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Coexistence of ferromagnetism
and nonuniform superconductivity

V F Elesin, V V Kapaev, Yu V Kopaev

(1) Superconductivity and ferromagnetism appear to be
antagonists in relation to a magnetic field: a superconductor
expels a magnetic field (the Meissner ±Ochsenfeld effect),
while a ferromagnet concentrates such a field. Hence, it is
more appropriate to use the name `antiferromagnet' in
relation to superconductors than to substances commonly
known as antiferromagnets. The first attempt to tackle the
problem of the coexistence of these states was made by
V L Ginzburg [1] in 1956, even before the Bardeen ±
Cooper ± Schrieffer (BCS) microscopic theory appeared [2].

According to the work [1], coexistence is possible if the
critical magnetic field Hc is higher than the magnetic
induction I. From the microscopic point of view [2], the
magnitude of Hc is determined in most cases by the effect
that this magnetic field (and the induction) has on the orbital

motion of pairs. Moreover, due to pairing with oppositely
directed spins, Zeeman splitting also suppresses supercon-
ductivity (the paramagnetic effect), and it is this splitting that
is predominant [3].

When the superconducting transition temperature Tc is
much higher than the ferromagnetic transition temperature
Tm, themagnetic state is nonuniform in the coexistence region
[4]. (A discussion of the existing theoretical and experimental
results can be found in the review [5].)

When Tc 4Tm, there exists a narrow interval of values of
the magnetization I, where the superconducting state proves
to be nonuniform in the state coexistence conditions [6, 7].

Currently, a large number of works have appeared (e.g.,
see Refs [8, 9]) in which the coexistence of superconductivity
and ferromagnetism has been observed in layered cuprate
RuSr2GdCu2O8 compounds, in which Tm is much higher
than Tc (Tm � 132 K, and Tc � 46 K). Such a Tm-to-Tc ratio
is unacceptable for the simple spherical Fermi surface which
lies at the base of the model discussed by Larkin and
Ovchinnikov [6] as well as by Fulde and Ferrell [7]. As is
well known, the uniform superconducting state is insensitive
to the shape of the Fermi surface [2, 3], and the existence of
such a state requires that es�p� � eÿs�ÿp�. The nesting
condition es�p� � ÿeÿs 0 �p� q� is preferable for electron ±
hole pairing (the insulating state), while the mirror nesting
condition es�K=2� p� � eÿs�K=2ÿ p� is preferable for the
realization of superconducting pairing with a large total
momentum K in the case of electron ± electron repulsion. On
the other hand, coexistence of ferromagnetism and a nonuni-
form superconducting state, with the magnetic-nesting con-
dition

es�p� � eÿs

�
ÿp� nI

vF

�
�1�

being met for an electron dispersion law with spin s in a
selected direction n, is possible for an arbitrarily large
magnetization I (here vF is the Fermi velocity). Thus, in the
given situation the main mechanism by which magnetization
suppresses superconductivity is the orbital mechanism exam-
ined by Ginzburg [1].

In the present work, we show that the processes of
hopping to third-sphere centers, which were ignored in
Refs [10, 11] but which exceed the processes of hopping to
second-sphere centers, drastically change the situation con-
cerning the state coexistence. Furthermore, we show that a
superconducting state with a large total momentum of the
pairs [12] can coexist with a ferromagnetic state at high
enough magnetizations.

(2) We select a simple model that meets the magnetic-
nesting condition (1), namely, a two-dimensional model of an
electronic spectrum corresponding to the constant energy
lines in the form of squares within a certain energy interval
(on the order of the cutoff energy o of the attractive
interaction V) (Fig. 1). Assuming that o (o � oph for
electron ± phonon coupling) is small compared to the Fermi
energy eF, we can write down the equation for the order
parameter D �D�r� � jDj exp �iqr�, where q is the pair
momentum] within the BCS theory at T � 0 in the form

1

l
�
� o

0

dx������������������
x2 � jDj2

q �
1ÿ 1

2

�
n�e� I�Q� � n�e� IÿQ�

� n�eÿ IÿQ� � n�eÿ I�Q��� ; �2�
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where e � �x2 � jDj2�1=2, l � VN (withN the density of states
at the Fermi level), n�e� � �e e=T � 1�ÿ1, and Q � qvF=2.

Below we formally limit ourselves to the case with a single
selected q. The complete solution can be found by summing
over all the equivalent states with momentum q [6].

