
Abstract. The theoretical description of the nonlinear photo-
ionization of atoms and ions exposed to high-intensity laser
radiation is underlain by the Keldysh theory proposed in 1964.
The paper reviews this theory and its further development. The
discussion is concerned with the energy and angular photoelec-
tron distributions for the cases of linearly, circularly, and
elliptically polarized laser radiation, with the ionization rate
of atomic states exposed to a monochromatic electromagnetic
wave and to ultrashort laser pulses of various shape, and with
momentum and angular photoelectron spectra in these cases.
The limiting cases of tunnel (c5 1) and multiphoton (c4 1)
ionization are discussed, where c is the adiabaticity parameter,
or the Keldysh parameter. The probability of above-barrier
ionization is calculated for hydrogen atoms in a low-frequency
laser field. The effect of a strong magnetic field on the ioniza-
tion probability is discussed. The process of Lorentz ionization
occurring in themotion of atoms and ions in a constantmagnetic
field is considered. The properties of an exactly solvable
model Ð the ionization of an s-level bound by zero-range forces
in the field of a circularly polarized electromagnetic waveÐare

described. In connection with this example, the Zel'dovich
regularization method in the theory of quasistationary states
is discussed. Results of the Keldysh theory are compared with
experiment. A brief discussion is made of the relativistic ioniza-
tion theory applicable when the binding energy of the atomic
level is comparable with the electron rest mass (multiply
charged ions) and the sub-barrier electron motion can no longer
be considered to be nonrelativistic. A similar process of elec-
tron-positron pair production from a vacuum by the field of
high-power optical or X-ray lasers (the Schwinger effect) is
considered. The calculations invoke the method of imaginary
time, which provides a convenient and physically clear way of
calculating the probability of particle tunneling through time-
varying barriers. Discussed in the Appendices are the properties
of the asymptotic coefficients of the atomic wave function, the
expansions for the Keldysh function, and the so-called `ADK
theory'.

1. Introduction

Ionization of atoms, ions, and semiconductors exposed to
high-intensity laser radiation has been considered in hun-
dreds of papers. The theory of these processes originates
with the work by Keldysh [1], who showed for the first time
that the tunnel effect in a variable electric field
E�t� � E cosot and the multiphoton ionization of atoms
are the two limiting cases of nonlinear photoionization,
whose character depends strongly on the value of the
adiabaticity parameter g. This parameter, also introduced
by Keldysh, is the ratio between the frequency of laser light
o and the frequency ot of electron tunneling through a
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potential barrier,

g � o
ot
� o

��������
2mI
p

eE � 1

2K0F
; �1:1�

where I � k 2me 4=2�h2 is the ionization potential of the atomic
level, E is the amplitude of the electric wave field, F � E=k 3Ea
is the reduced field, and K0 � I=�ho is the multiquantumness
parameter of the process, i.e., the minimal number of photons
required for ionization. Further, as a rule, atomic units
�h � m � e � 1 are used, where m is the electron mass. We
note that k � ����������

I=IH
p

, F, K0, and g are dimensionless
quantities; here, IH � me 4=2�h2 � 13:6 eV is the ionization
potential of the hydrogen atom, Ea � m 2e 5=�h4 �
5:14� 109 V cmÿ1 is the atomic unit of electric field intensity
(in this case, k � 1 and F � E for the ground state of the
hydrogen atom), and the ionization rate w of a level is
measured in the units me 4=�h3 � 4:13� 1016 sÿ1.

Tunnel ionization of atomic states takes place when
g5 1, while for g4 1 the ionization is a multiphoton
process [1]. When calculating the matrix element for the
transition from the initial atomic state, which belongs to a
discrete spectrum, to the final state, which belongs to a
continuum, Keldysh employed the Volkov wave function [2,
3], in which the interaction between the electron and the
field of a light wave is exactly taken into account while the
Coulomb interaction between the ejected electron and the
atomic core is neglected. As a result, analytical formulas
were obtained for the ionization rate w, which describe not
only the two limiting cases (g5 1 and g4 1), but also the
intermediate range of parameter values g � 1, where the
formulas become significantly more complicated. The
results obtained by Keldysh laid the foundation for
subsequent investigations (both theoretical and experimen-
tal) in this area of atomic physics.

2004 marks forty years since the pioneering work of
L V Keldysh [1] first appeared. We believe that the present
time is appropriate for reviewing this theory and its present-
day status.

2. Early papers

Shortly after the appearance of Ref. [1], Nikishov and
Ritus [4] and Perelomov, Popov, and Terent'ev [5, 6]
obtained analytical expressions for energy and momentum
photoelectron spectra, as well as the exact form of the pre-
exponential factor in the Keldysh formula for the ioniza-
tion rate w. These results are valid for arbitrary values of
the g parameter and refer to the ionization of a state bound
by a short-range potential, or a d-potential (which is a
good approximation in the case of ionization of singly
charged negative ions such as Hÿ, Naÿ, Iÿ, etc.). The
inclusion of the Coulomb interaction in the final state was
considered in Refs [6 ± 9]. Also considered, with an
exponential accuracy,1 was the effect of a constant
magnetic field on the ionization rate of a level [10]. The
ionization probability is proportional to the squared
asymptotic coefficient Ckl, which is determined from
independent calculations (see Refs [11 ± 15], as well as

Appendix 13.1). Here, we mention only some of the results
obtained in these works. 2

For a linearly polarized monochromatic electromagnetic
wave, the differential ionization probability, i.e., the momen-
tum photoelectron spectrum, is of the form

dw�p� � P exp

�
ÿ2K0

�
f �g� � c1�g�q 2

k � c2�g�q 2
?

