
Abstract. Advances in nonequilibrium pattern formation in
reaction ± diffusion systems are reviewed. Special emphasis is
placed on patterns found in the spatially extended Belousov ±
Zhabotinsky reaction dispersed in aerosol OT water-in-oil
microemulsions (BZ ±AOT system): Turing patterns, packet
and standing waves, antispirals and segmented spirals, and
accelerating waves and oscillons. All experimental results are
explained theoretically and reproduced in computer simula-
tions.

Abbreviations

AOTì OT aerosol (OT is a trade mark), surfactant or SAC
BZ reaction ì Belousov ëZhabotinsky reaction
MAìmalonic acid
MEìmicroemulsion
NADPH ì nicotinamide adenine dinucleotide phosphate, a

biologically active molecule
ODEì ordinary differential equation
SACì surface-active compound
ferriin ì Fe 3�(phen)3
ferroin ì Fe 2�(phen)3
cAMPì cyclic adenosine monophosphate

detAì determinant of a matrix A
0-D, 1-D, 2-D ì zero-, one-, and two-dimensional spaces
kT and kw ì wave numbers corresponding to the ReL

maximum for the Turing instability and wave instability,
respectively

TrA ì trace of a matrix A � the sum of the diagonal
elements

lT ì characteristic size of Turing patterns: lT � 2p=kT
lw ì characteristic size of wave instability: lw � 2p=kw
Lì eigenvalue of the characteristic equation
ReL and ImL ì real and imaginary parts of an eigenvalue

respectively
o � �H2O�=�AOT�
fd ì volume fraction of the dispersed phase (water�

surfactant) in a microemulsion
fw ì volume fraction of the aqueous phase in a microemul-

sion

1. Introduction

Nonlinear dynamics incorporates two closely related large
blocks: dynamical systems in a 0-dimensional space (0-D), or
point systems described by ordinary differential equations
(ODE), and dynamical nonequilibrium patterns in spatially
extended systems (1-D, 2-D) described by partial differential
equations (3-dimensional patterns remain poorly under-
stood). Most notions developed for 0-D systems with
dissipation, such as an attractor (steady point, limit cycle,
etc.), bifurcation, or stability of solution, are also suitable for
the description of spatial patterns existing far from equili-
brium.

Pattern formation in nonlinear dynamical systems have
been considered in a wealth of publications. Some 10 ±
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15 years ago, the mainstream of nonlinear science was
represented by investigations of phenomena occurring in
point systems, such as complex oscillations, chaos [1 ± 4], or
stochastic resonance [5]. Today, nonequilibrium patterns in
spatially extended dynamical systems constitute the most
rapidly developing field in nonlinear physics, chemistry, and
biology. Pioneering studies on the propagation of chemical
waves in the spatially extended Belousov ±Zhabotinsky
reaction (BZ reaction) performed in the USSR/Russia [6 ± 9]
gave impetus to similar research in different countries [10].
The increasingly greater interest in nonequilibrium patterns
stems from the experimental discovery of Turing patterns
[11], i.e., the patterns predicted by English mathematician
Allan Turing in his last work, which appeared in 1952, shortly
before his death [12]. An incomplete list of relevant publica-
tions for the last 10 years includes scores of reviews and books
[13 ± 35].

Nonequilibrium patterns are exemplified by elegant
dynamical forms (patterns) described by biologists as wide-
spread in the kingdom of microorganisms [36]. Recent
discoveries include physiologically important chemical
waves of NADPH in living cells (neutrophils protecting
humans against the causative agents of many diseases) [37 ±
40] and waves of Ca2�, a signal ion that triggers various
physiological processes in many cell types. The existence of
Ca2� waves has been documented not only inside a cell [41]
but also in tissues, e.g., in the brain [42]. Surface waves in
liquids, Faraday waves, Taylor rotating fluids [13], Ray-
leigh ±Benard convection cells [43, 44], patterns associated
with gas discharges [45 ± 47], and granular systems [48] are
examples of nonequilibrium patterns in nonlinear physics.

Nonlinear dynamics lays claim to being a universal
phenomenon. At present, it fairly well describes patterns
extending within a range from a few microns (the size of a
living cell) to the planetary scale (ecological systems, climate).
However, the very first observations in quantum mechanics
[49] and cosmology [50] suggest that laws of nonlinear
dynamics are equally applicable in these disciplines, too.
This is understandable bearing in mind that these are
mathematical laws independent of the nature of forces acting
on the system, such as electromagnetic, gravitational, or weak
interactions. Dynamical pattern formation in physics, chem-
istry, biology, environmental science [19], and even the social
sciences [51] obeys similar laws. This allows many results
obtained in one scientific discipline to be used (with slight
modification) in another; that is, patterns found in one
dynamical system are likely to be discovered in others.

The universal nature of nonlinear dynamics accounts for
the importance of the correct choice of laboratory systems for
the study of pattern formation mechanisms. Such systems
include a homogeneous chemical reaction discovered by
Belousov [52] and interpreted by Zhabotinsky [9]; the
ClO2ÿIÿ�I2�ÿMA reaction (CIMA and CDIMA reactions)
[53, 54]; and oxidation of CO on a Pt crystal [55 ± 57]. The BZ
reaction in water-in-oil microemulsions (BZ ±AOT systems)
that I have been studying for the last 10 years [58 ± 64] turns
out to be especially rich in various waves and patterns.
Research carried out at Brandeis University resulted in the
discovery of new types of waves such as antispirals, wave
packets, segmented spirals, and standing and dash waves, as
well as oscillatory clusters and oscillatory spots (oscillons).

The present review is focused on nonlinear dynamical
patterns in chemical reaction ± diffusion systems without
convection, which are exemplified by the BZ ±AOT system.

Accordingly, the corresponding models contain no convec-
tive term of the v qu=qr type, where v is the velocity, u is the
concentration of the substance, and r is the spatial coordinate.

Two main types of dynamical patterns can be distin-
guished: waves and stationary patterns. Waves in chemical
systems can be classified as trigger or phase. The term `trigger
waves' implies on/off waves in a system switching over from
one state to another. The final state of the system through
which a wave has passed may coincide with its initial state
(double switch). Trigger waves are generated in either
oscillatory or stable steady-state media provided the medium
is excitable. In most cases, the velocity of trigger waves is
given by an expression of the �D=t�1=2 type, where D is the
diffusion coefficient and t is the characteristic time of
autocatalysis.

Phase waves are by definition associated with spatial
movements of the phase of oscillations at each point of the
space. Therefore, they can exist only in an oscillatory system.
Phase waves can have either high or low amplitude and
practically any velocity. As regards wave packets (or packet
waves), a specific case of phase waves, the amplitude of their
oscillations is small and they tend to assume a sinusoid-like
form, while their speed is determined by group and phase
velocities computed from dispersion curves [63, 65, 66].

Waves can also be classified based on their geometric
aspect, inwhich case they are categorized as plane, concentric,
or spiral. Both trigger and phase waves can be spiral or
circular with a single center (pacemakers or targets). Depend-
ing on the direction of propagation (towards the center or
away from it), spiral and phase waves can be classified as
`normal' (i.e., outwardly propagating) and inwardly propa-
gating (antispirals and antipacemakers). To date, only phase
waves directed towards the perturbation center are known to
exist (in this case, the fundamental principle of causality
remains valid).

Packet waves undergoing multiple reflections from walls
can transform into standing waves analogous to mechanical
standing waves generated by string vibrations and acoustic
(or electromagnetic) standing waves. Recently, a periodic
excitation of the cardiac muscle from the outside was shown
to induce standing waves of excitation classified as a variant
of trigger waves [67, 68]. Trigger waves can behave as cars on
a motorway having a propensity to create jams or so-called
shock structures [69 ± 71]. Also well known are solitary waves
or solitons [72].

Stationary structures are usually the spatially periodic
Turing patterns of a certain wavelength determined by the
diffusion coefficient of the reagents and their chemical
reactivity [11, 73 ± 77]. Also known are structures oscillating
in time and having an almost stationary boundary and no
definite wavelength. They have been termed clusters [78 ± 80].
Clusters are similar to standing waves except that they lack a
characteristic wavelength.

The existence of standing waves, oscillatory clusters, and
segmented spirals somewhat obscures the disparity between
traveling waves and stationary structures. For example,
segmented spirals (or dash waves) [64, 81] are actually the
propagating 1-D Turing patterns.

Almost all these dynamical patterns have been found in
the BZ ±AOT system. The main part of this review is
preceded by three short sections describing AOT micro-
emulsions (Section 2), the BZ reaction, and the BZ ±AOT
system (Section 3). The mathematical apparatus for classify-
ing and analyzing different structures (the theory of linear

924 V K Vanag Physics ±Uspekhi 47 (9)



stability analysis of the homogeneous steady state) is briefly
described in Section 4. The bulk of the material is presented
in Sections 5 ± 9. Closing Section 10 concerns the prospects
of further development of nonlinear dynamics.

2. AOT microemulsions

A water-in-oil AOT microemulsion (ME) can be regarded as
a physical milieu in which nanometer-sized water droplets
diffuse, collide, fuse, and separate. Some 10 years ago, I chose
to work with AOT-ME from a large number of otherMEs for
the simple reason that it was the ME about which almost
everything had been known. This AOT-ME is described in
detail in Ref. [82].

A water-in-oil AOT-ME is a thermodynamically stable
system composed of three components: water, surfactant
(AOT), and oil (a saturated hydrocarbon, e.g., octane used
in our experiments). In a BZ ±AOT system, reagents of the
BZ reaction are dissolved in water, i.e., placed in the aqueous
pseudophase (thus called for being a discontinuous aqueous
phase). The properties ofME change if a dissolved salt or acid
is present in the water at a high concentration (in excess of
0.1 M).

An AOT molecule contains a small polar group (the
SOÿ3 group) and two long fat tails facing the hydrophobic
phase. There is only one way to arrange such molecules close
together head to head and tail to tail without intervening
gaps. Specifically, their polar heads must look toward the
center of the sphere formed by the fat tails (Fig. 1). Such
geometric properties of AOT molecules account for the
inverse character of AOT-ME in which water cores sur-
rounded by a monolayer of AOT molecules are submerged
in the continuous hydrophobic phase (octane).

