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Spin superfluidity in *He
V V Dmitriev

1. Introduction

The hallmark of a superfluid liquid is its ability to assume
quantum coherence, a state with a special kind of long-range
order. The key characteristic describing this order in super-
fluid *He or common superconductors is a complex wave
function, the so-called condensate wave function ¥ =
|| exp (ip) with a definite phase ¢. This implies that the
gauge invariance of the system breaks down at the superfluid
transition. While the energy of superfluid liquid does not
depend on the phase, it increases if ¢ becomes spatially
nonuniform (i.e., when the so-called order parameter gradi-
ent energy increases). This gives rise to the mass- and (in
superconductors) charge-carrying superfluid current
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where m is the mass of the *He atom and pg = |¥|* and
vs = (h/m)Ve¢ are the superfluid component density and
velocity, respectively. A constant phase difference A¢ main-
tained between the ends of a channel filled with superfluid
“He will give rise to a nondissipative current through the
channel, whose magnitude will be proportional to this phase
difference rather than the pressure or chemical potential
difference as in a normal liquid. Correspondingly, electrical
current in a superconductor is determined by the wave
function phase difference between the electrons at the ends
of the sample rather than by the voltage, as in a common
conductor. The gradient energy can be viewed as kinetic
energy associated with the superfluid current, Fy = pgvé /2,
and the current is correspondingly written as Jg = 0Fy /0vs.
Unlike the atoms of “*He, the atoms of *He are fermions,
implying that their superfluidity results from Cooper pairing
(analogous to superconductivity in metals). What is essen-
tially new compared to common superconductors is that the
spin and orbital moments of 3He Cooper pairs are 1.
Accordingly, there are three possible values for the projec-
tion of both the spin and the orbital moment on a chosen
direction, and the order parameter is conveniently taken in
the form of a complex 3 x 3 matrix which describes, in
particular, how the spin and orbital moments of a Cooper
pair are oriented with respect to one another (for more details
on superfluid 3He, see Refs [1—3]). Such ordering may
correspond to various superfluid phases differing in the
specific form of this matrix. In superfluid *He, only three
phases — *He-A, *He-A |, and He-B — are found, depending
on conditions (Fig. 1). In these phases, symmetries other than
the gauge symmetry can also be violated. In particular, the
violation of spin rotation symmetry in Cooper pairs leads to
three additional hydrodynamic variables similar to the order
parameter phase. The gradients of these variables will give
rise to a spin supercurrent, a current in which spin and the
related magnetic moment are transferred in a non-dissipative
way (we do not distinguish between spin and magnetic
currents below). It should be noted that what is meant by a
spin supercurrent is magnetization transferred in the absence
of mass transfer, not the flow of magnetized material. In
general, the spin supercurrent is a tensor and can be written as

n
iy = % pikva‘Qiﬂ ) (2)
where p;.,,, the tensor of the superfluid spin density, is on the
order of yc2/g; ¢ is a factor in the expression for the gradient
energy and has the meaning of spin wave velocity; y is the
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Figure 1. Phase diagram of 3He in zero magnetic field. The A;-phase
occurs only in a magnetic field in a narrow region around the superfluid
transition temperature.

magnetic susceptibility; g the gyromagnetic ratio; and Q;; isa
tensor characterizing the non-uniformity in spin space
orientation. i and k are coordinate space indices, and v and ¢
are spin space indices.

The following reasoning leads to a simple model of how a
spin supercurrent appears. In the momentum representation
the wave function of a spin-1 Cooper pair can be expanded in
components corresponding to various values of the projec-
tion of the Cooper pair spin (ms = 1,0,—1) onto a chosen
direction, giving

¥ = P+ UL+ (P P )
2

where the |1, my) are the eigenfunctions of the spin operator
projection. Now consider superfluid 3He as consisting of a
normal component and three superfluid components with
wave functions ¥4;, V||, and (¥} + ¥;). Because in weak
magnetic fields | ¥4 | = | ¥}, |, the counterflow of ¥;; and ¥,
should lead to superfluid spin transfer in the absence of mass
transfer.

The possibility of a spin supercurrent began to be widely
discussed immediately after the 1972 discovery of super-
fluidity in *He [4], when it became clear that the Cooper
pairs of the new superfluid phases have a spin. However,
direct evidence for the existence of such currents was lacking
for a long time, leaving it unclear precisely which of the
observable phenomena are caused by spin supercurrents and
under what conditions these phenomena can be observed.
The experiments A S Borovik-Romanov and his team started
at the P L Kapitza Institute for Physical Problems in 1984 and
theoretical work by I A Fomin of the L D Landau Institute of
Theoretical Physics provided elucidation of the problem. In
the present paper, a brief review of these studies is given. The
experiments described in Section 4—7 were conducted at
pressures from 0 to 29.3 bar in magnetic fields from 71 to
570 Oe [the corresponding nuclear magnetic resonance
(NMR) frequencies ranging from 230 kHz to 1.85 MHz].
The problem of magnetic superfluidity can also be found in
the review papers [5—8].

2. Spin supercurrent in *He-B
The violation of the spin space rotation symmetry in super-
fluid *He does not yet mean that spin supercurrent is easy to

create and measure there. Unlike mass or electric charge, spin
is not generally a conserved quantity. For example, the spin-
orbit (dipole) interaction can lead to spin transfer to other
degrees of freedom, and spin supercurrents can be considered
meaningfully only if their effect is noticeable compared to
spin-non-conserving processes. In superfluid *He spin-orbit
interaction can be important because it is stronger than in the
normal phase (due to the fact that Cooper pairs have a spin
and an orbital moment). For this reason, talking about spin
supercurrents only makes sense with respect to the B-phase, in
which the spin-orbit interaction can be effectively eliminated.
Therefore, the discussion below is limited to the B-phase.
The order parameter of the B-phase has the form

Ay = Aexp (i9) R0, 0) = Aexp (i) R, B,7),  (4)

where 4 is the energy gap in the excitation spectrum and ¢ is
the phase of the orbital part of the order parameter (a
gradient of ¢ produces a mass supercurrent). The matrix
ﬁ(ﬁ, 0) of size 3 x 3 rotates the spin space with respect to the
orbital space through an angle 0 about the direction n (which
is common for a macroscopic volume of *He). Another way to
express this rotation is in terms of the Euler angles o, 8, and y.
The angle 0 can in principle take on any value. In equilibrium,
this degeneracy is lifted by imposing a minimum condition on
the dipole energy

8 2
FD:—%Q%<7+0059> , (5)

where Qp = Qp(7T), the so-called Leggett frequency, is a
temperature-dependent characteristic of the dipole interac-
tion force [Qp(0) ~200kHz]. The minimum of the dipole
energy is achieved at

1
0 = 0y = arccos <— Z) ~ 104° .

To excite a spin supercurrent, NMR experiments can be used.
In an NMR experiment the spin part of the order parameter is
in motion, the angles o, 8, and y depend on time, and the first
two of them have a simple physical meaning: o corresponds to
the phase of the magnetization precession, and f to the
magnetization deviation angle from the equilibrium direc-
tion. The contributions due to the gradients of these angles
lead to an increase in the spin gradient energy and hence
produce a spin supercurrent.

