of 1 information bit (qubit).

In modern classical computers, there are memory bits,
which store information, and controllable bits in `circuits',
which process information. In the magnetic memory of a
computer, a bit is a magnetized region of a magnetic film: to
two magnetization directions there correspond the `0' and `1'
values of the information bit. The switching `0'! `1' or
`1'! `0' requires overcoming the energy barrier between the
two states of the film; it is the existence of the barrier that
ensures the reliability of information storage.

In the random-access memory of a computer, the
information carrier is a trigger transistor circuit. In the
memory cells described above, the states `0' and `1' are
separated by an energy barrier. Moreover, states with
minimal energy are attractors to which the system evolves
from the set of states surrounding an attractor. The reliability
of information storage in classical computers is ensured by
the existence of the energy barrier that separates the two
attractors representing the states `0' and `1'.

An example of a controllable bit employed in information
processing systems in computers (processors) is provided by
an inverter built around two transistors (Fig. 1). In the
inverter, the input voltage Vin `controls' the voltage Vout at

2 The proof that an efficient algorithm for the solution of this problem is

nonexistent has not been found.

Vin

V

Vout

n channel

p channel

a Vout

Vin

1 2

3

4 5

b

Figure 1. Classical inverter circuit involving two field transistors (a) and

the transfer function of the inverter (b). The states `0' and `1' at the input

�Vin� and output �Vout� are coded with the values of electric voltage.
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the output: if Vin corresponds to the value `0' (`1'), Vout

corresponds to `1' (`0'). The inverter performs the logical
NOT operation. In this case, use is made of the nonlinear
functional relation

Vout � f �Vin� ;
which is defined by transistor properties and their coupling in
the system.

The basis element of a quantum computer (the carrier of
quantum information) is a quantum bit Ð a qubit. In
quantum communication systems, information is trans-
mitted by the physical transfer of a qubit Ð the information
carrier Ð or by teleportation of the quantum state of the
qubit.

For a qubit, one can select any quantum system with two
states characterized by orthonormal wave functions jj0i and
jj1i. A convenient example of a qubit is the nuclear (or
electron) spin I � 1=2, with two energy levels in a constant
external magnetic field B,

E0 � ÿ 1

2
�hgB ; E1 � 1

2
�hgB ;

corresponding to the spin directions along the field or
opposite to it (Fig. 2). The wave functions

jj0i �
����Iz � 1

2

�
; jj1i �

����Iz � ÿ 1

2

�

are the eigenfunctions of the operator of the total spin energy
in the magnetic field B:

H � ÿIz�hgB :

Another example of a qubit is the Ca2� ion as a part of a
one-dimensional ionic crystal. The energy level diagramof the
Ca2� ion is given in Fig. 3. The 4 2S1=2 sublevel can be selected
for the j0i qubit state and the 3 2D5=2 sublevel of the excited
metastable ion state for j1i. Electric dipole transitions
between the S and D levels are forbidden and electric
quadrupole transitions are allowed, such that the lifetime of
the Ca2� ion in the D state amounts to 1 s.

Attention is drawn to the fact that there is no energy
barrier between the j0i and j1i qubit states: the j1i state is
unstable with respect to transition to the j0i state. Other Ca2�

ion states (except for the qubit states) are auxiliary in the
organization of qubit dynamics, for instance, in the cooling of
the qubit and the measurement of its state [5]. The
4 2S1=2 $ 3 2D5=2 transitions (the qubit dynamics) are con-
trolled by laser pulses at the transition frequency. The laser
beam is focused on a single ion in the ion crystal [5].

There are also other versions for selecting the qubit states.
When the ground state of an ion is degenerate with respect to
spin S � 1=2, it splits into two spin sublevels j � 1=2i in a

constant magnetic field B, and these can be adopted as the j0i
and j1i qubit states. The j � 1=2i $ j ÿ 1=2i transitions can
be controlled by the combined action of the fields of two
lasers tuned to operate by the so-called Raman scheme. The
laser frequency difference in theRaman scheme is equal to the
frequency of the transition between the j � 1=2i sublevels: the
higher-frequency photon (of the pump laser) is absorbed in
the transition from the j0i level to an intermediate virtual
energy level near an auxiliary level j2i, and at the lower
frequency of the Stokes laser, there occurs stimulated
emission of a photon in the transition from the virtual level
to the j1i level.

Orbital electron states in quantum wells or quantum dots
are selected for qubit states in other popular realizations. The
`0' and `1' electron states in quantumdotsmay be selected by a
potential barrier, as in the realization of a classical bit.
Nevertheless, in the quantum case, the `1' state remains
unstable with respect to the `1'! `0' decay due to the
possibility of a tunnel transition through the barrier. Laser
pulses control the qubit dynamics via excited electron energy
levels [11].

Considerable interest is attracted to qubit realizations
involving superconducting structures. In a charge super-
conducting qubit, the j0i and j1i states correspond to the
absence and presence of the charge of a single Cooper pair in a
metallic superconducting quantum dot [12]. The j0i and j1i
qubit states in a SQUID (a superconducting ring with
Josephson junctions in a magnetic field) correspond to
oppositely directed superconducting currents [13].

A large number of experiments have been performed on a
single-photon qubit. Any two photon states with orthogonal
polarizations may be selected as the j0i and j1i qubit states.
The adoption of two photon states that differ by p in phase is
also possible. Systems of photon and atomic qubits in a
resonator make up the basis system for experiments in the
branch of quantum optics called cavity quantum electro-
dynamics (cavity QED) [14].

2.2 A qubit in the Hilbert vector space of states
In the foregoing, we adduced examples of two orthonormal
states of different quantum systems selected as the basis j0i
and j1i qubit states. Any qubit state jji normalized to unity
can be expanded in terms of this basis:

jji � aj0i � bj1i ; jaj2 � jbj2 � 1 : �1�

E1 j1i � j1�ÿ1=2�

j0i � j0�1=2�
E0

Figure 2. Schematic of a quantum bitìa qubit. The logical qubit states j0i
and j1i correspond to the energy eigenfunctions of the spin I � 1=2 or the
projection Iz in a constant magnetic éeld B.

4 2P3=2

3 2D5=2

3 2D3=2

4 2P1=2

4 2S1=2

397 nm
7.7 ns

866 nm
94 ns

729 nm
1.0 s

Figure 3. Schematic of a qubit in the system of energy eigenvalues and

eigenfunctions of the Ca2� ion. The states j4 2S1=2i � j0i and

j3 2D5=2i � j1i are selected as the qubit states. The j1i!j0i spontaneous
decay proceeds slowly (in 1 s).
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State (1) expresses the superposition principle of quantum
mechanics as a linear theory: if the states j0i and j1i are
solutions of the SchroÈ dinger equation for the system, any
superposition of these solutions is also a solution of the
equation.

The set of state vectors jjimakes up the two-dimensional
Hilbert vector space of a qubit. The components of two-
dimensional vectors j0i, j1i, and jci are written in the form of
columns:

j0i � 1
0

���� ���� ; j1i � 0
1

���� ���� ; jci � a
1
0

���� ����� b
0
1

���� ���� � a
b

���� ���� : �2�

The states j0i and j1i are basis vectors in the two-dimensional
Hilbert space of the qubit. The jci projections on the basis
vectors are equal to the amplitudes a and b in the super-
position:

h0jci � a ; h1jci � b :

Generally, the amplitudes a and b are some complex
numbers:

a � jaj exp �ija� ; b � jbj exp �ijb� :

Then,

jci � exp �ija�
�jaj � jbj exp ÿi�jb ÿ ja�

��
:

The common phase factor exp �ija� has no effect on the
results of qubit state measurements, and the phase ja may
have an arbitrary value. Hence, it follows that the jci vector is
defined by two real parameters, for instance jaj and
�jb ÿ ja�. The values of jaj2 and jbj2 � 1ÿ jaj2 are deter-
mined bymultiple measurements, in the basis j0i, j1i, over the
qubit ensemble prepared in the jci state, and are defined as
the probabilities of the measurement results:

p
ÿj0i� � jaj2 ; p

ÿj1i� � jbj2 :
The phase difference �jb ÿ ja� of the amplitudes may be
determined from interference-type experiments (see below).

The transformations of the vector

jci � a
b

���� ����
to the vector

jc 0i � a 0
b 0

���� ����
are single-qubit quantum operations in quantum computa-
tions. Geometrically, this transformation is the rotation of
the vector

jci � a
b

���� ����
until it coincides with the vector

jc 0i � a 0
b 0

���� ���� :

The rotation operator U is a unitary 2� 2 matrix,

a 0
b 0

���� ���� � U�2� 2� a
b

���� ���� :
From the general form of the matrix

U � c exp �ÿia� ÿt exp �ib�
t exp �ÿib� c exp �ia�

� �
;

where c, t, a, and b are real numbers, we conclude that it is
unitary if c 2 � t 2 � 1.

The rotation of a vector in theHilbert space is continuous:
in its rotation by a finite angle, the vector jci goes through a
continuous sequence of intermediate orientations. Thematrix
of rotation by a finite angle is an ordered product of the
matrices of rotation by infinitesimal angles [15]. The con-
tinuity of transitions is the distinctive feature of quantum
mechanics, which underlies its axiomatic formulation [16].

A qubit `exists' simultaneously in the abstract two-
dimensional Hilbert space and in the three-dimensional
Euclidean space. (A similar statement applies to a quantum
computer as an ensemble of qubits.) Computational opera-
tions are performed in the Hilbert space as the transforma-
tions of the state vector:

jc 0i � U�2� 2� jci :

The physical processes in the quantum system selected for the
qubit must be simultaneously described in the three-dimen-
sional Euclidean space. In the laboratory frame of reference
Oxyz, we should be able to perform physical operations that
result in the desired transformationU of the qubit state vector
in the Hilbert space. This task is solved by the following
theorem [15].

The matrix of an arbitrary unitary qubit transformation
U in theHilbert space can be represented as a product of three
matrices describing the rotation of the state vector,

U � exp �ia�Rn�b�Rm�g�Rn�d� ;

where n and m are two nonparallel unit vectors in the system
of coordinates Oxyz and Rn�y� is the matrix (operator) of
rotation about the axis n by an angle y.

In the context of a real experiment, the n- and m-axes are
conveniently superposed on the axes of the system of
coordinates Oxyz. Then zy- and xy-expansions are possible
[15]:

U � exp �ia�Rz�b�Ry�g�Rz�d� �zy-expansion� ; �3�
U � exp �ia�Rx�b�Ry�g�Rx�d� �xy-expansion� :

The matrices of rotation about the x, y, and z axes have the
form [15]

Rx�j� � c ÿis
ÿis c

� �
;

Ry�j� � c ÿs
s c

� �
; �4�

Rz�j� � c� is 0
0 cÿ is

� �
;
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where c � cos �j=2� and s � sin �j=2�. We substitute the
rotation matrices Rz, Ry into the zy-expansion and multiply
the matrices to obtain

U � exp �ia�

�
cos

g
2
exp

�
ÿi b� d

2

�
ÿ sin

g
2
exp

�
ÿi bÿ d

2

�
sin

g
2
exp

�
i
bÿ d
2

�
cos

g
2
exp

�
i
b� d
2

�
0BBB@

1CCCA : �5�

In the Hilbert space, we specify the transformation U by
the matrix

U � exp �ia� a exp �ÿiu� ÿb exp �iv�
b exp �ÿiv� a exp �iu�

� �
�6�

and require that matrices (5) and (6) be identical, and then

a � cos
g
2
; b � sin

g
2
; d � u� v

2
; b � uÿ v

2
: �7�

Therefore, an arbitrary transformation of the qubit state
vector with parameters according to expression (6) may be
executed as successive rotations of this vector about the z, y,
and z axes of the laboratory system of coordinates by the
angles d, g, and b according to expression (7).

The rotations Rx�y�, Ry�y�, and Rz�y� of the qubit state
vector jji are considered elementary single-qubit computa-
tional operations. They should be related to the parameters of
the physical fields that control the dynamics of the quantum
system selected as the qubit. For instance, in the case of the
I � 1=2 spin qubit, the rotation of its state vector in the
magnetic field

B � B0z� B1x cos �ot�

(where gB0 � o0 and gB1 � O) is described by the equation
[15]��j�t�� � exp

�
i

�
oÿ o0

2
Z� OX

�
t

���j�0�� : �8�

Here, Z and X are the Pauli matrices and z and x are the unit
vectors along the z and x axes of the system of coordinates
Oxyz.

Equation (8) corresponds to the rotation of jji about the
axis

n � z� lx

�1� l2�1=2

by the angle

y � Ot
�
1� 1

l2

�1=2

; l � 2O
o0 ÿ o

:

Exactly at resonance �o � o0�, the axis of rotation n of the
vector jji coincides with the x axis and the angular velocity of
rotation with the so-called Rabi frequencyO (see Section 3.6):

n � x ; y � Ot :

For routine single-qubit operations in quantum computa-
tions, use is quite often made of state-vector transformations

expressed in terms of the Pauli matrices:

Rx�p� � X � 0 1
1 0

� �
;

Ry�p� � Y � 0 ÿ1
1 0

� �
; �9�

Rz�p� � Z � 1 0
0 ÿ1

� �
:

The matrix of the transformation involving a phase
change of the state vector (a phase gate) is of the form

U�j� � 1 0
0 exp �ij�

� �
; �10�

and the Hadamard transformation matrix is

H � 1���
2
p 1 1

1 ÿ1
� �

� 1���
2
p �X� Z� : �11�

It is easily verified that

X
a
b

���� ���� � b
a

���� ���� � NOT
a
b

���� ���� ; Z
a
b

���� ���� � a
ÿb
���� ���� ;

U�j� a
b

���� ���� � a
b exp �ij�
���� ���� ;

Hj0i � H
1
0

���� ���� � 1���
2
p ÿj0i � j1i� ;

Hj1i � H
0
1

���� ���� � 1

2

ÿj0i ÿ j1i� :
Up to a common phase factor, X � NOT � Rx�p�: the NOT
negation operation is executed by the rotation of the qubit
state vector about the x axis by the angle p.

We also give the definition of the scalar product of the
vectors jjii � aij0i � bij1i and jjji � ajj0i � bjj1i:
hjjjjii � a �j ai � b�j bi :

Geometrically, it defines the `angle' y between the vectors:

cos y � hjjjjii :

The state of the qubit jji � aj0i � bj1i can be mapped
onto a point on the surface of the three-dimensional unit
Bloch sphere in Euclidean space. The spherical coordinates y
and j of a point on the surface of the sphere are related to the
amplitudes a and b by

cos
y
2
� a ; exp �ij� sin y

2
� b

(the amplitude a can be treated as a real number owing to the
unobservability of the common phase). This bijective corre-
spondence implies the isomorphism of rotation groups in the
two-dimensional Hilbert space and the three-dimensional
Euclidean space:

SU�2� ' SO�3� :

2.3 Quantum coherence of state vectors
The states of a quantum system described by the vectors of
state jci are called pure. Pure and mixed states of quantum
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systems are fundamentally different on the basis of coherence:
the pure states are coherent and the mixed states are
incoherent.

The concept of coherence in quantum physics is defined
similarly to the concept of coherence in optics: the wave
functions (state vectors) of quantum-coherent systems have
the interference capability. The famous experiment in the
observation of electron diffraction from two slits is actually
an experiment in the revelation of the quantum coherence of
the orbital wave function

��c�r�� of a free electron. We
demonstrate the coherence of the wave function of a single
photon with a Mach ±Zehnder interferometer [14]. The
interferometer is schematically shown in Fig. 4.

The wave function of a photon incident on a beamsplitter
BS1 horizontally (vertically) is assumed to be the basis state
j0i �j1i�. The 50=50 beamsplitter reflects or transmits photons
with equal amplitudes 1=

���
2
p

. In the interferometer, the
reflected and transmitted photons are permitted to propa-
gate along different paths, i.e., the photon acquires a new
degree of freedom.

We introduce new basis photon states j0i and j1i
corresponding to the motion along two possible paths. With
the p=2 phase difference between the reflected and trans-
mitted waves, the beamsplitter BS1 performs the transforma-
tions of the states j0i and j1i at the beamsplitter input

j0iÿ!BS1 1���
2
p ÿj0i � j1i� ; j1iÿ!BS1 1���

2
p ÿj0i ÿ j1i� ; �12�

which are equivalent to the Hadamard transformation

H � 1���
2
p 1 1

1 ÿ1
� �

:

We consider the interference in a Mach ±Zehnder inter-
ferometer for an incoming photon in the j0i state:

j0iÿ!BS1 1���
2
p ÿj0i � j1i� ÿ!PS�j� 1���

2
p ÿj0i exp �ij� � j1i�

� 1���
2
p exp

ij
2

�
j0i exp ij

2
� j1i exp

�
ÿ ij

2

��
: �13�

A beamsplitter BS2 subjects the states j0i and j1i in
expression (13) to the Hadamard transformation again. As a
result, we obtain the photon wave function at the output of
the beamsplitter BS2:

1

2
exp

ij
2

�
exp

ij
2

ÿj0i� j1i�� exp

�
ÿ ij

2

�ÿj0iÿ j1i��
� exp

ij
2

�
j0i cos j

2
� j1ii sin j

2

�
: �14�

The interference of the coherent wave functions transmitted
by the two interferometer arms determines the photon
detection probabilities at the detectors:

p0 � cos2
j
2
� 1� cosj

2
; p1 � sin2

j
2
� 1ÿ cosj

2
: �15�

The interference of state amplitudes is a typical process in
quantum computations. We demonstrate it by the example of
a simple computation with two qubits in the initial state j00i
(the first and second zeroes correspond to the states of the first
and second qubits). The computations consist in the
H1H2H1NOT1 operation sequence:

j00i ÿ!NOT1 j10iÿ!H1 1���
2
p ÿj01i ÿ j11i�j02i

ÿ!H2 1

2

ÿj01i ÿ j11i�ÿj02i � j12i�
ÿ!H1 1

2
���
2
p �j00i�1ÿ 1� � j10i�1� 1�

� j01i�ÿ1� 1� � j11i�1� 1�� : �16�

The sums of the amplitudes in the j00i and j01i states are zero
because the amplitudes interfere destructively, while the
interference of the amplitudes in the j10i and j11i states is
constructive.

3. Principles of design and operation
of an ideal quantum computer

3.1 An ideal quantum computer
A quantum computer is diagrammed in Fig. 5. The quantum
computer is actually a register of n qubits controlled by
external (classical) signals. The quantum computer is
embedded in a classical environment, which consists of a
controlling classical computer and a pulse generator, which
control the evolution of the qubits, as well as the devices for
measuring the qubit states. Other registers (ancillas), which
play an auxiliary role, may be added to the register n in the
course of computations.

j0i
j0i

j1i

BS1

BS2

M1

M2

D0

D1

PS(j)

j

Figure 4. Schematic of photon interference in the Mach ±Zehnder

interferometer: BS1, BS2 Ð 50=50 beamsplitters; M1, M2 Ð mirrors;

PS�j� Ð phase shifter; D1, D2 Ð single-photon detectors. Interference

reveals the quantum coherence of the photon state.