The radius of the droplet's water core in nanometers
is roughly determined as Rw � 0:17o, where o �
�H2O�=�AOT�; Rw is independent of the octane volume
fraction in ME. The total radius of the droplet together with
the surrounding AOT monolayer (hydrodynamic radius) Rd

is bigger than Rw by the length of the AOT molecule (around

1.1 nm). The concentration of water droplets can be lowered
by simply adding octane to the ME. For this reason, we used
to first prepare a concentratedME and thereafter dilute it to a
desired concentration. In the initial concentrated ME, the
volume fraction of water fw is about 0.3 (30%) and that of
droplets fd (together with the surrounding AOT monolayer)
amounts to 0.7 (70%). fd and fw are roughly related by
expression

fd � fw

�
1� 21;6

o

�
: �1�

Many physical properties of an ME show an almost
threshold-like dependence on fd. Such a dependence is due
to percolation. If fd 5fcr (with the percolation threshold
fcr � 0:5), theME can be arbitrarily described as amedium in
which water droplets float freely. The viscosity of such anME
is almost identical with that of water and the electrical
conductivity is similar to that of pure octane. For such an
ME, diffusion coefficient Dd of a water droplet and its radius
Rd are related by the Stokes ±Einstein formula

Dd � kT

6pZRd
; �2�

where Z is the viscosity of an organic solvent, k is the
Boltzmann constant, and T is the temperature. Relation (2)
is used to determine the droplet radius in dynamic light
scattering experiments. The droplet's diffusion coefficient
Dd is one or two orders of magnitude (depending on the
droplet radius and fd) smaller than the diffusion coefficient
of low-molecular compounds in octane, approximately
10ÿ5 cm2 sÿ1 [83]. Because all the initial reagents of the
BZ reaction are hydrophilic and incorporated in the dro-
plet's water core, their diffusion coefficient is determined by
the diffusion coefficient of the entire drop Dd.

Certain intermediate products formed in the course of the
BZ reaction, e.g., molecular bromine, Br2, or radical BrO

�
2 ,

are octane-soluble and their diffusion coefficient roughly
equals 10ÿ5 cm2 sÿ1. A significant (10 ± 100-fold) difference
between diffusion coefficients of individual intermediates is a
key factor responsible for the generation of nonequilibrium
structures, such as Turing patterns and antispirals.

Mass exchange between droplets is rather efficient and
occurs by the collision ± fusion ± fission of two droplets. The
bimolecular constant of effective collisions between droplets,
which lead to their transient merging via small bridges
(channels), is on the order of 107 Mÿ1 sÿ1 [84]. Because the
diffusion-controlled constant kdiff equals approximately
109 Mÿ1 sÿ1, only each hundredth collision results in mass
exchange. At a typical droplet concentration in the range of
10ÿ5ÿ10ÿ3 M, the characteristic time of mass exchange is
estimated at 10ÿ4ÿ10ÿ2 s, i.e., a few orders of magnitude
smaller than all characteristic times of the BZ reaction
(seconds ±minutes).

Percolation occurs when the volume fraction of droplets
fd exceeds fcr. From the kinetic standpoint, percolation in
AOT-ME can be interpreted as a situation where the rate of
droplet fusion exceeds the dimer separation rate. In this case,
dynamical water channels are formed that span the entireME
(Fig. 2a). The viscosity and electrical conductivity of such an
ME increase by 1 ± 2 and 4 ± 5 orders of magnitude, respec-
tively [83, 85 ± 87]. Schwartz et al. [83] have demonstrated that
the diffusion coefficients of water molecules and a hydro-

Rw

Rd

H2SO4

NaBrO3

MA

Ferroin

Figure 1. A water droplet of the AOT-microemulsion loaded with the

initial reagents of the BZ reaction.Rw Ð radius of the droplet's water core,

Rd Ðouter radius of the droplet, coincident with the hydrodynamic radius

measured experimentally by dynamic light scattering (see Fig. 3).
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carbon in such an ME are practically identical
(� 10ÿ5 cm2 sÿ1).

In the narrow range of droplet concentrations where
fd � fcr, clusters are formed (Fig. 2b). Used in this context,
the term `cluster' has the traditional meaning of a set of
individual elements as opposed to the term `oscillatory
cluster' in which `cluster' implies the identity of phases and
amplitudes of concentration oscillations in a certain spatial
region.

In a three-component system, the droplet distribution by
size is rather narrow even if clusters are formed. Hence,
AOT-ME may be referred to as a monodispersed system.
However, we observed the bimodal droplet distribution by
size at a high salt concentration in the aqueous pseudophase
(Fig. 3); it very slowly (over a few days) relaxed to the
monomodal distribution with the expected droplet radius
Rd � �0:17o� 1:1� nm. The behavior of AOT-ME contain-
ing salts and strong acids at high concentrations needs to be
studied in more detail.

3. Belousov ±Zhabotinsky reaction
and its models

The BZ reaction has been thoroughly investigated (see, e.g.,
a review by Taylor [28]). The reaction is essentially oxidation
of malonic acid (MA) by bromate in an acidic aqueous
solution. Initially, Belousov (see his paper in Ref. [10]) used
citric acid instead of MA. A large number of other organic

substrates can also be used for this purpose. In particular,
cyclohexanedione is a popular compound [88], with which
no CO2 bubbles are formed. The BZ reaction is catalyzed by
metallic ions and metallocomplexes such as Ce3�, Mn2�,
Fe2�(phen)3, and Ru2�(bpy)3, where phen stands for
phenanthroline and bpy is bipyridine [10]. The last two
metallocomplexes are most often used to observe waves
and patterns because they are easy to watch with optical
instruments.

The chemical mechanism underlying the BZ reaction
may involve three dozen elementary reactions [10, 89, 90].
Working with it is virtually impossible, especially in the
analysis of spatial patterns. Fortunately, there are simpler
models on which major characteristics of the BZ reaction
can be studied.

One such model resembling the well-known FKN
mechanism [91] includes six variables and twelve reactions,

Y! X� P ; k1 ; �3�
X�Y! 2P ; k2 ; �4�
X! 2X� 2Z ; k3 ; �5�
2X! P ; k4 ; �6�
Y� P!W ; kY ; �7�
W! Y� P ; kH ; �8�
W�MA! Y ; kW ; �9�
P�MA! BrMA ; kP ; �10�
Z� BrMA! Y ; kZ ; �11�
Z�MA! 0 ; kM ; �12�
W! U ; kF ; �13�
U!W ; kB ; �14�

where X � HBrO2, Y � Brÿ, Z � ferriin (oxidized form of
ferroin), P � HOBr, W � Br2 in the aqueous phase, and
U � Br2 in octane. Concentrations of the MA and bromo-
malonic acid (BrMA) are assumed to be constant. The X
molecule is an activator because it autocatalitically repro-
duces itself in reaction (5). The particle Y is an inhibitor
killing the activator and suppressing autocatalysis in
reaction (4). Its critical concentration ycr is found from the
equality of reaction (4) and (5) rates as ycr � k3=k2. The
autocatalysis is inhibited at y > ycr. In the course of the
autocatalytic reaction, the catalyst (cat) is transformed into
an oxidized state denoted by Z [e.g., Fe3�(phen)3]. An organic
substrate, malonic acid, is used to reduce the catalyst. Part of
malonic acid is brominated in the BZ reaction and the
resulting bromomalonic acid also interacts with the oxidized
state of the catalyst. This interaction results in the release of
the inhibitor Y. Chemical negative feedback is thus realized.
The combination of positive (autocatalysis) and negative
feedback mechanisms in the BZ reaction gives rise to
oscillations in a well-mixed (often, flow-through) reactor.
The described mechanism is fairly precise but remains
complicated.

It is necessary to simplify scheme (3) ± (14) in order to be
able to describe the BZ reaction by a small number of
differential equations. This goal is attained by the applica-
tion of the Oregonator model [92], which perfectly fits the
homogeneous BZ reaction.

But the Oregonator model is insufficient for the BZ ±
AOT system because it fails to describe the rapid diffusion of

1
mm

a b

Figure 2.Computer simulation of microemulsion. Each point corresponds

to a water droplet: (a) droplet volume fraction fd � 0:7 (above the

percolation threshold), (b) fd � 0:3 (below the percolation threshold).

4

In
te
n
si
ty
,%

3

2

1

0
1 10 100

Rh, nm

1

2

Figure 3. Dependence of relative light scattering intensity on the droplet

hydrodynamic radius Rh (droplet distribution by size) obtained in

experiments on dynamic light scattering by AOT-microemulsion loaded

with the reagents of the BZ reaction ��H2SO4� � 0:4 M, �MA� � 0:6 M�:
1Ð fresh ME, 2Ð the same ME one day later �o � 15, fd � 0:55�.
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Br2 and BrO �2 molecules in the organic phase. Therefore, I
have modified the Oregonator model as follows:

Y! X ; k1 ; �15�
Y�X! 0 ; k2 ; �16�
X! 2X� 2Z ; k3 ; �17�
2X! 0 ; k4 ; �18�
Z! hY ; k5 ; �19�
X! S ; k6 ; �20�
S! X ; k7 ; �21�
Z! V ; k8 ; �22�
V! U ; k9 ; �23�
U! V ; k10 ; �24�
V! Z ; k11 ; �25�
U! S ; k12 ; �26�

where S is Br2O4 or BrO
�
2 (second activator) in the organic

phase, V is Br2 in the surfactant pseudophase (inside a
surfactant shell of water nanodroplets), U is Br2 in the
organic phase (as before), and h is the stoichiometric
coefficient. Reactions (15) ± (19) correspond to the original
Oregonator model [92]. Reactions (20) and (21) describe
the mass exchange by activator particles between the
disperse phase (water droplets) and the organic phase;
reactions (22) ± (25) describe the mass exchange by inhibi-
tor particles among three phases (with the surfactant phase
occurring because the solubility of Br2 in the AOT
surfactant is six times its solubility in octane [93]).
Reactions (22) and (25) may look strange because the
oxidized form of the catalyst (Z) cannot turn into Br2 (V).
However, these reactions are no more strange than reaction
(19) in which Z transforms into Brÿ (Y). Both Z and V are
chemically related through reactions (19) [or (11)], (7), and
(13). The particles Z and U (Br2) serve as inhibitors: Z
plays this role in the reduced Oregonator equations with
two variables [94] (with the true inhibitor Y excluded), and
Br2 in model (3) ± (14) because Br2 yields bromide (Y) in
reaction (8). It is important that Z and U have significantly
different diffusion coefficients; they are therefore consid-
ered to act as two different inhibitors in reactions (22) ±
(25). Reaction (26) is an ancillary one (of minor impor-
tance) and can be chemically interpreted as
Br2 ! Brÿ ! Br � ! BrO �2 .