In the spatially uniform case the spin dynamics of ’He-Bis
determined by the Leggett—Takagi equations [9, 10]

. 4 Q% . X
M:ngH+E%51n0(l+4c050)n,
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G—gn-(Y—H)+E81n0(l+4cose), (6)
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where 7 is the Leggett — Takagi effective time determining the
magnetic relaxation rate. There are a number of NMR modes
(i.e., of periodic magnetization motions) that follow from
Eqn (6), of which the easiest to excite is the so-called
Brinkman—Smith mode [11], that is the precession of
magnetization deviated by an angle § < 0y from the direction
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of H (with [M| = yH). What is remarkable about this mode is
that 6 = 6y, i.e., the dipole energy remains zero during this
precession. As a result, the last term on the right-hand side of
the first equation of system (6) also goes to zero, as does the
relaxation term in the second equation. Note that both the
magnetization and the vector n precess at the Larmor
frequency (the orientation of n relative to M is determined
by precisely the condition that the dipole energy be a
minimum). Let the magnetic field H be along the z axis and
suppose that the system is homogeneous in the plane x, y but
has inhomogeneities along the z-axis. Then, allowing for spin
currents, the first equation of system (6) can be rewritten in
the form

: s
M, = (gM x H), + =, (7)

where v indexes the magnetization and current components
(x,y, and z). For M., the first term on the right-hand side of
Eqn (7) is zero, thus yielding the magnetization equation of
continuity. If we transform to a Larmor-frequency-rotating
coordinate system, this equation is also fulfilled for M, and
M, which is exactly what enables effects related to the spin
supercurrent to be observed.

Given the minimum condition for the dipole energy, two
of the three Euler angles (for example, « and f) can be
chosen as independent, and in terms of the gradients of
these two it is possible to obtain formulas for the spin
supercurrent [12, 13]. For example, the spin supercurrent
carrying the z-component of the magnetization in the
direction of the z-axis is found to be

Jzzz—gc%/l—u{fl(u)g—Z—&-fz(u) %} (8)

where u = cos f3,

3
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From Eqn (8) it is seen that the analog of superfluid density in
spin superfluidity is a quantity proportional to v1 —u.
Therefore, superfluid spin density is different from zero only
for § # 0.

If the angle > 0, the dipole energy is minimum — but
already not zero—at 6 = f, which results in a positive shift in
the NMR frequency [11],

2

4 Qg
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where w and wp = gH are the precession and Larmor
frequencies, respectively. Note that the dipole moment on
the right-hand side of the first equation of system (6) (and the
relaxation term in the second) are also nonzero. Fortunately,
under the conditions of the experiments to be described in
Sections 3—7, these additional terms are small, and their
associated non-conservation of spin affects spin dynamics
little compared to magnetization transfer by spin currents.

3. A homogeneously precessing domain

There is an important consequence of the fact that *He-B can
carry a spin supercurrent: the formation of the so-called
homogeneously precessing domain (HPD). Let us see how
an HPD forms under pulsed NMR conditions (Fig. 2). Let a
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Figure 2. Formation of an HPD after the application of a deflecting rf
pulse.

sample of *He-B be placed in a closed cell and exposed to a
uniform magnetic field gradient. At equilibrium the magne-
tization is parallel to the field. Now let us apply a short rf
pulse to get the magnetization deflected through a certain
angle (90° in Fig. 2) throughout the volume. Then the
magnetization in the volume enters the Brinkman—Smith
mode, i.e., starts precessing at the Larmor frequency — which
is coordinate dependent [wy(z) = wy(0) —zgVH] because
the magnetic field varies along the cell — and the phase of
the precession develops a gradient which increases with time.
As the magnetization precesses, it produces an induction
signal in the NMR pickup coil, for which, in a system of
non-interacting spins, the decay time due to dephasing must
be T ~ 1/Aw = 1/(gLVH), where Aw is the characteristic
precession frequency range over the cell and L the cell length.
A different picture arises for 3He-B. According to Eqn (8), a
gradient in precession frequency leads to a spin supercurrent,
which transports the longitudinal magnetization along the
field gradient direction. Because there is no spin flow through
the cell boundaries, the longitudinal component of the
magnetization starts changing: the magnetic moment flows
down to the bottom of the cell (here, M. increases) and away
from its top (here, M, decreases). Since the absolute value of
M in the Brinkman—Smith mode cannot change — this
would lead to an increase in the dipole energy — what the
change in the longitudinal magnetization does is to cause a
change in the deviation angle f, upwards at the top and
downwards at the bottom of the cell. This can continue until
0 < B < 0y. At f = 0 we have the condition J,, = 0, meaning
that magnetization ceases to be transported in this region. As
the angle f increases above 6y ~ 104°, the dipole energy
increases, and the precession frequency shifts from the
Larmor value [see Eqn (9)]. This frequency shift can in
principle (and does in practice) compensate for the nonuni-
form field and turn 0o/0z and J.. to zero. Accordingly,
regions with J., = 0 appear and grow at the ends of the cell
(a f =0 region at the lower end and a § = 6, region at the
upper end) to ultimately occupy the entire volume of the cell
and form the so-called two-domain structure, where spin
supercurrents are zero [13]. The lower domain is in fact
unperturbed *He-B (a static domain, SD), whereas in the
upper so-called homogeneously precessing domain the
magnetization deviates by slightly more than 6y and pre-
cesses. This angle excess 8f = i — 6y depends on z in such a
way that the resulting frequency shift compensates for the
nonuniform field (nonuniform Larmor frequency) and the
precession phase is the same throughout the sample, whereas
the precession frequency is equal to the Larmor value wy (z1),
where z; indicates the location of the interdomain wall. Under
realistic ~ experimental conditions (H ~ 100 Oe,
VH.~10ecm™!, L ~0.5cm), 8 ~ 1°, and the produced
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dipole moment is sufficiently small, suggesting that the
dynamics of the magnetization remain to be largely deter-
mined by the spin supercurrents: nonuniformities in the HPD
lead to currents which cause the system to precess uniformly
as before.

The interdomain wall has a characteristic thickness
2 =1[c?/(wVw)]"? ~ 0.5 mm. The angle f in the wall
changes smoothly from ~ 104° to zero. In addition, the
angle o changes by about 60°. Exactly how « and f§ change is
determined by two conditions: first, the spin current in the
wall due to inhomogeneities in f§ is compensated by the
current due to inhomogeneities in «; and second, the
precession frequency in the wall equals that of the entire
HPD (because f§ < 0y in the wall, the small frequency shift
which is needed is ensured by the gradient energy [13]).

Magnetic relaxation in the two-domain structure pro-
ceeds by spin diffusion in the interdomain wall and by the
Leggett—Takagi mechanism [10] in the bulk of the HPD,
where there is a small shift from the local Larmor frequency
[13]. This does not destroy the structure, however, and only
leads to a smooth decrease in the size of the HPD and to an
increase in the SD. As a result, the characteristic HPD lifetime
is 0.1-1.0 s, much longer than the dephasing time of non-
interacting spins. To summarize, a two-domain structure
leads to an anomalously long-lived induction signal (LLIS).
During the relaxation process the interdomain wall moves
toward lower Larmor frequencies, therefore the frequency of
the LLIS must fall off smoothly to w = w (z7).

