
relaxation dynamics of the charge qubit [17]. From these
measurements we concluded that charge noise coming from
two-level fluctuators plays a crucial role in qubit energy
relaxation.
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Superconducting states and magnetic
hysteresis in finite superconductors

G F Zharkov

The macroscopic Ginzburg ±Landau (GL) theory of super-
conductivity [1], evolved in 1950, is an example of the triumph
of physical intuition. The theory has been successfully used to
characterize the behavior of superconductors in a magnetic
field and to predict many effects later verified in experiments.
The key issue of the theory was the assumption that the
physical state of a superconductor is described by a complex-
valued function called the order parameter:

C�x� � c�x� exp �iY�x�� ;
wherec is themodulus,Y is the phase of the order parameter,
and x is the spatial variable. The uniqueness condition
imposed on C�x� implies that at any point in the super-
conductor the phase is determined only within the factor 2pm,
where m � 0;�1;�2; . . . ; with c�x� at this point possibly
having a singularity: c�x� � x jmj as x! 0. Later on, it was
found that this singularity is associated with the presence of
vortices [2] (Abrikosov, 1957) in type II superconductors, for
which the value of the material parameter of the theory is
K > K0 � 1=

���
2
p � 0:707.

The division of superconductors into two groups (with
K < K0, and with K > K0) was suggested in the original GL
paper, where it was established that the free energy of the
interface between the superconducting (s-) and normal (n-)
states of a metal in a magnetic field (in what is known as the
intermediate state) vanishes at K � K0 [1], which suggests that
the n-state in type I superconductors (K < K0) is unstable with
respect to the formation of the s-phase and leads (as the
strength H of the external field diminishes) to a first-order
(abrupt) phase transition from the supercooled (in the
magnetic field) superconducting state to the normal state.

The same researchers found that type I superconductors in a
weak magnetic field exhibit what is known as the Meissner
effect (the complete expulsion of a magnetic field from a
superconducting material), while as the field strength grows a
first-order phase transition from the superheated s-state to
the normal n-state occurs. However, following Abrikosov's
reasoning [2], we can also say that for K > K0 the magnetic
field begins to penetrate to the interior of a type II super-
conductor in the form of vortices (forming what is known as a
mixed state), and, as the field strength grows, the normal
cores of the vortices completely overlap and the super-
conductor passes to its normal state via a second-order
phase transition (in the field Hc2 � f0=�2px2�, where
f0 � hc=2e is the magnetic flux quantum, and x is the
superconductor's coherence length [2]). Thus, Abrikosov [2]
described the vortex mechanism by which an external
magnetic field penetrates to the interior of a type II super-
conductor.

It must be noted at this point that the above picture of the
magnetic field penetration into a superconductor was
obtained in Refs [1, 2] on the basis of thermodynamic
approach for uniform superconductors of infinite dimen-
sions and without accounting for possible edge effects.
Below we shall show that in finite superconductors (cylin-
ders or plates placed in a magnetic field in a vacuum) there is
another, edge, mechanism of the penetration of a magnetic
field within superconductors. With this mechanism, the
vortices may not even form, but the order parameter c�x�
near the superconductor's edges is strongly suppressed and a
growing magnetic field begins to penetrate the superconduc-
tor almost freely near the edges. As the field strength increases
still further, such an (edge) e-state is completely suppressed as
the field reaches the value Hc2. The e-states can exist only in
type II superconductors with K > Kc � 0:93 and of fairly
small lateral dimensions (a cylinder of radius R or a plate of
thickness 2D), which are placed in a longitudinal magnetic
field H. Note that as R or D grows, the edge e-layer,
obviously, becomes unstable and splits into individual
vortices which gradually fill the interior of a massive type II
superconductor (in accordance with themechanism described
in Refs [2 ± 5]), and the superconductor changes into the
n-state.