The original ODEs for reactions (15) ± (26) have the form

d�x�
dt
� k1�y� ÿ k2�x��y� � k3�x� ÿ k4�x�2 ÿ k6�x� � k7�s� ; �27�

d�y�
dt
� ÿk1�y� ÿ k2�x��y� � k5h�z� ; �28�

d�z�
dt
� 2k3�x� ÿ k5�z� ÿ k8�z� � k11�v� ; �29�

d�s�
dt
� k6�x� ÿ k7�s� � k12�u� ; �30�

d�u�
dt
� k9�v� ÿ k10�u� ÿ k12�u� ; �31�

d�v�
dt
� k8�z� ÿ k9�v� � k10�u� ÿ k11�v� : �32�

By introducing the dimensionless variables

�x� � k3x

2k4
; �y� � k3y

k2
; �z� � k23z

k4k5
;

t � t
k5
; �s� � k23s

2k4k7
; �v� � k23v

k4k11
; �u� � k23u

2k4k10

and the new parameters

f � 2h ; q � 2k4k1
k3k2

; e � k5
k3
; b � k6

k3
;

a 0 � k8
k5
; K � k9

k11
; a � a 0K

1� K
; g � 1

2�1� K� ;

e2 � k5
k6
; e3 � k5

2k10
5 1 ; e4 � k5

k11
5 1 ;

e 0 � 2k4k5
k3k2

5 1 ; w � k12
k10

;

we transform Eqns (27) ± (32) to the dimensionless form

e
dx

dt
� qyÿ yx� xÿ x 2 ÿ bx� s ; �33�

e 0
dy

dt
� ÿqyÿ yx� fz � 0 ; �34�

dz

dt
� xÿ zÿ a 0z� v ; �35�

e2
ds

dt
� bxÿ s� wu ; �36�

e3
du

dt
� Kvÿ u

2
ÿ wu

2
; �37�

e4
dv

dt
� a 0zÿ Kv� u

2
ÿ v � 0 : �38�

Because e 05 1 and e4 5 1, the variables y and v can be
eliminated via quasi-equilibrium conditions, y � fz=�q� x�
and v � �a 0z� u=2�=�1� K�. 1 The final model with four
variables and added diffusion terms has the form

qx
qt
� 1

e

�
fz�qÿ x�
q� x

� xÿ x 2 ÿ bx� s

�
� Dx

Du
Dx ; �39�

qz
qt
� xÿ zÿ az� gu� Dz

Du
Dz ; �40�

qs
qt
� 1

e2
�bxÿ s� wu� � Ds

Du
Ds ; �41�

qu
qt
� 1

e3

�
azÿ

�
g� w

2

�
u

�
�Du

Du
Du ; �42 0�

where the Laplacian is D � q2=qr 2 in the 1-D case and D �
q2=qx 2 � q2=qy 2 in the 2-D case (where x and y are the spatial
coordinates). Because w5 g, Eqn (42 0) can be simplified by
assuming w � 0:

qu
qt
� 1

e3
�azÿ gu� � Du : �42�

The diffusion coefficientsDx andDz are equal to the diffusion
coefficient of the entire nanodroplet of water (approximately

1 This procedure is not innocuous and can change the Andronov ±Hopf

bifurcation type from subcritical to supercritical in a wide range of system

parameters.
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10ÿ7 cm2 sÿ1 [83]), whereas the coefficients Ds and Du are
roughly equal to the diffusion coefficient of low molecular
weight molecules in octane (of the order of 10ÿ5 cm2 sÿ1).

In the dimensionless model (39) ± (42), dimensionless
diffusion coefficients of a Dx=Du type are used. To facilitate
the transition from the dimensionless unit length to the
dimensional one (for quantitative comparison of experimen-
tal and simulated patterns), the former should by multiplied
by �Du=k5�1=2. For example, if Du � 10ÿ5 cm2 sÿ1 and
k5 � 0:1 sÿ1, then the dimensionless unit is 0.1 mm. Model
(39) ± (42) allows us to describe practically all wave instabil-
ities and the Turing instability phenomena found in the BZ ±
AOT system.

It is worthwhile to note that model (39) ± (42) simulates a
homogeneous system that does not explicitly contain such
parameters as the droplet size Rd and the volume fraction fd

of a microheterogeneous AOT-microemulsion. Because the
size of water nanodroplets is four orders ofmagnitude smaller
than all characteristic sizes of the observed waves and
nonequilibrium patterns, I believe it is justified to describe
this medium as homogeneous with the help of the standard
reaction ± diffusion equations (the term `standard' means that
all nondiagonal elements of the matrix of diffusion coeffi-
cients are zero). The parametersRd and fd of the microemul-
sion are implicitly involved in the diffusion coefficients and in
the constants of mass exchange between phases �a; b; g�. The
case of nonzero nondiagonal terms in the matrix of diffusion
coefficients (cross diffusion) and the case where fluctuations
must be taken into account (fluctuations of concentrations
and rate constants in nanodroplets are significant) are beyond
the scope of the present review.

4. Linear stability analysis

The linear stability analysis of the steady state of a reaction ±
diffusion system of type (39) ± (42) reveals two main types of
diffusive instability: the Turing instability and the wave
instability [34]. In the case of the Turing instability, the real
part of the eigenvalue of the characteristic equation, ReL, is
positive for a certain finite interval of wave numbers k > 0
and has a maximum at a certain k � kT, while, as a rule,
ReL < 0 at k � 0 and the imaginary part ImL is equal to
zero. In this situation, concentration patterns periodic in
space and stationary in time are formed; they are referred to
as the Turing patterns. In the case of wave instability, ReL is
also positive in a certain range of wave numbers, but the
imaginary part is nonvanishing. This gives rise to waves and
patterns periodic in both time and space. Turing described
both types of instability in his classic work [12].

Techniques for linearization of reaction ± diffusion equa-
tions (evaluation of the Jacobian) and determination of the
eigenvalues L of characteristic equations are fairly well
described in the literature [95]. Any infinitesimally small
deviation of the system from its equilibrium changes with
time as exp �Lt� ikr�. Therefore, the system continues to
deviate farther and farther from the equilibrium if ReL > 0
at a certain k. In such a case, it is called unstable. For model
(39) ± (42), the characteristic determinant is written as

A11ÿ k2Dxÿ L A12 A13 A14

A21 A22ÿ k2Dzÿ L A23 A24

A31 A32 A33ÿ k2Dsÿ L A34

A41 A42 A43 A44ÿ k2Duÿ L

��������
�������� ;

(43)

where the diffusion coefficients Dx, Dz, Ds, and Du are
dimensionless quantities,

A11 � 1

e

�
1ÿ 2xSS ÿ bÿ 2qfzSS

�xSS � q�2
�
;

A12 � 1

e
f �qÿ xSS�
xSS � q

; A13 � 1

e
;

A14 � A23 � A32 � A41 � A43 � 0 ;

A21 � 1 ; A22 � ÿ1ÿ a ; A24 � g ;

A31 � b
e2
; A33 � ÿ 1

e2
; A34 � w

e2
;

A42 � a
e3
; A44 � g

e3
;

and the steady-state value xSS is found from the solution of
the quadratic equation

xSS � 0:5

�
B�

�
B 2 � 4q

�
1� wa

g
� f

��1=2�
; �44�

where B � 1� wa=gÿ qÿ f and zSS � xSS. Although the
analytic solution of the 4th-order equation is known, we use
it only to facilitate the numerical evaluation of dispersion
curves, i.e., plots of ReL and ImL versus the wave number k.
A complete analysis of determinant (43) has never been made
nor have the regions in the parameter space where wave and
Turing instabilities occur been found.

Typical dispersion curves for model (39) ± (42) are pre-
sented in Fig. 4. In the case of both wave and Turing
instabilities, the diffusion coefficients of the activator Dact

and the inhibitorDinh are identical regardless of whether they
diffuse slowly or rapidly. For the model with two variables,
there is a theorem stating that a homogeneous steady state
can lose its stability via Turing instability only when
Dinh > Dact [32]. Incidentally, this theorem does not exclude
the existence of a Turing pattern at Dinh � Dact unless the
initial state is homogeneous [96]. It can be seen from the
caption in Fig. 4 that there is no such limitation for the model
with four variables, even though a rapidly and slowly
diffusing activator and inhibitor must be present. Turing
patterns cannot arise in the absence of a rapidly diffusing
inhibitor.

The dispersion curves in Fig. 4 suggest that it is possible
to obtain all types of instabilities, including the Andronov ±
Hopf instability characterized by positive ReL at k � 0, by
means of a small variation in the diffusion coefficients or
the parameters of mass exchange between the aqueous and
oil phases. It is worthy of note that the dispersion curves
with negative dispersion (d ImL=dk < 0 at k � kw) pre-
sented in Fig. 4b offer a plausible explanation for the new
type of spiral waves, antispirals, discovered by us and
described in Refs [62, 63].

Because a 4th-order equation may have two complex
roots, the case of two wave instabilities (when real parts of
two complex eigenvalues have positive maxima at different
wave numbers) is equally feasible and was theoretically
predicted. To date, however, no experimental data are
available that require such a complicated case to be used for
their explanation.

5. Turing patterns

Turing patterns were discovered by Patrick De Kepper's
group in 1990 [11, 73], i.e., 38 years after they had been
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predicted theoretically. They were found in a homogeneous
chemical system containing chlorite, iodide, and malonic acid
at the temperature �5 �C. The discovery was followed by the
works of two groups, one headed by Epstein and the other by
Swinney [74 ± 76], which explicitly demonstrated various
types of Turing patterns and offered their theoretical
explanation (the model then proposed has been successfully
employed up to now). All these studies gave impetus to
theoretical research, e.g., classifying Turing patterns in
terms of symmetry, and discussion of the role of these
structures in morphogenesis. The latest experimental results
on Turing patterns in the CIMA±CDIMA system concern
spatially periodic effects on these structures and modes of
their spatial propagation at various initial perturbations,
including splitting individual spots [97 ± 103].