��
d3p

�2p�3 ;

�2:1�
where q � p=k and f �g� is the Keldysh function [1, 16]:

f �g� �
�
1� 1

2g 2

�
arcsinh gÿ

�������������
1� g 2

p
2g

�
2

3
gÿ 1

15
g 3 ; g5 1 ;

ln 2gÿ 1

2
; g4 1

8>><>>: �2:2�

(for more details, see Appendix 13.2), the coefficients of the
photoelectron momentum distribution are [5]

c1�g� � arcsinh gÿ g�1� g 2�ÿ1=2 ; �2:2 0�
c2�g� � arcsinh g ;

and P�g� is the pre-exponential factor. Implied in this case is
the fulfillment of the conditions

F5 1 and K0 4 1 ; �2:3�
which are required for the quasiclassical approximation to be
applicable, while the Keldysh parameter g may be arbitrary.
Here,

arcsinh g � ln
ÿ
g�

�������������
1� g 2

p �
;

p � �pk; p?� is the photoelectron momentum, with pk being
the momentum component along the direction of the electric
field E, p? being perpendicular to it, and k � �����

2I
p

being the
characteristic momentum of the bound state.

In the adiabatic limit �g5 1�, the angular photoelectron
distribution has a sharp peak along the field E:
pk � gÿ1p?4 p? � k

���
F
p

. At the same time, in the opposite
case g4 1 we have

pk � p? � k�K0 ln g�ÿ1=2 5 k ;

and the angular distribution approaches the isotropic one.
For the ionization rate of a level (i.e., the probability of
ionization per unit time) we have with an exponential
accuracy

w�F;o� /
exp

�
ÿ 2

3F

�
1ÿ 1

10

�
1ÿ 1

3
x 2

�
g 2
��

; g5 1 ;

�K0F�2K0 � JK0 ; g4 1 ;

8><>:
�2:4�

where J � �c=8p��1� x2�E 2 is the intensity of laser radiation
and x is its ellipticity [x2 4 1, see formula (3.2)].

The pre-exponential factor P in Eqn (2.1) was also
calculated in Refs [4, 5]. For instance, for g5 1 the ionization
rate of a state jlmi with the orbital angular momentum l by

1 The rate of tunnel ionization w depends extremely sharply on the

intensity of the applied field [see, for instance, formula (2.5)]. Calculation

of the exponential factor in w alone provides a qualitative description of

ionization, and in some cases a quantitative description.

2 An extensive account of the calculations was published in Refs [8, 9].

When comparing formulas fromRefs [1, 5, 6] with Refs [4, 7, 9] one should

remember the relation between the designations: x � 1=g.
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linearly polarized �x � 0� light is [5]

wlm � k 2

����
3

p

r
�2l� 1� �l�m�!

2mm!�lÿm�! C
2
kl 2

2n�ÿm

� F m�1:5ÿ2n� exp
�
ÿ 2

3F

�
1ÿ 1

10
g 2
��

; m5 0 ; �2:5�

with wl;ÿm � wlm. In the case of ionization by a constant
electric field, in expression (2.5) one needs to put g � 0 and
remove the factor

�����������
3F=p

p
, which emerges [5] when the static

ionization rate is averaged over a period of laser radiation.
Here, m � 0;�1; . . . is the projection of the angular momen-
tum l on the electric wave field, n � is the effective principal
quantum number of the level [11 ± 15], which is calculated
from the experimentally measured energy E0 � ÿI of the
atomic state:

n � � Z

k
� Z�����

2I
p ; �2:6�

Z is the atomic or ion core charge, andCkl is the dimensionless
asymptotic coefficient of the atom wave function 3 away

�kr4 1� from the nucleus [for more details, see Appendix
13.1, in particular formulas (13.1.1), (13.1.3), and (13.1.5)].

Hartree [11] proposed a simple and sufficiently precise
expression for this coefficient as far back as 1927:

C2
kl �

22n
�ÿ2

n ��n � � l�! �n � ÿ lÿ 1�! ; x! � G�x� 1� �2:7�

(see also Refs [12 ± 15]). This formula is a natural general-
ization of the expression following directly from the exact
solution of the SchroÈ dinger equation for the hydrogen atom
[16], where n � � n � 1; 2; 3; . . . Other approximations for the
coefficientCkl were obtained by means of the quantum defect
method [17, 18] and the effective range expansion [19]. The
numerical values ofCkl for neutral atoms and several positive
and negative ions were calculated by the Hartree ± Fock
method and may be borrowed, for instance, from handbook
[14]. In the case of valence s electrons these coefficients are
rather close (to within � �10%) to unity, as is evident from
Table 1. That is why Eqns (2.1) and (2.5) are almost model-
independent. It also follows from Table 1 that the Hartree
approximation (2.7) exhibits a satisfactory accuracy for the
s state for all atoms, from hydrogen to uranium.

Equation (2.5) is asymptotically exact when F! 0. In the
case of the ground state of the hydrogen atom it corresponds
to the well-known asymptotics wst�E� � 4E ÿ1 exp �ÿ2=3E�
for a constant electric field E obtained with the semiclassical
method [16]. Since it is assumed that the reduced field F5 1,

3 The atomic potential is of the formU�r� � Z=r for r4 rc, where rc is the

atomic core radius; the valuesZ � 1, 2, and 0 refer to neutral atoms, singly

charged positive ions, and negative ions. For the ground state of atomic

hydrogen, k � n � � 1 and Ck0 � 1. As regards the valence s electrons in

neutral atoms, the values of n � vary between 0.744 for He (I � 24:588 eV)
and 1.869 for Cs (I � 3:894 eV).

Table 1. Asymptotic coefficients for the ground states of atoms and ions �l � 0�.