We shall also show below that as the strong external
magnetic field gets weaker, in finite superconductors with the
values of K falling in the interval K0 < K < Kc, the supercooled
normal �n-state first transforms gradually into a specific
p-state (precursor state), and then, it abruptly transforms into
a fully superconducting Meissner (M) state in a field Hr (the
subscript `r' stands for restoration). In superconductors with
K < K0, no intermediate p-state forms, and, as the field
weakens, the superconductor instantaneously transforms
from the �n-state to the M-state jumpwise. Thus, finite
superconductors can be nominally divided into three
groups: those with K < K0, with K0 < K < Kc, and those with
K > Kc.

The various edge effects have been described in detail in
Refs [6 ± 17]; below we only touch on the essential points of
the research. For the sake of simplicity, we examine the case
of cylindrical geometry, where there are no vortices in the
superconductor, i.e., m � 0. The self-consistent solutions of
the system of nonlinear GL equations for the order parameter
c�x� and the dimensionless magnetic-field potential a�x� can
be found by applying the iteration technique [6]. (Note that
the results do not depend on the method of calculation.)
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These equations and the boundary conditions associated with
them can be found in Refs [6 ± 17]. For a unit of length x we
can either take x (the coherence length) or l (the field
penetration depth), which enter the GL equations with equal
reason. For a unit of field strength we can either take Hx �
f0=�2px2� � Hc2 or Hl � f0=�2pl2� � Hx=K 2. Only one-
dimensional solutions (or states) are considered, and these
depend not only on the radial coordinate x but also on the
parameters of the problem, namely, K, R, and H. It is
convenient to present the results of the analysis in the form
of a diagram.

Figure 1 depicts the state diagram of a cylinder in the
plane of the parameters K and Rl � R=l. Each point in this
plane corresponds to a specific superconductor whose states
depend on the strength H of the external field. The various
relationships can be visualized if we `poke' a hole at each
point �K;Rl� and look through them underneath the plane.
After studying these relationships, we can find the four
critical curves (p, m, z, and i) separating the �K;Rl�-plane
into five regions (A, B, C, D, and E), in each of which states
with a characteristic behavior of the order parameter c�x�
and the magnetization 4pM�H� � �BÿH (here, �B is the
average magnetic field inside the sample) are realized. Below
we explain the meaning of these states, curves, and regions.

Furthermore, we distinguish between twomodes in which
the external field H acts on a superconductor: the field-
enhancement (FE) mode, when the superconductor was
initially in the superconducting state in a zero field and the
field subsequently increased, and the field-reduction (FR)
mode, when the superconductor was initially in the normal
state in a strong field and the field subsequently decreased.
The sequences of states that emerge in these two modes are
different, which suggests there is hysteresis in the system.

Figure 2 schematically depicts the behavior of the order
parameter c0�h� at the center of the cylinder in the different
regions specified in Fig. 1 as a function of the normalized field
strength h (arbitrary normalization). In region A, the
Meissner (M) state with c0 � 1 is realized in a weak field
�h � 0 andRl 4 1�; the external field is screened and does not

penetrate into the sample. The superconducting M-state
remains present as the field strength increases up to a certain
value h1, at which the M-state is destroyed by a first-order
phase transition M! n. As the field is reduced, the n-state
passes into the supercooled �n-state �c � 0� which is stable
(under small fluctuations) down to point _hr, where it loses its
stability and the M-state is restored (the jump �n!M). For
h < _hr, the normal state ( _n, with c � 0) is dynamically
unstable, since it possesses a positive time increment.