Execution
of the algorithm

cf � U�2n � 2n�cin

Measure-
ment of
register

qubit states

Control of qubits
by classical devices

j0i1
j0i2

j0in

Solution
of the
problem

Figure 5. Schematic of a quantum computer.
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A quantum computer whose states are always coherent is
termed ideal. This implies, first, that the computer does not
interact with an environment that produces noise and
disturbs the coherence of the computer state vector (decoher-
ing action); second, external signals execute accurate control
in an ideal computer.

The state vector jci of the quantum register of n qubits is
decomposed with respect to 2 n basis states of the register
ji1 . . . ini, i1; . . . ; in � f0; 1g:
jci �

X
i1 ;...; in

ai1;...; in ji1 . . . ini : �17�

Here, the superposition jci is a vector in the 2 n-dimensional
vector space, ji1 . . . ini are the 2 n basis vectors (unit vectors) of
this space, and ai1;...; in are the projections of the vector jci on
the directions of the unit vectors ji1 . . . ini. Everything that can
be known about the physical system is contained in its state
vector jci. All that can be done with the system is to
transform its initial state vector jcini to another vector jcfi.
That is why the process of computation by a quantum
computer is considered as the transformation of the initial
computer state vector jcini to the final state vector jcfi by
multiplying the jcini vector by the unitary matrix U of size
2 n � 2 n:

jcfi � U�2 n � 2 n� jcini : �18�

It is conveniently assumed that all qubits reside in the state
j0i in the initial state of the computer:

jcini � j01 . . . 0ni :

This operation is termed initialization. The state j01 . . . 0ni
can be obtained by cooling qubits to ultralow temperatures or
by measuring and controlling the qubit states. The algorithm
for problem solving is embodied in the transformation matrix
U�2 n � 2 n�. Classical information on problem solving is
embodied in the final state vector jcfi; it should be obtained
by measuring the qubits.

Solving a problem with a quantum computer requires
making the necessary quantity of qubits, initializing them,
controlling their quantum evolution, effecting the transfor-
mation Ujcini, and measuring the qubit states described by
the vector jcfi � Ujcini. We address this later and now
consider the issue of the resources of a quantum computer
that offer advantages over a classical computer.

We analyze the resource of a quantum computer on the
basis of Eqn (18) of computer operation. We first introduce a
more economical notation for the state vector jci. The basis
state ji1 . . . ini is an n-digit binary number jxi whose digits
coincide with the numbers i1; . . . ; in � f0; 1g. In this notation,

jci �
X2 nÿ1

x� 0

axjxi :

The superposition jci contains 2 n terms, which are the
decomposition of the jci vector in terms of the basis
functions jxi, 04 x4 2 n ÿ 1. A limited physical resource,
i.e., a small number n ' 103 of particles (qubits) creates an
exponentially large 2 n � 21000 ' 10300 mathematical infor-
mational resource in a quantum computer. The major
advantages of the quantum computer stem precisely from
this circumstance.

A consequence of the superposition principle is the
2 n-fold quantum parallelism of computations. Indeed, chan-
ging the state of only one qubit rearranges the entire
superposition. (Because the set of basis functions jxi is
constant, all the 2 n projections ax of the vector jci are
rearranged.)

We compare these facts with the potentialities of the
register of a classical computer. The classical register of n
bits may reside in only one of 2 n states, because it does not
obey the superposition principle. The classical register state is
one-dimensional. Changing the state of one bit transfers the
register to another one-dimensional state (close in value). The
resources of a classical computer are exponentially small in
comparison with those of a quantum computer. The Hilbert
space of the states jci is the state of complex numbers. This
implies that the amplitudes ax in the decomposition
jci �P axjxi are complex numbers:

ax � jaxj exp �ijx� :

In the addition of the vectors

jci � jc 0i �
X
�ax � a 0x� jxi

there occurs interference of quantum amplitudes, which we
demonstrated by the example of a Mach ±Zehnder inter-
ferometer for one qubit:

ax � a 0x �
�ÿjaxj � ja 0xj� cosjÿx
� i
ÿjaxj ÿ ja 0xj� sinjÿx � exp �ij�x � ; �19�

j�x �
jx � j 0x

2
:

In the course of quantum computation, the amplitude
interference takes place everywhere and automatically. That
is why some authors perceive a quantum computer as a
sophisticated interferometer for the amplitudes of the state
vector of the quantum computer.

This brings up the question: Is there a way to harness the
effect of electromagnetic wave interference for effecting
quantum computation? In other words, are optical compu-
ters the analogs of quantum computers? We compare the
optical wave superposition with the superposition of state
vectors in the quantum computer:

Xl
j� 1

Ej �
Xl
j� 1

aj sin �ot� jj� ; �20�

Xl
j� 1

jcji �
Xl
j� 1

X2 nÿ1

x� 0

a � j �x jxi �
X2 nÿ1

x� 0

�Xl
j� 1

a � j �x

�
jxi : �21�

In an optical computer, there occurs a one-fold inter-
ference of the optical modesEj; in a quantum computer, there
occurs a 2 n-fold interference of the amplitudes for every
vector jxi, 04 x4 2 n ÿ 1. The state vector of a quantum
computer contains both digital �jxi� and analog �ax� informa-
tion; an optical computer contains only analog �Ej� informa-
tion. An optical computer cannot model quantum computa-
tions: it should be classified with classical analog computers.

3.2 The quantum computer Ð
an analog-controlled digital computer
Analyzing the equation jcfi � Ujcini for a quantum compu-
ter allows one to determine the principle of operation and
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control of the quantum computer. The state jcini � j01 . . . 0ni
contains no information of either the problem or the methods
of its solution. All the information about the problem to be
solved and the algorithm for its solution is carried by the
transformation matrix U. Lastly, the final state vector

jcfi �
X2 nÿ1

x� 0

a �f�x jxi

contains the information about the solution of the problem.
This information can be gained bymeasuring the state of each
of n computer qubits in the state jcfi, using the basis j0i, j1i
for measuring. Upon measuring, we obtain any of the values
04 x4 2 n ÿ 1 with the probabilities ja �f�x j2, as is evident
from the general principles of quantum physics.

How can different numbers x represent the solution of a
problem when the solution has to be unique? This is so,
indeed; only one value jsi is the solution, the remaining values
jxi 6� jsi are erroneous. For the idea of a quantum computer
to be of physical significance, the quantum algorithm should
lead to a state jcfi such that the probability of finding the
correct solution is ps � jasj2 ' 1, while the sum of the
probabilities of all erroneous solutions is small:X

x 6� s

jaxj2 5 1 :

All quantum algorithms invented to date have this property.
Therefore, a quantum computer yields a digital solution of
the problem s with a certain probability, i.e., is a digital
probabilistic computer.

We now reveal the method of controlling a quantum
computer. In the course of quantum computation, the initial
state vector jcini �

P
x a
�in�
x jxi is transformed into the final

vector jcfi �
P

x a
�f�
x jxi via a continuous sequence of states.

The basis set of states jxi remains invariable. The dynamics
of the state of the computer are reflected in the time
dependence of the amplitudes ax�t�, which constitute analog
quantities taking a continuous sequence of values in the
interval 04 jaxj4 1. To control the computer means
controlling the ax�t� processes, i.e., a quantum computer is
an analog computer with regard to the means of control.

This combination of properties Ð an analog means of
control and the probabilistic nature of presentation of the
digital solution Ð is inherent in none of the classical
computer types. A quantum computer looks like a Mino-
taur in the realm of computers, combining the properties of
analog and digital computers incompatible in the classical
realm.

At the dawn of computer engineering (1950 ± 1960),
analog (classical) computers successfully complemented
digital computers. More recently, they were displaced by
digital computers owing to the low precision of resultant
solutions. It was possible to monitor analog variables
(currents and voltages) with an accuracy of the order 10ÿ2.
According to modern estimates, the parameters of qubit-
controlling signals (pulses) are to be controlled with an
accuracy of 10ÿ5ÿ10ÿ4. Hence, the price the originators of
quantum computers will have to pay is high for the privilege
of meeting the Minotaur Ð an analog-controlled digital
computer. As shown below, a high accuracy of operations is
required to overcome the problem of decoherence of quantum
states.

3.3 Classical and quantum information
in a quantum system
We consider the qubit state vector jci � aj0i � bj1i from the
following standpoint: How much and what (classical?
quantum?) information is contained in a qubit in this state?

On posing these questions, we encounter the basic
definition problems of the concept of information (classical,
quantum) as applied to quantum systems. Having no way of
expounding these issues in detail in our review, we propose to
adopt an intuitive form of the definition of classical and
quantum information contained in a qubit in the state
jci � aj0i � bj1i. The part of information that we have in
the classical form we ascribe to the classical part. Indeed,
whenmeasuring the qubit in the basis j0i, j1i, we obtain 0 or 1.
Consequently, the qubit state unknown to us contains one bit
of classical information at most.

The values of the components a, b of the vector jci are
characterized by three analog quantities: the moduli jaj and
jbj and the phase difference j � arg �b=a�.

The information contained in the amplitudes a, b can be
ascribed to the quantum part of the information contained in
a qubit in the state jci � aj0i � bj1i [18]. The quantum part
of the information cannot be obtained in a single measure-
ment of the qubit state. To determine jaj and jbj requires
carrying out an infinite number of measurements over the
ensemble of particles in the jci state and determining the
probabilities p�0� and p�1� of the test results:

p�0� � jaj2 ; p�1� � jbj2 :

Determining the phase differencej requires interference-type
measurements. Complete determination of the state vector is
conventionally referred to as tomography of the quantum
state [15].

The analog character of quantum information is of
fundamental significance to the quantum theory. This is a
manifestation of the fact that the manifold of quantum states
forms a continuum: any two states of this continuum can be
transformed to one another in a continuous manner by a
unitary transformation. Hardy showed that when the system
of axioms of the probability theory is complemented with the
possibility of a continuous transformation of states to one
another (in lieu of a jumpwise transition in the classical
probability theory), quantum mechanics is interpretable as a
quantum probability theory [16].

From what was stated in the preceding sections, it follows
that the processes of quantum computation proceed in the
space of analog variables, i.e., the amplitudes ax at the basis
states jxi of the system.

The quantum information theory is constructed largely by
analogywith Shannon's classical information theory [15]: von
Neumann's quantum entropy is constructed similarly to
Shannon's informational entropy. Just as Shannon's entropy
characterizes the amount of information contained (on the
average) in a single signal symbol x appearing with a
probability p�x�, so von Neumann's entropy characterizes
the information in quantum states rx, which stand for signal
symbols and emerge with a probability p�rx� [15].

The properties of von Neumann's entropy are different
from the properties of Shannon's entropy when we consider
quantum states rx with properties that are different from
those of classical systems, such as incomplete distinguish-
ability of nonorthogonal systems, entangled states of compo-
site systems, etc. [15].
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3.4 How can a quantum algorithm be realized?
The operational control of a quantum computer with n qubits
is described by the transformation jcfi � U�2 n � 2 n�jcini,
where jcini and jcfi are 2 n-component vectors. For n � 103,
the multiplication Ujcini is beyond the reach of the fastest
computers (of the order of 1012 operations per second). The
physical realization of the transformation jcini ! jcfi seems
to be even more difficult.

The means to the realization of quantum algorithms
comes to light when we consider the possibility of decompos-
ing the matrix U�2 n � 2 n� into an ordered product of second-
and fourth-order matrices:

U�2 n � 2 n� �
Y
i; j

Ui�2� 2� 
Uj�22 � 22� : �22�

The possibility of such a decomposition (with an accuracy
sufficient for computations) is discussed at length in Ref. [15].

The second-order matrix

U � a b
g d

� �

transforms the state vector

a
b

���� ����
of one qubit:

a 0
b 0

���� ���� � a b
g d

� �
a
b

���� ���� ;
i.e., every matrix Ui�2� 2� in decomposition (22) describes
the operation on one individual computer qubit or another.
The matrices U�22 � 22� describe the state vectors of qubit
pairs:

jcini � a00j00i � a10j10i � a01j01i � a11j11i
! jcfi � a 000j00i � a 010j10i � a 001j01i � a 011j11i : �23�

Consequently, the numbers of second- and fourth-order
factors in decomposition (22) define the number of single-
qubit and two-qubit operations required to realize the
algorithm. For an algorithm to be efficient, the total number
of operations should be a polynomial in the number of qubits
`enabled' in the computer: N � P�n�. When the number of
operations rises exponentially with the dimension of the
problem (the number of computer qubits enabled in solving
a problem), the algorithm is ascribed to the class of inefficient
algorithms.

3.5 Universal sets of elementary operations
Single-qubit operations describe the rotation of a single qubit:

aj0i � bj1i ! a 0j0i � b 0j1i :

The character of two-qubit operations calls for additional
explanation. A two-qubit operation implies an interrelation
of the states of two qubits, a control, in a sense, of one
(controlling) qubit over the other (controlled) qubit. Suchlike
interrelation necessitates the existence of a physical interac-
tion between the qubits, which either is engaged temporarily
to execute the operation or exists permanently.

Set off from two-qubit operations is the `Controlled
NOT' Ð CNOT. Let the controlling qubit be the first and the
controlled qubit be the second. Then, the CNOT operation is
characterized by the table of input and output qubit states:

whence it follows that the second qubit is inverted in the
CNOT operation:

j0i ! j1i ; j1i ! j0i ;

if the first is in the state j1i. The diagrammatic symbol of the
operation is presented in Fig. 6 (the time axes are shown with
horizontal lines, the vertical line stands for the qubit
interaction).

If

jc1i � a1j0i � b1j1i ; jc2i � a2j0i � b2j1i ;

it is easy to calculate jc12i with the aid of the operation table:

jc12i � a1a2j00i � a1b2j01i � b1a2j11i � b1b2j10i :

A generalization of controlled operation is the operation
C-U, where U is any single-qubit operation. It is performed
on the second qubit when the controlling qubit is in the state
j1i. In particular, the U operation can be a phase-change
operation:

U � 1 0
0 exp �ij�

� �
:

Then,

jci � aj0i � bj1i ÿ!U�j� aj0i � exp �ij� bj1i :

Single-qubit operations (the continuum of state vector
rotations) plus the two-qubit CNOT operation constitute the
universal set of operations that make it possible to effect any
transformation of a computer state vector. From the practical
standpoint, the presence of the continuum operations in the
set is inconvenient.

The maximum simplicity of execution is inherent in some
discrete set of operations. Proposed for such a set is, for
instance, the set comprising single-qubit operations: the
Hadamard transformation H, the phase gate

U�p� � 1 0
0 ÿ1

� �
� Z ;

the phase gate U�p=4�, and the two-qubit gate CNOT [15].

Input state j00i j01i j10i j11i
Output state j00i j01i j11i j10i

+

jc1i

jc2i

jc12i

Figure 6. Schematic of the two-qubit CNOT operation. As a result of this

operation, the state jc12imay turn out to be entangled.
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The physical realization of a quantum operation is always
attended with some performance inaccuracy e. In view of this
circumstance, the theory of quantum operations should be
constructed as the theory of approximations.

We define the error E in the execution of the operation U
as [15]

E�U;V� � max
jci

�Uÿ V�jci ; �24�

where U is the matrix of the ideal transformation, V is the
matrix of the real (inaccurate) transformation, and jci is the
space of system space vectors. The inaccuracies of the
operation sequence Um . . .U1 add together in the sense of
the inequality

E�Um . . .U1;Vm . . .V1�4
Xm
j� 1

E�Uj;Vj� : �25�

We ensure the universality of the discrete set of operations
H;T � U�p=4�;U�p�, and CNOT by demonstrating the
possibility of effecting any single-qubit rotation U with a
predetermined inaccuracy e using these operations. We
sequentially execute the operations HTH and T, which are
rotations of the Bloch sphere by the angle p=4 about the Ox
axis and by the angle p=4 about the Oz axis [15]:

THTH � exp

�
ÿi p

8
Z

�
exp

�
ÿi p

8
X

�
: �26�

A simple calculation shows that two such rotations are
equivalent to one rotation Rn�y� by the angle y defined by

cos
y
2
� cos2

p
8
;

executed about the unit vector

n

�
cos

p
8
; sin

p
8
; cos

p
8

��
1� cos2

p
8

�ÿ1=2
:

In the second part of the demonstration, we ascertain that
any angle of rotation a about the axis n is obtained with an
error no greater than e=3 by way of n rotations by the angle y:

E
ÿ
Rn�a�;Rn

n�y�
�
<

e
3
: �27�

The demonstration is based on the fact that the resultant
angles of k rotations yk � kymod 2p uniformly fill the space
of rotation angles �0; 2p�.

Lastly, an arbitrary unitary state transformation U can be
represented by three rotations about the axes n,m, and n, each
of which can be approximated by n1, n2, and n3 rotations by a
discrete angle y:

E
ÿ
U;Rn1

n �y�HRn2
m �y�HRn3

n �y�
�
< e : �28�

To attain the inaccuracy e in the execution of a single-qubit
operation, it is necessary to expendO�logc2 eÿ1� operations of
the discrete set (the Solovei ±Kitaev theorem). For the details
of the calculations, the reader is referred to the encyclopedic
monograph Ref. [15].

Apart from single-qubit operations, the two-qubit CNOT
operation in its physical execution comprises the process of a
free evolution of two qubits under the action of their

interaction Hamiltonian. One qubit controls the other in the
course of free evolution, the interaction energy being used in
this case.

In summary, we note that an arbitrary unitary state
transformation requires O�n 24n� operations of the universal
set, i.e., the number of operations is exponentially large [15].
To be considered efficient, quantum algorithms should be
executed by a polynomial number of operations.

3.6 Rabi oscillations between qubit states
and single-qubit operations
For a qubit, we select a particle with the spin I � 1=2. The
discrete spin states in a constant magnetic field B k Oz with
the energies �ho0 � ÿmB=2 and �ho1 � �mB=2 are taken as the
basis qubit states:

j0i � jc1=2i ; j1i � jcÿ1=2i :

The qubit is controlled by the linearly polarized variable
magnetic field with the Hamiltonian

Hint � ÿmIx hx�t� � ÿmIx h0 cos �ot� j� :

The field hx�t� is treated as a classical variable.
The solution of the SchroÈ dinger equation

i�h
d

dt

��c�t�� � ÿÿmIzBÿ mIxh0 cos �ot� j�� ��c�t�� �29�
is sought in the form of a superposition of the states j0i and j1i
with variable amplitudes C0�t� and C1�t�:��c�t�� � C0�t� j0i exp �ÿio0t� � C1�t� j1i exp �ÿio1t� : �30�

We perform conventional calculations to arrive at the
following equations for the amplitudes C0 and C1:

_C0 � iOC1

�
exp �ÿidt� ij� � exp

ÿÿi�o� o1 ÿ o0�tÿ ij
��
;

_C1 � iOC0

�
exp �ÿidtÿ ij� � exp

ÿ
i�o� o1 ÿ o0�t� ij

��
:

�31�
Here, O � m01h0=�h is the Rabi frequency �m01 � mh0jIxj1i �
m=2 is the transitionmatrix element) and d �oÿ �o1 ÿ o0� is
the detuning of the external field frequency from resonance.
The terms on the right-hand sides that oscillate at a high
frequency o� o1 ÿ o0 ' 2o are commonly discarded as
insignificant.