(3) In 1964, Larkin and Ovchinnikov [6] as well as Fulde
and Ferrell [7] found that a superconducting phase may
emerge in superconductors with a quadratic dispersion law
for I > Ic, but that the order parameter D�r� of such a phase is
nonuniform. The new phase, which became known as the
FFLO phase, emerges as a result of a second-order phase
transition and exists in a narrow interval of magnetic field
strengths:

0:707 <
I

D0
< 0:754 ; Qc � 0:897D0 : �3�

Let us examine the nonuniform state by using equation
(2). First we must analyze the most interesting case where
the spectrum splitting caused by I is balanced by the
condensate momentum in view of the magnetic-nesting
condition (1):

I � Q ; 2I > D : �4�

At temperature T � 0 only one term remains finite,
n�eÿ IÿQ� � n�eÿ 2I�, and from Eqn (2) we obtain an
equation for d � D=D0:

d
�

~I�
����������������
~I 2 ÿ d 2

p �
� 1 ; ~I � 2I

D0
; �5�

or an equivalent equation

2d~I � 1� d 4 : �6�

Clearly, equations (5) and (6) do not have a zero solution.
The dependence of the order parameter d on the magnetiza-

tion ~I is depicted in Fig. 2. In the interval ~Ic < ~I < 1
�~Ic � 2� 3ÿ3=4 � 0:87, and ~I > d�, the dependence is two-
valued, while for ~I > 1 it becomes single-valued, and d
monotonically decreases as ~I increases, but remains finite.

The existence of a solution at D 6� 0 for ~I > d is caused by
the fact that the excitation energy of a pair with Q � I under
condition (1) vanishes on a line, instead of vanishing at
separate points when the dispersion law is isotropic [6, 7].
The drop inDwith increasing I results from the decrease in the
length of the line of zeros [the line on which the condition
es�p� � eÿs�ÿp� nI=vF� � 0 is met].

The energy difference of a nonuniform superconducting
state and a normal state is calculated in the ordinary way:

Us ÿUn � ÿN D3
������������������
4I 2 ÿ D2
p

2D2
0

� ÿND2
0

2
d3

���������������
~I 2 ÿ d2

p
: �7�

This implies that in terms of energy efficiency the nonuni-
form superconducting state is preferable to the normal state
when ~I > d. However, when ~I <

���
2
p

, the energy (7) of the
nonuniform state must be compared with the energy of a
uniform superconducting state. The two are compared at
values of ~I0 and d0 satisfying a system of equations consisting
of equation (6) and the equation

d30

���������������
~I 20 ÿ d20

q
� 1ÿ

~I 20
2
: �8�

Analysis shows that when d4d0 and ~I > ~I0, the solution of
equation (6) can be written with a high degree of accuracy in
the form

d � 1

2~I
: �9�

Combining Eqn (9) for d0 and ~I with Eqn (8), we arrive at
an approximate equation

~I 40 ÿ 2~I 20 �
1

4
� 0 ; �10�

which yields ~I0 � �1�
���
3
p

=2�1=2 � 1:36, and d0 � 0:36.
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Figure 1. The dispersion law and the Fermi contours for systems with a

parabolic spectrum (a), and for systems with magnetic nesting (b):

1, e �ÿ��k� � eF; 2, e ����k� � eF, and 3, e ����k� q� � eF.
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Figure 2. The order parameter d as a function of the magnetization ~I.
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Thus, in a system with magnetic nesting for I > 0:68D0

there occurs a first-order phase transition from the super-
conducting state with a uniform order parameter D � D0 into
a nonuniform state with jDj � 0:36D0. As I increases, the
order parameter monotonically decreases in accordance with
formula (9), while the energy difference (7) for ~I >

���
2
p

is given
by the expression

Us ÿUn � ÿN D2
0

16~I 2
: �11�

What is interesting is that the energy difference (11) at
I � D0 exceeds the corresponding maximum value for the
FFLO phase by a factor of almost 100.

Now, let us examine the situation where Q > I and
Qÿ I > D. It is in this interval of parameters that the FFLO
phase is realized.Using equation (2), we arrive at the equation
for D:�

Q� I�
����������������������������
�Q� I�2 ÿ D2

q �
�
�
Qÿ I�

����������������������������
�Qÿ I�2 ÿ D2

q �
� D2

0 : �12�

Clearly, in contrast to expression (5), here we have a
solution with D � 0. However, an analysis of the solution to
equation (12) is of no interest since the solution is energeti-
cally disadvantageous. Indeed, the energy difference

Us ÿUn � ND2

2
a�aÿ

�
1ÿ

������������������������������������������
1ÿ D2

a 2�

��
1ÿ D2

a 2ÿ

�s �
;

a� � Q� I �13�

is always positive. The result obtained suggests that the
optimum situation is achieved when Q4 I and IÿQ < D,
i.e., when superconductivity remains amazingly stable under
the action of the ferromagnetic exchange field up to very high
magnetizations.