In region B in the FR mode, the restoration of the
superconducting M-state begins in the field hp with a
second-order phase transition from the supercooled �n-state
into the intermediate p-state which exists down to point hr, at
which the p-state loses its stability and theM-state is abruptly
restored. Notice that the p-state is metastable, since along
with this state there exists an M-state with a larger order
parameter c and a lower free energy. In region B, in addition
to these solutions, there appears yet another branch of
solutions (u), which, however, is absolutely unstable. (Small
deviations from the u-state have a positive increment, i.e.,
increase with the passage of time. The instability of
u-solutions is also evident from the fact that the derivative
dc0=dh > 0 is positive on the mathematical u-branch, i.e., the
external field enhances rather than suppresses the super-
conductivity, as it does to the physical M-branch where
dc0=dh < 0. The arrows in Fig. 2 indicate the bifurcation
points of the solutions, where within a small neighborhood of
the fields hr, hp, and h1 there are two states that differ very
little from each other.)

At the boundary A � B of regions A and B, the
bifurcation points hr and hp lie along a straight vertical line
�hr � hp�, which corresponds to values of K that belong to the
line p in Fig. 1. This line indicates the boundary at which the
superconducting p-state disappears in the FR mode and
superconductivity is restored via a jumpwise transition from
the �n-state to the M-state. The asymptote of p line for R4 l
coincides with K0 � 1=

���
2
p

.
In region C in the FE mode, there is a jump (in field h1)

from theM-state to the e-state with a finite amplitude c0 > 0,
and this amplitude vanishes in themaximum field h2 (this field
coincides in strength with Hc2 � Hx). In the FR mode, the
e-state gradually transforms into a depressed (d-) state, from
which it is restored jumpwise to the M-state in field hr. There
is no supercooled �n-state in region C.

At the boundary B � C of regions B and C, the
bifurcation points h1, hp, and h2 lie along a single straight
line (h1 � hp � h2), which corresponds to values of K that
belong to the line m in Fig. 1. This line indicates the boundary
of existence of the supercooled �n-state. The asymptote of m
line for R4 l coincides with Kc � 0:93.

At the boundary C � D of regions C and D, the jump
M! e (which occurs in region C) disappears, as does the
hysteretic d-state. The bifurcation points h1 and hr then lie
along a straight line h1 � hr, and the functionc0�h� acquires a
reversible (nonhysteretic) shape, with the derivative
dc0=dh � 1 at point z. The corresponding values of K
indicate the hysteresis boundary (curve z in Fig. 1).

In region D, there appears an inflection point i in curves
c0�h� with a finite value of the derivative, dc0=dh <1. At
the boundary D � E of the regions D and E, the inflection
point i moves down onto the horizontal axis (c0 � 0 and
hi � h2; curve i in Fig. 1 corresponds to these points). In
region E, the curves c0�h� monotonically decrease and have
no inflection points.
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What we have just said can be illustrated by Fig. 3 which
depicts the coordinate dependences of the order parameter
c�x� and the field b�x� (normalized toHx) for a cylinder with
Rl � 7 and K � 1:2 (Figs 3a and b) and K � 0:8 (Figs 3c and
d). Clearly, at K � 1:2 (region C) in the FE mode, the order
parameter, which initially had the form c�x� � 1 (at h � 0),
gradually acquires the form of a Meissner curve M (solid
curve), which at h1 � 0:7692 is abruptly transformed into an
edge e-state. The meaning of an e-state is revealed most
vividly from the b�x� curves where, clearly, at h � h1 the
M-state (in which the external field h1 is screened and is kept
out of the cylinder almost perfectly) is replaced by an e-state
(in which the external field h1 almost freely penetrates the
cylinder at its edge but superconductivity is retained at the
center). Thus, the production of an e-state constitutes an
additional edge mechanism by which the magnetic field

penetrates a superconductor, and this mechanism differs
from the ordinary vortex one [2]. As the strength of the field
h increases still further, the amplitude of the e-state gradually
decreases (see curves e0) and at h2 � 1:0013 the e-state
disappears by transforming into an n-state. In the FR mode,
the n-state again produces an e-state. This state gradually
transforms into a d-state, which in a field hr � 0:6418
abruptly transforms into an M-state (the dashed curves in
Figs 3a and b). Thus, the d!M transitions constitute an
additional mechanism of magnetic field expulsion from the
superconductor, and this mechanism is unrelated to the
motion of vortices across the sample's boundary.