For exact resonance �d � 0� and the initial conditions
C0�0� � 1, C1�0� � 0, the solution of the system of equations
(31) is given by

C0 � cos �Ot� ; C1 � ÿi sin �Ot� exp �ÿij� : �32�

This solution describes the stationaryRabi oscillations for the
populations of the qubit states j0i and j1i:��C0�t�

��2 � 1

2

ÿ
1� cos �2Ot�� ; ��C1�t�

��2 � 1

2

ÿ
1ÿ cos �2Ot�� :

�33�
By turning on the control field at a prescribed time instant, we
obtain the desired magnitudes of the amplitudes C0 and C1;
the value of the phase difference of the amplitudes

arg
C1

C0
� p

2
� j
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is then determined by the initial phase of the control field.
Complete population transfer from one level to the other is
effected in a time t � p=2O:��C0�t�

�� � 0 ;
��C1�t�

�� � 1 :

This operation corresponds to the execution of the NOT
operator:

NOTj0i � j1i :

When executing operations in a quantum computer, it is
worth striving to shorten their duration. The simplest way to
achieve this is to strengthen the controlling field intensity h0
(to raise the Rabi frequency O � mh0=2�h). In the strong
control mode �O=o4 1�, the rapidly oscillating terms on the
right-hand side of Eqns (31) for the amplitudes C0 and C1

cannot be discarded. In the system of coordinates rotating
with a frequency o, the amplitudes of the qubit state vector
are of the form [17]

~C0

~C1

���� ���� � 1 0
0 exp

ÿ
i�ot� j��

� �
C0

C1

���� ����
� C0

C1 exp
ÿ
i�ot� j��

���� ���� : �34�

FromEqns (31), we write the equations for the amplitudes
~C0 and ~C1 under the condition of exact resonance �d � 0�:

~C0 �
ÿ
1� b�t��C1 ; ~C1 � iO

ÿ
1� bÿ1�t��C0 ; �35�

b�t� � exp �ÿ2iotÿ 2ij� :

The general solution of the system is sought in the form of a
power series in b�t�:

~C0 �
X�1

n�ÿ1
anb

n ; ~C1 �
X�1

n�ÿ1
bnb

n : �36�

Substituting expressions (36) in Eqns (35), we obtain the
system of equations

an � 2inoan � iO�bn � bnÿ1� ; �37�
bn � 2inobn � iO�an � anÿ1� :

The small parameter of the system is the ratio s � O=2o.
We restrict ourselves to the part of the system jnj4 1, i.e.,

to the solution of the system with retention of the terms of the
order of s. For the initial conditions a0�0� � 1, b0�0� � 0, we
have [17]

C0�t� � cos �Ot� ÿ is sin �Ot� b�t� ; �38�
C1�t� � i exp

ÿÿi�ot� j���sin �Ot� � s cos �Ot� bÿ1�t�� :
More accurate solutions of the equations for the Rabi

oscillations exhibit a high-frequency �2o� modulation of
qubit state populations (the modulation depth is s � O=2o).
When s � O=2o ' 0:1, attaining a single-qubit operation
inaccuracy of the order 10ÿ4 necessitates the pulse duration
to be controlled to Dt � 1=2o, which is physically hard to
realize. That is why it is believed that the intensities of
controlling fields should be limited by the condition
O=2o5 1.

3.7 A qubit controlled by Raman K-type transitions
A qubit controlled by Raman transitions of the L type offers
several advantages, which make it popular among experi-
menters. The qubit energy levels are diagrammed in Fig. 7.
The qubit states j0i and j1i are due to the magnetic (spin)
sublevels of the ground optical state of an atom (ion)
separated by intervals E1 ÿ E0 of the order of several
gigahertz. By contrast, the j0i ! j2i and j1i ! j2i transi-
tions are optical transitions excited by laser pulses with the
requisite polarizations and detuning d. For the Rabi frequen-
cies O02 � O12 � O5 d, the effective Rabi frequency for the
j0i ! j1i transition is Oeff � O2=d. Under these conditions,
the high-frequency modulation depth of the state population
is small: s � Oeff=2o02 5 1. The attainment of high-accuracy
control of a L-type qubit may prove to be its important
advantage in experiments [17].

4. Mixed and entangled states
of quantum systems

4.1 Mixed states of quantum systems
Ensembles of quantum systems prepared in a specific way are
quite often handled in experiments. From the standpoint of
description of the particle states in an ensemble, a system can
be prepared in two ways: (i) with acquisition of complete
information on the state of the quantum system; (ii) with
acquisition of only probabilistic information on the state of
the quantum system. These ways of preparation are exempli-
fied in Fig. 8. A furnace produces a stream of atoms (qubits)
with the spin I � 1=2; the states j0i (spin up) and j1i (spin
down) are encountered in the atomic ensemble with the
Boltzmann probability distributions.

j2i

j0i

j1iE1

E0

o0

Figure 7. Qubit control with the aid of optical transitions by the Raman

scheme.

Atoms
in a pure
state

Adsorber
Stern ëGerlach

device

a

Atoms
in a mixed
state

b

Figure 8. Scheme for preparing atoms in pure (a) and mixed (b) states.
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In the first method of preparation, an ensemble of atoms
passes through a separator (a Stern ±Gerlach device), which
spatially divides it into two streams corresponding to the
states j0i and j1i. The ensemble of atoms in the state j1i is
absorbed by an adsorber; the remaining ensemble of atoms is
in the pure state j0i. Therefore, we have complete information
on the state of atoms in the ensemble. In the second method,
the separator is absent; the ensemble of atoms consists of
atoms in the states j0i or j1i with the probabilities pj0i or pj1i.
Such a state is a mixture of the pure states j0i and j1i.

Mathematically, a mixed state of a quantum system can
be described only by the density matrix

r � pj0ij0ih0j � pj1ij1ih1j ; �39�

where

j0ih0j � 1 0
0 0

���� ���� ; j1ih1j � 0 0
0 1

���� ����
are the operators of projection on the states j0i and j1i. It is
valid to say that the quantum system in amixed state does not
have a wave function [19]. The density matrix does not
contain information about the phases of the states that
make up the mixture. This implies that mixed states are not
quantum-coherent; they do not exhibit quantum interference
effects. Mixed states may be classified as close-to-classical
states, because their description by the density matrix is close
to the statistical description of classical systems.

Many authors consider the passage from pure states to
mixed states as the classicization process of quantum-
coherent systems. However, the states that make up the
mixture are quantum-coherent; in particular, they may be
entangled, and this entanglement can be extracted from the
mixed state (entanglement purification) and transmitted to
another quantum system in a pure state [14].

The transition of a system from a quantum-coherent pure
state, which is described by its wave function, to an incoherent
state, described by a density matrix, is also referred to as the
process of decoherence of the system.

4.2 Mixed states of quantum subsystems
Quantum systems are often composite systems: they consist
of two or more subsystems. Even when the system as a whole
is in a pure state (described by a wave function), its
constituent subsystems may be in a mixed state and be
described by a density matrix. This is the case if the pure
state of a system is the so-called entangled state of the
subsystems that constitute the system.

We exemplify this by a composite system containing
qubits A and B. We execute two successive unitary transfor-
mations of this system, with the effect that the two qubits find
themselves in an entangled state:��c�in�AB

� � j0Aij0Biÿ!H1 1���
2
p ÿj0Ai � j1Ai�j0Bi

ÿ!CNOTAB 1

2

ÿj0Aij0Bi � j1Aij1Bi� � ��c�f�AB� : �40�

The final state��c�f�AB� � 1���
2
p ÿj0Aij0Bi � j1Aij1Bi�

is entangled because it cannot be represented as the product of
the wave functions of qubits A and B:��c�f�AB� 6� jcAijcBi :

It is impossible to choose

jcAi � aAj0i � bAj1i ; jcBi � aBj0i � bBj1i ;

such that the equality��c�f�AB� � jcAijcBi

holds. But it is possible to find density matrices that describe
qubits A and B separately. The density matrix of the
composite system AB is

rAB�
��c�f�AB�
c�f�AB�� � 1

2

�j0Aih0Ajj0Bih0Bj � j0Aij0Bih1Ajh1Bj
� j1Aij1Bih0Ajh0Bj � j1Aij1Bih1Ajh1Bj

�
: �41�

We find the reduced density matrix for qubit A:

rA � TrB rAB � h0BjrABj0Bi � h1BjrABj1Bi

� 1

2

ÿj0Aih0Aj � j1Aih1Aj� � 1

2
I ; �42�

I � 1 0
0 1

� �
:

A similar result is obtained for qubit B:

rB �
1

2
I :

The states of qubitsA andB turn out to be mixed; the mixture
is made up of the pure states j0i and j1i with the probabilities
pj0i � pj1i � 1=2.

In classical physics, the information that provides a
complete description of the system as a whole is also
sufficient for the complete description of its parts. In
quantum mechanics, this rule breaks down when the whole
is in the so-called entangled state: the information that gives a
complete description of the whole is insufficient for the
complete description of the parts making up the whole.

4.3 Entangled states of quantum systems
The theory of entangled states of composite quantum systems
is in the development stage. As regards systems comprising
two parts (A and B), a more or less complete understanding
and description of entanglement has been obtained. The
propositions of the theory of two-particle systems defy
attempts at direct extension to systems made up of more
than two parts. Several particular results have been obtained
for such systems. Some of them are considered below.

Entanglement is the crucial property of quantum systems.
The existence of entangled systems implies the nonlocality of
the quantum description of nature [15]. Entanglement is the
most important resource in quantum informatics: employing
entangled states underlies the execution of the protocols of
quantum teleportation, cryptography, and computation. The
phenomenon of entanglement therefore attracts considerable
interest from researchers. It is surprising that no mention is
made of entanglement in quantum systems in conventional
textbooks on quantum mechanics [19], although entangled
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states were discovered in 1935 in the famous works of
SchroÈ dinger [20], Einstein et al. [21].

We consider a two-component quantum system A and B
in a pure state jcABi. Let A and B be distinguishable
(nonidentical particles 3) and let the dimensions of subsys-
tems A and B beM and N �M4N�.

The jcABi state vector can be decomposed in terms of the
basis functions ui and vi of subsystems A and B (the Schmidt
decomposition):

jcABi �
XM
i� 1

cijuiijvii : �43�

The number of nonzero coefficients ci in the decomposition is
the Schmidt number Sch. If Sch � 1, the state jcABi � juijvi
is not entangled, because it is the product of states u and v of
the subsystems. If Sch5 2, the jcABi state is entangled.

For a system described by a density matrix r,
von Neumann's entropy

S�r� � ÿTr �r log2 r� �44�

can measure the entanglement in a two-component system
[22]. A pure state jcABi is completely defined, and hence
S�rAB� � 0. However, the states of subsystemsA and B taken
separately are characterized by the uncertainty being
expressed in terms of the probabilities jcij2 in the density
matrices:

rA � TrB rAB �
X
i

hvijrABjvii �
X
i

jcij2juiihuij ;
�45�

rB �
X
i

jcij2jviihvij :

The values of von Neumann's entropy for subsystems A and
B are positive:

S�rA� � S�rB� � ÿ
X
i

jcij2 log2 jcij2 > 0 : �46�

The uncertainty in the states described by the density
matrices rA and rB exists prior to the measurement of the
states of subsystemsA andB. The greater this uncertainty, the
greater the entanglement in the state jcABi of the composite
system AB. For a qubit described by the density matrix

rA � jc0j2j0ih0j � jc1j2j1ih1j ;

the maximum S�rA� � 1 is attained for jc0j2 � jc1j2 � 1=2.
This corresponds to the pure state

jcABi �
1���
2
p ÿj00i � j11i�

of a two-qubit composite system, which has the greatest
entanglement in the system of qubits A and B.

Therefore, the measure of entanglement in the pure state
jcABi of the composite system AB is the measure of
uncertainty of the states of subsystems A and B Ð
von Neumann's entropy. For different subsystems, all the
uncertainty in rA and rB is due to the entanglement in the
state jcABi.

For identical particles A and B in the states rA and rB,
there arise additional uncertainties caused by their identity.
For fermions with a spin I, the Schmidt decomposition is
performed in terms of antisymmetrized combinations of the
basis functions j2iÿ 1i and j2ii [22]:

jcABi �
X�2I�1�=2
i� 1

ai
1���
2
p ÿj2iÿ 1iAj2iiB ÿ j2iiAj2iÿ 1iB

�
:�47�

It is easy to find the reduced density matrix rA (or rB) and
von Neumann's entropy S�rA� � S�rB� in this case:

rA � TrB
ÿjcABihcABj

�
�

X�2I�1�=2
i� 1

1

2
jaij2

ÿj2iÿ 1iAh2iÿ 1jA � j2iiAh2ijA
�
; �48�

S�rA� � ÿTr �rA log2 rA� � ÿ
X
i

jaij2 log2
jaij2
2

� 1ÿ
X
i

jaij2 log2 jaij2 :

Expression (48) implies that von Neumann's entropy
S�rA�5 1 for all jaij2 2 �0; 1�,

P
i jaij2 � 1. The minimal

value S�rA� � 1 is due to the uncertainty in the state rA
arising from the particle identity. In this case, the Schmidt
number Sch � 1 and the state

jcABi �
1���
2
p ÿj1Aij2Bi ÿ j2Aij1Bi�

is not entangled:

rA �
1

2

ÿj1Aih1Aj � j2Aih2Aj� ; S�rA� � 1 :

The final result for fermions is that if the Schmidt number for
the state jcABi is Sch � 1 or S�rA� � 1, which is equivalent,
the jcABi state is not entangled; if Sch > 1 or S�rA� > 1, then
jcABi describes an entangled state of the fermions.

The following results were obtained for bosons [22]: the
state jcABi is not entangled if

�1� Sch � 1 ; S�rA� � S�rB� � 0 ;

�2� Sch � 2 ; S�rA� � S�rB� � 1 ;

the jcABi state is entangled if

�1� Sch � 2 ; S�rA� � S�rB� 2 �0; 1� ;
�2� Sch > 2 ; S�rA� � S�rB� 2

ÿ
0; ln �2S� 1�� :

Hence, it is clear that the entanglement criteria of the state
jcABi of identical particles include both the values of the
Schmidt number for jcABi and the values of von Neumann's
entropy for subsystems S�rA� � S�rB�.

4.4 Transformations of entangled states
Considering entanglement as a resource, we should be able to
produce (generate), store, transform, and employ it. We now
direct our attention to the issue of entangled-state transfor-
mations. Let the parts A;B;C; . . . of an entangled system be
located at different points in space at the disposal of subjects
SA, SB, SC, . . . Each of the subjects can perform local
operations on their own part of the system and report it to
other subjects using a classical communication channel

3 The identity of particles introduces new elements in the entanglement

theory for fermions and bosons (see below).
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LOCC (Local Operations Ð Classic Communications). A
development of the idea of LOCC is a stochastic LOCC
(SLOCC), when the transformation jci ! jji is possible
with a finite probability. Borne in mind in this case are
operations involving a single system rather than an ensemble
of systems.

By way of LOCC (SLOCC) type operations, it is possible
to transform the initial entangled system state jci to another
entangled state jji. An important example of such transfor-
mations is entanglement distillation, i.e., preparation of
extremely entangled systems from partially entangled (not as
much as possible) systems. Performed by LOCC-type opera-
tions is the protocol of quantum state teleportation, when
subjects SA and SB, who perform the protocol, have a pair of
extremely entangled qubits at their disposal. The two states
jci and jji of the composite system are transformed into each
other by LOCC if they are related to each other by a local
unitary matrix: jji � Ulocjci.

For a two-particle system AB, we write

jjABi � UA 
UBjcABi �
Xnc
i� 1

����
li

p
jiAijiBi ; �49�

where UA and UB are the local transformation matrices, the
right-hand side of (49) is represented in the form of the
Schmidt decomposition, and nc is the Schmidt number for
the vector jcABi invariant under LOCC.

For a two-particle system H
�n�
A 
H

�m�
B �n4m are the

dimensions of subsystems A and B), the values
nc � 1; . . . ; n. This implies that there exist n classes of
nonequivalent (not transformable into each other by
LOCC) states jcABi.

A system of two qubits �n � m � 2, nc � 1; 2� has two
nonequivalent classes of states:

nc � 1 ; jcABi � j1Aij1Bi �nonentangled�;
nc � 2 ; jjABi � l1=21 j1Aij1Bi � l1=22 j2Aij2Bi �entangled�:

It is clear that a nonentangled state cannot be transformed
into an entangled one by LOCC-type operations. The states
belonging to nonequivalent classes may be related by
nonlocal operations (of the CNOT type) or by irreversible
local operations including, for instance, measurements.

The systems consisting of three particles A, B, C have six
classes of nonequivalent states [23]: the nonentangled state
jcAijcBijcCi; classesAÿ BC,ABÿ C,CAÿ B, in which two
particles out of three are entangled; and two nonequivalent
classes of states wherein all three particles are entangled. For
three qubits, the states can be written as

jGHZi � 1���
2
p ÿj000i � j111i� ;

jW i � 1���
3
p ÿj100i � j010i � j001i� :

The consideration of the entangled states of three or more
particles brings up the question: to what extent can an object
(a qubit) be entangled simultaneously with two (or more)
objects? It turns out that quantum entanglement (quantum
correlations) cannot freely emerge (be produced) between one
object and many others (unlike classical correlations). For
instance, in the system of three particles A, B, and C, the
existence of entanglement of A with B implies that the
entanglement of A with C is bounded from above [24].

Generalizing the state jGHZi to the case of n4 1 qubits,
we obtain a state like `SchroÈ dinger's cat':

jcni �
1���
2
p ÿj01 . . . 0ni � j11 . . . 1ni

�
;

which is the model of the state of a macroscopic body in a
superposed quantum state. By investigating the processes of
decoherence of a state jcni, it is possible to answer the
fundamental question: why do macroscopic bodies behave as
classical bodies, while they are actually quantum (in the
sense that the quantum description of large-dimension
bodies is not prohibited). Section 7, which is concerned
with decohering processes, provides the answer to this
question.

4.5 Entanglement in the mixed states
of composite systems
Mixed states of a two-particle system are described by a
density matrix of the form

rAB �
X
i

pi rAB
i �

X
i

pi
��cAB

i

�

cAB
i

�� ; �50�

where pi is the probability that the system in the state
rAB
i � ��cAB

i

�

cAB
i

�� is found in the ensemble. When all rAB
i

are factorable �rAB
i � rA

i 
 rB
i �, the mixed state contains no

entanglement.When some of the states rAB
i are not factorable

(are entangled), the mixed state rAB as a whole contains
entanglement, the amount of which may be defined by the
formula [14]

E�rAB� � min
X
i

pi S�rA
i � ; �51�

where S�rA
i � is von Neumann's entropy for the subsystem A

in the state rA
i � TrB rAB

i .
The interest in entanglement in mixed states arises from

the possibility of purifying this entanglement and preparing,
at its expense, extremely entangled pairs in a pure state.
Protocols of such purification have been proposed [14].