4. A homogeneously precessing domain under pulsed
NMR conditions (experiment)

The existence of LLIS in He-B was first observed in Refs [14,
15], but the use of non-closed cells and the small amplitude of
the LLIS made these experiments difficult to interpret. In our
work [16, 17], virtually closed cells were used. The observed
LLISs had large amplitudes and their frequencies were varied
with time in a good agreement with the model in Section 3.
Figure 3 is a schematic of the cell we used to directly prove the
existence of an HPD. We placed a sample of *He-B in a
cylinder aligned along the external magnetic field and used
special gradient coils to apply a controlled magnetic field
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Figure 3. Experimental cell for HPD studies. The experimental volume is
4 mm in diameter and 8 mm in length. All the cells used were made from
Stycast-1266 epoxy resin.
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Figure 4. Time dependence of induction signal amplitudes from coil 2 (a)
and coil 3 (b). Magnetic field and field gradient directions are as in Fig. 3.
P =293 bar, Hy=142 Oe, VH=0.1 Oe cm~', T=0.63T, (where
T. = 2.43 mK is the superfluid transition temperature at 29.3 bar).

gradient to the sample. The magnetization was excited into
free precession by applying a resonant rf pulse to the exciting
NMR coil 7 (see Fig. 3). The induction signal was detected by
two miniature pickup coils 2 and 3 located close to the
opposite ends of the experimental volume; the sensitivity
ranges of the coils did not overlap. Figure 4 exemplifies the
time dependences of the induction signal amplitude recorded
from both coils for the magnetic field gradient directed as in
Fig. 3. The difference in the signals from coils 2 and 3 is
explained as follows. Following the application of the rf pulse
it takes about 10 ms for the two-domain structure to form.
Because the static domain does not precess, the signal from
coil 3 rapidly disappears (this coil is located in the large-field
region, which is exactly where the SD forms); the HPD forms
in the sensitivity region of coil 2, and the signal from this coil
is large in amplitude. Magnetic relaxation leads to a decrease
in the HPD size, therefore the amplitude of the signal from
coil 2 slowly decreases, the rate of the decrease markedly
increasing when the interdomain wall enters the sensitivity
region of coil 2. It should be noted that the duration of the
signal shown in Fig. 4a greatly exceeds the characteristic
dephasing time for non-interacting spins (7, ~ 0.7 ms for
the conditions of the experiment).

Predictably, reversing the direction of the field gradient
interchanges the roles of the coils: now it is the signal from coil
2 which is found to quickly disappear, whereas that from coil
3 has a large amplitude and is observed to persist for a long
time. It turned out that the magnetic relaxation of the two-
domain structure also well explains the way in which the
frequency of the observed LLIS depends on time. That the
magnetization deviation angle in the observed HPD is close to
0y was checked by comparing the initial signal amplitude
(Fig. 4a) with the initial amplitude of the induction signal in
an identical experiment with a normal phase (where the
signals from both miniature coils were practically the same
and did not depend on the field gradient direction). Addi-
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tional experiments confirmed that the magnetization devia-
tion angle in the SD is zero and that it is this fact — rather
than spin dephasing in the sensitivity region of coil 3 — which
accounts for there being no induction signal in the case of
Fig. 4b. The experiment was essentially as follows. During the
existence of the HPD, a weak probe pulse was applied to that
of the miniature coils in which there was no signal, and then
the initial amplitude of the induction signal was compared
with that of the signal the same pulse produced when applied
to the unperturbed normal phase of *He.

5. A homogeneously precessing domain

under the conditions of continuous wave NMR

The Zeeman energy dissipated in a two-domain structure can
be compensated by continuously pumping energy from a
transverse, circularly polarized, small-amplitude rf field. In a
coordinate system rotating at the frequency of the
(x-directed) rf field, the power transfer from the rf field to the
nuclear spin system of the HPD is given by

W:J thde:J hw|M|cos fsin (o — ¢)dV, (10)
4 4

where /& and ¢ are the amplitude and phase of the rf field,
respectively. If the amplitude / is sufficiently large, the HPD
precession phase o can tune itself to the phase of the rf field
in such a way that the power absorbed from the rf field will
be equal to that dissipated in the HPD. Then, changing the
rf field frequency will correspondingly change the HPD
precession frequency and the interdomain wall position, the
latter of which is determined, as before, by the condition
that the precession frequency be equal to the local Larmor
frequency. Experiments showed that an rf field of large
enough amplitude (~ 0.01 Oe) makes it possible not only to
maintain (and to control the length of) an already existing
HPD but also to form the HPD [18]. In practice, it is more
convenient to vary Hy, the spatially uniform component of
the external magnetic field H(z) = Hy — zVH, than the rf
field frequency.

Figure 5 shows the signals of absorption (x [ M, dV) and
dispersion (o [ M, dV) obtained in such an experiment. The
cell used was different from that in Fig. 3 both in size (6 mm in
both diameter and length) and in having only one receiver-
transmitter coil (which covered the entire experimental
volume). As Hj decreases, an HPD forms at Hy = H; [the rf
field frequency being gH(z;)], and the formation of the
interdomain wall and its associated magnetic relaxation due
to spin diffusion lead to a rapid increase in absorption. As H,
decreases still further, the area of the wall remains unchanged
and the dissipation does not really increase. There is a (linear)
increase in the volume of the HPD, however, which leads to
the linear growth of the dispersion signal. At the field value
Hy, = H, the HPD fills the cell completely, and the domain
wall disappears (more precisely, its area greatly decreases due
to the HPD entering a narrow channel). As a result, the spin
diffusion contribution to the magnetic dissipation is drasti-
cally reduced, the absorption drops, and the dispersion ceases
to grow. Upon further decrease in Hy, the absorption resumes
increasing because in the HPD the frequency shift from the
local Larmor frequency increases and, accordingly, the
Leggett — Takagi relaxation increases in both magnitude and
importance. To compensate for this increase in absorption,
the precession phase starts changing significantly. The power
absorbed from the field reaches a maximum at o — ¢ = /2,

Absorption, arb. units

Dispersion, arb. units

AH,

Figure 5. Absorption (a) and dispersions (b) signals for an HPD formed by
the continuous wave NMR technique. The magnetic field gradient was
directed such that the HPD formed near the upper edge of the cell and
filled the entire experimental volume as H, decreased. P =11 bar,
Hy =142 0e, VH = 0.83 Oe cm™!, T = 0.57T.

after which the HPD is destroyed. Note that prior to this
destruction, jumps of yet unknown nature are observed in the
signals at Hy = H;. When the field is backscanned after the
destruction of the HPD, the two-domain structure does not
form, but there are near-standard signals with much smaller
amplitudes compared to signals from the HPD. If the
scanning of the field is stopped and the continuous rf field
turned off before the destruction of the HPD, then an LLIS is
observed, as expected.

From expression (10) it follows that when the HPD size
(or equivalently, the magnetic dissipation) is held fixed, an
increase in / should lead to a decrease in o — ¢. In practice,
already at 7 2 0.01 Oe the difference « — ¢ < o, i.e., the rf
field and the precession are practically in phase. This provides
the ability to control the HPD precession phase, which
proved to be very useful in experiments to study the flow of
spin supercurrent through a channel.