At K � 0:8 (region B) in the FE mode, the M-state (solid
curves in Figs 3c and d) abruptly produces in the field
h1 � 1:2358 an n-state, while in the FR mode the n-state
first transforms into a supercooled (hysteretic) �n-state, which
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first produces a p 0-state with a small amplitude in the field
hp � 1:0009, and this state at hr � 0:9219 abruptly transforms
into an M-state (the dashed curves). Thus, in the p!M
transitions an additional (vortex-free) mechanism of mag-
netic field penetration into a superconductor is also realized, a
mechanism caused by the dynamic transformation of the
p-state at an instability point of the solution.

Incidentally, the p-state c�x� in Fig. 3c resembles an
(s, n)-wall by appearance [1]. It can be shown (e.g., see
Refs [15 ± 17]) that as Rl !1, K! K0 � 1=

���
2
p

, and h! 1
(i.e., H! Hx) the last of the p-states [denoted by p in Fig. 2
�A � B�] coincides with the (s, n)-wall examined by Ginzburg
and Landau [1], with the free energy of this state vanishing
�ss;n � 0�, and can be described analytically by Bogo-
mol'ny|̄'s degenerate equations [18 ± 20]. Thus, the (s, n)-wall
constitutes a particular case of metastable p-states existing in
region B in the FR mode.

Figure 4 shows the critical fields of a cylinder with K � 0:8
and K � 1:2 as functions of the radius Rl. Following is an
explanation of the notation used in this figure.

At K � 0:8 (see Fig. 4a) and large Rl, the maximum field
strength, up to which in the FE mode there is still a
superconducting M-state, coincides with the field h1 of a
first-order phase transition. When h > h1, there is only the
n-state. In the FR mode there appears the supercooled
(hysteretic) �n-state which exists down to the field hp, where
a metastable p-state is created as a result of a first-order
phase transition. Such p-states exist down to the field hr,
where they lose stability and an M-state is abruptly restored.
When h < hr, the normal � _n� solutions are absolutely

unstable and only stable M-states exist. As Rl decreases,
the region where p-states can exist narrows, and at point p
such a region ceases to exist. (The critical curve p in Fig. 1
consists of critical p-points found in a similar manner for
other values of K.) The field h1 and the region of the
supercooled �n-state exist down to point z, at which the
hysteretic �n-state disappears. (The curve z in Fig. 1 indicates
the hysteresis boundary and consists of z-points found for
other values of K.) Field _hr corresponds to the dynamic-
instability points of the supercooled �n-state, where the
M-state is immediately restored as a result of a first-order
phase transition, without the formation of an intermediate
p-state. For small values of Rl (below point z), the transition
from the M-state to the n-state (and reversely) occurs by way
of a reversible second-order phase transition in the field h2.

At K � 1:2 (see Fig. 4b) and large Rl, as the field strength
increases (the FEmode) there occurs a jump from theM-state
to an e-state (in the field h1) followed by a second-order phase
transition e! n (in the field h2). In the FRmode, an e-state is
again created (in the field h2), which then gradually trans-
forms into a d-state. This state exists down to the field hr,
where the M-state is restored jumpwise. As Rl decreases, the
region where hysteretic d-states can exist narrows and
disappears at point z. (Curve z in Fig. 1, which is the
hysteresis boundary, consists of such critical points z.) For
Rl < z, the jumps � j � related to d-states are replaced by
inflection points �i�. Curve hi�h� corresponds to the fields at
which the inflection point of the function c0�h� (i.e.,
d2c0=dh

2 � 0) occurs for c0 > 0. At point i, the region of
the inflections of the function c0�h� [and the magnetization
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4pM�h� as well] disappears. (Curve i in Fig. 1 consists of the
respective critical points.)