4.6 Experimental methods of obtaining entangled states
Entanglement as a resource is an expendable factor. Conse-
quently, methods for `preparing' entangled pairs are required.
Using the unitary two-qubit transformation CNOT, from the
initial nonentangled state of two qubits

1���
2
p ÿj0Ai � j1Ai�j0Bi ;

we obtain the extremely entangled pair of qubits

1���
2
p ÿj0Aij0Bi � j1Aij0Bi� ÿ!CNOTAB 1���

2
p ÿj0Aij0Ai � j1Aij1Bi� :

�52�

This method may be termed algorithmic, because the
operations employed were borrowed from the universal set
intended for executing quantum algorithms. Entangled
qubits with ions in a trap [5] and nuclear spins in an NMR
quantum computer [25] were obtained by the algorithmic
method.

In the majority of experiments in entanglement, use is
made of photon pairs produced due to the spontaneous decay
of an ultraviolet pump photon in a nonlinear crystal Ð the
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so-called down-conversion [26]. Produced in the down-
conversion are a signal (s) photon and an idle (i) photon.
From the conservation laws, it follows that kph � ks � ki
and oph � os � oi.

The wave function of the photons can be written as a
superposition of the products of single-photon pure states
josisjoph ÿ osii in the frequency representation with the
amplitudes F�oph;os;oi� [27]:
jciph �Mjvacisjvacii

� Zu
X
os

F�oph;os;oi�josisjoph ÿ osii ; �53�

where Zu5 1 is the conversion coefficient. In the absence of
the pump, the oscillators os, oi are in the vacuum state
M ' 1. By varying the generation conditions, it is possible
to obtain photon pairs entangled in polarization, momentum,
or time [27].

In a broader sense, the decay of any particle in the singlet
state into two particles produces pairs of particles entangled
in coordinate, momentum, or spin:

jcini � d�x� ! 1���
2
p ÿjx1iAjx2iB � jx1iBjx2iA� ;

jcini � d�p� ! 1���
2
p ÿjp1iAjp2iB � jp1iBjp2iA� ; �54�

jcini � jS0i ! 1���
2
p ÿj0Aij1Bi � j0Bij1Ai� :

The methods reliant on the decay of particles in the singlet
state may be termed `physical'.

5. Problems of qubit state measurements

5.1 Qubit state measurement
Measurement of the qubit states in a quantum computer is
considered to be one of the routine operations. For instance,
the qubits of a quantum register may be algorithmically
initialized: every qubit in the unknown state of the register
jci �Px axjxi is subjected to measurement in the basis j0i,
j1i. When j0i results, the qubit initialization is accomplished;
when j1i results, the NOTj1i � j0i operation is applied. The
operation of measurement is performed in the course of error
correction process (reading of error syndrome) and return of
ancillary qubits to the state j0i. Lastly, the measurement of all
qubits of the quantum register in the basis j0i, j1i is performed
with the aim of obtaining classical information (the binary
number j1; . . . ; jn � f0; 1g) on the solution of the problem
upon completion of computations.

From the theoretical standpoint, the procedure of
measuring the qubit state in the basis j0i, j1i is not associated
with any difficulties. However, the physical realization of
qubit measurement involves the solution of extremely
complex technological problems associated with overcoming
the difficulties of measuring the state of an individual atomic
particle: atom, ion, electron, electron or atomic nuclear spin,
or photon. Actually, each qubit realization calls for the
development of a specific physical method for the measure-
ment of the qubit state. We show how this can be accom-
plished for the qubits on the basis of the optical levels of an
ion in a trap [5].

For the j0i qubit state, we select the 4 2S1=2 sublevel of the
ground state, and the 3 2D5=2 sublevel of an excitedmetastable
state is adopted as the j1i state (see Fig. 3). The `interrogation'
of an ion may be effected by a laser with the wavelength
l � 397 nm, which excites the 4 2S1=2 ! 4 2P1=2 dipole
transitions. When the qubit is in the j0i � j4 2S1=2i state, it
transits to the j2i � j4 2P1=2i state under laser irradiation. The
qubit's return to the j0i state (spontaneous transition) is
attended with the emission of a photon, which provides the
information that the qubit was in the j0i state at the instant of
the beginning of measurement. If the ion was in the
j1i � j3 2D5=2i state prior to the measurement, no photon
emission occurs. From the 4 2P1=2 state, the ion may
spontaneously transit to the metastable 3 2D3=2 level. To
eliminate the ion `trapping' in this state, one more laser at
the 3 2D3=2 ! 4 2P1=2 transition frequency (l � 866 nm) is
engaged in the measurement, which precludes the population
trapping in the j3 2D3=2i level.

The detector of spontaneously emitted photons has a
small angular dimension �O5 4p�, and therefore the single-
photon detection efficiency is Z5 1. IfN photons are emitted
as a result of the cyclic transitions j0i ! j2i (under laser
irradiation with the wavelength l � 397 nm) and j2i ! j0i
(spontaneous transition), the detector records n � ZN
photons on the average. The probability that none of the N
photons is detected is pN�0�� �1ÿ Z�N � exp �ÿn�. For
n � 10, this probability is pN�0� � 4:5� 10ÿ5, i.e., for n4 1,
the probability of error in the measurement is low (the state
j0i was adopted as j1i).

If the qubit is in a superposition state jci � aj0i � bj1i at
the instant the measurement begins, the population jaj2 of the
state j0i operates in the measurement: N / jaj2. The popula-
tion jbj2 of state j1i is trapped in the metastable level and is
`inactive'.

We emphasize the statistical nature of the measurement
and the need for lengthening the measurement time so as to
make the number of photons detected n � ZN statistically
large. Unfortunately, this property (the need for signal
accumulation) is inherent in the majority of techniques
developed for measuring the state of individual atomic
particles.

In principle, it is desirable that the duration of measure-
ment be comparable to the duration of quantum operations.
In this case, the measurement could be employed as a routine
computational operation. In the course of long-duration
measurements (the methods involving signal accumulation),
precautionsmust be taken to retain the quantum coherence of
the state being measured.

Without going into detail, we consider a possible method
for measuring the state of qubits on the basis of a single spin
I � 1=2. The theory of a method involving a magnetic-
resonance force microscope is being actively developed [28].
The magnetic dipole ± dipole interaction of an individual spin
with the dipole of a ferromagnetic probe at the tip of a
mechanical resonator cantilever is used for the resonance
excitation of cantilever vibrations. When the spin experiences
a sufficiently long periodic sequence of p pulses, cantilever
vibrations are excited, which are detected by optical methods.

For spins in a solid (the I � 1=2 nuclear spins of
phosphorus 31P in a spinless single crystal of silicon 28Si),
multistage methods were proposed for measuring the state of
the nuclear spin: the information about the nuclear spin state
is transmitted to the electron spin S of the 31P atom; from the
spin S, the information is transmitted to the electron charge e.
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The presence (absence) of a single electron charge in the
vicinity of a nanotransistor is detected by measuring the
current through the nanotransistor [29].

Although each of the above-listed `relay race' appears to
be feasible, these stages have never been realized all together.
In NMR quantum computers, which make use of the
technique of pulsed magnetic resonance in molecular liquids
at room temperature, the detectable signal is produced by a
macroscopic ensemble (of the order of 1018) molecules.
Estimates show that the technique of pulsed NMR in a solid
at low temperatures (T < 0; 1 K) would enable signal
detection from an ensemble of about 106 atoms [30].

Measurements of the state of qubits made around super-
conducting mesostructures (quantum dots with Cooper pairs
or SQUIDs with supercurrents) reduce to electrical measure-
ments with signal accumulation [31, 32].

It is safe to say that the problem of individual qubit state
measurement is among the most difficult from the viewpoint
of the physical realization of a quantum computer.

5.2 Tomography of a qubit state
The procedure for determining the density matrix r of the
unknown state of a system is termed the tomography of a
quantum state [15]. The quantum state tomography is a
substantial development of the idea of measuring the
quantum state of the system in some basis. The measurement
of a state jci �Px cxjxi in the basis jxi is performed on a
single specimen of the system. The measurement result is
some basis state jxi with the probability jcxj2. In a single
measurement, the probabilities jcxj2 remain unknown.

The state tomography implies that it is necessary to
determine all elements of the matrix r or (for a system in a
pure state jci �Px cxjxi) all the amplitudes cx, including
their phases. The state tomography is a statistical procedure
that requires the presence (preparation) of an unlimited
ensemble of particles in the state r and the performance of
measurements on the particles of this ensemble. Through the
example of a qubit, we consider what measurements are
required.

The density matrix r of a qubit can be expanded in terms
of the usual set of the matrices of qubit transformation
operators I, X, Y, Z:

r � Tr �Ir�I� Tr �Xr�X� Tr �Yr�Y� Tr �Zr�Z : �55�

The quantity Tr �Ar� is the mean value of the observable A.
From Eqn (55), it follows that determining the density

matrix r of an unknown state requires statistical measure-
ments that enable determination of the average values (first-
order moments) of the observables X, Y, and Z:

hXi � Tr �Xr� � lim
m!1

�
1

m

Xm
i� 1

Xi

�
; . . . �56�

The (approximate) values of qubit r-matrix elements found
from the measurements are given by

r11 � 1� hZi ; r12 � r�21 � hXi ÿ ihYi ; r22 � 1ÿ hZi :
�57�

The distribution of hXi and the value of the root-mean-square
deviation of hXi follow from the central limit theorem [15].

The generalization of quantum state tomographic proce-
dure to systems containing n qubits (a quantum computer) is

evident:

r � 2ÿn
X

Tr �O1 
 . . .
On 
 r��O1 
 . . .
On� ; �58�
O 2 �I;X;Y;Z� :
The procedure of `tomography of a quantum process' was

proposed on the basis of the quantum state tomographic
procedure. For instance, in the operation of a quantum
computer, its qubits are subjected to decohering effects,
whose operator E is unknown. We now illustrate the idea of
the method of quantum process tomography by the example
of one qubit. We select d 2 � 4 (d � 2 is the dimension of the
qubit state space) of the subensemble of qubits in the basis
states r1; . . . ; r4:

r1 � jc1ihc1j; . . . ; r4 � jc4ihc4j :

As a result of an unknown decoherence process character-
ized by the operator E, the states ri are transformed:

ri ! r 0i � E
 ri :

The states ri are known, and the states with errors r 0i are
determined using the procedures of quantum state tomogra-
phy. Then, the equalities

r 0i � E
 ri

are the system of equations for determining the elements of
the unknown matrix E. For the mathematical details, the
reader is referred to Ref. [9].

6. Quantum algorithms

6.1 Quantum algorithms of number factorization
and database search
To date, three classes of quantum algorithms have been
discovered and comprehensively investigated: (1) algorithms
with quantum hidden subgroups of the Abelian transforma-
tion group (among them is Shor's number factorization
algorithm [9]); (2) algorithms with amplitude amplification
(represented by Grover's algorithm for object search in an
unstructured database [33]); (3) algorithms for modeling
quantum systems with a quantum computer [15, 34 ± 36].

Class-(1) and (3) algorithms imply the application of a
discrete Fourier transformation. Performing the Fourier
transformation with a classical computer requires an expo-
nentially large number of operations. With a quantum
computer, the Fourier transformation is performed in a
polynomial number �n 2� of operations. That is why class-(1)
and (3) algorithms demonstrate an exponential acceleration
of problem solving in comparison with the algorithms
executed with classical computers.

The principle of Grover's algorithm is the amplitude
amplification of the state corresponding to the desired
object. Let an integer xs be the index of the desired object.
We associate it with the basis state jxsi in the state vector
jci �Px cxjxi of the quantum register. The iterative proce-
dure in the performance of Grover's algorithm is constructed
such that the interference of amplitudes increases the
amplitude cxs ; the remaining amplitudes cx 6� xs are
decreased. Upon

����
N
p

iterations (N is the number of objects
in the database), the amplitude cxs reaches a value jcxs j4 1.
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Measurement of the register state upon
����
N
p

iterations
(operations) defines the index xs of the desired object with a
probability jcxs j2 ' 1. The object search in the classical case
requiresN operations (exhaustive search). QuantumGrover's
algorithm is therefore said to achieve a quadratic acceleration
of search problem solving.

Mathematicians investigate the possibility of constructing
new classes of efficient quantum algorithms, for instance, for
the solution of the so-called isomorphism of graphs [37]. The
greater the number of efficient quantum algorithms found,
the more incentives to realize the idea of quantum computers.
The possibility of efficiently solving the problems of quantum
physics is a good reason to develop a quantum computer.

Below, we provide examples of quantum teleportation
algorithms and outline the approaches to the algorithms for
modeling quantum systems. The first example allows one to
become aware of the details that make up quantum algo-
rithms; the second example is of prime interest to the
physicist-reader.

6.2 Teleportation algorithm
for an unknown quantum state
An instructive example of a low-dimensional algorithm is the
protocol of quantum teleportation of an unknown quantum
state [38]. The teleportation protocol is diagrammed in Fig. 9.
Initially, three qubits participating in the protocol are at a
point A and their state is not entangled:

jcini � ja1ij02ij03i :
Here, ja1i � aj01i � bj11i is the unknown state of qubit 1. It is
precisely this state that should be teleported to a point in
space B. The events occurring at pointsA and B are framed in
Fig. 9.

The first operation produces entanglement of qubits 2 and
3. The operation is performed in two stages: the Hadamard
transformation H and then CNOT23 are performed on the
state of qubit 2:

j02ij03iÿ!H2 1���
2
p ÿj02i � j12i� j03i ÿ!CNOT23 1���

2
p ÿj0203i � j1213i� :

�59�

The entanglement of qubits 2 and 3 is shown in the
diagram with a spiral connection between the lines of time
evolution. Upon generation of the entanglement of qubits 2
and 3, qubit 3 is transported to point B, which is at an
arbitrary distance from point A.

Subsequent local-type operations (LOCC) are performed
on qubits 1 and 2 at point A and on qubit 3 at point B. The
dashed lines show the transmission of classical information to
point B on the result of measurement of the qubit state at
point A. This information is used to perform operations (X3

or Z3) on qubit 3 at point B.
In the second operation, the entanglement of qubits 2 and

3 is transformed into the entanglement of qubits 1 and 3 with
the participation of all three qubits:

1���
2
p ÿ

aj01i � bj11i
�ÿj0203i � j1213i�

ÿ!CNOT12
ÿ
aj010203i � aj011213i � bj111203i � bj110213i

�
ÿ!M2�j02i� ÿ

aj0103i � bj1113i
�j02i : �60�

If the result of measuring M2 is j12i, the information about it
is transmitted to point B via a classical channel and the
X � NOT operation is performed on qubit 3 there. This
transformation has the result

ÿ!M2�j12i� ÿ
aj0103i � bj1113i

�j12i :
With jr2i denoting the state of qubit 2 upon the measurement,
we write the qubit states at this stage:

jci � ÿaj0103i � bj1113i
�jr2i :

Qubits 1 and 3 have become entangled.
ThemeasurementM2 performed on qubit 2 has released it

from entanglement. We use this property of measurement
once more to release qubit 1 from entanglement,ÿ

aj0103i � bj1113i
�jr2iÿ!H1

ÿ
a
�����103�� b

���ÿ�113��jr2i
ÿ!M1�j01i� ÿ

aj03i � bj13i
�j01ijr2i ; �61�

where ��� � j0i � j1i. If the result of measuring M1 is j11i,
the classical information about that is transmitted to point B
and operation Z is performed on qubit 3 there. The final state
of the three qubits is

jcfi �
ÿ
aj03i � bj13i

�jr1ijr2i : �62�

What is the outcome of all operations? The unknown state
ja1i � aj01i � bj11i, which initially belonged to qubit 1 at
pointA, now belongs to qubit 3 at pointBÐthe teleportation
of the unknown state has occurred. Qubit 1 was deprived of
the ja1i state: its retention in qubit 1 would have implied the
cloning of the unknown state, which is forbidden by the no-
cloning theorem. The final state of the three qubits is not
entangled. The entanglement produced at the beginning of
the operation was expended on the performance of the
teleportation. Formula (62) implies that entanglement is an
expendable resource of quantum informatics.

A `miracle' in this case is the teleportation of just the
unknown quantum state. The teleportation of a known state
can be realized without quantum entanglement, taking
advantage of only the methods of classical physics. Let the
state of qubit 1 be known: for instance, ja1i � j0i. We
transmit the information about the state of qubit 1 to point
B. Employing the information obtained, the operator at point
B brings qubit 3 to the state j0i. Such is the teleportation
scheme in the classical world: the complete information about

+

ja1i

ja3i

jr1i

jr2ij02i

j03i

+

CNOT12

H2 M2

M1H1

X3 Z3

Figure 9. Schematic of the protocol of teleportation of an unknown state

ja1i from point A to point B. Entanglement is produced in the course of

teleportation and is later destroyed during qubit state measurements. In

addition, one of the qubits of the entangled pair is transported from point

A to point B.
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an object is transmitted from point A to point B, where the
object is recreated.

6.3 Modeling of quantum systems
with a quantum computer
We consider the problem of quantum computer-assisted
simulation of a quantum system with the Hamiltonian

H � p 2

2m
� V�x� :

The static problem consists in the determination of energy
eigenvalues E and eigenfunctions jui of the system, which
obey the equation

Hjui � Ejui :

The dynamic problem involves the study of the dynamics
of the system according to the SchroÈ dinger equation

i
q
qt
jci � Hjci

(the constant �h is included in the Hamiltonian H). Using the
evolution operator U�t� � exp �ÿiHt�, the dynamic equation
can be reduced to the transformation of the system state
vector:��c�x; t�� � U�t� ��c�x; 0�� : �63�

If the eigenvalue problem is solved, E and jui are known and��u�t�� � exp

�
ÿi Et

�h

���u�0�� :
Simulating a quantum system with a quantum computer

requires `inputting' the state vector (the wave function) of the
system in the quantum register, which consists of qubits [15].
Let the function c�x� be defined in the interval ÿd4 x4 d.
We digitize the continuous variable x with an increment D:

xk � kD ; ÿ d

D
4 k4

d

D
:

The discrete state function
��~c�xk�� defined at 2d=D� 1

points is a vector with 2d=D� 1 complex components, which
can be identified with the components ck of the state vector

jci �
X2 nÿ1

k� 0

ckjki ; n � log2

�
2
d

D
� 1

�
;

of the n-qubit register of the quantum computer. The
accuracy of the

��c�x�� representation depends on the
number of qubits in the register: the discretization increment
is exponentially small owing to the exponentially large
number of dimensions of the state of the quantum register.
Quantum systems with a discrete set of states are also easy to
map onto the states of a qubit register.

We now turn to the problem of computing the eigenvalues
E of the Hamiltonian of a quantum system using a quantum
computer. The evolution operator U � exp �ÿiHt� is a
unitary operator, its eigenvalues

��exp �ij��� � 1, and therefore

Ujui � exp �ij� jui : �64�

Keeping the equality

u
��exp �ÿiHt���u� � exp �ÿiot� ; E � j

�h

t

in mind, we consider the algorithm for the estimation of the
phase j of the quantum system with a quantum computer.
We mark out two qubit registers in the computer:

jcini � j0ijui :

All qubits of the first register are initialized (all in the j0i state);
mapped onto the second register is the eigenstate jui of the
quantum system under investigation.