The BZ ±AOT system is the second experimental chemi-
cal system in which Turing patterns can be found, in this case,
at room temperature (23 �C) and under very simple experi-
mental conditions using no special reactor to continuously
supply a thin reactive layer with new reagents. Our `reactor'
consists of two flat optical glasses separated by a thin (80 ±
100 mm) Teflon gasket with an inner diameter of 25 mm and
an outer diameter of 50 mm. The inside of the reactor, 25 mm
in diameter, is filled with an AOT microemulsion leaving no
free space for air bubbles. The two glasses are slightly pressed

together. Patterns are observed through a stereomicroscope
equipped with a digital charge-coupled device (CCD) camera
connected to a computer. The reactor is illuminated through
an interference filter with the wavelength at which the catalyst
has its absorption maximum. This wavelength is 508 nm for
ferroin, 450 nm for the Ru�bpy�2�3 complex, and 532 nm for
the bathoferroin.

Typical Turing patterns stationary in time are shown in
Fig. 5a ± c. They have the form of spots (a), spots with
stripes (b), and a labyrinth (c). In all these cases, the typical
spatial wavelength of the Turing structures is roughly 0.2mm.
For these structures to be seen, the volume fraction of
nanodroplets must be smaller than the percolation threshold
�fd < 0:5� and the point BZ ±AOT system (the same system
in a well-mixed reactor) must be close to the steady-state ±
oscillations borderline (i.e., to the onset of the Andronov ±
Hopf bifurcation). Figure 5b shows patterns that emerge
from the incoming trigger waves. As the latter come close to
the zone with Turing patterns, they first stand still, giving rise
to stripe-like structures, which then slowly (within minutes or
dozens of minutes) begin to develop breaks and eventually
transform into spots. Because the experiment is conducted in
a closed reactor supplied with no fresh reactants, the lifetime
of our structures is limited (a few hours), and they gradually
disappear.

For comparison, Fig. 5d shows Turing patterns obtained
in model (3) ± (14) where only Br2 in octane can rapidly
diffuse. In many cases, experimental structures are not
regular hexagonal spots as in the models. I believe that the
process of spot adjustment (or restructuring) to a regular
geometric shape takes much time, which a closed system
lacks. However, selected experiments yielded ideally shaped
hexagonal Turing patterns. Similar hexagonal spots were
obtained in model (39) ± (42) with the parameters shown in
Fig. 4c. In all models of the BZ ±AOT system, a rapidly

b

d

a

c

Figure 5.Turing patterns in the BZ ±AOT system (a ± c) and inmodel (3) ±

(14) (d). �H2SO4�0 � 0:2 M; �NaBrO3�0 � 0:2 M (Fig. a), 0.18 M (Fig. b),

0.17 M (Fig. c); �MA�0 � 0:3 M; [ferroin]0 � 4 mM, o � 15; fd � 0:36
(Fig. a), 0.35 (Fig. b, c). Snapshot size: (a, c) 2:6� 1:9 mm,

(b) 3:8� 2:8 mm, (d) 50� 50 [dimensionless units to be multiplied by

�10ÿ5�1=2 to pass to centimeters]. Black and white colors correspond to

elevated ferrion and ferriin �z� concentrations, respectively. Parameters of

model (3) ± (14): k1 � 0:05 sÿ1, k2 � 106 Mÿ1 sÿ1, k3 � 0:25 sÿ1,
k4 � 1000 Mÿ1 sÿ1, kV � 107 Mÿ1 sÿ1, kH � 50 sÿ1, kW � 2 Mÿ1 sÿ1,
kP � 0:2 Mÿ1 sÿ1, kZ � 0:3 Mÿ1 sÿ1, kM � 0:15 Mÿ1 sÿ1, kF � 2000 sÿ1,
kB � 200 sÿ1, Dx � Dy � Dz � Dp � Dw � 0:05, Du � 1.
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Figure 4. Dispersion curves of model (39) ± (42): (a) wave instability with

positive dispersion, d ImL=dk > 0; (b) wave instability with negative

dispersion, d ImL=dk < 0; (c) Turing instability; (d) concurrent Turing

and wave instabilities. Curves 1 ± 4 in Figs a and b, curves 1 in Figs c and

dÐReL. Curves 1oÿ4o in Figs a and b are the corresponding imaginary

parts displaced downward by 0.97, 0.92. 1.245, and 1.17, respectively.

Curves 2 in Figs (c, d) are ImL=10. The parameters of model (39) ± (42):

(a) q � 0:0015, f � 1:4, e � 0:34 (curve 1), e � 0:36 (curve 2), e2 � 1:4,
e3 � 0:006, a � 6 (curve 1), a � 7 (curve 2), b � 0:32, g � 0:2, w � 0,

Dx � Dz � 0:01, Ds � Du � 1; (b) q � 0:0033, f � 1:5, e � 0:4 (curve 3),

e � 0:385 (curve 4), e2 � 3:5 (curve 3), e2 � 3:2 (curve 4), e3 � 0:0016
(curve 3), e3 � 0:0024 (curve 4), a � 6:2 (curve 3), a � 6:3 (curve 4),

b � 0:28 (curve 3), b � 0:275 (curve 4), g � 0:1, w � 0:00595 (curve 3),

w � 0:004 (curve 4),Dx � Dz � 0:01 (curve 3),Dx � Dz � 0:015 (curve 4),
Ds � Du � 0:9 (curve 3), Ds � Du � 1 (curve 4); (c) q � 0:002, f � 1:9,
e � 0:5, a � 12, b � 0:1, g � 0:1, e2 � 1, e3 � 0:01, w � 0,Dx � Dz � 0:01,
Ds � Du � 1; (d) q � 0:0015, f � 1:4, e � 0:37, a � 9, b � 0:34, g � 0:2,
e2 � 1:3, e3 � 0:006, w � 0, Dx � Dz � 0:01, Ds � 1, Du � 0:85.
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diffusing inhibitor (Br2 or Z) is indispensable for the
realization of Turing patterns.

Today, three basic types of Turing patterns are known,
viz. hexagonal spots, stripes, and honeycomb-like structures
that can be regarded as inverted hexagonal spots. These
patterns have been found in an experiment using a chlorite-
iodide system [76] and in computer simulations [104]. Turing
structures of a more complex shape have recently been
reported to which beautiful names such as `black eye',
`white eye', etc. were given by the authors [99, 105, 106].
They are formed by virtue of interactions between the
simplest forms of Turing patterns (with different wave-
lengths) realized in neighboring thin layers [103, 107]. It
may be inferred from purely theoretical considerations that,
the labyrinth-like patterns in Fig. 5c being stable, Turing
structures must have an infinitely large number of forms.
This situation is analogous to obtaining regular oscillations
with any predetermined period from chaotic oscillations for
a 0-D system [108].

So far, only Turing patterns in a homogeneous environ-
ment have been considered, and theoretical discussions on the
role of these structures in morphogenesis have ignored the
simple fact that dividing cells make a heterogeneous medium.
The idea of a rapidly diffusing second inhibitor (Br2) regarded
as a messenger between water droplets is readily applicable to
a real heterogeneous medium with large drops (analogs of
living cells) commensurable with the characteristic size of
Turing patterns and separated by a gap (analog of the
intercellular space) through which only this messenger
(signal molecule) can diffuse.

We now consider the system in Fig. 6a. Let a pair of
identical water droplets be filled with a dynamical system
having positive (autocatalysis) and negative (inhibition)
feedback. For simplicity, we choose the well-known Brusse-
lator model [109] [Eqns (45) and (46) at c � d � 0], extended
by introducing a rapidly diffusing second inhibitor �w�:

qu
qt
� aÿ �1� b�u� u 2v�Du

q2u
qx 2

; �45�

qv
qt
� buÿ u 2vÿ cv� dw�Dv

q2v
qx 2

; �46�

qw
qt
� cvÿ dw�Dw

q2w
qx 2

: �47�

The main inhibitor �v� is linearly related to the second
�w�, which is able to diffuse both within the droplets and
through the gap (messenger). In contrast, the activator �u�
and inhibitor molecules are confined to the inside of
the droplets. The equalities Du � Dv � a � b � c � d �
u � v � 0 are fulfilled in the gap and the equalities
Du � Dv � Dw in the droplets. In addition, we choose the
parameters a, b, c, and d such that system (45) ± (47) remains
in a stable steady state (with stationary values of uSS � a,
vSS � b=a, and wSS � cb=ad).

If the gap between the droplets is not too large, the
homogeneous steady state of heterogeneous system (45) ±
(47) (having the geometry shown in Fig. 6) may lose stability.
In this case, the two droplets pass to new (and different)
steady states analogous to the maximum and minimum in the
Turing structures (Fig. 6b) [110]. This type of symmetry
breaking is more suitable for speculation on diffusive
instabilities in the course of morphogenesis. Figure 7
illustrates dependences of two identical droplets on their
own size and the size of the gap. Evidently, a stable
homogeneous steady state (SS) and Turing patterns (in the
sense of the structure shown in Fig. 6b) exist concurrently
with synchronous relaxation oscillations, whose amplitude is

lR g lR

a

bu

v

w

u

v

6

Length

4

2

0 2 4

Figure 6. (a) Heterogeneous system of two identical water droplets (two

microreactors) of size lR with a gap g between them. (b) Turing pattern for

heterogeneous system (45) ± (47), lR=g � 0:01, lR=lT � 0:165; lT � 14:91
(lT � 2p=kmin, where kmin is the smallest wave number when ReL � 0);

L � 2lR � g � 5:0856. Du � Dv � Dw � 100 in droplets and Du �
Dv � 0, Dw � 100 in the gap; a � 3:06, b � 7, d � 5, c � 2, curve w Ð

10�wÿ 0:8�.
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Figure 7. Parametric diagram obtained by numerical computation of

heterogeneous system (45) ± (47). Parameters: a � 3:06, b � 7, c � 2,

d � 5. Curve 1 0 corresponds to �2lR � g�=lT � 0:5; lT � 14:91, curve 1

to �2lR � g 0�=lT � p, p � 0:5, g 0 � plTg=�plT � g�, curve 2 k1 �
k2Dw � k1-cr [110] outlines the area of theoretical in-phase oscillations.
& ÐTuring patterns, �Ð steady state (SS), ~ Ð in-phase oscillations.
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bigger than that of the Turing patterns and the period is
strongly dependent on the gap size [110]. The appearance of
in-phase oscillations in a system of two coupled identical
dynamical subsystems in a steady state is due to a delay in
signal transmission between these subsystems (droplets)
[111 ± 114]. The bigger the gap, the longer the delay. The
oscillations occur only within a certain range of mean time
delays.