Z � 1 I, eV n� A

Ck

c1 � 100
Grade of
accuracy

HF H

H
Li
Na
K
Rb
Cs
Sr

He
Ne
Ar
Kr
Xe

U

13.60
5.392
5.139
4.341
4.177
3.894
5.695

24.59
21.57
15.76
14.00
12.13

6.194

1.000
1.588
1.627
1.770
1.804
1.869
1.545

0.744
0.794
0.929
0.986
1.059

1.484

2
0.82
0.74
0.52
0.48
0.42
0.86

2.87
1.75
2.11
2.22
2.4

0.99

1.000
1.07
1.04
0.95
0.94
0.92
1.05

0.993
1.18
0.950
1.13
1.3

1.08

1.000
1.061
1.058
1.043
1.038
1.027
1.063

0.912
0.932
0.998
0.979
1.015

1.064

0
1.87
1.64
0.71
0.51
0.23
2.02

4.83
3.02
0.29
0.01
0.15

2.31

A
B
B
C
C
B
C

A
C
B
B
C

A

Z � 2 I, eV n� A

Ck

c1 � 100
Grade of
accuracy

HF H

Li�

Sr�

Xe�

75.64
11.03
20.98

0.848
2.221
1.610

6.5
1.39
3.2

1.02
0.93
1.01

0.952
0.942
1.059

1.49
0.42
1.69

C
B
C

Z � 0 I, eV k A

Ck

c1

Grade of
accuracy

HF H

Hÿ

Liÿ

Naÿ

Kÿ

Rbÿ

0.7542
0.618
0.548
0.502
0.486

0.235
0.212
0.201
0.192
0.189

1.11
1.0
1.0
0.9
0.8

1.15
1.09
1.12
1.03
0.92

0.5
0.5
0.5
0.5
0.5

1.0
1.0
1.0
1.0
1.0

B
D
D
E
E

Note. Z is the charge of the atom or ion core, n � is the effective principal quantum number, A are coefficients from handbook [14], HF and H are the

values of Ck calculated by the self-consistent field (Hartree ±Fock) method and by the Hartree formula (2.7), and c1 is the coefficient in the expansion

(13.1.3). Grades of accuracy forA andCk: error of calculation d < 1% (grade A), d � 1ÿ3% (B), d � 3ÿ10% (C), d � 10ÿ30% (D), and d > 30% (E).
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the ionization rate of the sublevel jlmi decreases rapidly [4, 5]
with jmj. As a result, the ionization probability averaged with
statistical weights

wl � �2l� 1�ÿ1
Xl
m�ÿl

wlm �2:5 0�

is almost the same as for the s level, with the exception of the
asymptotic coefficient C 2

kl.
Equation (2.5) is valid for low-frequency laser radiation,

i.e., for o5ot. For an arbitrary g, the rate of ionization of
the s level bound by a short-range �Z � 0� potential is
represented in the form of the sum of n-photon process
probabilities:

w�E;o� �
X
n> nth

wn ; nth � K0

�
1� 1

2g 2

�
; �2:8�

where l � 0, wn is the partial probability of n-photon
ionization:

wn � k 2

p
jCkj2Kÿ3=20 b 1=2F

ÿ �������������������
b�nÿ nth

p �
� exp

�
ÿ
�
2

3F
g�g� � 2c1�nÿ nth�

��
; �2:8 0�

g�g� � 3 f �g�=2g, the functions f �g� and c1�g�were defined by
expressions (2.2) and (2.2 0) above, nth is the photoionization
threshold for linearly polarized radiation, b �
2�c2 ÿ c1� � 2g=

�������������
1� g 2

p
, and

F �x� �
� x

0

exp
�ÿ�x 2 ÿ y 2�� dy

�
xÿ 2

3
x 2 � . . . ; x! 0 ;

1

2x
� 1

4x 3
� . . . ; x!1

8><>:
[the so-called Dawson function, see 7.1.16 in handbook [20],
which attains its maximum for xm � 0:9241, with
F �xm� � 0:541 . . .]. It is easily shown that Eqns (2.8) and
(2.8 0) in the limiting cases g5 1 and g4 1 lead to estimates
(2.4). Furthermore, these equations coincide with formula
(2.5) when it is assumed that g5 1 and l � 0. Therefore, they
provide a continuous connection between the cases of low-
and high-frequency laser radiation. For states with an
arbitrary angular momentum l, expressions for the partial
probabilities wn are similar to expression (2.8 0) but are more
cumbersome in form [5].

In the case of circularly polarized radiation, the energy
photoelectron spectrum is Gaussian. In particular, the
n-photon ionization probability for g5 1 is [4]

wn � wmax exp

�
ÿ g�nÿ n0�2

2n0

�
/ exp

�
ÿo4k

E3 �nÿ n0�2
�
;

�2:9�

where n0 � 2nc and nc � nth�x � �1� � K0�1� gÿ2� is the
ionization threshold, i.e., the minimum number of absorbed
�ho photons required for the ionization of an atomic level with
a binding energy I � k 2=2 by a circularly polarized wave. The
distribution (2.9) has a peak for n � n0 and is relatively
narrow: Dn=n0 � o=

������
kEp � g

���
F
p

5 1, although its width is

not small by itself:

Dn �
���������
E3
o4k

s
�

������
n0
g

r
4 1 :

The angular distribution of the ejected photoelectrons is
of the form [5]

w�c; g� � const � �Jn0�n0z��2 ;
�2:10�

z � p?
Fg 2kn0

� 2

�����������������
n�1ÿ n�
1� g 2

s
cosc ;

where Jn�z� is the Bessel function, n � nc=n0 �1=2 < n < 1�;c
is the angle between the electron momentum p and the plane
of polarization of laser radiation, p? � pn0 cosc,
pn0 �

������������������������
2o�n0 ÿ nc�

p � k=g, and n0 is the most probable
number of absorbed photons:

n0 �
2nc

�
1ÿ 1

3
g 2
�
; g5 1 ;

nc
�
1� �2 ln g�ÿ1� ; g4 1 :

8><>: �2:11�

Since n0 > nc 4 1, the majority of photoelectrons are ejected
near the plane of polarization of the light wave, as follows
from the asymptotics for the Bessel function [20]. Although
the angular photoelectron distribution is appreciably broad-
ened with increasing g, it nevertheless remains rather narrow
for g4 1 as well [21], which is clear from Fig. 1.