The next operation is the quantum Fourier transforma-
tion (QFT) of the state of the first register. The QFT is
identical to the discrete Fourier transformation. The Fourier
transform of an N-dimensional vector �x0; . . . ; xNÿ1� with
complex components xj is an N-dimensional complex vector
�y0; . . . ; yNÿ1� with the components [15]

yk � 1����
N
p

XNÿ1
j� 0

exp

�
i
2pjk
N

�
xj : �65�

The QFT performed in quantum registers maps the state
vector

jci �
XNÿ1
j� 0

xjj j i

onto its Fourier transform

QFTjci �
XNÿ1
k� 0

ykjki ;

where yk are defined by equality (65). Upon substituting
expression (65) for yk in the right-hand side of QFTjci, we
obtain the expression for the QFT of the basis states:

QFTj j i � 1����
N
p

XNÿ1
k� 0

exp

�
i
2pjk
N

�
jki ; N � 2 n : �66�

The phase jjk � 2pjk=N of the term jki is defined by the
combination of the values of j and k of the basis states j j i and
jki.

Upon defining QFT, we revert to our problem. We
perform the QFT of the state j0i of the first register:

j01iju2i ÿ!QFT1 1����
N
p

XNÿ1
k� 0

jkijui : �67�

Sum (67) decomposes into the product of the superpositions
�1= ���

2
p �ÿj0i � j1i� for each of n qubits of the first register:

1����
N
p

XNÿ1
k� 0

jki

� 1���
2
p ÿj01i � j11i� � 1���

2
p ÿj02i � j12i� � . . . � 1���

2
p ÿj0ni � j1ni� :

�68�

Under the control of the qubits of the first register (of
qubits 1; 2; . . . ; n sequentially), we apply theU operator to the
second register 20; 22; . . . ; 2 nÿ1 times, respectively. The
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transformations

U20 jui;U22 jui; . . . ;U2 nÿ1 jui

result in the occurrence of the phase factors

exp �ij�; exp �22ij�; . . . ; exp �2 nÿ1ij� ;

at the states j1i of the controlling qubits:

1����
N
p ÿj0i � exp �2 nÿ1 � 2pij�j1i�ÿj0i � exp �2 nÿ2 � 2pij�j1i�

. . .
ÿj0i � exp �20 � 2pij�j1i� � 1����

N
p

XNÿ1
k� 0

exp �2pijk�jki :
�69�

The inverse QFT of the first register brings it back to the
state jji. Performing the state measurement of the first
register, we obtain the value of the sought phase j in the
n-qubit representation.

In the foregoing, the eigenfunction jui of the operator U
was assumed to be known.However, in practice, wemay have
some approximation of jui obtained, for instance, from
approximate calculations with a classical computer. This
approximation is referred to as the trial function jupi. When
the approximation jupi is not too bad, the product hupjui is
not exponentially small.

We repeat the computations to estimate the phase,
introducing jupi in the second register instead of jui. If jupi
is decomposed in terms of jui,
jupi �

X
s

csjusi ;

all computations performed above can be repeated without
changes. The state of the second register is the only change:
the superposition

P
s csjusi is in place of jusi. Uponmeasuring

the state of the second register, we arrive at the solution jusi
with the probability jcsj2 [39].

6.4 Modeling of quantum systems dynamics
with a quantum computer
The quantum dynamics of a system can be represented as the
transformation of the initial state vector

��c�x; 0�� by the
quantum evolution operator U � exp �ÿiHt�:��c�x; t�� � exp �ÿiHt���c�x; 0�� : �70�
The first problem that emerges in this transformation is the
occurrence of noncommuting parts; for instance, for a one-
dimensional particle motion,

H � H0 �H1 ; H0 � p 2

2m
; H1 � V�x� ;

the operators of kinetic and potential particle energy do not
commute.

To represent the evolution operator as the product of
evolution operators, one of the approximations [15]

exp �i�A� B�Dt� � exp �iADt� exp �iBDt� �O�Dt 2� ; �71�
exp

ÿ
i�A� B�Dt� � exp �iADt� exp �iBDt��

� exp

�
ÿ 1

2
�A;B�Dt 2

�
�O�Dt 3� ; �72�

exp
ÿ
i�A� B�t� � lim

n!1

�
exp

�
i
At

n

�
exp

�
i
Bt

n

��n

�73�

can be used. In our example of one-dimensional particle
motion, recourse can be made to approximation (71).

7. Processes that decohere qubit states
and quantum computers

7.1 Decohering of quantum system states
In the theory of an ideal quantum computer outlined above, it
was assumed that the quantum superpositions jci �P cxjxi
that describe the L-qubit register state remain coherent for an
arbitrarily long time in the course of computation. However,
the interaction of the register with the uncontrollable
environment, the inaccuracy of the parameter values of
control pulses, and the uncontrollable interqubit interaction
are the source of decoherence of the quantum state
jci �Px cxjxi. Decoherence implies that a coherent state of
the system transforms into a mixed one, which is described by
the density matrix

r �
X
x

jcxj2jxihxj :

The description of a system by a density matrix does not
contain information about the phases of the basis states,
which deprives the system of the capacity to interfere and
become entangled. The decohering of the state of the
quantum system actually signifies its classicization, i.e.,
transition to a state described by classical physical laws.

An important parameter of a quantum system is the time
of decohering tdc of its states. Below, we consider tdc for a
single qubit and tLdc for a register of L qubits. We show that
the register of L qubits loses its state coherence in a shorter
time:

tLdc �
tdc
La ; a � 1; 2 :

The decoherence time should be compared with the mean
time top taken to perform a computational operation: the
ratio Nop � tLdc=top shows how many computational opera-
tions can be performed while the quantum computer retains
its state coherence. In view of the relation tLdc � tdc=La, we
have

Nop � tdc
topLa : �74�

The values of tdc and top may vary widely for different qubit
realizations, but their ratio depends only slightly on the
realization, tdc=top � 103ÿ106.

From formula (74), it follows that it is possible to perform
only a small number of computational operations with a
computer containing L � 103 qubits. For instance, Shor's
algorithm forL-digit number factorization requiresL3 opera-
tions. The requisite duration of computation exceeds the
computer coherence time by many orders of magnitude:

tShor
tLdc
� topL3

tdc=La �
top
tdc

L�3�a� : �75�

For L � 103, top=tdc � 10ÿ5, and a � 1, we obtain
tShor=tLdc ' 107.

The above estimates imply that the processes of decoher-
ing of quantum computer states `prohibit' the existence of a
full-scale (i.e., capable of solving big problems) quantum
computer. Is there a way out? There are obvious proposals
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that follow from formula (75): (1) it is necessary to shorten the
time of operation top; (2) it is necessary to lengthen the qubit
decoherence time tdc.

The time top can be shortened by increasing the intensity
of control fields. However, the control field intensities are
bounded from above by the excitation of nonresonance
transitions and the occurrence of other nonlinear effects.
Increasing the time tdc calls for a careful examination of all
possible qubit decohering mechanisms in a given specific
realization and for the development of specific measures to
isolate qubits from the environment, increase the accuracy of
control signals, etc.

However, all these measures may prove to be insufficient
to afford the requisite computation time. What needs to be
devised is a way of stabilizing the coherent computer state for
an arbitrarily long time in order to be able to complete the
solution of any problem with a `long' (though polynomially
long) computation algorithm. This way is the method of
quantum error correction.

The method involves a periodic `cleaning' of a quantum
computer's state of minor errors that emerge in the state
vector due to decohering processes after the last cleaning.
Also proposed are `active' methods for the suppression of the
decohering processes. But as regards the feasibility of a full-
scale quantum computer operating in the coherent state for
an arbitrarily long time, researchers are pinning their fervent
hopes on the quantum method of error correction. The
subsequent sections of this review are concerned with the
decohering processes and the methods for error correction.

Investigations into the decoherence of quantum systems
are a natural development of investigations of relaxation
processes in many-particle systems, which were actively
pursued throughout the XXth century. Spin ± spin and
spin ± lattice relaxation processes actually coincide with the
phase and amplitude decohering of spin qubits. Physicists
acquainted with the literature on relaxation processes will
encounter many familiar elements in decoherence theory. The
decohering may be treated as the relaxation of coherence: in
the course of decohering, the system goes from a non-
equilibrium (coherent) state to an equilibrium (mixed) state;
the process is accompanied by an increase in system entropy.

The processes of decohering of quantum systems are
investigated in different models and approximations. The
model whereby the environment of the system (a qubit,
register) is described in a quantum way is the most
adequate: decoherence arises as the result of entanglement
of the system states with the states of the environment. In
simpler models, the environment is described as fluctuating
classical fields. The entanglement with the environment does
not arise in these models explicitly, but the simplification of
the description of the environment makes it possible to
describe the decohering during quantum computations
(operations) [40].

7.2 Phase decohering of a qubit
The elements of the quantum decoherence theory are revealed
in the consideration of the simplest system consisting of two
qubits: qubit q Ð a quantum system and qubit e Ð the
quantum environment of the system. Let qubit q in the
superposition state jci � aj0qi � bj1qi interact with the
environment e in the state j0ei to become entangled as a
result of the CNOTqe operation:ÿ
aj0qi � bj1qi

�j0ei ÿ!CNOTqe

aj0qij0ei � bj1qij1ei � jcqei : �76�

We calculate the reduced density matrix of qubit q (the
quantum system) by averaging rqe over the state of the
environment:

rq � h0ejrqej0ei � h1ejrqej1ei � jaj2j0qih0qj � jbj2j1qih1qj :

�77�

The entanglement with the orthonormal states of the
environment has led to the complete decoherence of the
qubit system: its state is now described by a diagonal density
matrix; the nondiagonal (coherence) elements are equal to
zero. Although the jcqei state of the system qe in expression
(76) is coherent, the subsystem q is in a mixed state. In the
simplified treatment outlined above, decoherence emerges
more or less abruptly; the description of the decoherence as
a process is absent. In reality, the process is concealed inside
the CNOTqe operation performed in a finite time during
which qubits q and e interact. When the CNOTqe operation
is completed, the decohering of qubit q is also completed.

We now somewhat augment the model of the decohering
of qubit q in the quantum environment e. Initially, at t � 0,
qubit q and the environment e are not entangled:��cqe�0�

� � ÿaj0qi � bj1qi
���e�0�� :

Let the interaction be turned on. After a lapse of time t, the
qubit and the environment are entangled:��cqe�t�

� � aj0qi
��e0�t��� bj1qi

��e1�t�� :
If t < tdc, the states

��e0�t�� and ��e1�t�� are normalized but not
orthogonal:


e0�t�
��e0�t�� � 
e1�t���e1�t�� � 1 ;



e0�t�

��e1�t�� � cos y :

The `angle' y between the state vectors of the environment
characterizes the decohering. For t � 0, the environment
states are

��e0�0�� � ��e1�0�� � ��e�0��, with 
e0�0���e1�0�� � 1.
During decohering, cos y! 0 and y! p=2, i.e., the vectors��e0�t�� and ��e1�t�� are orthogonalized.

We introduce a vector je?0 �t�i orthogonal to je0�t�i; we
select the vectors je0�t�i and je?0 �t�i as the basis. If
he0�t�je1�t�i � cos y, then he?0 �t�je1�t�i � sin y. Representing
the density matrix of the system and the environment as
rqe�t� �

��cqe�t�
�

cqe�t�

��, we use the formula

rq�t� �


e0�t�

��rqe��e0�t��� 
e?0 �t���rqe��e?0 �t��
to find the reduced density matrix of the qubit,

rq�t� � jaj2j0qih0qj � ab �j1qih0qj cos y
� a �bj0qih1qj cos y� jbj2j1qih1qj ;

or in the matrix form,

rq�t� �
jaj2 ab � cos y�t�

a �b cos y�t� jbj2
 !

: �78�

The nondiagonal matrix elements of the reduced density
matrix are termed the coherences. With time, cos y�t� ! 0
and the coherences vanish. The term `decohering' acquires
literal sense: this process consists of the disappearance of the
coherences in the density matrix of the qubit. Another feature
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of the process described by density matrix (78) is the
invariance of the moduli a and b of the amplitudes; only
their phases change. Matrix (78) therefore describes the so-
called phase decohering of the qubit.

7.3 Operator of qubit decohering
In the model of decohering of qubit q in the quantum
environment e, it is also possible to include the amplitude
decohering by obtaining the combined description of the
processes of phase and amplitude decohering, which proceed
simultaneously:��cqe�0�

� � ÿaj0i � bj1i�jei
!dc aj0ije00i � aj1ije01i � bj1ije11i � bj0ije10i : �79�

The amplitude je01i describes the transition from the qubit
state aj0i to the state j1i; this decreases the initial amplitude a
of the state j0i to the value aje00i. The significance of the
amplitudes bje10i and bje11i is precisely the same.

We write transformation (79) in the matrix form:

aj0i
bj1i
���� ����! je00i je01i

je10i je11i
� �

aj0i
bj1i
���� ���� : �80�

The decomposition of thematrix of decohering �jei ji� in terms
of the Pauli matrices si is referred to as the operator of
decohering E:

E � je00i je01i
je10i je11i

� �
� je0is0 � je1isx � ije2isy � je3isz ;

�81�
je0; 1i � 1

2

ÿje00i � je11i� ; je2; 3i � 1

2

ÿje01i � je10i� : �82�
The transformation

Ejcijei �
X3
j� 0

jejisjjci �83�

describes the decohering in the generalized form as the sum of
the following operations: undo (identical transformation s0),
qubit flipping �sx � NOT, j0i ! j1i, j1i ! j0i�, phase
change �sz, j0i ! j0i, j1i ! ÿj1i�, and flip with a phase
change �isy�.

How strongly the decohered state

��c�t�� �X3
j� 0

jejisj
��c�0��

differs from the initial state jc�0�� is characterized by the
fidelity parameter

Fc�t� �


c�0���c�t��
c�t���c�0��

�
X
i; j



c�0���sj��c�0��
c�0���si��c�0��
ej�t���ei�t�� : �84�

The parameter Fc�t� depends on the initial state
��c�0��, which

is marked with the subscript c. More representative values of
F�t� are obtained on averaging over some set of states cs:

~F�t� � 1

n

Xn
s� 1

Fcs
�t� : �85�

The notions and operators introduced above are easily
generalized to the case of n qubits (a quantum computer). The

parameters that characterize the time of decohering (the
decoherence rate g � tÿ1dc ) should be obtained either from
experiment or by calculations on the basis of microscopic
models. An example of such a calculation is provided in
Section 7.4.

7.4 Microscopic theory of amplitude decohering
A clear and complete description of amplitude decohering
may be obtained by solving the SchroÈ dinger equation

i�h
q
qt
jci � Hjci

for a systemwith theHamiltonianH � Hq �He �Hqe. Here,
the Hamiltonian Hq � �ho0j1ih1j describes a qubit with
energy levels E0 � 0 and E1 � �ho0, He �

P
m �homa

�
mam is

the Hamiltonian of the system of surrounding oscillators, and
the interaction Hamiltonian

Hqe �
X
m

lmj0ih1ja�m � l�mj1ih0jam

describes the transitions with an energy exchange between the
qubit and the environment:

j0ijnmi ! j1ijnm ÿ 1i ; j1ijnm ÿ 1i ! j0ijnmi :

We specify the initial conditions: for t � 0, the qubit is in
the state j1qi, i.e., c1�0� � 1, and the oscillators of the
environment are in the vacuum state j01 . . . 0l . . . 0mi. Due to
the interaction Hqe, for t > 0, there emerges the state

jcli � j0qij01 . . . 1l . . . 0mi ; l � 1; . . . ;m ;

with a nonzero amplitude cl�t�.
The desired solution is an entangled state of the qubit and

the environment:��c�t�� � c1�t� exp �io0t�jc1i �
Xm
l� 1

cl�t� exp �iolt�jcli ; �86�

c1�0� � 1 ; cl�0� � 0 :

We perform conventional calculations to obtain the equa-
tions for the amplitudes c1�t� and cl�t� from the SchroÈ dinger
equation,

i�h _c1 �
Xm
l� 1

l�l cl exp
ÿÿi�ol ÿ o0�t

�
; �87�

i�h _cl � llc1 exp
ÿ
i�ol ÿ o0�t

�
: �88�

Eliminating cl�t� from Eqn (87), we obtain the equation for
c1�t�:

_c1�t� �
� t

0

c1�t 0� k�tÿ t 0� dt 0 ; �89�

where

k�tÿ t 0� � 1

�h2

Xm
l� 1

jllj2 exp
ÿÿi�ol ÿ o0��tÿ t 0�� : �90�

For the times t4 2p=�ol ÿ o0� such that

exp
ÿÿi�ol ÿ o0�t

� ' 1
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and assuming that c1�t 0� � c1�0� � 1, we have

��c1�t���2 � 1ÿ 1

�h2

Xm
l� 1

jllj2t 2 ; t 2 5 �h2
�Xm

l� 1

jllj2
�ÿ1

: �91�

The result (91) is interesting from the physical standpoint:
initially, the amplitude of the initial state decreases only
quadratically in the small quantity t 2. In what follows, we
use this result in the interpretation of the so-called quantum
Zeno effect.

We rewrite relation (89) as

_c1�t� ' ÿc1�t�G�t� ; G�t� �
� t

0

k�t� dt : �92�

Themain contribution to the integralG�t� is made by the term
ol � o0. This allows the integration with respect to t to be
extended to1, with the result (see Ref. [41])

g
2
� G�1� � 2p

�h2
��l�o0�

��2 ; �93�

c1�t� � exp

�
ÿ g
2
t

�
; �94�

cl�t� � ll
�h

1ÿ exp
ÿ
i�ol ÿ o 00 � ig=2�t�

ol ÿ o 00 � ig=2
; �95�

where

o 00 � o0 � d ; d � P
Xm
l� 1

jllj2
o0 ÿ ol

:

7.5 Phase and amplitude decohering
of a spin qubit in a random classical field
For a spin qubit Ð a spin S � 1=2 particle in a constant
external magnetic field B�0; 0;Bz� Ð the solution of the
SchroÈ dinger equation subjected to the initial conditions��c�0�� � aj0i � bj1i has the form��c�t�� � exp

�
i

�h
H0t

� ��c�0��
� exp

�
i

�h
E0t

��
aj0i � b exp

�
i

�h
�E1 ÿ E0�t

�
j1i
�
; �96�

where E0 � ÿ�ho=2 and E1 � �ho=2 are the spin energy levels
that correspond to the states j0i and j1i of the spin qubit.

Under conditions of magnetic resonance in liquids, added
to the constant field B�0; 0;Bz� is the random internal
magnetic field DB�DB?;DBz� produced, for instance, by the
spins of all other particles surrounding the spin qubit. The
Brownian motion of particles in the system (translational and
rotational diffusion) makes DB a random function of time
with the correlation time tc.