6. Wave instability

The wave instability in reaction ± diffusion systems is still
poorly known. The first theoretical works (apart from the
classical work of Turing [12]) date to the 1980s ± 1990s [66,
95]. The first experiments were carried out quite recently [61,
63, 115]. Comparison of the properties of wave packets (and
standing waves) in chemical systems and in physics (optics,
acoustics, physics of surface, and hydrodynamic waves)
reveals many similarities as well as certain differences. We
propose the term `chemical optics' to define a group of
phenomena related to wave properties of reaction ± diffusion
systems.

For a wave instability (characterized by the dispersion
curves shown in Fig. 4 a, b) to occur, a chemical system must
have at least three variables. This inference readily ensues
from the analysis of the quadratic characteristic equation for
a system with two variables,

2L1; 2 � TrA� �Tr �A�2 ÿ 4 detA
�1=2

; �48�

where TrA is the trace of the characteristic matrix A [of type
(43)] and detA is its determinant. For the wave instability,
ReL � TrA, ImL 6� 0, and the trace TrA must be a
nonmonotonic function of the wave number k. However, for
a system with two variables,

TrA � a11 � a22 ÿ k2�Du �Dv� :

In other words, TrA is a monotonic function of k; hence, it
can have no maximum at k > 0 necessary for the wave
instability to occur.

Our numerous computer simulations have demonstrated
that any reaction ± diffusion system with two variables of the
activator ± inhibitor type can develop a wave instability after
the addition of the third variable, i.e., the second rapidly
diffusing activator linearly related to the `main' slowly
diffusing activator. In the BZ ±AOT system, the role of the
slowly diffusing activator is played by HBrO2 molecules
present in water droplets while radical BrO �2 (or its dimer
Br2O4) capable of diffusion through the organic phase plays
the role of the rapidly diffusing activator. The molecules of
HBrO2 and BrO �2 are coupled through the chemical reac-
tions

BrOÿ3 �HBrO2 �H� ! 2BrO �2 �H2O ; �49�
cat�red� � BrO �2 �H� ! cat�ox� �HBrO2 ; �50�

where cat(red) and cat(ox) are the reduced and oxidized forms
of the catalyst, respectively.

As a rule, a wave instability appears in the BZ ±AOT
system at large fd values close to percolation fcr and higher
than those fd at which Turing patterns arise. A simple
explanation of this fact (even if incomplete, given the
complexity of the system) comes from the computation of

the Br2 and BrO �2 concentrations in the organic phase as a
function of fd. With the concentration of Br2 or BrO �2
denoted by x and the subscript `w' used for the aqueous
phase, `S' for the surfactant phase, and `oil' for the organic
phase, the following material balance equation is obtained:

fwxw � fSxS � foilxoil � fwx0 ; �51�

fw � fS � foil � 1 ; �52�

where x0 is the initial concentration of x in the water phase,
fw � fS � fd, and fS � 21:6fw=o [see Eqn (1)]; in our
experiments, o usually equals 15. For x � �Br2�, when the
partition coefficients of the phases K1 and K2 �xw=xS � K1,
xS=xoil � K2� are 0.002 and 5, respectively, [93], it is found
that x has a maximum at fd � 0:3ÿ0:4. If x � �BrO �2 � and
K1 � K2 � 0:8ÿ1:0 (the values estimated from the data for
stable radical ClO �2 ), x has a maximum at fd � 0:5ÿ0:6.
Thus, the wave instability emerges at a maximum concentra-
tion of the rapidly diffusing activator �BrO �2 � and the Turing
instability at a maximum concentration of the inhibitor (Br2).

6.1 Packet waves
We choose an originally homogeneous system that has a wave
instability (ReL > 0 at k � kw and ImL 6� 0) and a single
steady state (ReL < 0 at k � 0). Then, any small local
perturbation gives rise to a wave packet. Examples of wave
packets observed in the BZ ±AOT system [63] are presented in
Fig. 8. Unlike trigger waves propagating over the entire
system and crossing it from one border to the other, packet

a b

c d

Figure 8. Various forms of wavepackets in the BZ ±AOT system: (a)

isolated wave packet, (b) wave packet in the form of two long plane waves

behind which wave chaos developed, (c) wave packets with negative wave

curvature, (d) wave packets traveling in different, including opposite (in

the center), directions. Arrows show the directions of wave movements

within wave packets. Snapshot (c) displays the edge of the Teflon gasket in

the right bottom corner. White and black colours correspond to the

maximum and minimum concentrations of the oxidized catalyst (ferriin),

respectively. Snapshot size: (a) 2:5� 2:2 mm, (b, d) 1:88� 1:4 mm,

(c) 3:76� 2:81 mm. Initial concentrations in the aqueous phase:

(a) �MA�0 � 0:25 M, �H2SO4�0 � 0:2 M, �NaBrO3�0 � 0:15 M;

(b) �MA�0 � 0:3 M, �H2SO4�0 � 0:3 M, �NaBrO3�0 � 0:2 M;

(c) �MA�0 � 0:3 M, �H2SO4�0 � 0:2 M, �NaBrO3�0 � 0:23 M;

(d) �MA�0 � 0:3 M, �H2SO4�0 � 0:3 M, �NaBrO3�0 � 0:2 M; [fer-

roin]0 � 0:004. Parameters of microemulsion �o � �H2O�=�AOT��:
(a) o� 15, fd� 0:57; (b, d) o � 16:4, fd � 0:64; (c) o � 15:2, fd � 0:45.
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waves, which are actually phase waves, can propagate only
inside a given packet. Figure 8a shows a wave packet and two
unperturbed regions, in the bottom left and top right corners.
The waves travel only inside the packet and gradually
disappear at its edges, failing to reach the unperturbed zone
in the top right corner. This is the first experimental
demonstration of packet waves in a chemical system.
Another example is presented in Fig. 8b. In a packet of two
long (horizontal) waves, they travel rapidly, but the packet
itself is practically motionless. Chaotic waves can be seen
behind the packet.

Similarly to packet waves in optics and acoustics, two
wave packets can penetrate each other. A collision of two
wave packets in a chemical reaction ± diffusion system was
simulated on a computer in the early studies of wave
instability [66]. However, the results of this work did not
clarify whether the waves passed through each other or were
reflected. Knowing that standing waves arose in the zone
where the two packets collided, it was natural to suggest that
the waves penetrated each other. But the definitive answer
was obtained quite recently [116] using a model with two
different wave packets (Fig. 9a). It was shown that the large
and the small packets changed places after collision, that is,
penetrated each other. The movement of the wave packets in
opposite directions within practically the same spatial area
observed in experiment is depicted in Fig. 8d.

In the case of negative dispersion �d ImL=dk < 0, see
Fig. 4b�, packet waves have negative curvature and propagate
towards the perturbation center (Fig. 8c). Thismay look like a
violation of the causality principle: the effect (waves) moves
backward to the cause (the initial local perturbation of the
system; in the experiment depicted in Fig. 8c, perturbation is
represented by the reactor wall). This apparent discrepancy
can be understood bearing in mind that in the case of wave
packets, the information generated by the perturbation is
carried by the entire packet rather than the individual phase
waves, and the result is the packet itself, not the waves. The

packet as a whole always propagates away from the
perturbation center. The group velocity of the packet defined
as jd ImL=dkj at k � kw, where ReL has a maximum, is
always positive. The absolute velocity of phase waves is
ImL=k at k � kw, and their direction is given by the sign of
d ImL=dk at k � kw.

It was possible to simulate all the experimentally available
types of wave packets presented in Fig. 8 using the system of
equations (39) ± (42). The results are shown in Fig. 10. Each
frame in this figure is to be compared with the corresponding
snapshot in Fig. 8.

6.2 Antispirals
In the BZ ± AOT system with negative dispersion
(d ImL=dk < 0 at k � kw), there arise antispirals and anti-
pacemakers [117] Ð new types of spiral (or concentric) waves
directed towards the center (Fig. 11) [62, 63]. The spiral
frequency for all experimentally found antispirals is lower
than the bulk oscillation frequency o0 (o0 � ImL at k � 0).
Antispirals also occur when a point system (the same system
in a well-mixed reactor) is in a steady state, i.e., undergoes no
oscillations.

It has been shown in a recent theoretical work [118] that
the complex Ginzburg ±Landau equation may also yield
antispirals and antipacemakers. For this, as in our experi-
ment [62], the frequency of system oscillations o0 at k � 0
(bulk oscillations) must be higher than the frequency ow at
k � kw. It follows that antispirals can also be found in
ordinary homogeneous systems with two variables of the
activator ± inhibitor type, when the diffusion coefficients of
the activator and the inhibitor are identical. In other words,
wave instability is not indispensable for discovering anti-
spirals. However, they have not thus far been reported to
occur in homogeneous systems. Moreover, we have demon-
strated that ordinary, outwardly propagating phase waves
emerge if o0 > ow but d ImL=dk > 0 (Fig. 2b, d in [63]).
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Figure 9. Properties of wave packets: (a) the absence of annihilation upon

collision of two wave packets, the packets penetrate each other;

(b) specular reflection of wave packets from the surface, with the

incidence angle equal to the reflection angle. Computer simulation for

the extended Brusselator model:

du

dt
� 1

e1
�aÿ �1� b�u� u 2vÿ cu� dw� �DuDu ;

dv

dt
� buÿ u 2v�DvDv ;

dw

dt
� cuÿ dw

e2
�DwDw :

Parameters: a � 3:1, b � 3:2, c � 2, d � 1:5, e1 � 0:02, e2 � 0:61,
Du � Dv � 1, Dw � 20. Time elapsed since the initial perturbation

(dimensionless units); (b) t � 12, (c) t � 26. Boundary conditions: zero

flux. Rectangle size: 100� 60.
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d

Figure 10. Modelling packet waves with system of equations (39) ± (42).