The Coulomb interaction between the ejected electron
and the atomic core was taken into account in Ref. [6]
employing the quasiclassical theory of the Coulomb poten-
tial perturbation. However, the authors failed to completely
consider the g4 1 case: the validity condition of the
perturbation theory is of the form [6]

g5 g� � �n�F �ÿ1=2 ; �2:12�

and since n� � 1 (see Table 1) and F5 1, this condition is
fulfilled in the range of values g9 1. The corresponding

0� 20� 30� 40�

g � 0:1 0.5 1 2 10

100

1

50�10� c
10ÿ4

10ÿ3

10ÿ2

10ÿ1

1

w�c; g�

Figure 1. The case of circular polarization. The angular photoelectron

distribution is normalised to unity for c � 0. Here, K0 � 10 and c is the

angle between the ejected-electron momentum and the plane of polariza-

tion of laser radiation. The values of theKeldysh parameter g are indicated
by the curves.
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calculation of the Coulomb correction for different light
ellipticities x was performed in Ref. [6]. Also noteworthy is
Ref. [7], in which a special diagram technique was developed
for this problem and some formulas were obtained for the
Coulomb correction, but again not for all values of x and g. A
simple expression was derived for the case of circular
polarization [7]:

w�E;o� � wsr�E;o�
ÿ
F

�������������
1� g 2

p �ÿ2n� ; x � �1 ; �2:13�

where wsr is the probability of ionization from a short-range
potential. The inclusion of the Coulomb interaction increases
the electron cloud density at kr4 1 [see formula (13.1.1) in
Appendix 13.1]; furthermore, the effective barrier width
decreases as g increases [5]. This causes the Coulomb
correction for F � 0:01ÿ0:1 to raise the ionization prob-
ability by several orders of magnitude (for neutral atoms).

The results obtained in Refs [1, 4 ± 9] provide a rather
detailed description of nonlinear photoionization in a wide
range of g values. Nevertheless, these results were not
analyzed in full detail at that time, which is partly explained
by the lack of reliable experimental data (the multiphoton
ionization of atoms itself was experimentally discovered in
Ref. [22]).

To calculate the transition amplitude in Keldysh's
approach, as well as in numerous subsequent papers,
advantage was taken of the saddle-point technique with the
Volkov wave function, while in Refs [5, 6, 8] use was made of
the `imaginary time' method (the correspondence between
these methods is discussed in the concluding Section 12).
These approximations are justified when the frequency and
intensity of the electromagnetic wave are small in comparison
with the ionization potential I and the characteristic atomic
field k 3Ea; in this case, the barrier width is large in
comparison with the radius of the bound state 1=k and its
penetrability is exponentially small.More recently, Faisal [23]
and Reiss [24, 25] invoked a somewhat different approach to
obtain more precise but more cumbersome formulas for the
transition amplitude and the photoelectron spectrum. In this
approach, the saddle-point technique is not employed and the
wave function of the final state is expanded into a Fourier
series, which eventually leads to infinite sums in the number of
absorbed photons and necessitates numerical calculations.
The corresponding approximation is known in the literature
as theKFR theory (Keldysh, Faisal, andReiss). This theory is
frequently employed in the analysis of different experiments
in this area (concerning this issue, see Refs [25 ± 27] as well as
Section 9).

In concluding this section we make several remarks.
(1) Formula (2.5) is valid for the jlmi states of any atom,

with the exception of excited �n5 2� levels of the hydrogen
atom, for which the pre-exponential factor Fÿb and the
constant Ckl change owing to the specific accidental degen-
eracy4 of the states with l � 0; 1; . . . ; nÿ 1. In particular, for a
constant electric field we have, according to Refs [33, 5], b �
2n2 � jmj � 1, while the corresponding exponent in Eqn (2.5)
is b 0 � 2nÿ jmj ÿ 1 � b� 2n1. Here, n1, n2, and m are
parabolic quantum numbers and n � n1 � n2 � jmj � 1 is
the principal quantum number of the level [16].

(2) If the adiabatic factor
�����������
3F=p

p
is omitted in expression

(2.5), in the limit o! 0 this equation turns into the well-

known formula for the rate of negative-ion �n � � 0� ioniza-
tion by a constant electric field [16, 34].

(3) In the derivation of expression (2.1), the action
function S�p� is expanded near the saddle point in the final
electron momentum up to the second-order terms p 2=k 2.
Gribakin and Kuchiev [35], who reproduced (in a somewhat
different way) the results obtained in Ref. [5], indicated that
the quadratic approximation for S�p� is insufficient in some
cases. In particular, the angular photoelectron distribution in
the n-photon absorption, dwn= sin y dy, for the case of Hÿ

ions ionization by laser light with o � 0:0043 a.u. (a
CO2 laser) and J � 1011 W cmÿ2 �g � 0:6� agrees well with
formula (53) from Ref. [5] for the first three photopeaks
(n � 16, 17, and 18). However, upon further increase in n, the
ratio p=k increases and the fit becomes worse (see Fig. 2 in
Ref. [35]).

(4) The accuracy of quadratic approximation was recently
investigated [36] for the case of s-level ionization by linearly
polarized radiation. The spectrum of direct above-threshold
ionization w�p� calculated in the framework of the Keldysh
model employing the saddle-point technique but without
expansion in powers of p=k was compared with formula
(2.1). It was shown that the domain of applicability of this
expansion is restricted to finite energies e9 1:5Up, where
Up � F 2=4o2 is the average energy of electron oscillations in
the wave field (or the ponderomotive potential). For e > 2Up,
the ionization probability decreases with momentum p much
more steeply than according to expression (2.1), especially
after getting over the point e0 � 2Up ÿ I � �1=2�k 2�gÿ2 ÿ 1�
(in the tunnel regime, i.e., for g < 1). However, the values of
w�p� themselves in this region are several orders of magnitude
smaller than w�0�, and therefore the total ionization prob-
ability is hardly changed upon introducing this improvement.

The quadratic expansion in p employed in Refs [1, 4, 5] is
not fundamental to the ionization theory, but it is valid for
p9k and the formulas without it become much more
complicated and call for numerical computer-assisted calcu-
lations.

3. Further development of the Keldysh theory

We will consider several recent papers which furnish the
further development of the Keldysh theory.

First, the energy and angular photoelectron distribu-
tions were calculated and analyzed in detail in the general
case of an elliptically polarized incident wave for arbitrary
values of the parameter g. In particular, the angular
distribution in the case of circularly polarized laser radia-
tion was shown to concentrate about the plane in which the
field vector ~E�t� rotates and to remain rather narrow not
only for low-frequency radiation g5 1, but for large g as
well (see Fig. 1). With increasing g, the distribution of wn in
the number of absorbed photons, i.e., the photoelectron
energy spectrum, remains Gaussian, as in formula (2.9), but
its relative width decreases:

Dn�����
n0
p �

gÿ1=2 ; g5 1 ;
1 ; g � 0:47 ;

�2 ln g�ÿ1 ; g4 1 :

8<: �3:1�

When g5 1, this distribution is significantly broader than
the Poisson distribution with the same average value of n0
and for g4 1 it is, conversely, narrower than the Poisson
one. The exact formulas and further details can be found
elsewhere [21].