The longitudinal component of the random field DBz

makes a contribution DE � gbDBz to the difference between
the energy levels of the spin qubit and a random phase
increment Dj�t� � DEt. The random phase increments
Dj�t� are responsible for the phase decohering of the spin
qubit. Similarly, the transverse component of the random
field B?�t� is responsible for the amplitude (dissipative)
decohering of the spin qubit. The above model furnishes a
simple description of these important processes.

The random process Dj�t� � Do�t� t may be represented
as a stepwise process with a characteristic time interval tc,

Dji�tc� � Doi tc ; i � 1; . . . ; n ;

where Doi is the frequency shift of the qubit resonance
constant during the time tc. Then,

Dj�t� � Dj�ntc� �
Xn
i� 1

Dji �
�Xn

i� 1

Doi

�
tc :

For an alternating process,X
i

Dji � 0 ;
X
i

Doi � 0 ;

but Dj2 � t 2c nDo
2
i � Do2

i tct. The bar denotes averaging:

Do2
i �

1

n

Xn
i� 1

o2
i :

The root-mean-square qubit phase increment is proportional
to the duration of the random process.

We define the qubit phase decoherence time tdc;ph as the
time taken to reach Dj2 � 1 rad2. Then, from the equality
Dj2 � Do2

i tctdc; ph � 1, we obtain the phase decoherence
time:

tdc;ph � 1

Do2 tc
: �97�

If Do2 is determined by the dipole ± dipole interaction of
similar spins separated by a distance r, we have

Do2 � 3

2

m 4

�h2r 6
� 3

2

g 4�h2

r 6
:

This formula and relation (97) imply that

1

tdc;ph
� 3

2

g 4�h2

r 6
tc :

For nuclear spins in molecular liquids, the values tdc; ph ' 1 s.
We now consider the amplitude qubit decohering in the

model of random fields. In the state jci � aj0i� exp �ij� bj1i,
the magnetization of the spin qubit is

Mz � g�h
X�1=2

Sz �ÿ1=2
pSz

Sz � 1

2
g�h
ÿjbj2 ÿ jaj2� : �98�

It follows from (98) that any process that changes the
magnetization Mz is an amplitude process, changing the
amplitudes jaj and jbj.

We show that the occurrence of the transverse random
magnetic field DB? is responsible for random increments of
themagnetizationMz�t� and hence for random changes of the
amplitudes.

We introduce two coordinate systems:Oxz with the z axis
aligned with the constant field B and Ox 0z 0 with the z 0 axis
aligned with the field B� DB? (Fig. 10). The angle y between
the axesOz andOz 0 is determined by tan y � DB?=B5 1. At
the time instant t � 0, the projections of the magnetization on
the axes Oz 0 and Ox 0 are defined as

Mz 0 �0� �Mz�0� cos y ; �99�
Mx 0 �0� � ÿMz�0� sin y :
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At the time instant t � tc, these projections are given by

Mz 0 �tc� �Mz�0� cos y ; �100�
Mx 0 �tc� � ÿMz�0� cos �o0tc� sin y :

The factor cos �o0tc� is due to the precession ofMx 0 about the
axis Oz 0 with the frequency o0. For the time tc, the random
field DB? is assumed to be constant (a stepwise process).

We determine Mz�tc�:
Mz�tc� �Mz 0 �tc� cos yÿMx 0 �tc� sin y

�Mz�0�
�
1ÿ sin2 y

ÿ
1ÿ cos �o0tc�

��
: �101�

We assume that o0tc 5 1 and express sin y in (101) from
tan y � DB?=B, with the result

Mz�tc�
Mz�0� � 1ÿ DB 2

?
B 2

o2
0t

2
c

2
: �102�

Formula (102) implies an equation for the relaxation of the
longitudinal magnetizationMz (the amplitudes jaj and jbj),
Mz�tc� ÿMz�0�

tcMz�0� � d

dt

Mz

Mz�0� � ÿ
1

tMz

� ÿDB 2
?g

2tc
2

: �103�

The relaxation process for the longitudinal spin magneti-
zation

Mz�t� �Mz�0� exp
�
ÿ t

tMz

�
�MB

z ; �104�

leads to the value of magnetization MB
z for the Boltzmann

population distribution of qubit energy levels. The relaxation
time of the longitudinal spin magnetization is simultaneously
the time of amplitude qubit decohering:

tdc; amp � tMz
� 2

DB 2
?g2tc

:

For the dipole ± dipole interaction of two similar spins
separated by a distance r, we have

1

tdc; amp
� 3

2

g 4�h2

r 6
tc :

In low-viscosity liquids, the times tdc; amp and tdc;ph coincide
[42].

7.6 Decohering due to interqubit interactions:
quantum chaos
From the standpoint of quantum computer operation, the
situation where the interaction between a pair of qubits i and j
is turned on only at the instant of performance of a two-qubit
operation of the type

�Control�i jÿUi j

would be ideal; for the rest of the time, the interqubit
interaction is absent. In real situations, some residual
interaction Hi j between the qubits i and j always exists, i.e.,
during the execution of single-qubit operations and the free
evolution (standing idle) of the computer.

As shown in Section 7.4, if we mark out one qubit and
consider its decohering due to its interaction with another
one, this process is similar to the qubit decohering due to its
interaction with the quantum environment. Here, we consider
the dynamics of a quantum computer consisting of a large
number of interacting qubits [43]:

H �
Xn
i� 1

ois �i �z �
X
i< j

Ji js �i �x s � j �x : �105�

The resonance qubit frequencies oi and the interaction
parameter Ji j are evenly distributed over the respective
intervals �0:5D0; 1:5D0� and �ÿJ; J �. The average spacing of
computer energy levels is Dn � nD0=2

n, where 2 n is the
number of basis states of an n-qubit computer. The average
spacing Dn is exponentially small, Dn 5 J. Strong interqubit
interactions in the computer correspond to the condition

J

D0=n
> 1 :

In this case, computer simulation reveals the chaotic
dynamics of the quantum computer.

For low interaction energies,

J

D0=n
5 1 ;

a deterministic computer dynamics is observed. For determi-
nistic dynamics, the state vector contains a small number of
basis functions. For chaotic dynamics, the superposition
consists of a large number of basis states with small weights.
In going over from a system with deterministic dynamics to a
system with chaotic dynamics, the statistics of the intervals s
between the system energy levels changes: a transition from
the Poisson distribution

PP�s� � exp �ÿs�

to the Wigner ±Dyson distribution

PWD � ps
2

exp

�
ÿ ps2

4

�
occurs.

The results of the theory of quantum chaos allow
estimating the proposed realizations of a quantum computer
from the standpoint of their remoteness from quantum chaos.
To ensure that quantum chaotic dynamics does not emerge in

z

B B� DB?

B?

z0

x

x0

O

y

Figure 10. Coordinate systems associated with the external constant �B�
and total �B� DB?� fields.
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the computer, the interqubit interaction J should be weaker
than the threshold value Jc [43]:

J5 Jc � D0

n
:

7.7 Decohering due to qubit control errors
TheHamiltonian of a qubit controlled by an external classical
field h�t� can be written as

H�t� � o0sz � r
ÿ
h�t� � dh�t�� ; �106�

where h�t� is the part of the control field that furnishes the
desired ideal control and dh�t� is the control error caused by
the fact that the field is controlled with some experimental
inaccuracy dh=h. Control errors are treated as yet another
source of errors in quantum computations along with the
interaction of qubits with the environment and with each
other.

We estimate the effect of control errors with the aid of the
quantum computation fidelity parameter. In the cases of the
ideal and real computation control, the final computer states
are given by��c�id��t�� � U �id�

��c�0�� ; �107���c�re��t�� � U �re�
��c�0�� : �108�

The projections of
��c�t�� on the basis states of the quantum

computer are defined by the equalities

c �id�x � 
x��c�id��t�� ; c �re�x � 
x��c�re��t�� : �109�

From the normalization condition, we haveX
x

��c �id�x

��2 �X
x

��c �re�x

��2 � 1 :

For the criterion of quantum computation accuracy, we
select the averaged norm of the scalar product of 2L-
dimensional vectors c

�id�
x and c

�re�
x :

F �
����� X2Lÿ1

x� 0

c�id�x c�re��x

����2� � D���
U�id�c�0���c��0�U�re������2E :
�110�

The exterior averaging is performed over the distribution of
random increments that differentiate c

�re�
x from c

�id�
x . If the

computation is perfect, c
�re�
x � c

�id�
x and F � 1.

We represent U�re� as the ordered product of M matrices,
U�re� � U

�re�
1 . . .U

�re�
M , each of which contains errors xk and

Fk:

U
�re�
k �

� cos �yk � xk� exp
ÿ
i�jk� Fk�

�
sin �yk� xk�

ÿi exp ÿÿi�jk� Fk�
�
sin �yk� xk� cos �yk � xk�

 !
:

(111)

Expanding U
�re�
k in terms of the small increments xk and Fk,

we obtain

F � 1ÿ
�XM

k� 1

�
c
�xx�
k x 2

k � c
�xF�
k xkFk � c

�FF�
k F 2

k

��
:

For uncorrelated xk and Fk, we can write

F � 1ÿM
ÿ
F �xx�x 2 � F �xF�xF� F �FF�F 2

�
; �112�

F �i j � � hc �i j �i :
Formula (112) testifies to the accumulation of control errors:
the errors in computation grow in proportion to the number
M of elementary computational operations.

We adopt some numerical value F as a requirement for the
quality of quantum computation to obtain the relation

hx 2i � 1

M
�1ÿ F �

between the admissible control errors hx 2i and the number of
possible computational operations M. For instance, if we
assume that F � 0:99 and hx 2i1=2 � 10ÿ2, then the number of
operations is M � 102. When the control inaccuracy is
lowered to hx 2i1=2 � 10ÿ4 (0.01%), the number of operations
isM � 106.

Therefore, the high level of control accuracy is the
necessary condition for the realization of quantum comput-
ers. In impulse technology, oscillator frequencies are con-
trolled with a high degree of accuracy; the control accuracy of
the amplitudes of control fields needs to be improved in the
future.

7.8 Decohering of qubits in multilevel systems
Two states of amultilevel systemwith `suitable' properties are
often selected as a qubit. For instance, when working with
ions in a trap, it is possible to adopt the ground and excited
optical energy levels of an ion as the qubit levels [5, 44]. The
existence of other levels furnishes additional possibilities; they
can be used as auxiliary levels in the performance of logical
operations and the measurement of the qubit state.

At the same time, `nonqubit' energy levels may form an
additional decoherence channel arising from the `leakage' of
quantum information (population) from the qubit levels in
the performance of logical operations. The transitions from
the qubit levels to the nonqubit ones are effected as
nonresonance transitions, whose probability rises with an
increase in intensity of qubit-controlling resonance fields. The
nonqubit energy levels fulfill the function of an additional
`environment' responsible for decohering the qubit. Possible
ways of suppressing the decoherence of this type were
proposed in Ref. [45].

7.9 Decohering in quantum operations
Control signals alter the qubit states during computations.
Because the decohering Ejci depends on the system state jci,
it turns out that the computation process itself affects the
decohering. That is why there is a need to consider the
problem of decohering in the course of quantum operations.
By way of example, we consider how decohering proceeds in
the performance of the two-qubit CNOT operation [40, 47].

We represent the Hamiltonian of the system of qubits a
and b as

H�t� �
X��on � don�s�n�z � �Jn � dJn�s�n�x

�
� �g� dg��s�a�� s�b�ÿ � s�a�ÿ s�b�� � ; n � a; b : �113�

The fluctuating parts of the Hamiltonian dons�n�z and dJns
�n�
x

may describe the phase and amplitude decoherence arising
from both the interaction with the environment and the
inaccuracy of control signals on and Jn. The third term in
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the sum accounts for the qubit interaction capable of giving
rise to flip-flop type transitions.

To simplify the calculations as much as possible, we
assume that the mean values of fluctuations are equal to
zero and are d-correlated:


don�t�
� � 
dJn�t�� � 
dg�t�� � 0 ;


don�t� dom�t 0�
� � g0dmnd�tÿ t 0� ;


dJn�t� dJm�t 0�
� � g1dnmd�tÿ t 0� ;


dg�t� dg�t 0�� � g2d�tÿ t 0� :

The values of the parameters g0, g1, and g2 for a specific
system are determined frommeasurements or calculated with
the aid of microscopic interaction models.

Although the CNOT operation is an elementary quantum
operation that belongs to the universal set of operations, it is
executed with the aid of a sequence of rotations Uz�a�, Ux�a�
of the state vector of one qubit about the z and x axes by an
angle a and the two-qubit flip-flop type operationUj�a� by an
angle a [40]:

UCNOT � U�b�x

�
p
2

�
U�b�z

�
ÿ p
2

�
U�b�x �ÿp�Uj

�
ÿ p
2

�
�U�a�x

�
ÿ p
2

�
Uj

�
p
2

�
U�b�z

�
ÿ p
2

�
U�a�z

�
ÿ p
2

�
: �114�

The following notation was introduced in formula (114):

U�n�z �a� � exp

�
i
a
2
s�n�z

�
;

U�n�x �a� � exp

�
i
a
2
s�n�x

�
;

Uj�a� � exp
ÿ
ia�s�a�� s�b�ÿ � s�a�ÿ s�b�� �

�
:

The operation U�n�z �a� is performed by turning on on �
ÿe0 sign a for a time t � a=2e0, the operation U�n�x �a� by
turning on Jn � ÿJ0 sign a for a time t � a=2J0, and the
operation Uj�a� by turning on g � ÿg0 sign a for a time
t � a=g0. Here, sign a � 1 for a > 0 and sign a � ÿ1 for
a < 0. The total time of the CNOT operation performance is

tCNOT � p
2e0
� p
J0
� p
g0
:

The fidelity parameter of the CNOT operation perfor-
mance is defined as

F
ÿ��c�0��� � 
c�t���rCNOT

��c�t�� ; �115�

where��c�t�� � U
�id�
CNOT

��c�0�� ;
rCNOT�t� � UCNOT

��c�0��
c�0���U�CNOT ;

with UCNOT being the matrices that contain inaccuracies
arising from the fluctuations in Hamiltonian (113).

The parameter F
ÿ��c�0��� is a function of the initial state

of the system
��c�0��. A more representative result is obtained

by averaging F
ÿ��c�0��� over some set of initial states

��ci j�0�
�
:

F �
X4
i; j� 1

1

4
F
ÿ��ci j�0�

��
:

The following set of initial states for the first qubit was
selected in Ref. [40]:��c1�0�

� � j0i ; ��c2�0�
� � j1i ;��c3�0�

� � 1���
2
p ÿj0i � j1i� ; ��c4�0�

� � 1���
2
p ÿj0i � ij1i�

(and similarly for j � 1; . . . ; 4 for the second qubit).
Computer simulation was employed to obtain the plots

of the dependence of the error E�g� � 1ÿ F�g� on the root-
mean-square fluctuation g in the performance of the
quantum CNOT operation. For o0 � J0 � g0 � 1, the
linear dependence E / g extends to values g ' 0:05 (the
weak noise mode). The effect is observed to be additive in
the weak noise mode [40]:

E�g0; g1; g2� � E�g0; 0; 0� � E�0; g1; 0� � E�0; 0; g2� : �116�
The errorE�g� attains the value 0.75 in the strong noise mode,
when the state of the system becomes mixed.

7.10 Dependence of the decohering rate
on the number of qubits in a computer
In Section 7.9, we calculated the rate of decohering g1 of the
state of a single qubit. A full-scale quantum computer consists
of more than a thousand qubits. Does the decoherence rate gn
of computer states depend on the number of qubits n in it? The
answer is affirmative. When the environments of different
qubits are uncorrelated (incoherent), max gn � ng1. When all
qubits are embedded in the same (coherent) environment,
max gn � n 2g1.

A rigorous proof of these statements was obtained in
Ref. [48] for the model of a qubit surrounded by oscillators.
Here, we give a proof based on the notions developed above
for a single qubit.

The initial nonentangled state of the computer and its
environment is

��c�0�� � �X2 nÿ1

x� 0

cxjxi
���E�0�� : �117�

Owing to the interaction between the computer and the
environment, their states become entangled:

��c�t�� �X2 nÿ1

x� 0

cxjxi
��Ex�x�

�
: �118�

The nondiagonal entries of the reduced density matrix
TrE

ÿ��c�t��
c�t���� are given by

rx; x 0 �t� � cxc
�
x 0


Ex�t�

��Ex 0 �t�
�
: �119�

The decohering consists in the decay (disappearance) of
the nondiagonal entries of the density matrix rx; x 0 �t�
(coherences cxc

�
x 0 ) as a result of the orthogonalization of the

states of environment Ex�t� and Ex 0 �t� corresponding to
different basis computer states jxi and jx 0i. When the
environments of different qubits in the computer are
uncorrelated,


Ex�t�
��Ex 0 �t�

� � hex1 ex2 . . . exn jex
0

1 ex
0

2 . . . ex
0

n i
� hex1 jex

0
1 ihex2 jex

0
2 i . . . hexn jex

0
n i

� he0je1idhesjesinÿd � he0je1id : �120�
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In formula (120), we assumed that the states of d qubits in
jxi � ji1 . . . ini and jx 0i � j j1 . . . jni are different �is 6� js� and
for nÿ d qubits they coincide: is � js (d is the Hemming
distance between the basis computer states jxi and jx 0i). For
a single qubit, he0je1i � exp �ÿg1t�, and therefore


Ex�t�
��Ex 0 �t�

� � exp �ÿdg1t� :

Because max d � n, it follows that max gn � ng1.
In a more general form, the results in Ref. [48] for systems

with incoherent and coherent environments are given by

rx; x 0 �t� � rx; x 0 �0� exp
�
ÿ
Xn
s� 1

jis ÿ jsjg1t
�
; �121�

rx; x 0 �t� � rx; x 0 �0� exp
�
ÿ
����Xn
s� 1

�is ÿ js�
����2g1t� : �122�

For a system with a coherent environment, the states of
the `SchroÈ dinger cat' type j0 . . . 0ni � j1 . . . 1ni experience the
fastest possible decohering:

gn �
����X

s

�is ÿ js�
����2g1 ; gn � n 2g1 :

At the same time, there are decoherence-free states. Such are
the states wherein is � 0, js � 1 for one half of the qubits and
is � 1, js � 0 (n is even) for the other half; then,X

s

�is ÿ js� � 0 ; gn � 0 :

An example of such a state is provided by the Bell states
j01i � j10i for two qubits.

The acceleration of decohering with the number of
computer qubits, which was found to obey the law gn � ng
(or gn � n 2g), is supposedly the main obstacle in the path to
the implementation of a full-scale quantum computer. When
the performance of some calculation (algorithm) with a
quantum computer requires a time t, the probability of
obtaining the correct computational result decreases expo-
nentially with n:

P � exp �ÿan� ; a � gt :

To arrive at the correct solution at least once, the computa-
tion should be repeated k � exp �an� times.