System size: (a, d) 150� 100, (b) 200� 100, (c)R � 50. The parameters of

the model correspond to the parameters of curve 1 in Fig. 4a for (a), curve

2 in Fig. 4a for (b and d), curve 3 in Fig. 4b for (c). The narrow vertical

stripe (of width l) was initially perturbed at the left edge in cases (a) and (d)

and at either edge in case (b); in case (c), two points initially perturbed on

the diameter (R=2 from the center) later became the centers of inwardly

propagating phase waves. Conversion to the dimensional unit length in

centimeters is effected by multiplying the dimensionless units by

�10ÿ5=k5�1=2, where k5 � 1.
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Antispirals, or more generally, spiral waves with the
negative curvature moving toward the core of the spiral, are
more widespread than wave instability with negative disper-
sion. The first example of short-lived (unstable) antispirals
obtained in a numerical experiment [119] is provided by
trigger waves in a model of the FitzHugh ±Nagumo type
(with two variables). The source of these waves was located in
the corners of a small square (zero fluxes at the boundaries)
and served as an external source of oscillations with respect to
the antispiral. It should be noted that, in this case, the
frequency of the `external' source was also higher than that
of the antispiral. In this model, waves propagate away from
the perturbation source. A similar explanation of antispirals
based on the concept of trigger waves was offered in our first
publication in Science [62], where I managed to simulate a
stable rotating antispiral. In the case of wave instability with
negative dispersion and in our experiment with the BZ ±AOT
system, phase packet waves propagate towards the perturba-
tion source coincident with the core of the spiral [63].

In 2003, a few works were published almost simulta-
neously dealing with antispirals found in totally different
systems [118, 120 ± 122]. They mark the beginning of
investigations into these phenomena.

6.3 Reflection of wave packets
Unlike trigger waves, which as a rule die upon collision with a
nontransparent surface (zero flux at the boundary), the
mechanisms of reflection of wave packets, in a way, obey
geometric optics laws, namely, the reflection angle is exactly
equal to the incidence angle (Fig. 2b, c) [71]. Packet waves
propagating along a narrow capillary tube whose diameter is
smaller than the wavelength may be partly reflected at the site
where the tube opens into a much wider space filled with the
same reaction system and partly pass through this region [71].
The reflection/transmission coefficient depends on the capil-
lary diameter. Such behavior of wave packets resembles
properties of a semitransparent mirror in optics. At such a

geometry, a trigger wave dies as it leaves the capillary tube
[123, 124] if its radius is smaller than the critical radius
rcr � D=v0, where v0 is the plane wave velocity and D is the
activator diffusion coefficient.

6.4 Standing waves
In the course of time, packet waves transform into standing
waves as a result of interaction with other wave packets.
Typical standing waves found in the BZ ±AOT system [61]
are shown in Fig. 12. The patterns presented in Figs 12b and
12d correspond to two antiphases (the time interval between
the two snapshots is T=2) whereas snapshot 12c is obtained
after time T (approximately 2 min following the snapshot
12b). Summation (or superposition) of snapshots 12b and 12c
(Fig. 12e) gives evidence that the structures do not substan-
tially change for time t � T. Summation of photos 12b and
12d (Fig. 12f) results (after time T=2) in the replacement of
black spots by white ones and vice versa. This is typical
behavior of standing waves for which there must exist nodes
not changing in time; in our case, these are lines at the
borderline between the white and black spots. The character-
istic wavelength of standing waves is around 0.2 mm.

Numerical computation of model (39) ± (42) with wave
instability yields regular structures periodically changing in
time (Fig. 13a ± j) within a small spatial area (some four
wavelengths). If the size of this region is considerably larger
(as in Fig. 13k), the standing waves look like those in
experiments.

a b

c

3

1

2

d

Figure 11. Antispirals (a ± c) and antipacemakers (d) in the BZ ±AOT

system. Parameters of microemulsion: (a ± c) fd � 0:55, (d) fd � 0:59.
Initial concentrations of the reactants in the aqueous phase:

�MA�0 � 0:3 M, �H2SO4�0 � 0:2 M, [ferroin]0 � 4 mM, �NaBrO3�0 �
0:23 M (a), 0.2 M (b, c), 0.21 M (d). Snapshot size: (a) 5:1� 3:75 mm,

(b) 1:8� 1:5 mm, (c) 3� 2:25 mm, (d) 2:7� 2:5 mm. Arrows show the

direction of wave propagation and antispiral rotation.

a b

c

e f

d

Figure 12. Standing waves in the BZ ±AOT system: (a) snapshot size

5� 3:7 mm; (b ± d) small fragment of the standing wave shown in

figure (a) (size: 1:9� 1:4 mm) at time moments t � 0 (b), T=2 (d), T (c);

(e) the result of summation of the waves shown in figures (b) and (c);

(f) the same for figures (b) and (d). Parameters of the BZ ±AOT

system: o � 15, fd � 0:473, �MA�0 � 0:4 M, �H2SO4�0 � 0:2 M,

�NaBrO3�0 � 0:18 M, [bathoferroin]0 � 5 mM.
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Figure 14 compares two-dimensional Fourier transforma-
tion of standing waves and Turing patterns in experiment and
in model (39) ± (42). It can be seen that the Fourier transform
of hexagonal Turing structures (shown in Fig. 5d) has six
well-apparent peaks (Fig. 14c) in contrast to that of standing
waves depicted in Fig. 13a ± j, which have four peaks
(Fig. 14f). At different time moments corresponding to
snapshots 13a ± j, the amplitudes of the four peaks in Fig. 14f
change, while their position remains unaltered. In the Fourier

transform (Fig. 14a) of experimental Turing patterns (shown
in Fig. 5a), the six characteristic peaks are difficult but
possible to distinguish.

6.5 Standing waves in a heterogeneous system
We consider two water droplets (shown in Fig. 6a) embedded
in a nonaqueous (organic) phase as an elementary structure of
the heterogeneous system. Let the droplets contain (as before)
a dynamical system described, for instance, by the Brusselator
model. Furthermore, let the signal molecule �w�, able to
diffuse in the interdroplet space, be linearly related to the
activator such that the total system is described by the
equations

qu
qt
� aÿ �1� b�u� u 2vÿ cu� dw�Du

q2u
qx 2

; �53�

qv
qt
� buÿ u 2v�Dv

q2v
qx 2

; �54�
qw
qt
� cuÿ dw�Dw

q2w
qx 2

; �55�

where Du � Dv � Dw in the droplets and Du � Dv �
u � v � 0 in the gap between them. Let the parameters a, b,
c, and d be chosen such that the only steady state of system
(53) ± (55) is stable for an isolated droplet �ReL < 0 at
k � 0�. A system of two drops may lose stability and give
rise to antiphase oscillations at given spatial sizes of the
droplet �lR� and the gap �g� [110]. Such an outcome,
illustrated by Fig. 15, results from the wave instability that
arises in the two-droplet system coupled via messenger w,
which is in turn chemically coupled to the activator. The
wavelength of the wave instability is then equal to two lengths
of the entire system, i.e., 4lR � 2g. Therefore, the sum
4lR � 2g must correspond to wave numbers at which
ReL > 0. This condition determines the region lR and g in
Fig. 15 where out-of-phase oscillations occur.

a b c d e

f g h i j

k

Figure 13. Standing waves in model (39) ± (42): (a ± j) the full cycle of

standing waves at equal time intervals T=8. Parameters of the model for

the (a ± j) series q � 4� 10ÿ4, f � 1:5, e � 0:3, e2 � 1:5, e3 � 0:003,
a � 0:3, b � 0:26, g � 0:4, w � 0, Dx � Dz � 0:01, Ds � Du � 1; size

20� 20. Parameters of the model for (k): q � 3� 10ÿ3, f � 1:5,
e � 0:385, e2 � 3:2, e3 � 0:0024, a � 6:3, b � 0:275, g � 0:1, w � 0:004,
Dx � Dz � 0:01, Ds � Du � 1; size 150� 100.

a b c

d e f

Figure 14. 2-D-Fourier transform of: (a) Turing patterns in Fig. 5a,

(b) Turing labyrinthine patterns in Fig. 5c, (c) hexagonal Turing structure

in Fig. 5d, (d) standing waves in Fig. 12a, (e) in Fig. 13k and (f) in Fig. 13g.

3.5

u
1
,u

2 3.1

2.7

2.3
166 168

Time

2

1

0.4

lR=lw

0.3

0.2

0.1

0 0.2 0.4 0.6 0.8 g=lw

Figure 15. Parametric diagram for heterogeneous system (53) ± (58).

Triangles and plus signs denote antiphase oscillations and steady state,

respectively. L=lw � 0:84 for line 1 and L=lw � 0:22 for line 2,

lw � 2p=kw � 17:923, 2lR � g � L. The inset shows typical out-of-phase

oscillations of the variable u at lR=lw � 0:3 and g=lw � 0:01, where u1 and
u2 are concentrations in the midst of the practically homogeneous left and

right droplets respectively (see Fig. 6a for droplets). Parameters: a � 2:85,
b � 11, c � 2, d � 5; between droplets Du � Dv � 0, Dw � 100, inside

droplets Du � Dv � Dw � 100.
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6.6 Accelerating waves
When the volume fraction of water nanodroplets in a
microemulsion exceeds the percolation threshold, accelerat-
ing waves may be generated [61]. Two waves approaching
each other (Fig. 16) gradually accelerate and their curvature
increases (the waves become sharp-pointed), in contradiction
with the known equation that relates the velocity and the
curvature of the trigger wave as [125, 126]

v � v0 ÿ 1

r
D ; �56�

where v0 is the plane wave velocity, D is the diffusion
coefficient, and r is the wave arc radius (1=r is the
curvature). In accordance with Eqn (56), increasing 1=r
must decelerate the wave. But experiment gives the opposite
picture, that is, the wave velocity increases considerably
(several-fold). When the waves come sufficiently close to
each other, a small bridge is formed to connect them
(Fig. 16b). The waves do not annihilate after collision as
ordinary trigger waves do; instead, they seem to `flip-flop' and
diverge in the perpendicular direction (Fig. 16d).