4 Related to the so-called `hidden' symmetry group of the Coulomb field

[16, 28 ± 32].
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The case of elliptical polarization,

~E�t� � E cosot ex � xE sinot ey ; ÿ14x4 1 �3:2�

(here, x is the ellipticity of laser radiation), for which the
photoionization threshold is

nth � K0

�
1� 1� x2

2g 2

�
�3:3�

(Fig. 2), was considered in Refs [5, 37 ± 39]. The principal
(exponential) factor in the formula for the ionization rate,

w / exp

�
ÿ 2

3F
g�g; x�

�
� exp

�
ÿ 2I

o
f �g; x�

�
; �3:4�

was calculated in Ref. [5]. The expression obtained therein
was recast to a more convenient form in Refs [8, 39], where it
was shown that all the formulas are significantly simplified by
selecting for the variable t0 � t0�g; x� Ð the `time' (purely
imaginary) of sub-barrier electron motion Ð

f �g; x� �
�
1� 1� x2

2g 2

�
t0

ÿ 1

g 2

�
1ÿ x2

4
sinh 2t0 � x2

sinh2t0
t0

�
; �3:5�

with t0 being determined from the transcendental equation

sinh t0

�
1ÿ x2

�
coth t0 ÿ 1

t0

�2�1=2
� g : �3:6�

In the two limiting cases we have: if g5 1, then

t0 � gÿ 1

18
�3ÿ x2�g 3 � . . . ;

f �g; x� � 2

3
g
�
1ÿ 1

10

�
1ÿ x2

3

�
g 2 � . . .

�
;

�3:7�

and if g4 1, then

t0�g; x� �
ln

�
2g�������������
1ÿ x2

p �
; 1ÿ x2 4

1

ln 2g
;

ln �g �����������
2 ln g
p � ; x � �1 ;

8><>:
f �g; x� � t0 ÿ 1

2
� x2D�O

�
ln g
g 2

�
; �3:8�

where

D �
�
2t 20

�
1ÿ x2

�
1ÿ 1

t0

�2��ÿ1
(since t0 0 ln 2g4 1, D is a small correction). With an
increase in the ellipticity of light, the functions t0 and g rise
monotonically for a fixed g (Fig. 3), and the ionization
probability accordingly decreases, especially for jxj ! 1, i.e.,
for polarizations close to the circular one. In the low-
frequency �g5 1� domain, the ionization rate for the s level
is [5]

wa� k 2C 2
k

��������������������
3F 3

p�1ÿ x2�

s �
F

2

�ÿ2n�
exp

�
ÿ 2

3F

�
1ÿ 3ÿ x2

30

�
g 2
�
;

�3:8 0�
if the ellipticity x is not too close to the circular one
�1ÿ x2 0F �.

The dependence of the energy and angular spectra of
photoelectrons on the ellipticity x in the case of tunnel
ionization was considered in Refs [37, 38]. However, part of
the statements in these papers is incorrect.5 These inaccura-
cies were corrected in the next paper [39], and we now turn to
the description of results obtained in it.

0 1 2 3 4 5 6 7 8 9 10

1.5

1.0

2.0

x � 1

0.1

0.9
0.75
0.5

g

r�g; x�

Figure 2. r�g; x� � n0=nth ratio versus g for different ellipticities x: n0 is

the most probable and nth is the threshold number of absorbed photons

(x � 0 corresponds to linearly and jxj � 1 to circularly polarized

radiation).

0 5 10

0.5

0.3

0.7

0.9

1.0

x � 1

x � 0

g�g; x�

g

Figure 3. Function g�g; x� from formula (3.4) for the ionization ratew. The

curves (from bottom to top) correspond to the values of light ellipticity

x � 0, 0.5, 0.7, 0.9, and 1.

5 This applies, in particular, to the statement that the formulas for the

electron momentum distribution derived in Ref. [5] have only a very

narrow domain of applicability near x � 0.

860 V S Popov Physics ±Uspekhi 47 (9)



When 0 < x2 < 1, the most probable momentum of the
ejected photoelectrons pmax is directed along theminor axis of
the field ellipse [the y-axis in expression (3.2)], for x � 0
(linear polarization) it is directed along the peak of the
electric field (the x-axis), and the photoelectron distribution
for the case of circular polarization becomes isotropic in the

plane of the vector ~E. Figure 4, borrowed from Ref. [39],
shows the evolution of photoelectron momentum distribu-
tion w�px; py; pz � 0� in the plane of~E as the ellipticity of light
varies. When the polarization is close to the linear one,
jxj9g

���
F
p

5 1, the distribution possesses a sharp peak along
the principal axis of the field ellipse as in Eqn (2.1). Next, a

a

c

b

d

fe

Figure 4. The case of elliptical polarization. Evolution of the photoelectron momentum distribution in the plane of the electric field �pz � 0� for x � 0:05,
0.25, 0.5, 0.8, 0.95, and 1 (Figs a ± f, respectively). The calculations were made for the ionization of Ne3� (I � 97:1 eV) by the field of a Ti : Sapphire laser
(�ho � 1:58 eV, J � 2� 1016 W cmÿ2, g � 0:2).
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two-peak structure is formed [5, 39]:

dw�p� / exp

�
�1ÿ x2� o

2k 3

3E 3
p 2
x �

k
E p 2

z

�
�
(
exp

�
ÿ k
E
�
py ÿ x

E
o

�2�

� exp

�
ÿ k
E
�
py � x

E
o

�2�)
d3p

�2p�3 ; g5 1 ; �3:9�

which is clearly seen for jxj0 ���
F
p

and persists up to values
jxj � 1ÿ F. Lastly, the photoelectron distribution for
x! �1 becomes isotropic in the plane c � 0:

dw/ exp

(
ÿ k
E
��

p?ÿ jxj Eo
�2

� p 2
z

�
ÿ 1ÿ x2

3F
sin2 j

)
d3p

�2p�3 :