6. Flow of spin supercurrent through a channel

The experimental chambers that were used in Refs [19—21] to
study the flow of spin supercurrent through a channel
consisted of two cells connected by a horizontal channel.
Figure 6 shows what the most often used chamber looks like.
In both cells, continuous rf fields created by independent
receiver-transmitter NMR coils (/ and 2 in Fig. 6) helped
maintain the HPDs. The point to note here is that these HPDs
also ‘leaked’ into the channel, a process which was controlled
using miniature pickup coils 3 and 4 on the channel. By
varying the rf field phases, a difference in precession phases
was created between two HPDs, with rf field amplitudes being
large enough to consider that Aa ~ A¢. The phase compar-
ison of the signals from coils 3 and 4 revealed that a precession
phase gradient developed in the channel. This led to a spin
supercurrent in the channel, which transferred the long-
itudinal magnetization (and hence the Zeeman energy) from
one HPD to another. As a result, the rf powers absorbed by
the domains changed as compared to the no-spin-current
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/2

Figure 6. Experimental cell for superfluid spin current studies. The cell
consists of two experimental volumes connected by a channel. Both
volumes have the form of a cylinder (4.5 mm in diameter and 5 mm in
length), whose axis lies in the horizontal plane. The narrow portion of the
channel has a diameter of 0.6 mm and a length of 5.5 mm. / and 2 are
independent receiver-transmitter rf coils, 3 and 4 are miniature pickup
coils on the channel, 5 is a copper screen for screening the rf field from coils
I and 2 in the channel region.
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Figure 7. Absorption in one of the HPDs as a function of the precession
phase difference between the precessing domains [left (right): Ao decreases
(increases) from A = 0]. Phase drops are shown by arrows (¢ — b). If one
ceases to increase and starts decreasing the phase difference at point b, the
dashed dependence and, later, the phase drops, are obtained. P = 29.3 bar,
Ho = 142 Oe, T = 0.48T..

situation: in one of the HPDs the absorption signal decreased,
and in the other it increased. By measuring the change in
absorption it was possible to determine the current of
magnetization. It was found that as the difference in
precession phases between the HPDs increased, the current
increased to a certain critical value beyond which both the
phase gradient and current in the channel exhibited an abrupt
drop, and then the above processes repeated themselves in
cycles in such a way that the period in the current— Ao
dependence was always a multiple of 2x (Fig. 7). This is due
to the phase slip phenomenon and analogous to the so-called
resistive state in superconducting wires. What enables the
phase drop to occur is the appearance in the channel of a
phase slip center with =0, which makes the phase «
indefinite. The magnitude of the critical spin current was
obtained theoretically in Ref. [22]. According to theory, the
critical value of the spin current is reached when the
precession phase gradient is 1/&, where the spin correlation
length & is the analog of the Ginzburg—Landau correlation
length of superconductivity theory. The spin correlation
length depends on the difference between the HPD preces-
sion frequency w and the local Larmor frequency wy, in the

channel,
¢
és =

Jo—or

Thus, by varying H, (and thereby the local Larmor
frequency in the channel), it is possible to vary & in the
course of the experiment (the critical current in such an
experiment must be proportional to /w — wr ). Note that
the dependence of the current on Ax as shown in Fig. 7 is not
antisymmetric: the current flowing into the channel is always
larger than the current out. The reason is that part of the
transferred Zeeman energy serves to compensate the mag-
netic dissipation in the channel (where the rf field is zero) —
with the result that the precession phase gradient varies
monotonically along the channel. However, because what is
measured experimentally is Ao, not o, it follows that the
measured dependence of the critical current on /o —wr
should be compared with theoretical estimates that take into
account corrections for the magnetic relaxation in the
channel. Such a comparison has been made and a good
agreement between theory and experiment was found in
Ref. [21].

Under realistic experimental conditions, spin correlation
length can reach values on the order of 1 mm. Analogy with
superconductivity suggests that a sufficiently narrow and
short (or a bottlenecked) channel may produce a nonhystere-
tic current — phase dependence, thus enabling a transition to a
Josephson-like regime as found in microscopic (or tunneling)
superconducting junctions. Testing this assumption involved
using a cell which, unlike that of Fig. 6, had a channel
bottleneck 0.3 mm in length and 0.5 mm in diameter. The
experiment did reveal a nonhysteretic current — phase depen-
dence [23]. Furthermore, because & could be varied easily in
the course of the experiment, the transition from the
Josephson regime to the phase slip regime was observed to
occur (at & ~ 1 mm as expected).

The fact that magnetic relaxation violates spin conserva-
tion does not run counter to the notion of nondissipative spin
supercurrent, which is caused by order parameter phase
gradients rather than the difference in pressure or chemical
potential. Dissipation leading to the nonconservation of
channel current is not due directly to the current but to the
non-spin-conserving magnetic relaxation. Spin current in the
experiment above is akin to the flow of superfluid 3He which
evaporates as it flows in a heated open trough. In this case, the
current flowing out of the trough is also less than that flowing
into it, and it is the violation of conservation of mass due to
evaporation which serves as the analog of magnetic dissipa-
tion.

(11)

7. Research applications of the HPD

The follow-up research involved the magnetic analogs of
phenomena found in ‘usual’ superfluid systems. One result
in this area was the creation and observation of the spin
vortex, a magnetic analog of the quantum vortex [24, 25].
Observations were also made of various modes of the
spatially nonuniform HPD vibrations, [26] one of which (the
so-called twisting mode) is the analog of the fourth sound in
4He. One useful application of the HPD is in the study of the
properties of superfluid He-B. In particular, the interaction
of HPDs with quantum vortices in *He-B [27, 28] and with the
counterflow of the normal and superfluid components [29]
was studied using the rotating cryostat at the Helsinki
University of Technology, Finland — experiments which
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resulted in confidently identifying vortices of different types
in measurements of the magnetic-field-induced superfluid
density anisotropy in *He-B. A study of the relaxation of
HPDs enabled a systematic measurement of magnetic
relaxation parameters [30]. With its property of a spatially
uniform order parameter distribution (texture), the homo-
geneously precessing domain can be effective in studying
texture-sensitive phenomena. In particular, the use of the
HPD has permitted Leggett frequency measurements in the
B-like *He phase in an aerogel, whose effect on the texture
makes standard NMR methods difficult to use for this
purpose [31].

8. Conclusion

In summary, the studies reviewed prove the existence of spin
supercurrents in >He-B and demonstrate the analogy between
spin superfluidity on the one hand and ‘usual’ mass super-
fluidity and superconductivity on the other. As a result, many
experiments were explained and new research directions
identified. For example, the electric field should play the
same role for spin supercurrent that the magnetic field vector-
potential does for superconducting electrons. Although very
small in magnitude, this effect can in principle be measured.
Also of interest might be to conduct research at ultralow
temperatures of around 100 pK, where, even though spin
supercurrents are clearly important, very long (of the order of
an hour) induction signals are observed which the HPD
formation model fails to describe [32]. The homogeneously
precessing domain was observed not only in *He-B but also in
the B-like phase of He in an aerogel — which, in particular,
supports interpreting this phase as the analog of the B-phase
of the ‘usual’ bulk >He as well as opens new possibilities for its
study [33].