This phenomenon was explained by the influence of a fast
diffusing activator �HBrO �2 �, whose concentration in front of
the wave may be very high. As the two waves approach each
other, the concentration of HBrO �2 between themmay at least
double, leading to autocatalysis, and hence to wave accelera-
tion. We reproduced this phenomenon [71] using an extended
Brusselator model of type (53) ± (55). The results of modeling
(Fig. 17) are in good agreement with experimental observa-
tions.

7. Segmented waves and spirals

It follows from Fig. 3 that freshly prepared microemulsions
containing reagents of the BZ reaction exhibit a bimodal
droplet distribution by size. Earlier studies of BZ ±AOT
systems [58 ± 60, 127] have demonstrated that chemical
reaction rate constants depend on the size of water droplets.
Therefore, the BZ reaction should proceed differently in
different pools, i.e., in the presence of droplets of different

size. Such a system can be represented as two diffusely
coupled subsystems having certain (not measured in experi-
ment) constants of mass exchange between them that may
differ for different reactants (kx and kz):

qx1
qt
� 1

e1

�
x1 ÿ x 2

1 � f1z1
q1 ÿ x1
x1 � q1

�
ÿ fkx�x1 ÿ x2� �Dx1Dx1 ; �57�

qx2
qt
� 1

e2

�
x2 ÿ x 2

2 � f2z2
q2 ÿ x2
x2 � q2

�
ÿ

ÿ kx�x2 ÿ x1� �Dx2Dx2 ; �58�
qz1
qt
� x1 ÿ z1 ÿ fkz�z1 ÿ z2� �Dz1Dz1 ; �59�

qz2
qt
� x2 ÿ z2 ÿ kz�z2 ÿ z1� �Dz2Dz2 : �60�

At certain parameters, model (57) ± (60) may have three
steady states. As a rule, the mid-state is an unstable saddle.
Two other states may be of different stability types. If one
(main) state is stable but excitable (i.e., readily responds to a
supercritical perturbation) while the other displays the
instability that we call the pseudo-Turing instability [64] (see
below), system (57) ± (60) describes a surprising type of wave
referred to as dash or segmented waves [64, 81].

These waves have been discovered in experiment as plane,
concentric, and spiral, shown in Fig. 18. All spiral waves
found to date in chemical and physical systems are smooth
waves.2 Only a few biological entities, such as seashells,
lichens, and pine cones have been found to exhibit segmenta-

a b

c d

Figure 16. Accelerating waves in the BZ ±AOT system. Initial concentra-

tions in the aqueous phase: �H2SO4�0 � 0:2 M, �NaBrO3�0 � 0:15 M,

�MA�0 � 0:3M, [ferroin]0 � 4mM;o � 18:8,fd � 0:74, t � 90 s (a), 110 s

(b), 122 s (c), 134 s (d). Ellipses outline zones in which two waves are

accelerated prior to collision. Size: 5:2� 4:0 mm.

a b

c d

Figure 17.Accelerating waves in the extended Brusselator model described

in captions to Fig. 9. Parameters: a � 2:9, b � 3:2, c � 2, d � 1:5,
e1 � 0:02, e2 � 0:2, Du � Dv � 1, Dw � 20. Size: 30� 30, t � 1:126 (a),

1.146 (b), 1.156 (c), 1.166 (d). The circle in each figure is intended to draw

attention to two accelerating waves.

2 Breaking chaotic waves in the BZ reaction were first observed 20 years

ago in an open reactor as a result of interaction between smooth chemical

waves and hydrodynamic Benard convections that arise from cooling of

the upper layer due to evaporation [165]. Both the wave-breaks and the

Benard convection cells disappear as soon as the reactor (Petri dish) is

covered with a piece of glass. In our case, the reactor is closed and there are

no hydrodynamic flows in it.
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tion of these patterns. Onemore example of segmented spirals
in living nature is provided by phyllotaxis or the arrangement
of leaves on a stem of certain plants [128]. Therefore,
segmented spirals discovered in chemical systems may be of
importance for biology, e.g., for understanding morphogen-
esis.

The physics of these spirals consists of the combination of
incompatibles: propagating trigger waves and stationary 1-D
Turing patterns. The key role is played by the pseudo-Turing
instability or, in other words, by a Turing-like instability [64,
81] that (similarly to the usual Turing instability) has a
positive maximum of the real part ReL of the eigenvalue of
the characteristic equation at a nonzero wave number kT.
This kT value determines the characteristic size of the
segment� gap unit as 2p=kT � lT � 0:28ÿ0:3 mm. The
Turing-like instability is distinct by positive ReL at k � 0,
which suggests global instability of this steady state (the third
one in our case). For the ordinary Turing instability,
ReL < 0 at k � 0 and the steady state retains stability in
response to a homogeneous perturbation.

At a certain spatial point in the reactor with segmented
waves, the system switches from the ground state to the
excited one due to the subcritical perturbation induced by a
segment of the same spiral approaching this point. The space
between the segments does not undergo excitation (at least
not strongly) because it is dominated by the inhibitor that has
a higher diffusion coefficient (as in the cases of the ordinary
Turing instability). After a lapse of time, all the excited points

return to the initial stable state as a result of global instability
of the excited (third steady) state. If in this case ReL at k � 0
were negative (as in the ordinary Turing instability), then the
resulting Turing patterns might be stable and we could see the
spreading front that leaves stationary Turing structures
behind. But in our case, they disappear and the system
switches over to the unexcited but excitable homogeneous
steady state.

Segmented spirals arise only from smooth ordinary spirals
that must be generated in the system in advance as basic
pattern-forming structures. If concentric waves instead of
spirals are present in the system, segmented concentric (rather
than spiral) waves emerge as soon as the conditions for wave
segmentation mature (in a closed system, concentrations of
reagents and intermediates slowly change with time). When
segmentation occurs, the velocity of all waves (spiral, plane,
and concentric) sharply decreases (approximately 2 ± 3-fold).
In a theoretical study of Turing patterns propagating under
the effect of an external locally propagating excitation, we
have demonstrated that the translational movement of
Turing patterns is possible only at a small propagating
velocity of this external excitation [129].

As segments of a spiral move away from the center, they
grow in size until a certain critical value: then each segment
splits into two new ones, as can be seen from their trajectories
in Figs 18c ± e. The gaps between the segments remain
unaltered.

In one-day-old microemulsions, where the droplet dis-
tribution by size is close to monomodal, dash waves and
segmented spirals have never been observed.

Replicating spots distantly reminiscent of segmented
spirals have been found in a ferrocyanide ± iodate ± sulfite
system [130] and simulated in the Gray ± Scott system [131]
that can also have three steady states, with themid-state being
an unstable one. There are no reports on the detailed
comparison of these systems and a model system in which
localized impulses/waves travel as a regular group [132].

8. Localized patterns. Oscillons

In the preceding section, we considered a situation in which a
system had a few (three) steady states. The present section is
focused on a spatially extended system that can exist in either
a steady or an oscillatory state with the same parameters. It is
well known from the theory of oscillations in point (0-D)
dynamical systems that the steady state may lose stability in
twomodes, supercritical and subcritical, through themechan-
ism of the Andronov ±Hopf instability [133, 134]. In the latter
case (rigid excitation of oscillations), there is a range of
parameters at which the system can exist in two states,
stationary and oscillatory, depending on the initial condi-
tions.

A spatially extended system with one steady state and the
Turing instability can also lose its homogeneous steady state
in two different ways, supercritical and subcritical [135, 136].
In a certain narrow range of parameters of spatially extended
systems, localized stationary Turing patterns are then likely
to arise, as in the models reported in Ref. [136]. What does
occur in a system when the Turing and Andronov ±Hopf
subcritical bifurcations are realized simultaneously?

We begin with experiments in the BZ ±AOT system
catalyzed by metallocomplexes Ru�bpy�2�3 . Not far from the
steady state ± oscillation boundary and at fd below the
percolation threshold, the entire system exhibits stationary

a b

c d e

f g h

Figure 18. Segmented spirals in the BZ ±AOT system. (c ± e) segment

trajectories of the spiral shown in snapshots (a, b); Dt between snapshots

(a) and (b) is 66 s, between (f) and (g) 219 s, and between (g) and (h) 244 s;

(a, b) well developed and (f ± h) arising segmented spirals at different fd:

fd � 0:36 (a, b), 0.47 (f ± h). Concentrations of reagents: �MA�0 � 0:3 M,

�H2SO4�0 � 0:2 M, �NaBrO3�0 � 0:18 M, [bathoferroin] � 0:0049 M;

o � 15. Stroboscopic pictures (c) and (d) were obtained by the super-

position of snapshots taken every 50 s. Figures (c) and (d) were made

using only segments of a single spiral coil, initially the first (closest to the

spiral core) and the second ones, for (c) and (d), respectively. The two

`white eyes with black pupils' in figure (d) were obtained by the

superposition of snapshots in which only one spiral segment was

retained (closest to the core in all time moments). Figure (e) was

obtained by the superposition of snapshots (c) and (d). White color

corresponds to the overlapping white colors in (c) and (d). Snapshot size:

(a ± e) 3:72� 4:82 mm, (f ± h) 2:11� 2:63 mm.
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structures similar to Turing patterns (Fig. 19a, b). But unlike
the structures shown in Fig. 5, they do not occupy the total
reaction area but remain localized. Obviously, in this case, we
are dealing with the subcritical Turing instability. The centers
of these localized concentric Turing patterns are likely to
harbor microscopic dust particles that play the role of local
suprathreshold perturbations of the homogeneous state.
After a lapse of 0.5 ± 1 hours, these localized structures begin
to oscillate. The behavior of an individual structure remote
from other patterns is illustrated by Figs 19c, d. Following
Umbanhowar and co-workers [48], who discovered small
localized oscillations in a layer of periodically vibrated sand,
we name these patterns oscillons. It should be noted that in
our case the system experiences no external influence.