Similar calculations can be done for the case of a flat plate
placed in a parallel magnetic field in the absence of vortices
[14 ± 17]. The state diagram, the solutions, and the critical
fields for a plate are identical to those depicted in Figs 1 ± 4 for
a cylinder. Thick superconducting plates (with Dl �
D=l4 1) can also be divided into three groups: with K < K0,
with K0 < K < Kc, and with K > Kc, where K0 � 1=

���
2
p � 0:707

and Kc � 0:93. For plates with smaller values of Dl, we can
again isolate five regions (A, B, C, D, and E) similar to those
shown in Fig. 1.

One-dimensional GL equations can be used for describ-
ing the states of a cylinder with an arbitrary number m of
vortices on the axis (here m > 0 is the vortex strength). In
this case, as noted earlier, the size of the normal core of the
vortex increases with m as xm, so that the residual super-
conducting state [with c�x� 6� 0] is pushed out to the surface
of the sample, where it is confined by the external magnetic
field (e.g., see Ref. [11]). As a result, as m increases in
massive samples (with a fixed but large radius R), there can
exist what is known as surface superconductivity, which is
retained up to the maximum field Hc3 of surface super-
conductivity [21, 22]:

Hc3 � 1:69Hc2 ; Hc2 � Hx � f0

2px2
: �1�

The existence of surface superconductivity, predicted in
Refs [21, 22], has been corroborated by numerous experi-
ments.

The following remark of a methodical nature is in order.
Equation (1) can be written down in an equivalent form by
using a different normalization:

Hc3 � 1:69
���
2
p

KHcb � 2:4KHcb ; �2�

where Hcb � f0=�2p
���
2
p

lx� � Hx=�
���
2
p

K� is the thermody-
namic critical field of a massive superconductor [1]. Inter-

preting expression (2) as an equation in K, a number of
researchers (see Refs [23 ± 27] and Refs [2 ± 5]) have con-
cluded that there exists a `specific' value K� �
�2:4�ÿ1 � 0:417 that separates type I superconductors with
Hc3 < Hcb (for K < K�) from the superconductors with
Hc3 > Hcb (for K > K�). However, such a conclusion is based
on a misunderstanding. The fact is that the field Hcb in
expression (2) depends on K, in view of which Eqn (2) is
actually independent of K and, therefore, no new information
can be extracted from it, except the information that
expression (1) already contains. According to formula (1),
there are two critical fields of strengthsHc2 andHc3 for a bulk
superconductor and the ratio of these field strengths depends
neither on the scale of the field measurement nor on K. Thus,
the `specific' value K� � 0:417 has no special meaning in itself,
neither physically nor mathematically. This is evident from
Fig. 1, in which the value K� � 0:417 has no special meaning,
i.e., it is a regular point of the GL equations.

In conclusion, it must be noted that the above behavior
of the order parameter c0�H� and the similar special
features in the behavior of the magnetization 4pM�H� of
small enough samples can, in principle, be examined in
experiments. The extracted information (the jumps between
states, hysteresis phenomena, the hysteresis boundaries, the
inflection points in the magnetization curves, the exact
values of the critical fields for the transitions between
states, etc.) can probably be used to refine the values of
the parameters R and K in real samples. Such information
can obviously be useful, especially in connection with the
prospects of fabricating small-sized superconducting devices
based on mesoscopic superconductors. Hence, there is a
need for further theoretical and experimental investigations
into the above problems.

The author is grateful to V L Ginzburg for the interest in
this work and for valuable remarks, and to V G Zharkov,
A Yu Tsvetkov, A L Dyshko, and N B Konyukhova for
useful discussions. The work was made possible by the
financial support of the Russian Foundation for Basic
Research (grant No. 02-02-16285).
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Coexistence of ferromagnetism
and nonuniform superconductivity

V F Elesin, V V Kapaev, Yu V Kopaev

(1) Superconductivity and ferromagnetism appear to be
antagonists in relation to a magnetic field: a superconductor
expels a magnetic field (the Meissner ±Ochsenfeld effect),
while a ferromagnet concentrates such a field. Hence, it is
more appropriate to use the name `antiferromagnet' in
relation to superconductors than to substances commonly
known as antiferromagnets. The first attempt to tackle the
problem of the coexistence of these states was made by
V L Ginzburg [1] in 1956, even before the Bardeen ±
Cooper ± Schrieffer (BCS) microscopic theory appeared [2].