(4) The above calculations were carried out for an
idealized situation, where the Fermi contour is a square and
the spectrum satisfies condition (1). In real high-Tc cuprates
(including those containing ferromagnetic layers, such as
RuSr2GdCu2O8), the energy spectrum can be approximated
with high accuracy by the strong coupling approximation
with allowance for three coordination spheres:

e�kx; ky� � 2ÿ 2t�cos pkx � cos pky�
ÿ 4t1t cos pkx cos pky ÿ 2t2t�cos 2pkx � cos 2pky� : �14�

The typical values of the hopping integrals used in the
literature are t � 0:5 eV and t1 � ÿ0:3, while the parameter t2
varies within a sufficiently broad interval from 0 to 0.8. Such a
choice of the dispersion law makes it possible to describe the
experimentally examined shape of the Fermi contour at half-
band filling. Rotation of the Fermi contour (compared to the
case where only the nearest neighbors are taken into account)
and the magnetic nesting (1) are largely determined by the
overlap integral t2 with the third-to-nearest neighbor, with the
result that in what follows we do our calculations for different
values of t2. Shimahara and Hata [11] limited themselves only
to second-to-nearest neighbors (i.e., t2 � 0), while the value of
t1 was assumed to be double the commonly accepted one
needed for ensuring the rotation of the Fermi contour and for

the contour's shape to resemble a square with rounded
corners. We believe such a choice to be less realistic than
achieving the same effect with the help of varying t2. What is
more, our approach makes it also possible to describe the
experimentally examined corrugation of the Fermi contour.
The presence of magnetization leads to a shift in the
dispersion law (14) for one direction of spin by I.

We noted previously that stability of superconductivity is
due to the long length of the line of zeros of the excitation
energy es�k� � eÿs�k� q� ÿ I. In the above simplest model,
es�k� and eÿs�k� q� ÿ I coincide perfectly on a section of the
Fermi contour, while with a real dispersion law this happens
only approximately. Nevertheless, this difference can be
small within a broad energy interval. To qualitatively
estimate the effect of the field I, we will not solve the self-
consistency equation for D. Instead, we will limit ourselves to
calculating the length L of the section of the Fermi contour
on which the magnetic-nesting condition (1) is met approxi-
mately (to a given accuracy). In the following is the
algorithm for calculating L: for the given occupancy n we
use formula (14) to find the Fermi energy, the corresponding
constant-energy curve (the Fermi contour) ky � F�kx�, and
the length L0 of this curve. Then, we calculate the energy for
a particle with an opposite spin on the Fermi contour with
allowance made for magnetic splitting I and the shift along
the wave vector q (which takes into account the deviation of
the pair momentum from zero), or eÿs�k� q� ÿ I. We
characterize the deviation from the magnetic-nesting condi-
tion by the parameter g � ��es�k� ÿ eÿs�k� q� ÿ I

��, and for
the final quantity we use the length L of the Fermi contour
on which g < g0, where g0 is a fixed (small) quantity.
Actually, g0 is determined by a set of parameters of the
problem (by the cutoff parameter, for one), but we will be
interested only in some general regularities that are not
detail-specific. Roughly, L=L0 is the estimate of the expres-
sion in the braces in self-consistency equation (2). In the
FFLO model, the ratio is close to zero, while in Eqn (2) its
value is on the order of 0.5.

Let us first use the above algorithm to estimate how the
difference between the real spectrum (14) and the ideal
spectrum, which produces square constant-energy curves,
affects the possibility of the coexistence of superconductivity
and ferromagnetism. Figure 3 shows the dependences of L,
calculated for the upper right quadrant of the momentum
plane, on the wave vector q (it is assumed that the vector q is
directed along a diagonal, q � �q; q�= ���

2
p

, as in the case
considered above) at I � 0:02 eV and g0 � 0:001 eV for
different values of t2 and an occupancy n � 1:14. The inset
to this figure shows the respective constant-energy curves. A
characteristic feature of these curves is the presence of sharp
maxima, and for a finite t2 two peaks are observed. This fact is
due to the complexity of the Fermi contour: at one peak,
certain regions of the contour merge (after shifts by I and q),
while at the other peak, other regions merge (see Fig. 4).
States corresponding to the absolutemaximumofL�q�will be
realized. As Fig. 3 shows, Lmax increases with t2 and reaches
its maximum at t2 � 0:2, which is due to the fact that at such a
value of t2 the shape of the Fermi contour is closest to a square
as can be possible (there are flat sections; see the inset to
Fig. 3). The magnitude of Lmax=L0 at its maximum is 0.65.