We tried to explain the origin of oscillons by a combina-
tion of the subcritical Turing and Andronov ±Hopf bifurca-
tions. Model (39) ± (42) allows us to find parameters at which
the system simultaneously exhibits the subcritical Turing
instability (giving rise to localized Turing structures as in
Fig. 19a, b) and the subcritical Andronov ±Hopf instability
(at f < 1ÿ q). However, the combination of these instabil-
ities yields no oscillons; instead, all localized perturbations
lead to localized stationary Turing patterns in both the 1-D
and 2-D cases.

Oscillons were obtained in other reaction ± diffusion
models, including a more realistic (and more complicated)
model that describes the BZ ±AOT system [137] and a model
describing oscillations of Ca2� ions inside the cell [137 ± 139]:

dx

dt
� k1 ÿ k2xÿ k4x� k5yx

4

K 4 � x 4
� k6yÿ k7x� k8z�DxDx ;

�61�
dy

dt
� k4xÿ k5yx

4

K 4 � x 4
ÿ k6y�DyDy ; �62�

dz

dt
� k7xÿ k8z�DzDz : �63�

Typical dispersion curves for model (61) ± (63) with an
oscillon are presented in Fig. 20a and the oscillon itself with
its cross section in Figs 20b, c. Figure 20a shows that the real
parts of the eigenvalues of the characteristic equation are
negative at all wave numbers. The appearance of the oscillon
in the model is due to the nonlinear interactions between the
oscillatory mode (curve 3 in Fig. 20a) and the spatial Turing
instability of the subcritical type (curve 1). In two different
models, oscillons are observable only when the real eigenva-
lue (curve 1 in Fig. 20a) has a maximum at those k values at
which the other pair of eigenvalues remains complex coupled,
i.e., when ImL (curve 3) is not zero.

When model (61) ± (63) has the parameters shown in
Fig. 20, the oscillon, localized stationary structures, Turing
patterns occupying the entire space, homogeneous (bulk)
oscillations, and steady state can be realized in the system.
The situation depends on the initial perturbations of the
original homogeneous state. It can be seen in Fig. 20b that
the steady peak (curve 3) does not significantly differ from the
oscillon at its maximum (curve 1). This accounts for the high
sensitivity of the system to an initial perturbation.

The sensitivity of the system to perturbations and the
possibility of fixing (remembering) initial perturbations in the
form of a stationary or oscillatory peak (a chain of N peaks
may be in 2Nstates) make this system attractive for the
creation of a chemical computer in which parallel processing
and storage of information are feasible. If the system is
perturbed by a rectangular impulse shown in the inset within
Fig. 21a, the response depends on the spatial size of the
impulse lp; it may be either a steady peak, an oscillon, or the
initial steady state (Fig. 21a).

If the system is perturbed by two identical impulses at a
time, the numerous consequences of this perturbation shown
in Figs 21c, d depend on both lp and the gap between the
impulses g (see the inset in Fig. 21c). If g > 2:5lT (where
lT � 2p=kT is the characteristic Turing size, with kT corre-
sponding to themaximumof curve 1 in Fig. 20a), the impulses
do not practically interact and the behavior of the two peaks
(stationary or oscillatory) being formed depends on the
impulse width lp alone. If g < 2:5lT, we can speak about
information processing by a nonlinear system. Depending on
g, either a homogeneous steady state or patternswith one, two

b

c d

a

Figure 19. Localized Turing patterns (a,b) and oscillon in two antiphases

(c, d) in the BZ ±AOT system catalyzed by Ru�bpy�2�3 . Snapshots (a, b)

were taken in different reaction zones. The oscillon period of the oscillon is

47 s, the outer diameter about 0.6 mm. Parameters of the system:

fd � 0:41 ; o � �H2O�=�AOT� � 15 ; �H2SO4�0 � 0:25 M ;

�NaBrO3�0 � 0:2 M ; �MA�0 � 0:25 M ; �Ru�bpy�2�3 �0 � 4:2 mM :

Snapshot size: (a, b) 5:06� 3:73 mm, (c, d) 2:13� 1:87 mm.
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Figure 20. Oscillon in the 2-D model (61) ± (63). (a) Dispersion curves:

1 Ð real eigenvalue of the characteristic equation, 2 �ReL� and

3 �ImL� Ð complex eigenvalue of the characteristic equation; curve 3

is ImL=6; (b) 1, 2 Ð oscillon cross section, 3 Ð cross section of the

stationary localized Turing peak; (c) Ð stereo view of the oscillon at its

maximum, size: 20� 20. Parameters of the model: k1 � 2:1, k2 � 1,

K � 3:4, k4 � 1:8, k5 � 0:47, k6 � 0:05, k7 � 0:6, k8 � 0:14,
Dx � Dz � 0:01, Dy � 0:035. The maximum of curve 1 becomes positive

with increasing Dy (the subcritical Turing bifurcation); the maximum of

curve 2 at k � 0 becomes positive with increasing k5 (the subcritical

Andronov ±Hopf bifurcation).
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or three peaks can form, both steady and oscillatory. If the
resulting structure has a single peak (steady or oscillatory), we
can speak about an inhibitory interaction of two impulses
and, in the case of a three-peak structure, about activating
interaction between two impulses. This situation parallels
activating and inhibitory interactions between neurons in the
nervous system.

In discussing subcritical bifurcations in reaction ± diffu-
sion systems, a natural question arises regarding the
feasibility of the subcritical wave instability. We have
managed to construct the first model system in which this
instability was found. It was the same model (39) ± (42) for
the BZ ±AOT system (the parameters of the model are given
in captions to Fig. 22). In this model, the wave instability
emerges rigorously, i.e., with an initially large wave
amplitude. The system retains the previously formed
standing waves in a narrow range of parameters where the
maximum of the real part of the eigenvalue becomes
negative (see Fig. 22). Such behavior suggests the possibi-
lity of oscillon-like localized oscillatory patterns, which have
so far not been found in the model. At a small positive
maximum value of ReL and the linear size of the system
L < vgr=ReL, the system exhibits high-amplitude soliton-

like packet waves that do not change their shape while
traveling (with the group velocity vgr � d ImL=dk at
k � kw) [137].

There is a criterion (certain rather complicated analy-
tical functions) that permits one to determine what type of
Andronov ±Hopf bifurcation (super- or subcritical) exists in
a given model, without computer integration of ODE [133].
To date, no similar criterion is known for the wave
instability.

9. Clusters. Global negative feedback

Reaction ± diffusion systems are known to harbor one more
type of nonequilibrium structure, called oscillatory clusters
and realized in oscillatory systems that are periodically
influenced from the outside [78 ± 80, 140 ± 144]. Clusters
resembling standing waves have no characteristic spatial
wavelength. Their shape is normally determined by the
initial conditions, but in certain cases (chaotic clusters [78,
79]) may be independent of them.

In terms of organization of external periodic perturba-
tions, all the systems under consideration are categorized
into autonomous ones, in which an integrated signal from
the entire reaction ± diffusion system governs uniform
inhibitory effects (as a rule exerted by light on a photo-
sensitive system), and nonautonomous ones, in which a
periodic perturbation has its own frequency [146, 147]. For
autonomous systems, it is possible to introduce a delay line
between the integrated signal from the system and the effect
on the system [140, 141]. Such an approach allows the
number of various cluster types to be increased. The
frequency of the signals affecting nonautonomous systems
can be changed and resonances resembling Arnold tongues
for point 0-D systems observed [146].

Recently, the method of global negative feedback has
been modified in terms of its locality. That is, the integrated
global signal from the system is not taken; instead, the signal
is obtained by averaging (or summing) over the system states
only in some of its parts (locally ± globally) [148 ± 151]. This
makes an intermediate variant between the global interaction
of all system elements and the true local interaction via
diffusion. Because variants of such local ± global interactions
are infinitely numerous, the appearance of new types of waves
and patterns can be expected. Specifically, a new method to
control localized trigger waves has been proposed [150].
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10. Conclusion

To conclude, I present the table listing nonequilibrium
patterns found in the BZ ±AOT system (Fig. 23). No other
experimental system has such a large variety of patterns. This
allows the BZ ±AOT reaction to be considered a useful and
promising tool for studying pattern formation in reaction ±
diffusion systems. Some of the newly found nonequilibrium
structures (such as segmented spirals or antispirals) have
never been shown (or recognized) to occur in any biological
or ecological system. Nevertheless, they might be helpful for
understanding the behavior of certain real biological and
physical objects.

NADP-H waves have recently been found in lymphocytes
that do not annihilate upon collision [37, 38]. We have
described packet waves having the same property. It is
worthwhile to note that with the speed of packet waves
being close to the phase velocity, the propagation of a
solitary phase wave can be observed that is difficult to
distinguish from that of a trigger wave at small distances.
Certain microorganisms produce patterns reminiscent of
segmented concentric waves [152]. The trajectories of sepa-
rate segments of our segmented spiral are surprisingly similar
to the structures found in a population of ameboid cells [36,
153]. This suggests the existence of cAMP segmented waves
rather than smooth spiral ones in such cells. Chemical optics
with attributes such as negative dispersion is consistent with
recent discoveries in the theory of light propagation, e.g.,
negative refractive index and negative group velocity of light
[154 ± 156].

One of the promising lines of nonequilibrium pattern
formation in reaction ± diffusion systems is the interaction of

these structures with the medium and the formation of new
types of nonequilibrium patterns. Such a medium may be
composed of `soft materials', such as gels, microemulsions,
and liquid crystals. It has been shown that the BZ reaction can
alter the structure of these materials [157 ± 159]; pH-oscilla-
tors can also periodically modify the structure of some
materials (hydrogels) [160]. The theoretical basis for this line
of developments is constituted by the works of Hildebrand,
who has demonstrated that the interaction between thermo-
dynamically stable nanostructures of size l and non-
equilibrium concentration patterns having size L (dozens of
millimeters) leads to the formation of new structures of size
�lL�1=2 [161 ± 164]. In all likelihood, the BZ ±AOT system
may be suitable for studies directly related to the most
puzzling aspects of the origin of life.
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