Dissipationless (reactive) spin currents can exist in other
magnetic systems. At sufficiently low temperatures and high
magnetic fields, the effective spin diffusion coefficient in
Fermi liquids becomes complex, allowing for dissipationless
spin currents [34] and thereby leading to a number of
phenomena, some of which are analogous to those observed
in 3He-B [35, 36]. For example, normal liquid 3He and
3He—*He solutions were observed to exhibit a structure of
two oppositely magnetized domains with an in-phase preces-
sing domain wall [37, 38]. In principle, similar phenomena can
also occur in magnetically ordered solids. This requires, in
addition to the small magnetic relaxation, that the order
parameter be degenerate with respect to one of its orientation
angles and that the corresponding gradient term be present in
the Hamiltonian. Magnetically ordered solid *He [39] and
antiferromagnet CsNiCl; [40] are candidate materials for
such studies.
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New magnetic states in crystals

S S Sosin, L A Prozorova, A I Smirnov

1. Introduction
One of the major types of magnetic interactions in crystals is
the exchange interaction, which is usually described by a
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Heisenberg Hamiltonian of the form

H=1JS5, (1)

where the exchange integral J is determined by the electron
shell overlap of interacting ions, and S; and S, are spin
operators. The Hamiltonian of the system of many magnetic
ions is written as the sum of pair interactions. Depending on
the sign of J, the total ground-state spin of the system takes
either a maximum (J < 0) or minimum (J > 0) value. In the
former case, the ground state is a ferromagnetic state of the
type |11 ...), which can occur in crystal structures of any
dimensionality and symmetry. Various and diverse properties
of ferromagnets have been studied intensively throughout the
past century.

For the positive exchange integral, the situation is less
trivial. First, the classical (so-called Néel) minimum-spin state
[T17] ...) turns out to be not an eigenstate and can therefore
only be considered as an approximation. However, for three-
dimensional antiferromagnets the deviation of the ground
state from this state — zero-point oscillations of the order
parameter — manifests itself only in spin reduction form,
meaning that the ordered spin component becomes smaller
than the total spin of the ions, (S)/S < 1. Reducing the
dimensionality of the system increases the role of the zero
oscillations, leading in the case of a one-dimensional spin
chain to a completely destroyed long-range magnetic order.
The ground state of a spin chain is a singlet one, with the
average spin projection vanishing at each site, (S7) = 0. In
spin-1/2 chains antiferromagnetic correlations fall off with a
power law and the excitation spectrum has no gap and close to
k = 0 is similar to the spin wave spectrum in an ordinary
antiferromagnet [1]. For spin-1 chains, the excitation spec-
trum is separated from the ground state by an exchange gap,
A ~ 0.4J, and the correlations decrease exponentially [2]. Due
to the presence of the gap, magnetic excitations freeze out at
low temperatures 7' < 4, bringing the magnetic heat capacity
and susceptibility to zero. Section 2 discusses one interesting
consequence of such a state in antiferromagnets.

Another important difference between antiferromagnetic
systems and ferromagnets is the possibility of a geometric
exchange frustration, i.e., the peculiar arrangement of
magnetic ions in the crystal, which prevents the interacting
spins from simultaneously aligning antiparallel. As a con-
sequence, a non-collinear spin structure whose ground state
energy exceeds that of the collinear magnet (weak frustration)
may form and in some cases makes long-range order
completely unachievable (strong frustration), allowing a
fundamentally new strong-correlated state — the so-called
collective paramagnet — which remains disordered to
temperatures 7 < JS?/kg [3]. Sections 3 and 4 examine
some unusual properties of noncollinear (triangular) anti-
ferromagnets and discuss the major thermodynamic conse-
quence the strongly frustrated exchange interaction has for
the particular case of a pyrochlore lattice magnet.

2. Impurity-induced magnetic order

in a spin-gap magnet

There is a number of spin-gap systems other than quasi-one-
dimensional integer spin chains, including ladder structures
[4], dimer systems [5], and alternating-exchange chains. In the
last case, as a result of the translational crystal symmetry
breaking (the doubling of the lattice spacing), the exchange
integral of neighboring ions in the chain alternately changes

between two values, J £ d. Alternating spin chains may be
due to crystal structure [6], but they may also spontaneously
result from the so-called spin-Peierls transition, which occurs
as a consequence of an exchange energy gain due to
dimerization [7, 8]. As a result, the excitation spectrum of a
spin-1/2 chain acquires a gap whose magnitude depends on
the alternation parameter 4 ~ ¢ [9] and whose presence leads,
as in the case of spin-1 chains, to a finite correlation length
& ~ vli/ A. Being stable to small perturbations like anisotropy
and interchain exchange interaction, such a state can be
artificially destroyed by nonmagnetic doping. Substituting a
nonmagnetic ion for a magnetic one breaks up the spin chain
and destroys the singlet state, with the result that regions of
antiferromagnetically correlated nonzero average spin pro-
jections — i.e., regions of local antiferromagnetic order —
form near the impurity atoms. We will call such antiferro-
magnetic regions clusters. Note that these clusters are formed
by the spins of the main matrix against the background of a
singlet (i.e., nonmagnetic) state. The number of magnetic ions
in a cluster is on the order of £/a (a is the interatomic spacing),
and the absolute value of the average spin projection has a
maximum close to the ends of the chain and decreases in the
middle. The cluster has nonzero spin and magnetic moment.
For spin-Peierls magnets, the formation of clusters with local
antiferromagnetic ordering is considered theoretically in
Ref. [10]. The appearance of clusters leads to an unusual
phenomenon — the impurity induced antiferromagnetic
ordering.

This effect was predicted in Ref. [11] and later observed in
spin-Peierls [12] and Haldane [13] magnets and in a dimer spin
system [14]. The reason why introducing nonmagnetic
impurities leads to magnetic order is that the ends of clusters
overlap and that clusters in neighboring chains are correlated
by a weak interchain coupling. The resulting order parameter
appears to be strongly non-uniform.

Impurity-stimulated magnetic order is conveniently stu-
died using the non-organic spin-Peierls magnet CuGeOs, with
a spin-Peierls transition temperature of 7sp = 14.5 K and a
low-temperature spin gap of 4(0) ~ 25 K [7]. The spin gap
opens at the temperature 7Tsp and approaches a maximum
value 4(0) below 7 K. The magnetic ions Cu?* (S = 1/2) can
be substituted with, for example, nonmagnetic ions of Zn and
Mg. These impurities occupy the sites of the Cu?* ions in the
CuGeOs3 with a solubility limit of higher than 6%. Thus, one
can control the number of breaks introduced to the dimerized
spin chain. Contributions from chain breaks to the suscept-
ibility and magnetic resonance signals are clearly visible
against the background of the singlet and nonmagnetic
matrix.

The magnetic resonance signal at the antiferromagnetic
phase transition usually transforms from the paramagnetic
resonance signal to an antiferromagnetic resonance (AFMR)
signal. While the paramagnetic resonance frequency is
determined by the properties of isolated magnetic ions, the
AFMR frequency depends on order parameter oscillations.
Thus, a phase transition to the ordered state is accompanied
by a transformation of the magnetic resonance spectrum. The
observation of this transformation allows one to obtain the
temperature and other characteristics of the transition. At
high enough impurity concentrations (above 3%) impurity
ions are a small distance (on the order of the correlation
length &) apart. For such concentrations, the transition to the
antiferromagnetic state in Cu(;_Mg,GeO; is somewhat
analogous to the phase transition in ordinary 3D antiferro-
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Figure 1. Change in the shape of magnetic resonance line in the vicinity of
the Néel temperature in a single crystal of Cu_yMg,GeOs: H || b,
v =36 GHz, Ty = 2.25 K. Inset shows the expansion of the resonance
line at 7= 1.5 K by two Lorentzian absorptions (dashed lines).