Figure 5 shows the dependences Lmax�I�, which qualita-
tively resemble the functionsD�I� (5), for different values of t2
and occupancies equal to 1.14 (electron doping) and 0.86
(hole doping); the inset shows the corresponding dependences
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of the wave vector qmax. It should be emphasized thatLmax has
a larger value for electron filling, and up to I � 0:2 exceeds 0.2
for t2 � 0:2. It would be interesting to establish whether this
fact of preference for electron filling is absolute, i.e., whether
it occurs at all values of t2. Figure 6 shows the dependences
Lmax�t2� at I � 0:05 for occupancies equaling 0.86 and 1.14.
Clearly, there is a narrow region of t2 values in which hole
filling is the optimum one, while for other values of t2 the
preference for electron doping is obvious.

Similar results can also be obtained for q � �0; q�, but the
absolute values of Lmax prove to be somewhat smaller than in
the case where the Fermi contours are shifted along the
diagonal q � �q; q�= ���

2
p

.

(5) Another interesting problem is the possibility of
coexistence of superconductivity and ferromagnetism for the
case of pairing with a finite momentum K in the absence of
ferromagnetism [12] (Fig. 7). Here what is known as the
kinematic constraint region is the decisive factor. The region
is formed by the intersection of the region e�k� < eF and the
region e�k� K� < eF (i.e., shifted byK). In this case, onemust
check the kinematic constraint regions for their coincidence
under a shift in momentum by q, and a shift in energy by I.
The optimum situation here is the case of coincidence along
the directions of q and K. Although the meaning of L0 differs

1

1 2

2

3

4

q
�1�
max

q
�2�
max

Figure 4. Illustration of the possibility of formation of two nonuniform

states with q
�1�
max and q

�2�
max: 1, e �ÿ��k� � eF; 2, e ����k� � eF;

3, e ����k� q
�1�
max� � eF, and 4, e ����k� q

�2�
max� � eF.
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from the one discussed earlier forK � 0 (in the sense that this
length will enter the self-consistency equation in a different
way), the ratio L=L0 still characterizes the suppression of
superconductivity by ferromagnetism. The kinematic con-
straint region occupies a section of the Fermi surface within a
certain sector directed along K � �0;K�. Hence, when
calculating L (and L0), we must limit ourselves to this sector.
As a result, the value ofL0 proves to be smaller than the value
obtained above at K � 0, while the ratio L=L0 is larger. The
dependences ofL=L0 on I for different occupancies are shown
in Fig. 8. Comparing Figs 5 and 8, we see that the situation of
pairing with a finite K is preferable from the point of view of
coexistence of ferromagnetism and superconductivity.

(6) Lee and Kim [13] studied the effect that a change
in magnetization (caused by variations in niobium
concentration) has on the magnetic properties of
Ru1ÿxNbxSr2Eu1:5Ce0:5Cu2Oz samples. As magnetization

decreases with increasing niobium concentration, a diamag-
netic response appears when the sample is cooled in a
magnetic field (the Meissner ±Ochsenfeld effect). This result
has been interpreted as the formation of a spontaneous vortex
structure under growing magnetization [14]. Within the
model examined in the present work, the emergence of a
spontaneous vortex state is due to the appearance of a
nonuniformity �q 6� 0� and is determined by condition (10).
At lower magnetizations, a uniform vortex-free supercon-
ducting state, corresponding to ideal diamagnetism, proves to
be preferable.
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Theory of magnetic contacts
between clean superconductors

Yu S Barash, I V Bobkova, T Kopp

The problem of the coexistence of superconductivity and
ferromagnetism is one of the most interesting in the physics of
condensed matter and over the years has attracted a lot of
attention, beginning with Ginzburg's paper [1]. A special case
is the problem of the coexistence and the mutual effect of
spatially separated and adjacent superconducting and ferro-
magnetic phases. Such a statement of the problem includes
research into contacts between superconductors and mag-
netic substances and, in particular, superconducting contacts
through ferromagnetic interlayers. At present it is a well-
known fact that under certain conditions such contacts
constitute what is known as p-contacts. The possibility of
forming a p-contact due to the magnetic properties of the
interlayer was recognized by theoreticians more than a
quarter of a century ago [2], while the first specific example
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Figure 7. Fermi contours in the case where there is pairing with a finite

momentum: 1, e �ÿ��k� � eF; 2, e ����k� � eF, and 3, e ����k� q� � eF.
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