According to the work [1], coexistence is possible if the
critical magnetic field Hc is higher than the magnetic
induction I. From the microscopic point of view [2], the
magnitude of Hc is determined in most cases by the effect
that this magnetic field (and the induction) has on the orbital

motion of pairs. Moreover, due to pairing with oppositely
directed spins, Zeeman splitting also suppresses supercon-
ductivity (the paramagnetic effect), and it is this splitting that
is predominant [3].

When the superconducting transition temperature Tc is
much higher than the ferromagnetic transition temperature
Tm, themagnetic state is nonuniform in the coexistence region
[4]. (A discussion of the existing theoretical and experimental
results can be found in the review [5].)

When Tc 4Tm, there exists a narrow interval of values of
the magnetization I, where the superconducting state proves
to be nonuniform in the state coexistence conditions [6, 7].

Currently, a large number of works have appeared (e.g.,
see Refs [8, 9]) in which the coexistence of superconductivity
and ferromagnetism has been observed in layered cuprate
RuSr2GdCu2O8 compounds, in which Tm is much higher
than Tc (Tm � 132 K, and Tc � 46 K). Such a Tm-to-Tc ratio
is unacceptable for the simple spherical Fermi surface which
lies at the base of the model discussed by Larkin and
Ovchinnikov [6] as well as by Fulde and Ferrell [7]. As is
well known, the uniform superconducting state is insensitive
to the shape of the Fermi surface [2, 3], and the existence of
such a state requires that es�p� � eÿs�ÿp�. The nesting
condition es�p� � ÿeÿs 0 �p� q� is preferable for electron ±
hole pairing (the insulating state), while the mirror nesting
condition es�K=2� p� � eÿs�K=2ÿ p� is preferable for the
realization of superconducting pairing with a large total
momentum K in the case of electron ± electron repulsion. On
the other hand, coexistence of ferromagnetism and a nonuni-
form superconducting state, with the magnetic-nesting con-
dition

es�p� � eÿs

�
ÿp� nI

vF

�
�1�

being met for an electron dispersion law with spin s in a
selected direction n, is possible for an arbitrarily large
magnetization I (here vF is the Fermi velocity). Thus, in the
given situation the main mechanism by which magnetization
suppresses superconductivity is the orbital mechanism exam-
ined by Ginzburg [1].

In the present work, we show that the processes of
hopping to third-sphere centers, which were ignored in
Refs [10, 11] but which exceed the processes of hopping to
second-sphere centers, drastically change the situation con-
cerning the state coexistence. Furthermore, we show that a
superconducting state with a large total momentum of the
pairs [12] can coexist with a ferromagnetic state at high
enough magnetizations.

(2) We select a simple model that meets the magnetic-
nesting condition (1), namely, a two-dimensional model of an
electronic spectrum corresponding to the constant energy
lines in the form of squares within a certain energy interval
(on the order of the cutoff energy o of the attractive
interaction V) (Fig. 1). Assuming that o (o � oph for
electron ± phonon coupling) is small compared to the Fermi
energy eF, we can write down the equation for the order
parameter D �D�r� � jDj exp �iqr�, where q is the pair
momentum] within the BCS theory at T � 0 in the form

1

l
�
� o

0

dx������������������
x2 � jDj2

q �
1ÿ 1

2

�
n�e� I�Q� � n�e� IÿQ�

� n�eÿ IÿQ� � n�eÿ I�Q��� ; �2�
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