�3:10�
Here, p? � �p 2

x � p 2
y �1=2 � p cosc, c is the angle between p

and the polarization plane, 04c4 p=2, and j �
arctan �px=py�, 04j4 2p. Hence it is clear that
Dpz � Dp? � k

���
F
p

5 k. For x2 � 1, the dependence of
dw�p� on the azimuth angle j vanishes, and expression
(3.10) grades into the momentum distribution for the case of
circular polarization [40]:

dw�p?; pz� / exp

(
ÿ 2

3E
�
k 2 �

�
p? ÿ Eo

�2

� p 2
z

�3=2)

� exp

(
ÿ 2k 3

3E ÿ
k
E
��

p? ÿ Eo
�2

� p 2
z

�)
�3:11�

(the light wave travels along the z-axis).
For the photoelectron energy spectrum wn Mur et al. [39]

obtained analytical formulas possessing a good accuracy for
all values of the Keldysh parameter, including the intermedi-
ate case g � 1 (compare the solid and dashed curves in Fig. 5,
which shows the evolution of the distribution wn when the
parameter g is varied from 0.2 to 5 for x � 0:5; for other
values of x, the picture is similar [39]). In particular, for g5 1
and 1ÿ x2 4F the distribution in the number of absorbed

photons has the form

wn / a
ÿ
g�nÿ n0�

�
exp

�
ÿ 2

3
�1ÿ x2� g3�nÿ n0�

�
; n > n0 ;

�3:12�

where n0 � F 2�1� 3x2�=4o3 � �1� 3x2��1� x2�ÿ1nth,

a�x� � exp �ÿx� I0�x� �
1ÿ x� 3

4
x 2 � . . . ; x! 0 ;

�2px�ÿ1=2 ; x4 1 ;

8><>:
�3:12 0�

and I0�x� is the Bessel function of an imaginary argument.We
note that elliptically polarized radiation is quite often
employed in photoionization experiments today [41 ± 45].

During the last 10 ± 15 years, considerable attention has
been attracted to the study of ionization by a low-frequency
laser field, g5 1, owing to the development of infrared lasers
in the tera- and petawatt power range (for which
o < 0:05 � 1 eV, F0 0:1, and g9 0:1). Here, in theoretical
calculations advantage is quite often taken of the adiabatic
Landau ±Dykhne approximation [16, 46 ± 51]. In this case,
the formulas given above are significantly simplified. In
particular, the momentum distribution (2.1) takes on the
form

w�p� � w�0� exp
�
ÿ
�
o2�2I �3=2

3E3 p 2
k �
�2I �1=2
E p 2

?

��
; x � 0 ;

w�0� � C 2
k

o2

p2E
�
F

2

�ÿ2n�
exp

�
ÿ 2

3F

�
;

�3:13�

while for the case of circular polarization

w�c� / exp �ÿcc2� ; c � kE
o2
� 2K0

g
; �3:14�

with the coefficient c4 1 and Dc � o=
������
kEp 5 1.

It is noteworthy that these formulas, which are given6 in
Refs [48, 49], follow directly from the general equations (2.1),
(2.3), and (2.10).These equations are valid for arbitrary values
of the Keldysh parameter when the quantities appearing in
them are expanded in powers of g. For instance,

c1�g� � 1

3
g3 � . . . ; c2�g� � gÿ 1

6
g3 � . . . ;

after which Eqn (2.1) takes on the form

w�p� � w�0� exp
�
ÿ 1

o

�
1

3
g3p 2
k � gp 2

?

��
; g � o

�����
2I
p

E ;

�3:15�

which is in perfect agreement with the distribution (3.13). For
the case of circular polarization, the formula

w�c; g�
w�0; g� �

g����������������
g 2 � c2

q exp

�
ÿ 2

3F

��
1� c2

g 2

�3=2

ÿ 1

��
�3:16�
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x

x � 0:5

g � 5
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g � 0:2

w�x�

Figure 5. Photoelectron energy spectrum in the ionization of Ne3� by the

field of a Ti : Sapphire laser J � 3:2� 1013, 2� 1014, and 2� 1016 W cmÿ2,
curves with g � 5, 2, and 0.2, respectively (the dashed curves represent

calculations by the formulas of Ref. [34]). Here, x � E=E0, where

E0 � F 2=o2 is proportional to the average energy of electron oscillations

in the wave field, the ionization probability is w�x� � dW=dx.

6 Unfortunately, it is necessary to mention that the role of early

investigations [4 ± 8] is covered in a heavily biased manner in Refs [47 ±

51], as in other works of these authors. For more details on this issue, see

article [52] and Appendix 13.3.
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is somewhat more accurate [21] than expression (3.14). To
derive it, one should take into account in relations (2.10) that
the variable z � 1ÿ �g2 � c2�=2! 1 in the small-angle
domain and employ the Langer asymptotics [20] for the
Bessel function Jn�nz� with n4 1 (for more details, see
Ref. [21]). When c5 g5 1, expressions (3.14) and (3.17) are
almost identical, but the number of photoelectrons for c > g
decreases faster with an increase in the anglec than according
to expression (3.14).

The results presented in Eqns (3.9) ± (3.16) and in Figs 4
and 5 relate to the case of ionization of singly charged
negative ions �Z � 0�. For Z 6� 0, the angular photoelectron
distributionmay be distorted due to the effect of the Coulomb
field of the residual ion on the electron motion in the
continuum [53, 54]. The ejected electron momentum (at
infinity) is [55]

p�t!1� � p�t0; v0� ÿ Z

�1
t0

dt
rL�t; t0; v0�
r 3L�t; t0; v0�

; �3:17�

where rL�t� is the electron trajectory in the laser field upon
passing through the barrier (at time t0 with a velocity v0)
defined by the Newtonian equation of motion, the Coulomb
interaction being taken into account by the perturbation
theory.7 The photoelectron momentum distribution is
obtained by recalculating the spectrum dW=d3p at the
instant of ejection, which is expressed in terms of the
variables t0 and v0, to the asymptotic momentum values
using relation (3.17). The Coulomb interaction in the final
state breaks the symmetry of the distribution (3.9) relative to
the axes of the field ellipse, shifting its peak away from the
y-axis. This follows from numerical calculations for the
s-photon ionization of xenon atoms by the radiation of a
Ti : Sapphire laser (for g � 1:12 and x � 0:36 and 0.56). The
calculation of Ref. [55] is in satisfactory agreement with
experiment [43] for high �s0 4� peaks.