magnets. Of particular interest is the low concentration case,
where impurity atoms in a chain are spaced by a distance
exceeding the length ¢ and spin clusters are separated by
remains of the singlet matrix. The process of transition to the
antiferromagnetic state as the temperature is decreased was
studied in Ref. [15] using the magnetic resonance, a technique
which detects both the paramagnetic and antiferromagnetic
phases spectroscopically, based on the difference of their
resonance frequencies. The experiments were conducted on
single crystals of Cu(;_y)Mg,GeO; with impurity concentra-
tion distributed uniformly to within 10~ over a sample.
Figure 1 follows the evolution of the magnetic resonance
spectrum at the transition through the Néel point in doped
spin-Peierls magnet Cu(;_,yMg,GeO; with x = 0.017. As the
temperature decreases, the paramagnetic resonance line splits
into two. The first component corresponds to a paramagnetic
resonance, the (temperature-independent) resonance field
being equal to that of the paramagnetic phase. The resonance
field of the second component depends on the temperature,
and its frequency-field dependence (see Ref. [15]) corresponds
to the spectrum of a biaxial antiferromagnet. There is a wide
temperature range where the antiferromagnetic and para-
magnetic resonance lines are observed simultaneously. The
uniform distribution of impurities over the sample, together
with a small transition temperature interval (0.1 K), rule out
explaining this coexistence in terms of the macroscopic non-
uniformity of the sample. Two simultaneously present
resonance modes cannot be explained in the framework of a
single-phase examination because order parameter oscilla-
tions corresponding to the antiferromagnetic phase rule out
the paramagnetic resonance mode and because the paramag-
netic phase can even less allow the line to be split. A possible
explanation is the macroscopic phase separation of a sample
into paramagnetic and antiferromagnetic regions. Let us

consider the spin clusters that form around impurity atoms
and assume that coherent antiferromagnetic order exists in a
region of diameter L* estimated from the relation

kgT ~ JS?exp (— %) ) (2)

Atdistances larger than L* antiferromagnetic correlations
are destroyed by thermal fluctuations. The antiferromagnetic
correlation distances in transverse directions are determined
by corresponding exchange integrals. Then we arrive at a
simple model of Ref. [15], with an elliptic-shaped antiferro-
magnetic region around each impurity center. The length of
the ellipse along the chain is estimated from Eqn (2), and its
transverse dimension is shorter in proportion to the exchange
integral ratio. At high temperature the regions of local
antiferromagnetic order are small in size and do not touch
one another, long-range order is absent, and the cluster
contribution to the susceptibility and the magnetic resonance
signal is due to each of the clusters having a total magnetic
moment — the reason why the susceptibility and the magnetic
resonance frequency have a paramagnetic character. As the
temperature is lowered, the clusters increase in size and some
of them start touching each other, with the result that more
extended regions of coherent antiferromagnetic order — ones
containing several impurity atoms — appear. Finally, as
shown in Fig. 2, an ordered region stretching throughout the
entire sample forms, which corresponds to the percolation
threshold for a system of interpenetrating spheres [16]. At and
around the percolation value L* (see Fig. 2) the sample still
contains single clusters that are isolated from large antiferro-
magnetic regions by a weakly perturbed singlet matrix. The
free spins of these clusters produce paramagnetic resonance
signals in the same way they do above the critical point. Thus,
there are three types of regions below the Néel temperature:
(1) large enough regions of magnetic order which produce
AFMR signals, (2) regions of singlet matrix which have no
magnetic response, and (3) single clusters, which are sepa-
rated from the antiferromagnetic regions by the singlet
matrix.

—

X

Figure 2. The result of simplified simulation for a structure induced by the
impurities of an ordered phase. Grey color indicates the regions of local
antiferromagnetic order, black covers the region of macroscopic order,
and white corresponds to disordered regions. Two single clusters are
marked by crosses.
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The obtained picture of microscopic phase separation is in
agreement with the results of numerical 2D Monte Carlo
simulations for the ground state of spin-Peierls and Haldane
systems with impurities [17]. According to this model that
takes into account the interchain interaction, the antiferro-
magnetically correlated spin projections exist in the vicinity of
spin vacancies. Away from the impurities the average values
of spin projections are close to zero. Importantly, the
simulation of Ref. [17] demonstrates a strong, virtually
hundred percent, modulation of the order parameter. Assum-
ing that the small order parameter in regions between the
impurities will be destroyed by thermal fluctuations at finite
temperatures, we conclude that the simulated structure is
equivalent to that proposed based on the coexistence of two
magnetic resonance signals.

3. Triangular antiferromagnets
As noted in Section 1, the antiferromagnetic exchange
interaction, unlike the ferromagnetic interaction, can be
frustrated as a result of the structural features of the
crystal. A vivid example of this effect is antiferromagnetic
structure on a plane hexagonal lattice — the so-called
triangular antiferromagnets. Magnetic moments at the
vertices of regular triangles cannot form an ordinary
collinear structure. The minimum of the classical exchange
energy is achieved if the neighboring spins are at an angle of
120° to each other. This is a doubly degenerate state. The
antiferromagnetic interaction between planes in real hex-
agonal crystals does not violate this structure, making spins
in neighboring planes align antiparallel. The static and
dynamic properties of such systems depend significantly on
the ratio of in-plane to interplane exchange interactions
between magnetic ions, but in either case differ considerably
from the properties of usual two-sublattice antiferromag-
nets. The largest discrepancies are for the magnetic suscept-
ibility tensors, phase diagrams (especially ones in a magnetic
field), and the number and field dependences of the
magnetic resonance modes. While the study of quasi-two-
dimensional systems has until recently been limited to
theoretical work (see, for example, Refs [18, 19]), relatively
recently the first experiments — specifically on the com-
pound RbFe(MoO,4), — have been made [20]. The most
comprehensive review of the magnetostatic and resonant
properties of this system is given in Ref. [21].
Quasi-one-dimensional triangular antiferromagnets have
been studied extensively over the past two decades, both
experimentally and theoretically. Such systems largely occur
on crystal structures of the 4ABX3-type (Where A is an alkali
metal, B a magnetic 3d-ion, and X a halogen) which usually
belong to the space symmetry group P63;/mmc (Dg)).
Magnetic ions are located on the sites of a simple hexagonal
Bravais lattice, and the exchange interaction between neigh-
bors along the six-fold axis turns out to be 10 to 100 times
stronger than the interaction in the basal plane. In the ordered
phase neighboring spins along the chains are antiparallel,
whereas in the hexagonal planes they are at about 120° to each
other. Depending on the sign of the magnetic anisotropy, the
planes of the spins can lie either in the basal plane (easy-plane
antiferromagnets CsMnBr;, KNiCl;, etc.) or in a plane
containing the six-fold axis Cs (easy-axis antiferromagnets
CsNiCls, RbNiCl;, CsMnls). Such systems differ widely in
their magnetic properties. In this paper, the static and
resonant properties of easy-axis structures are described
using the example of the compound RbBNICl;. From

neutron-scattering experiments [22], at a temperature
Tn ~ 11 K this magnet acquires an ordered structure similar
to a helicoidal one with wave vector k = (4rn/34,0,7/c),
where a and ¢ are lattice parameters. By various estimates,
the value of the intrachain exchange interaction is J ~ 20 K
[23], and that of the interchain interaction is J' ~ 2 K [26].
The easy-axis anisotropy constant is approximately
D ~ —0.05 K. Because D < J,J’, the triangle exchange
structure turns out to be virtually unchanged by relativistic
interactions. Due to its quasi-one-dimensional nature, the
magnetic structure is strongly influenced by zero-point
oscillations, which reduce the average spin on the site to
1.3up at temperatures well below 7.