Under the conditions of rapid decohering, quantum
algorithms cannot be executed efficiently, i.e., in a polyno-
mial time. Executing Shor's n-digit number factorization
algorithm requires the time n 3top, which should be shorter
than the decoherence time of the states of an n-qubit
computer t1=n:

n 3top <
t1
n
;

where t1 is the decoherence time of a single qubit. Hence,
there follows the condition for successful algorithm perfor-
mance:

t1
top

> n 4 :

For n � 103, it is necessary to ensure the inequality
t1=top > 1012, which is many orders of magnitude greater

than the value t1=top ' 103ÿ105 in the practical cases under
investigation. The aforesaid actually signifies that we should
find a way of stabilizing the coherent state of a quantum
computer for any desired time sufficient for the execution of a
computation by a given algorithm of polynomial complexity.
Among such methods are the quantum methods of error
correction. Also proposed are different active techniques for
the suppression of decoherence processes. These techniques
are considered in the subsequent sections of the review.

To summarize this section, we emphasize the crucial role
of decoherence in the emergence of classical properties of
bodies. We classify bodies by the number of particles and the
dimensions and time of decohering of the states of electron
orbital motion calculated by the rule tn � t1=n:

The lifetime of coherent states of atomic and mesoscopic
systems (10ÿ9ÿ10ÿ12 s) allows observing quantum coherent
states with modern experimental techniques. The lifetimes of
micro- and macroscopic bodies in quantum-coherent states
(10ÿ21 ± 10ÿ32 s) are such that these states cannot be observed
in present-day experiments. From the physical standpoint,
there is no qualitative difference between atoms and macro-
scopic bodies, because both obey the laws of quantum
mechanics. The difference is purely quantitative: to observe
macroscopic bodies in quantum-coherent states requires
experimental techniques with a temporal resolution of
10ÿ20ÿ10ÿ30 s. These techniques are as yet unknown.

8. Methods for overcoming decohering effects
in quantum computers

8.1 Information coding and error correction
in a classical channel
Methods of coding and error correction in a quantum
computer are the extension of methods developed for the
purpose of error correction in the transmission of classical
information via a classical channel. We demonstrate the
essence of this method by the example of a classical binary
symmetric channel whose properties are shown in Fig. 11.
The schematic also describes the storage of information: in

0

1

0

1

1ÿ p

1ÿ p

p

p

Figure 11. Schematic of a classical binary symmetric channel with an error

probability p.
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this case, the initial and final states are separated only by the
storage time.

The classical three-bit majority code permits revealing
and correcting one error in three bits, which occurred in the
transmission via the channel. We assume that it is required to
transmit the `0' bit value. We take two more reserve bits and
encode `0' in three bits by forming the codeword `000'. In the
transmission of the codeword with errors via the channel,
each of the three bits may be inverted with a probability p. Let
the third bit be inverted. This means that the bits arrive at the
receiving end in the `001' state. We measure all three bits to
discover the error in the third bit (by the majority principle).
We correct the error by inverting the third bit. Decoding the
corrected codeword `000', we obtain the correct state `0'. The
error correction in the transmission of the bit in state `1'
proceeds along similar lines.

We see that encoding one information bit in three physical
bits (triplication) allows revealing and eliminating one error
in three bits. Two (three) errors are not detected and not
corrected by this code. For this code, the probability of error
in the transmission of one information bit is per � 3p 2 � p 3,
per 5 p (errors in bits 1 and 2, 1 and 3, 2 and 3, or 1, 2, and 3).
The ratio p=per is the factor by which the probability of error
decreases when the above code is used.

8.2 Three-qubit quantum code
We apply the method of classical encoding of the state of one
qubit into the state of three qubits:

jci � aj0i � bj1i ; jcci � aj000i � bj111i :

This is easy to accomplish by applying the CNOT1; 2 and
CNOT1; 3 operations. Let the codeword jcci be transmitted
with errors via the channel. We assume that the third qubit is
inverted. As a result, the codeword jc�er�c i � aj001i � bj110i
arrives at the receiving end of the channel. By measuring
qubits in the basis j0i, j1i, we find `001' (with the probability
jaj2) or `110' (with the probability jbj2). Although we succeed
in detecting the occurrence of error in the third bit, the a and b
values are irretrievably lost in the measurement and the
transmitted word jci � aj0i � bj1i is therefore lost.

The Quantum Error Correction (QEC) procedure in the
form closest to the classical one comprises eight stages:

(1) An n-digit number jxi is specified, which should be
transmitted via a channel with amplitude and phase errors.
The number jxi may be a superposition of basis states, for
instance, for one qubit, jxi � aj0i � bj1i.

(2) Encoding the n-digit quantum state jxi in the state of
an �n� k�-digit register is fulfilled by the coding operator C:

Cjxij0 . . . 0i � ��C�x�� : �123�

(3) The codeword
��C�x�� is transmitted with errors along

the channel characterized by the error operator E �Pi Ei,
which acts on the codeword as�X

i

Ei

���C�x�� �X
i

��Ei C�x�
�
: �124�

(4) The error syndrome Ei is derived by the action of the
error syndrome operator S:

S
X
i

��Ei C�x�
�j0 . . . 0i �

X
i

��Ei C�x�
�jii : �125�

Here, the indices i of the Ei error operators are written in an
auxiliary register in the state j0 . . . 0i. The states jii of the error
syndrome register and the states

��Ei C�x�
�
of the register that

stores the codeword with errors become entangled.
(5) In the computational basis, measurements are made of

the states of the qubits of the register that stores the
syndromes i of errors Ei:X

i

��Ei C�x�
�jii ! ��Es C�x�

�jsi : �126�

The measurement identifies the error that occurred in the
channel (index error s, operator Es).

(6) The error in the codeword derived from the measure-
ments is corrected by the action of the inverse error operator
Eÿ1s on the register in the state

��Es C�x�
�
:

Eÿ1s

��Es C�x�
�jsi ! ��C�x��jsi : �127�

The codeword is thereby made free of errors introduced by
the channel.

(7) Decoding is performed:

Cÿ1
��C�x��jsi ! jxijsi :

(8) The auxiliary register jsi is returned to the initial state
j0 . . . 0i by the action on every register qubit with the operator
that performs the transformation jsii ! j0ii.

The above procedure appears to be somewhat abstract
and obscure. A simple example with the transmission of a
qubit in an arbitrary state along a channel with amplitude
errors enables perceiving the significance of the procedures at
all stages of the quantum error correction protocol.

(1) For a `number' jxi, we select the superposition
jxi � aj0i � bj1i of the states of one qubit �n � 1�.

(2) We encode the jxi state of one `logical' qubit in the
state

��C�x�� of three �n� k � 3� `physical' qubits. For this,
we add two ancillary qubits in the j00i state to the qubit jxi:
jxij00i � aj000i � bj100i :

Performing the unitary CNOT1; 2 and CNOT1; 3 transforma-
tions of the jxij00i state, which signify the encoding of the
stateCjxi, we obtain the code state jcci of the register of three
physical qubits:

jcci �
��C�x�� � CNOT1; 3 CNOT1; 2

ÿ
aj000i � bj100i�

� aj000i � bj111i : �128�

The procedure of encoding the `number' jxi in the state jcci of
three qubits is completed.

(3) We write the error operator E �Pi Ei that charac-
terizes the channel in explicit form.We assume that the errors
introduced by the channel consist in the flip of one of three
qubits (amplitude decoherence). Then the error operator is

E �
X3
i� 0

Ei � e0�t�s�1�0 s�2�0 s�3�0 � e1�t�s�1�x s�2�0 s�3�0

� e2�t�s�1�0 s�2�x s�3�0 � e3�t�s�1�0 s�2�0 s�3�x : �129�

Here, s�k�i are components of the Pauli operator that refer to
qubit k, the operator s�k�x reverses the corresponding qubit,
s�k�0 is the identity matrix, and

P3
i� 0 jeij2 � 1. We explicitly
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write the code word with errors:

Ejcci � e0�t� jcci � e1�t�
ÿ
aj100i � bj011i�

� e2�t�
ÿ
aj010i � bj101i�� e3�t�

ÿ
aj001i � bj110i� : �130�

If the time t is short in comparison with the decoherence time
of the qubit state in the channel tdc, then je1j, je2j, je3j5 1,
je0j ' 1. In superposition (130), all states jx1x2x3i, with the
exception of jcci, contain one amplitude error.

(4) To the three qubits in the state Ejcci, we add three
more auxiliary qubits in the state j000i: Ejcci ! Ejccij000i.
We define the error syndrome extraction operator S by the
equality

Sjx1x2x3000i � jx1x2x3CNOTx1;x2CNOTx1; x3CNOTx2; x3i :
�131�

The S operator orders a pairwise comparison (by calculating
CNOT) of the values of the variables x1 and x2, x1 and x3, and
x2 and x3 in each of the three terms of the superposition Ejcci,
and writing the result of calculations, CNOTxi;xj � xi � xj in
the qubit states of the error syndrome register. For instance, if
jx1x2x3i � j100i, then Sj100000i � j100110i. This signifies
that the amplitude error in the first qubit (1 in lieu of 0) has the
syndrome j110i in the register that stores the syndrome. The
syndromes of different errors calculated by rule (131) are
collected in the table:

(5) We perform the state measurements of the three last-
mentioned qubits, which carry information about the error
syndrome, in the register of six qubits in the state SEjcci. In
their measurement, we obtain one of the four possible
y1y2y3 syndrome values: 000, 110, 101, 011, with the
respective probabilities je0j2, je1j2, je2j2, je3j2. The measure-
ment result determines which of the operators Es produces
the error.

(6) We correct the error revealed:

Eÿ1s Esjcci � jccijy1y2y3i :

(7) We decode the codeword:

Cÿ1jcci �
ÿ
aj0i � bj1i� :

(8) The qubits in which the syndrome is written are
returned to the state j000i by applying the sx operator to
the qubits in the state yi � 1.

In the course of error correction in a single qubit, we need
not resort to additional qubits for writing the error syndrome.
The protocol scheme is diagrammed in Fig. 12. The
transformations of the initial state of three qubits prescribed
by the scheme��c�0�� � ÿaj0i � bj1i�j0ij0i �132�

lead to the initial state��c�t�� � ÿaj0i � bj1i��e0�t�j00i � e1�t�j11i
� e2�t�j10i � e3�t�j01i

�
: �133�

The decoding transformation CNOT23; 1 has set the first
qubit free from the amplitude error and from entanglement
with the second and third qubits. The errors introduced by the
E operator are `collected' in the final entangled state of the
second and third qubits: added to their initial j00i state are the
j11i, j10i, and j01i states, which contain errors. Upon
determining the state of these qubits by measurement, they
should be returned to their initial state j00i.

8.3 Correction of phase errors
In Section 8.2, we presented the correction protocols of
amplitude errors in the qubit state introduced by operator
(129). We now discuss the phase errors introduced by the
operator

E � e0�t�s�1�0 s�2�0 s�3�0 � e1�t� s�1�z s�2�0 s�3�0

� e2�t� s�1�0 s�2�z s�3�0 � e3�t� s�1�0 s�2�0 s�3�z : �134�
The phase error operator differs from the amplitude error
operator by the change s�k�x ! s�k�z . Phase errors are a purely
quantum effect and are absent in classical computations.

The protocol for correcting phase errors in the qubit state
in the three-qubit code is schematized in Fig. 13. Added to the
previous scheme of encoding the state of the first qubit in the
state of three qubits are the Hadamard transformations H of
each qubit. The encoding results in the code state

jcci � aj � ��i � bj ÿ ÿÿi ; �135�
j�i � Hj0i � 1���

2
p ÿj0i � j1i� ; �136�

jÿi � Hj1i � 1���
2
p ÿj0i ÿ j1i� ;

Hjÿi � j1i ; Hj�i � j0i : �137�

The phase error operators s�k�z in the basis j�i, jÿi act as
amplitude operators that revert the states j�i, jÿi:

szj�i � jÿi ; szjÿi � j�i :

Considering the properties of these transformations, it is
easily shown that the scheme given in Fig. 13 transforms the
initial state of the three qubitsÿ

aj0i � bj1i�j00i

Ei Eij000i SEij000000i Eij111i SEij111000i
E0 j000i j000000i j111i j111000i
E1 j100i j100110i j011i j011110i
E2 j010i j010101i j101i j101101i
E3 j001i j001011i j110i j110011i

jci jci

jc23i

j0i

j0i

Amplitude
decoherence

+

+ +

+

+

Figure 12. Schematic representation of the protocol for correcting a

quantum amplitude error.

January, 2005 Quantum computers and quantum computations 29



into the final stateÿ
aj0i � bj1i�ÿe0j00i � e1j11i � e2j10i � e3j01i

�
:

When both amplitude and phase errors emerge in a computer,
such that E � Eamp � Eph, the error correction protocol
should furnish the protocol performance by the schemes
given in Figs 12 and 13.

For simplicity, the construction principles of quantum
error correction protocols were demonstrated by the example
of the simplest three-qubit code. This code enables detecting
and eliminating one error (an amplitude or phase error) in
three qubits. Codes involving five and seven qubits have been
elaborated, enabling the correction of any error (an ampli-
tude or phase error) in one qubit [49, 50]. Shor's nine-qubit
code makes it possible to correct two errors Ð a phase error
and an amplitude error [15].

8.4 Fault-tolerant quantum computations
An analysis of the quantum error correction method demon-
strates its universality with respect to any error sources. All
errors are divided into amplitude and phase errors; errors of
both kinds are corrected by quantum error correction
methods.

When performing the protocols of quantum error correc-
tion, use is made of the same elementary operations as in
quantum computations. A quantum computer should oper-
ate by alternating computations with error correction proto-
cols.

The capabilities of the error correction method are
determined by the code selected: the code allows correcting
only those errors for which it was designed. For instance, the
three-qubit code allows correcting one error in three qubits.
Two errors in three qubits cannot be corrected by this code.
The code should be adopted on the basis of the study of error
sources (decoherence mechanisms) in a quantum computer.

The codes used in quantum error correction methods
require additional resources: an increase in the number of
qubits (redundancy) and the number of quantum operations.
For a single-step encoding, the number of requisite qubits
increases approximately ten-fold. When use is made of
concatenated encoding, the number of qubits increases by
about a factor of 10 t, where t is the number of encoding
cascades [55]. The number of quantum operations used in the
protocols of quantum error correction increases with the
same rate. This brings up the question: is it possible to
stabilize the quantum-coherent computer state for practi-
cally acceptable qubit and operation `expenses' for error
correction?

Error-correction operations themselves introduce addi-
tional errors owing to inaccuracies in the performance of

quantum operations, as well as due to decohering effects in
the quantum computer.

Quantum computation is termed fault-tolerant if it
furnishes a reliable computational result under the aforemen-
tioned limitations of error correction methods. The computa-
tions are fault-tolerant if the error correction procedures
remove more errors from the computer than they introduce.
Emphasis is placed on the requirement that no multiplication
of the errors introduced by correction procedures occurs. The
periodicity of correction procedures should be such that the
error accumulated between two QEC procedures is below the
level of errors under correction.

The noise immunity of computations actually signifies
the stabilization of the quantum coherent computer state
for the time required to execute a polynomial algorithm.
The conditions for noise-immune computations with a
quantum computer are presently formulated as follows:
the quantum computer can operate for an arbitrarily long
time if the error probability e in one elementary quantum
operation is below the threshold value eth. The numerical
value of eth is estimated by numerical simulations of
quantum computer operation; modern estimates yield a
value eth 4 10ÿ5 ± 10ÿ4 [52].

8.5 Decoherence-free states of a quantum computer
Actively discussed in the literature is the possibility of
employing the so-called decoherence-free states of a quan-
tum computer in quantum calculations. We assume that the
mechanism of qubit decohering that operates in the computer
is known: let it be defined, for instance, by the operator

E � je0is�1�0 s�2�0 � je1is�1�x s�2�x :

If the states of a logical qubit j0iL and j1iL are encoded into
the symmetric states of two physical qubits,

j0iL �
1���
2
p ÿj01i � j10i� ; j1iL �

1���
2
p ÿj00i � j11i� ; �138�

these states are invariant under the action of the error
operator E.

The limited nature of the above way of suppressing
decoherence is evident. The code subspace of states is free
from decoherence only relative to one mechanism; in real
physical systems, there are several suchlike mechanisms.
Lastly, always present is the mechanism related to the qubit
control channel: control errors.

8.6 Decoherence-immune qubits
Bacon et al. [53] proposed designing qubits in such a way as to
prohibit decohering for energy reasons (a `supercoherent
qubit'). We consider a system of spins S � 1=2 coupled
pairwise by the exchange interaction

H �n� � D
2

� Xn
i; j� 1

ÿ
S �i�S � j �

�� 3

4
nI

�
: �139�

Hamiltonian (139) can be represented as

H �n� � D
2
S �n� 2 ;

where S �n� �Pn
i� 1 S

�i� is the total spin of the system. The
eigenvalues and eigenfunctions of H �n� for even n take the
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H

Figure 13. Schematic representation of the protocol for correcting a

quantum phase error.
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form

EJn �
D
2
Jn�Jn � 1� ; Jn � 0; . . . ;

n

2
; �140�

jcJn
i � jl; Jn;mi �141�

(l is the degeneracy of the state).
The ground level E0 � 0 of the system for n � 4 is doubly

degenerate �l � 2�; the states of this doublet are suggested for
the qubit states. Some additional interaction in the system is
required to remove the degeneracy and make the qubit states
distinguishable. The lowest excited level E1 of the system has
the energy E1 � D. The decoherence operator of the general
form

E � e0s0 � exsx � eysy � ezsz ;

which acts on the spin of a single particle in the system H �n�,
gives rise to transitions from the ground level by the selection
rule DJn � 1, i.e., the E0 ! E1 transitions. At low tempera-
tures �kT5D�, the probability of these transitions is
exponentially low:

w0! 1 / exp

�
ÿ D
kT

�
:

Despite the attractiveness of the idea of a `supercoherent
qubit', it is evident that there exist other channels of qubit
decohering apart from those mentioned above. Because an
interaction is introduced into the system to split the doubly
degenerate ground energy level of the system, the noise
accompanying this interaction produces a new decoherence
channel. To perform one- and two-qubit operations, we have
to set up channels for controlling individual qubits and their
interaction. This signifies the emergence of new decoherence
channels due to fluctuations in control signals. In view of the
aforesaid, we may draw the conclusion that a `supercoherent
qubit' may be free from only a part of decoherence channels;
other channels persist.

8.7 Methods for preventing errors:
the quantum Zeno effect
The so-called error prevention protocol was proposed in
Refs [54, 55]. In essence, this is a slightly modified protocol
of quantum error correction. Once again, we write the state of
the system at the stage of error syndrome derivation:

S
X
i

��Ei C�x�
�j0 . . . 0i �

X
i

��Ei C�x�
�jii : �142�

At this stage, the system states
��Ei C�x�

�
become entangled

with the states jii of the error syndrome register.
The error operator E �Pi Ei is represented as the sum

E �Pi ei�t�Ei. Here, Ei are the error operators proper and
ei�t� are the probability amplitudes, which depend on the time
t during which the operator E acts on the system. The term
e0�t�E0 stands out in the sum, where E0 is the identity
operator and the amplitude

e0�t�; e0�0� � 1 ;

defines the probability that the system survives in the initial
(error-free) state C�x�:

psuv�t� �
��e0�t���2 ; psuv�0� �

��e0�0���2 � 1 :

On the contrary, the amplitudes

ei 6� 0�t�; ei 6� 0�0� � 0 ;

increase with the time t during which the operators Ei 6� 0 act
on the system.