Magnetization measurements at a temperature of 1.5 K,
carried out with a standard SQUID magnetometer for two
magnetic field orientations relative to the easy axis are
presented in Fig. 3. Applying a magnetic field perpendicular
to the Cg axis (circles) gives rise to a virtually linear
magnetization curve due to the usual canting of the anti-
ferromagnetic sublattices towards the field. But if the field is
along the easy axis (in the spin plane), then at
H = H, ~ 20 kOe the curve M(H) exhibits a jump due to
the flop of the spin plane (spin-flop-transition). The main
difference from the two-sublattice antiferromagnet is that in
fields less than H. a nonzero susceptibility due to the
noncollinear structure is observed at T < Tn. The compo-
nents of the susceptibility tensor are largely determined by the
intrachain exchange interaction. From a simple molecular
field calculation, their ratio is = 2y, = 1/(8/) (where the
indices || and L are introduced relative to a vector perpendi-
cular to the spin plane). For RbNICl; this ratio is
%1/7. = 1.8. The slightly nonlinear high-field magnetization
and the different values of the H | Cgand H || Cs magnetiza-
tions above the spin-flop field are due to the contribution of
the zero-point oscillations [27].

The resonance spectra of various easy-axis triangular
antiferromagnets have been studied in detail by many
researchers [24—26, 29]. In this paper we present the results,
similar to those of Ref. [26], of low-temperature spectroscopic
measurements performed on a single crystal of RbNiCl5 using
a transmission type spectrometer in the frequency range of
30-80 GHz in magnetic field up to 40 kOe. From Fig. 4 it is
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Figure 3. Field dependence of the magnetization of an RbNiCl; sample at
T = 1.5 K. Triangles: H || Cg, circles: H L Cq. Solid lines: linear fit for
determining x and z, . The arrow indicates the spin flop field He.
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Figure 4. Frequency-field diagrams of an AFMR in RbNiClsat 7= 1.3K
for two magnetic field orientations relative to the Cg axis. Solid lines are
calculated from Eqn (4) with parameters n = 0.8, H. =20 kOe as
determined from static measurements. The dashed line shows the
paramagnetic curve v = yH. The arrow indicates the value of the field of
the spin-flop transition.

seen that for both major magnetic field orientations (¢ is the
angle between the field and the Cg axis) the resonance
spectrum consists of two branches, labeled v; and v,, which
have a complex magnetic field dependence. The gap branch v,
at H || Ce first increases, then experiences a sharp jump at
H, =20 kOe, and then increases again approaching the
paramagnetic dependence. The v, branch remains zero up to
H_, beyond which point it increases in a similar way to v;. For
the other orientation, both branches increase monotonically,
one of them, v,, turning out to be close to, but clearly distinct
from, the paramagnetic line v = yH (where y is the gyromag-
netic ratio).

The resonant properties of such noncollinear structures
are extremely hard to analyze in terms of a microscopic spin
Hamiltonian and, besides, the presence in a system of many
sublattices requires numerous model restrictions to be
introduced. The most adequate approach to describe the
long-wave part of the resonance spectrum of such structures
is to invoke the ideas of exchange symmetry [28]. The spatial
spin density of a 120° magnetic structure is specified by the
orthogonal unit vectors 1;, I, and the wave vector k,

S ~ 1, coskr + I, sinkr.

The long-wavelength dynamics of a magnet (neglecting its
internal degrees of freedom) is specified by the motion of
these vectors, and its kinetic energy in a magnetic field is
determined by the quadratic form

Lop

E=
2

(Q+H),(2+H),

where 5 = 11925 + (%) — %1 )nanp is the susceptibility
tensor of the exchange structure, Q is the angular rotation
velocity in spin space, and n = [l;1] is the normal vector to
the spin plane. For the interaction of the spin system with
the crystal (which is weak compared to the exchange), the
potential energy is represented, to a first approximation, as
a quadratic form in the components 1;, I, which is invariant
under the symmetry transformations of the exchange
structure. The Lagrangian of the system is then represented

in the form
o

—E—
£ 2

For a magnetic field at an arbitrary angle ¢ to the easy
axis, the equilibrium orientation of the spin plane, which is
specified by the angle iy between the vector n and the easy axis,
is determined by

H?sin2¢
tan2y = H2cos2p — H2'

where H? = /(% — x.) is the spin plane flop field for H
along the easy axis (¢ = 0).

Expanding the vectors n and Q in the Lagrangian (3) to
second order in the small off-equilibrium angle 6 and varying
the resulting expression, we obtain a secular equation for the
eigenfrequencies,

io(l=nZz| _

a)z—nP o, (4)
* —nQ

—io(l —n)Z

where

0= \/H“—2H2Hc20052qo+H§7
1
P=3(Q—H:+HY),

:XH — XL

Z=Hcos(y—¢), n
X1

The first calculation of this type was performed in
Ref. [25]. As seen from Eqn (4), as few as two phenomen-
ological parameters, n and H., are sufficient to describe the
spectrum of an AFMR, the selfconsistency of the approach
being emphasized by the fact that these parameters are
determined independently from magnetostatic measure-
ments. The results of calculations from Eqn (4) with n = 0.8,
H, = 20 kOe, which are shown by solid lines in Fig. 4, are in
excellent agreement with experiment.

Two relativistic branches of the spectrum, v; and v,, are
associated with the oscillations of the spin plane (vector n)
with respect to the crystal and the magnetic field. Clearly, a
plane noncollinear structure must also have a third relativistic
branch in its spectrum, one associated with the uniform
rotations of spins in the plane (about the vector n). If the
anisotropic distortion of the triangular structure is small,
such a degree of freedom is practically degenerate, making
this branch unobservable in RbNiCls. To describe larger
anisotropies, one should introduce the relativistic invariants
of higher order in the components1;, I, which lift the in-plane
degeneracy of the spin structure. This was first done to
describe the lower branch of the AFMR spectrum in the
antiferromagnet CsMnl; [29] and diamagnetically diluted
RbNi;_ Mg, Cl; [30].

To summarize, the noncollinear magnetic ordering arising
due to the weak geometric frustration of exchange interaction
in hexagonal crystals has rather unusual properties. The most
interesting properties manifest themselves in the long-
wavelength spin dynamics, which differs from that in the
collinear case in both the type of oscillations and the number
of magnetic resonance modes, as well as in their evolution in
an external magnetic field. Additional interest in these
problems comes from the fact that these effects allow a self-
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consistent description in terms of the symmetric ‘hydrody-
namical” approach which is free of any model restrictions [28].

4. Strongly frustrated ferromagnets

The weakly frustrated exchange interaction considered in
Section 3 does not prevent the formation of the Néel state.
There exist, however, crystal lattices (such as kagome, garnet,
and pyrochlore) whose exchange interaction is not capable of
stabilizing any ordering. Over the last decade, several such
systems have been investigated [31]. In this paper we limit
ourselves to considering the magnetic properties of the
pyrochlore antiferromagnet Gd,Ti»O7. The magnetic ions
Gd** (S=7/2, L =0) in this crystal form a face-centered
cubic Bravais lattice with a regular tetrahedron as a basis (the
projection of the lattice on the [111] crystal plane is shown
schematically in Fig. 5). The magnetic ground state of such a
structure must, in the nearest-neighbor-exchange approxima-
tion, satisfy the condition that the total spin on each
tetrahedron be zero — but such classical states prove to be
infinite in number. The fluctuations between various states
that are practically degenerate in energy lead to the con-
sequence that the spin system remains disordered down to
T =0 [32, 33]. Heat capacity and magnetic susceptibility
measurements [34—36] and neutron experiments [37] have
recently shown that Gd,Ti>O7 indeed remains disordered
over a wide range of temperatures below the Curie—Weiss
temperature Ocw ~ 10 K. The transition to the ordered
phase, presumably due to the dipole—dipole interaction,
occurs only at a temperature 7n; ~ 1 K.