In view of the aforesaid,��SEC�x��j0 . . . 0i �
X
i

ei�t�
��Ei C�x�

�jii : �143�

In the measurement of the state of error syndrome register
qubits jii, entangled state (143) reduces to one of the non-
entangled states

��Es C�x�
�jsi. The probability of the corre-

sponding result is jes�t�j2. If the time t is so short that��e0�t���2 4 1 ;
��ei�t���2 5 1 ; i 6� 0 ;

themeasurement of the register state jii yields the initial error-
free state E0

��C�x�� � ��C�x��with a probability close to unity.
This concludes the error prevention protocol. (It only remains
to bring back the register jii to the initial state j0 . . . 0i.)
Because the error correction stage is absent in the protocol,
the jii register size may be reduced to a minimum; a saving of
the requisite qubit number occurs [55].

The error prevention protocol corresponds closely to the
quantum Zeno effect, which is the subject of numerous
publications [54 ± 59]. The quantum Zeno effect belongs to
the so-called active methods of decoherence suppression: the
experimenter performs direct measurement of the state of the
system status to suppress decoherence.

By solving the SchroÈ dinger equation (see Section 7.5), we
obtained two different expressions for the probability of
survival of the initial state

��e0�t���:��e0�t���2� 1ÿ at 2 ; t5
2p

ol ÿ o0
; �h

�X
l

jllj2
�ÿ2

; �144�

��e0�t���2� exp �ÿgt� ' 1ÿ gt ; t4
2p

ol ÿ o0
; �h

�X
l

jllj2
�ÿ2

;

�145�

where

a � �hÿ2
�X

l

jllj
�2

:

The quadratic dependence psuv�t� � 1ÿ at 2, which is
characteristic of very short times t, is the necessary condition
for the observation of the quantum Zeno effect: the periodic
measurement of the system signal state at intervals t that
satisfy the inequality in (144) preserves the system in the initial
state.

Indeed, we select an arbitrarily long time T and perform
T=t measurements of the system at intervals t. Then, the
probability of survival of the initial system state is

psuv�T � � �1ÿ at 2�T=t � 1ÿ aTt ; lim
t! 0

psuv�T � � 1 : �146�

On the contrary, if measurements are made at intervals t such
that the system evolution obeys the conditions in (145), the
Zeno effect is absent:

psuv�T � � �1ÿ gt�T=t ' 1ÿ gT! 0 ; T! 1

g
: �147�
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The limitations on the possibility of realizing the Zeno
effect in quantum computers are evident. The duration of
measurements t repeated at time intervals t should satisfy the
condition t5 t. The parameters of short pulses are very hard
to control; the fluctuations of pulse parameters open up a new
decoherence channel. Many combinations of the parameters
give rise to precisely the acceleration of decohering (the anti-
Zeno effect) [59]. The feasibility of performing computational
unitary operations against the background of periodic system
status measurements is not evident. If the Zeno effect were
actually realized, it would be beneficial as a method of
information storage in the quantum computer memory.

8.8 Dynamic methods of decoherence suppression
Viola and Lloyd [60] proposed a dynamic method of
decoherence suppression close in performance technology to
the method of the quantum Zeno effect. Frequent measure-
ments of the system status inherent in the Zeno method are
replaced in this case with frequent control pulses whose power
(area) is selected such that every pulse inverts the state of a
qubit (spin, quasi-spin). This approach is efficient where
phase qubit decoherence is involved, when the energy of
interaction with the environment is

Hint � �hszB ;

where sz is the qubit quasi-spin and B are environmental
variables. Under inversions of the qubit quasi-spin sz, the
interaction energy Hint changes sign, and hence the time-
average value hHinti � 0, i.e., multiple spin inversion isolates
the qubit from the environment.

Another interpretation of this effect is possible: changing
the energy interaction sign is equivalent to changing the sign
of time in the evolution operatorU�t� � exp �ÿiHintt�; during
the two time intervals that follow two spin-inverting pulses,
the evolution proceeds in opposite directions to cancel each
other. The proposed method is a direct development of the
spin echo and refocusing techniques elaborated in NMR
spectroscopy.

Theory allows determining the method applicability
criteria: the qubit is asymptotically decoupled from the
environment if the number of pulses N � T=Dt!1, where
Dt is the time interval between the pulses. In the limit of fast
spin flips, the spin decohering is suppressed for any
temperature and surrounding oscillator spectrum if Dt4tc,
where tc is the correlation time of environmental variables.
Broadly speaking, the condition Dt4tc is hard to realize in
practical cases. An advantage of themethod is the fact that no
additional qubits are required.

8.9 Quantum error correction by the method
of weak continuous measurements and feedback
Milburn and his collaborators investigated the protocol of
quantum error correction reliant on weak continuous
measurements and control of qubit states by feedback signals
[61, 62]. In classical systems, control circuits with feedback
exhibit a high efficiency; that is why there is good reason to
investigate suchlike schemes for quantum systems as well.

As in the protocols with discrete strong measurements
described above, the state of n qubits is encoded into the state
of m > n qubits in the code subspace C. The Pauli operators
sx,sy, andsz are employed to form the stabilizing generators
g �Qs�a�i s�b�j . . . such that gjcci � jcci. Discrete strong
measurements g are used for error syndrome determination.

A similar protocol of error correction with the aid of weak
continuous stabilizing generator measurements and feedback
comprises the following procedures:

(1) encoding the jci state of n qubits into the jcci state of
m > n qubits;

(2) continuous weak gmeasurements;
(3) filtration of measurement currents with the aid of a

low-frequency filter to reduce noise in the measurement
signal;

(4) `�' or `ÿ' sign determination of the smoothed current
signal and formation of the feedback signal for every qubit
with the inclusion of the information about the signal signs;

(5) application of the feedback signal to every qubit.
Mathematical simulations performed for a three-qubit

code �n � 1, m � 3� suggest that the protocol involved is
efficient for low noise levels �g4 0:1�. The method is
inefficient for high noise levels �g > 0:3�. Moreover, in the
conditions of strong noise, the protocol leads to a faster
decrease in the fidelity parameter F�t� than in the absence of
the procedure. For a high procedure repetition frequency,
discrete methods of error correction are more efficient than
the methods with continuous weak measurements and feed-
back: Dt5 gÿ1. For Dt > gÿ1, the method with discrete
measurements is also inefficient.

The protocols with discretemeasurementsmay turn out to
be useful in preserving the qubit states in the memory systems
of quantum computers. Whether continuous measurements
can be combined with computational unitary transforma-
tions remains to be seen.

8.10 Fault-tolerant topological quantum computations
By invoking the geometrical properties of the state space of
quantum systems, it is possible to construct a universal set of
quantum operations immune to control errors [64]. These
properties are clearly manifested in the description of qubit
states by the density matrix

r�s� � 1

4

�
I�

X
i

sisi

�
; i � x; y; z : �148�

Pure qubit states are defined with a unit Bloch vector s with
real components sx, sy, sz.

The rules for going over from the parameters sx, sy, sz to
the parameters jaj, jbj, jjj of the state vector

jci � jaj
jbj exp �ij�
���� ����

are determined from the equality

r � jcihcj � 1

4

�
I�

X
sisi

�

and are given by

1� sz � 2jaj2 ; sx � isy � 2ab� ; �149�
1ÿ sz � 2jbj2 ; sx ÿ isy � 2a�b :

In the state

j0i � 1
0

���� ���� ;
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which corresponds to the Bloch vector s�0; 0; 1�, the phase
remains indefinite; it can be given any value 04j < 2p. The
surface of the unit sphere s 2x � s 2y � s 2z � 1 is the curved
(nonplanar) space of pure qubit states. The space curvature
is k � rÿ2 � 1.

The curvature of the state space gives rise to the so-called
geometric phase by cyclic (closed) trajectories in the state
space. We select, for instance, the trajectory from the North
Pole of the Bloch sphere down to the equator along the
meridian in theOyz plane, along the equator to theOxz plane,
and up the meridian to the North Pole (Fig. 14):

s�0; 0; 1� ! s�0; 1; 0� ! s�1; 0; 0� ! s�0; 0; 1� :

We select the phase vector of the initial state as a unit
vector in the plane of the drawing along the tangent (at the
point of the North Pole). In the course of the cyclic process,
there occurs a parallel transfer of the phase vector: the vector
retains the tangent direction at each point of the trajectory.
On returning to the initial point, we find that the qubit phase
vector makes the angle g � p=2 relative to the initial
orientation direction. The source of the resultant phase
difference is the geometric property of the state space: its
curvature; hence the name of the resultant phase, the
geometric phase.

In general, g � kO, where O is the solid angle subtended
by the closed trajectory and k is the curvature of the surface of
states. In our case, k � 1, O � p=2, and g � p=2. The phase g
is conveniently represented as

a
b

���� ����! a exp

�
ÿi g

2

�
b exp

�
i
g
2

�
��������

�������� :
In an adiabatic process first considered by Berry [65], the

phase is

g �
�
s

�
c�s�

���� dds
����c�s�� ds ; �150�

where s is the system parameter employed to control the
adiabatic cyclic process. The value of geometric phase can be

calculated by the Pancharattam formula

g � arg
�hj1jj2ihj2jj3i . . . hj4jj1i

	
;

when the cycle is defined by the states at discrete points [64].
The relation g � kO signifies that the geometric phase is

basically dependent on the shape of the system trajectory in
the state space. The noise immunity of phase gates (opera-
tions) employing the geometric phase consists in the fact that
the trajectory form fluctuations (due to control errors) are
averaged to become zero with retention of the value of the
solid angle O [64].

The idea of a stronger (`topological') immunity of the
phase gate to control errors is easy to explain by the example
of a phase gate employing the Aharonov ±Bohm phase
difference. When the electron wave function flows over a
magnetic flux F enclosed in a thin solenoid, the phase
difference between the two parts of the wave function is
g � eF=�hc and is independent of the form of the ambient
electron wave function components. This topological prop-
erty makes the phase gate immune to control errors.

Commutative
ÿ
exp �ig1� exp �ig2� � exp �ig2� exp �ig1�

�
geometric phases are referred to as Abelian. To construct
universal topological calculations immune to control errors,
it is necessary to have operations of the non-Abelian type
(noncommutative). Ways of constructing non-Abelian phase
operations harnessing the fractional Hall effect (anyons) have
been proposed [66]. The possibility of constructing phase
operations with the geometric phase involving ions in traps
has also been considered [67].

8.11 On the possibility of combined use
of different methods of error correction
An important issue in the theory of methods of error
correction in quantum computers is the possibility of
combined use of these methods in real situations, because
there is no certainty that any one of them taken alone would
afford long-term stabilization of computations. It is also
unclear whether it will be possible to employ one decoher-
ence suppression procedure or another simultaneously with
computations. From the standpoint of computation accelera-
tion, it is desirable that the decoherence suppression proce-
dures should be performed simultaneously with computa-
tions. Evidently, this is not always possible.

In the preceding sections, we convinced ourselves that
quantum error correction procedures use the same elemen-
tary computational operations and the same qubit-control
devices as quantum computation itself. Under these condi-
tions, the procedures of quantum error correction and
computation are performed during different time intervals
but alternately. Byrd and Lidar [68] investigated the condi-
tions for the simultaneous application of the methods of
quantum error correction and the dynamic methods involv-
ing short pulses that isolate qubits from the environment.
Determining the conditions for the application of other
combinations of error correction techniques and decoher-
ence suppression is a topical problem.

9. The search for ways to implement quantum
computers: experimental research

In the framework of this review, there is no way of outlining
the experimental results concerning the quest for approaches
to the realization of the idea of quantum computers. We

j0i

Figure 14. Schematic of the emergence of geometric phase difference in the

quantum qubit state caused by the curvature of qubit state space.
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mention monographs [14, 30] as experimental works and
reviews covering separate areas of the quest [5, 25, 44]. Here,
we restrict ourselves to the enumeration of the avenues of the
quest and brief comments.

The method of nuclear magnetic resonance in liquids at
room temperature made it possible to demonstrate the
experimental performance of principal quantum algorithms
and error correction techniques involving up to seven qubits
in an ensemble quantum computer [25]. However, upon
establishing the fact that the qubits in an NMR quantum
computer in room-temperature liquids are limited to about
ten in number, the effort mounted to advance this line was
presumably weakened.

A large number of experiments in the realization of
quantum computational operations were performed on ions
in a one-dimensional ionic crystal in the Paul trap [5, 44]. This
version of a quantum computer, too, encountered serious
obstacles to increasing the number of qubits (ions in the one-
dimensional crystal) owing to the instability of the one-
dimensional crystal. The found limitations of the number of
qubits may be overcome by resorting to an ensemble of many
traps. In this case, it is necessary to develop methods for fast
(in a time comparable with the time of quantum operations)
ion transportation from one trap to another. The ion
transportation was shown to be basically possible [69].

A qubit arrangement similar to ionic crystals can be
realized in semiconductor crystals of a spinless single-isotope
28Si silicon crystal, in which 31P phosphorus atoms (qubits)
are arranged in a linear chain (Kane's model [7]). The
function of a qubit is fulfilled by the nuclear �I � 1=2� or
electron �S � 1=2� spin of atomic phosphorus 31P. The
number of qubits `prepared' in this architecture is unlimited.
The pace of development of this direction, which is generally
believed to be highly promising, is determined by the rate of
nanotechnology developments required to fabricate the
structures with the requisite parameters. A difficult problem
in this quantum computer realization is the state measure-
ment of a single spin qubit. The qubit state measurement
problem is mitigated if recourse is made, as we proposed, to
the ensemble version of the qubit [30].

Experimental research is vigorously pursued to make
qubits reliant on the electrons in semiconductor quantum
dots [70, 71]. The orbital or spin states of a single electron in
the quantum dot are being investigated for the qubit states. In
this method, the number of qubits (quantum dots with a
single electron) is not limited, either.

Qubits based on superconducting mesostructures have
been prepared and investigated [71]. In this case, two qubit
versions have been made: in the first version, quantum
information is encoded into the number of superconducting
pairs in a quantum dot, and in the second version, into the
direction of the superconducting current in a SQUID. To
fabricate qubit structures, use is made of the available
microelectronic technologies. The number of qubits packed
on a `chip' is basically unlimited. This line of investigation
into ways of realizing quantum computers is characterized by
an intense activity of experimenters and steady progress.

A large number of experiments in the realization of
quantum operations have been performed with solitary
atoms in microcavities (cavity quantum electrodynamics).
The model of a quantum system is a two-level atom-qubit
coupled to an oscillator-photon in one of the cavity oscilla-
tion modes. The experimental works are outlined in mono-
graph Ref. [14]. Unfortunately, it is not clear how to increase

the number of qubits in this method. Conceivably, this
method could prove to be useful in the development of
atomic and photon qubit transport, as well as in the quantum
information transfer from atomic qubits to photon ones and
vice versa (an atom±photon quantum interface).

Of interest is the possibility of realizing quantum opera-
tions using linear optical elements (an `optical quantum
computer') [72]. In this method, the number of optical
elements grows exponentially with the number of qubits in
the computer. The experiments along this line of quantum
computer realization actually merge with experiments in the
area of quantum optics [73].

The above-enumerated lines of research into ways to
realize a quantum computer rely on technologies elaborated
for other purposes (time-standard development, microelec-
tronic, and quantum-optical technologies). Other promising
ideas that may call for the development of radically new
technologies have also been conceived. We list some of
them:

(1) a two-dimensional electronic crystal in a potential well
near the surface of liquid helium [74] (the physics of these
crystals has been well studied; the function of qubits may be
fulfilled by the spins of individual electrons in the crystal);

(2) a two-dimensional atomic lattice in an optical trap
formed by the standing wave of interfering laser beams [75];

(3) anyons in a two-dimensional electron gas in semi-
conductors under the conditions of the fractional Hall
effect [66];

(4) quantum cellular automata in ferromagnetic (anti-
ferromagnetic) structures in crystals [76].

Recent progress in experiments with Bose ±Einstein
condensates opens up the possibility of searching for
quantum operations employing these new quantum sys-
tems [77].

10. Conclusion

10.1 Quantum computers: a dream or reality?
The research in the area of quantum computers and quantum
computation is currently at the stage of development of basic
problems. This stage should be concluded with the selection
of one of the approaches of quantum computer realization as
the main one. Most likely, several prototypes of a quantum
computer relying on different technologies will have to be
made and compared to chose one for subsequent develop-
ment.

As of now, there exists a wide diversity of opinions
regarding the future of quantum computers Ð from predic-
tions of the (unavoidable) forthcoming quantum technical
revolution to a deep scepticism. In a concentrated form, the
`pro' and `con' opinions were expressed, for instance, in the
dispute of participants at the conference on quantum
computation (June 2003) [46]. We list the `con' arguments:

(1) Quantum computers are unnecessary: there are no
problems that justify the development and implementation of
a quantum computer. Only two efficient quantum algorithms
(Shor's and Grover's) have been found over the past years. It
is meaningless to make a quantum computer solely for the
purpose of cracking the popular modern RSA cryptosystem:
it will have become a thing of the past by the time the quantum
computer makes its appearance.

(2) A quantum computer is a special-purpose analog
device, which is hard to realize.

34 K A Valiev Physics ±Uspekhi 48 (1)



(3) Nature did not opt to select the quantum method of
calculations: the brain does not perform quantum operations.

We do not reproduce the `pro' arguments, for we believe
that our entire review is argumentation in support of
quantum computers.

10.2 What next?
Let us assume that an age will dawn when the quantum
dynamics of systems will be mastered at the atomic level and
quantum information-processing technology will be devel-
oped. What next? What new resources of nature might be
harnessed to create new-generation information technolo-
gies? The degrees of freedom in systems of a smaller volume
than the atom (atomic nuclei, elementary particles) are
associated with high energies, which hinders their use for
information encoding. Does this signify that all informational
resources of nature will be exhausted at the atomic level?

10.3 On the content and structure of the modern course
in quantum mechanics
When we compare ordinary textbooks of classical and
quantum mechanics, it is easy to see their differences in
content and structure. A course in classical mechanics is
subdivided into statics and dynamics, while this division is
absent in a course on quantum mechanics. It is dominated by
statics (system eigenvalue and eigenfunction problems);
dynamics plays a minor role (problems on the radiation ±
atom interaction and particle scattering). Meanwhile, it is
quantum dynamics that prevails in contemporary quantum
systems research, as is clear from the presentation of the
theory of quantum information systems. It is supposedly
expedient to construct a modern course in quantum
mechanics such that it consists of two full-fledged volumes
dedicated to quantum statics and quantum dynamics. It is
believed that such a course on quantum mechanics will make
its appearance in the near future.
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