The infinite degeneracy of the ground state of a frustrated
magnet is equivalent to the existence of a macroscopic
number of local soft modes in its excitation spectrum, which
corresponds to the rotational degrees of freedom of the spins
located at the vertices of the hexagons the edges of the
neighboring tetrahedra form in the kagome plane (see
Fig. 5). If spins are ordered antiparallel along the perimeter
of a hexagon, then in the absence of an external field their
rotation through an arbitrary angle in spin space does not
change the total exchange energy of the system. Such low-
lying modes were observed in the quasi-elastic neutron

Figure 5. Schematic of the pyrochlore crystal lattice as projected onto the
[111] plane. Grey and white triangles indicate, respectively, down- and up-
pointing tetrahedra with magnetic ions in their vertices. The solid line
traces out the hexagon formed by the faces of the neighboring tetrahedra.
The arrows indicate the antiferromagnetic ordering of magnetic moments
on the hexagon.
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Figure 6. Dependence of the temperature of a Gd,Ti,O7 sample on the
magnetic field parallel to the [111] plane as the sample is quasi-adiabati-
cally demagnetized from a field of 118 kOe, for various starting
temperatures 7;. Solid lines: Monte Carlo simulation, dotted lines:
demagnetization curves corrected for the lattice heat capacity.

scattering in ZnCr,Q4, another Heisenberg antiferromagnet
on a pyrochlore lattice [38].

Thermodynamically, the existence of soft modes man-
ifests itself most importantly in that much of magnetic
entropy shows no freeze-out down to well below Ocw. The
modes persist up the saturation field Hg (in Gd,Ti,O7
Hg ~ 70 kOe) and then acquire a Zeeman gap. The
transition from the nondegenerate, fully polarized state that
exists above Hg, to the infinitely degenerate state below Hy
occurs through the ‘condensation’ of a macroscopic number
of local modes and is accompanied by a large change in
entropy in the vicinity of the critical field [39]. This property
suggests the existence in Gd,Ti,O7 of the enhanced magneto-
caloric effect which was recently investigated in Ref. [40].
Figure 6 presents the magnetic field dependence of the
temperature of a sample of Gd,Ti,O; as it is quasi-
adiabatically demagnetized starting from various tempera-
tures T;. All the Ts(H) lines starting from 10 K and below
exhibit a sharp temperature drop in the field range of 120—
60 kOe (in contrast to the uniform 7/H = const cooling of an
ideal paramagnet), with the maximum value of the initial-to-
final temperature ratio 7;j/ Tt exceeding 10. This experiment
clearly demonstrates the fundamental role of strong exchange
frustration in the magnetic cooling of Gd,Ti,O7. A quantita-
tive description of the obtained data was performed by Monte
Carlo simulation of a classical antiferromagnet in the nearest-
neighbor approximation (for a detailed description see
Ref. [39]). The exchange constant J, the only parameter
needed for fitting the simulated to experimental results, can
be estimated from the saturation field and the Curie— Weiss
temperature, whose values for a pyrochlore magnet, in the
molecular field approximation, are given by (see, for example
Ref. [39])

gﬂBHsa[ = 8JS, kBOCW = 2JS(S+ 1) . (5)

From either of Eqns (5), J ~ 0.3 K. Solid lines in Fig. 6
present simulation results for this value of J which, taking
into account the high-temperature corrections for the lattice
heat capacity (as shown dashed) are in excellent agreement
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Figure 7. Entropy change in Gd,Ti»O7 isothermally demagnetized from
H; =90 kOe, as a function of the final Hy for various temperatures. Grey
surface with dashed lines: similar calculations for an ideal spin-7/2
paramagnet. Inset shows the boundary in the Hy— 7 plane between the
regions of preferentially demagnetized pyrochlore and ideal paramagnet
(PM).

with experiment — thus directly validating the use of the
concept of soft modes in the thermodynamic description of a
frustrated magnet.

In concluding this section, we can estimate the cold-
productivity of the process based on the adiabatic demagne-
tization curves Ts(H) given above and using the heat capacity
data C(T') for antiferromagnet Gd,Ti»O7 obtained with the
Quantum Design calorimeter in a strong magnetic field
H =90 kOe in the temperature range of 1.5-20 K. For an
isothermally demagnetized magnet, the heat it absorbs and its
change in entropy are related by the simple relation

A as|™”

=TAS| .
0 B
Let us consider the adiabatic demagnetization curve as it goes
from the initial point (Hj, T;) to the final point (Hy, Ty).
Because the entropy remains constant along the curve, the
entropy change at a constant temperature 7t and that at a
fixed field H; are related by

n_(fam
Tr —_— JTf T dT. (6)

AS(Tf)‘Zf: AS(H;)

The values of AS| calculated from Eqn (6) for demagne-
tization from the field H; = 90 kOe to the final value H; at
various temperatures are indicated by full circles in Fig. 7
(note that the total entropy of the system remains indefinite).
There are two key points to be made here: (1) even at
temperatures close to the ordering temperature 7n; = 1 K
the system conserves about half of the total magnetic entropy
2RIn 8, and (2) the changes in entropy and heat absorption
are a maximum in the strong field region above Hg,. This is
quite different from the low-temperature behavior of a
conventional paramagnet (as shown dashed on the grey
surface in Fig. 7), whose entropy is released only at
demagnetization down to Hy < H;. The Hy—T plot in the
inset of Fig. 7 shows the boundary of the region in which the

entropy of Gd,Ti,O7 changes faster than that of an ideal
paramagnet. The cold productivity AQ reaches a maximum of
30 J mol~! near 4 K. This amount of heat corresponds to the
evaporation heat of a mole of liquid *He at T =3 K, thus
offering the possibility, in principle, of using the pyrochlore
magnet Gd,Ti>O7 in cryogenic applications.

5. Conclusion

In conclusion, this paper discusses several types of strongly
correlated, insulating spin systems with antiferromagnetic
exchange interaction in which, unlike conventional magnetic
crystals, low-temperature spin order occurs in an unusual
way, if at all. In disordered low-temperature structures, new
effects, such as magnetic order induced by nonmagnetic
impurities, appear. At the critical point for the appearance
of this nontrivial ordering, macroscopic phase separation is
experimentally observed to occur in the magnetic states of the
insulating matrix.

Antiferromagnetic exchange interaction on a hexagonal
lattice, if it is geometrically frustrated, can lead to exotic
noncollinear triangle magnetic structures with interesting
dynamic properties; these properties have been the subject
of much study, both experimentally and theoretically. A high
level of frustration — such as in a pyrochlore lattice magnet
— not only rules out usual ordering but also fully destroys
long-range order and leads to a new collective paramagnetic
state of the spin liquid type, with unique thermodynamics in a
magnetic field. There are prospects for cryogenic applications
of the enhanced magnetocaloric effect observed in such
systems. Further study of such systems is apparently high on
the agenda for the physics of magnetic phenomena.
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