We also note that the following relation between the
adiabatic wa and static (in a constant field, wst) ionization
rates is valid in the case of low-frequency radiation [5]:

wa�F; x� � �x2�ÿ1=2a
�
1ÿ x2

6Fx2

�
wst�F � ; �3:18�

where a�x� is the same function as in expression (3.12 0). This
expression is asymptotically exact in the limit F! 0. When
the polarization is not too close to the circular one, the
equation is simplified:

wa�F; x� �
��������������������

3F

p�1ÿ x2�

s
wst�F � ; 1ÿ x2 4F : �3:19�

On the other hand, wa�F; x � �1� � wst�F �. In the
narrow transition region (1ÿ x2 9F5 1) near the circular
polarization, the dependence of wa�F; x� on the field ampli-
tude F is not of a simple power form.

When g5 1, the rate of ionization by a low-frequency
field can be calculated by averaging wst

ÿ
F �t�� over a field

period:

wa�F � � 1

T

� T

0

wst

ÿ
F �t�� dt ; �3:20�

which leads [5] to expression (3.18) in the weak-field domain.
This formula can also be used for strong fields when the
numerical values of wst�F � are known. These calculations for
the hydrogen atom were performed by many authors (see, in
particular, Refs [56 ± 62]). In view of these results, we obtain
the values ofwa�F; x� presented in Fig. 6. It is noteworthy that
the dependence of wa on the field amplitude in the above-
barrier domain is surprisingly close to the linear one:

wa�F; x� � k�Fÿ F0� ; F > F0 ; �3:21�
where the parameters k and F0 depend on the quantum
numbers of the level (in particular, k � 1:47, F0 � 0:122 for
the ground state of the hydrogen atom and k � 0:81,
F0 � 0:260 for Rydberg states; the values of k and F0 are
given in atomic units). A similar behavior of wst�F � for the
Stark effect in a constant electric field (Fig. 7) was discovered
in the numerical calculations of Refs [60, 61] for the states of
the hydrogen atom with different parabolic quantum num-
bers �n1; n2;m�. In this case, use was made of summation of
the (divergent) perturbation theory series in powers of F with
the aid of Pade ±Hermite approximation formulas. Formula
(3.21) applies to the domain F > F0, the value of F0 somewhat
exceeding the critical field Fcr, for which the energy of the

x � 1

x � 0:5

x � 0

0 0.1 0.2 0.3 0.4 0.5

0.6

0.4

0.2

F

wa

Figure 6. Rate of above-barrier ionization wa for the ground state of the

hydrogen atom and low-frequency laser radiation [21]. The curves

correspond to the values of the ellipticity of light x � 0, 0.5, 0.8, 0.9,

0.95, and 1; the quantities wa and F are given in atomic units.

7 Compare withRef. [6], in which the Coulomb potential dVC � ÿZ=rwas
taken into account in the sub-barrier section of the trajectory, which

makes a contribution to ImS. By contrast, the time t in expression (3.17) is

real, and ImS is no longer changed for t > t0.

0.20 0.4 0.6 0.8 E

G

1.0

0.8

0.6

0.4

0.2

0

Figure 7. Stark effect in the hydrogen atom: dependence of the Stark width

G on the field E for the ground state [61]. The domain of intermediate

asymptotics (3.22) is clearly seen for E0 0:2.
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Stark level coincides with the peak of the potential barrier.
The level width G � w�F � for F < Fcr is asymptotically small,
while for F0Fcr (the above-barrier domain) it approaches
the asymptotics (3.21).

Equation (3.21) is an example of `intermediate asympto-
tics',8 which is not valid in either weak or superstrong
�F4Fcr� fields: in the latter case, G�F � / �F lnF �2=3 (see
Ref. [65]). An explanation for the intermediate asymptotics in
the theory of ionization of atoms by a strong field was given in
Ref. [66] with the aid of the 1=n expansion known from
quantum mechanics [67 ± 69].

4. Ionization in the field
of an ultrashort laser pulse

We next consider the ionization of atoms by an ultrashort
laser pulse. As is well known, high-intensity electromagnetic
fields can be obtained in practice by way of significant
shortening of the laser pulse, when its duration becomes
comparable to the optical period and the spectrum contains
a large number of higher harmonics. Because of the strong
nonlinearity of multiphoton ionization, it cannot be reduced
to the sum of contributions from separate harmonics. The
problem of calculating the ionization rate and the photo-
electron spectrum for nonmonochromatic laser radiation of
arbitrary form is therefore a topical problem. In Ref. [70]
Keldysh employed essentially the same method of calcula-
tion as in his pioneering work [1], while in Ref. [71] use was
made of the so-called `imaginary time method' (ITM), which
we discuss quite briefly here. The principles of the ITM are
discussed in greater detail in Refs [8, 72], as well as in
Chapter V of monograph [73].

To describe the sub-barrier particle motion, use is made of
classical equations of motion, though with the imaginary
time9: t! it. The trajectory obtained in this case cannot be
realized in classical mechanics because of the imaginary
values of the `time' and momentum. However, on going
over to quantum mechanics it is precisely this trajectory that
allows describing the sub-barrier electron transition from the
initial bound state in the atom to the final state in the
continuum. After deriving the sub-barrier trajectory and
calculating the imaginary part of the function W along this
trajectory (the so-called `shortened action' [78]) it is possible
to obtain explicit expressions for the ionization rate w of the
level:

w / exp

�
ÿ 2

�h
ImW

�
; W �

� 0

t0

�L � E0� dt ; �4:1�

L � 1

2
_r 2 �~E�t�rÿU�r� ; E0 � ÿ k 2

2
:

To calculate the photoelectron energy and momentum
spectra, one should consider the set of `classical' paths close
to the extremal sub-barrier trajectory (which minimizes ImW
and defines the most probable path of particle tunneling) and
calculate the imaginary part of the action function up to
quadratic terms in the deviation of such a trajectory from the
extremal path. This approach is applicable to a broad class of
pulsed fields for arbitrary values of the Keldysh parameter g.
Equation (2.1) can be shown to remain valid in the case of
linear polarization, with [71]

f �g� �
� g

0

w�u�
�
1ÿ u 2

g 2

�
du ; �4:2�

c1�g� � c2 ÿ gc 02 �
� g

0

�
w�u� ÿ w�g�� du ; c2�g� �

� g

0

w�u� du ;

the function w�u� in expression (4.2) being completely defined
by the shape of the laser pulse. In the case where the external
field is spatially uniform and is linearly polarized,

E�t� � E j�ot� ; ÿ1 < t <1 ; j��1� ! 0 ; �4:3�

it is possible to suggest a simple analytical procedure,
described in detail in Ref. [71], for determining w�u� from the
pulse shape. For instance, w�u� � �1� u 2�ÿ1=2 corresponds to
the monochromatic laser light with j�t� � cos t,
w�u� � 1=�1� u 2� to a soliton-like pulse with j�t� �
1=cosh2t, etc. (Table 2). For different fields in the form (4.3),
including those taken directly from experimental data, the
function w�u� can be found numerically. After that, as is seen
from expression (4.2), the problem reduces to quadratures.
The photoelectron momentum spectrum is defined by the
formula

dw�p� / exp

�
ÿ 2

3F
g�g�

ÿ k
E
�
b1�g��pk ÿ pmax�2 � b2�g� p 2

?

��
d3p

�2p�3 ; �4:4�

where g�g� � 3f �g�=2g, b1; 2�g� � gÿ1c1; 2�g�, and pmax �
�E=o� �10 j�t� dt is the momentum which the field transfers
to the electron on its escape from the barrier,10 0 < t <1.

We note that the expression (4.4) for the spectrum is valid,
strictly speaking, only for short laser pulses, where vl=cL5 1
(v is the electron velocity, l � 2p=o is the wavelength, and L
is the length of the laser radiation beamwaist,L0l. For long
pulses, account should be taken of the change in the electron
drift momentum induced by the gradient force [79 ± 81]. To
calculate the distribution of electrons over their final kinetic
energies in this case, it is required to consider their motion in
the spatially nonuniform field in the laser beam waist and
include the effect of ponderomotive acceleration. In simple
models this can be done analytically [81], but for realistic
profiles of the laser field this can be done numerically.We will
not expand on these issues because the electron motion for
t > 0 is classically allowed and the total ionization probability
(rate) is no longer changed in this case (although the
momentum and angular distributions may undergo signifi-
cant distortions).

8 Interesting examples of intermediate asymptotics in problems of fluid

dynamics and mathematical physics are considered in Refs [63, 64].
9 The ITM for the description of particle tunneling across time-varying

barriers was first proposed in Ref. [5], elaborated in Ref. [8], and

generalized to the relativistic case in Ref. [74]. We note that the ITM is

the generalization of the method of complex classical trajectories devel-

oped by Landau as early as 1932 for the calculation of quasiclassical

matrix elements with rapidly oscillating wave functions [however, only for

static fields, where the introduction of the complex time t is not required

because t can be excluded from the quasiclassical momentum

p � ������������������������
2�EÿU�x�p �. In Landau's approach it is the coordinate x rather

than the time t that resides in the complex plane. For further details

concerning the Landau method, the reader is referred to Refs [75 ± 77] and

to ææ 51 ± 53 in the book [16].

10 Formula (4.4) defines the spectrum of photoelectrons outgoing to

infinity (provided the external field is turned off adiabatically), while

expressions (2.1) and (3.13) pertain to the moment the electron is just

emerging from the barrier �t � 0�.
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The functions g�g�, which correspond to various pulsed
fields of the form (4.3), are plotted in Fig. 8, which also shows
this function for a monochromatic field (curve 1). In
particular, curve 3 corresponds to a Gaussian pulse and
curve 5 to a Lorentzian pulse. We note that the time axis in
Fig. 8 is so reduced that all pulses have the same curvature at
the peak, j 00�0� � ÿ1, which is convenient for the compar-
ison of variously shaped pulses.

The results of calculations for a modulated laser pulse
with the Gaussian envelope

j�t� � exp

�
ÿ t 2

2s 2

�
cos t �4:5�

(a model rather close to experiment and quite frequently used
in laser physics) are given in Fig. 9. In this case, the function
w�u� can be defined in the parametric form:

w � exp �ÿs 2=2s 2�
cosh s

; u � 1

2

� s

ÿs
exp

�
t 2

2s 2
� t

�
dt ; �4:5 0�

where s is a parameter, 0 < s <1.
The pulse (4.5) shortens with a decrease in s, the value of

f �g; s� also decreases in this case, and the ionization rate in
the g4 1 domain rises sharply. From the physical standpoint
this is attributable to the increase in the relative weight of
higher harmonics in the spectrum of the pulse. This effect
becomes appreciable when the pulse comprises about five
field cycles or fewer. In all cases considered, the shortening of
a laser pulse results in a significant rise in the ionization rate
(for the same field amplitude E) when g0 1. The dependence

Table 2.Models of laser pulses.

No. j�t� t0�g� w�u�
1 1 g 1

2 cos t arcsinh g �1� u 2�ÿ1=2

3 1=cosh2 t arctan g �1� u 2�ÿ1

4 1=cosh t arctan �sinh g� 1=cosh u

5 �1� d�=�cosh t� d�,
ÿ1 < d4 1

ì �1ÿ d�=�cosh ruÿ d�,
r � ���������������������������������1ÿ d�=�1� d�p

6 �cosh2 t� b 2 sinh2 t�ÿ1 ì
�
cosh2 u� sinh2 bu

b 2

�ÿ1
7 �1� t 2�ÿ1 tanh g 1=cosh2 u

8 �1� t 2�ÿ3=2 g=
�������������
1� g 2

p
�1� u 2�ÿ3=2

9 cn �t; q� ì
�
1� �sinh qu=q�2�ÿ1=2

10 1ÿ t 2

�1� t 2�2
2g

1�
����������������
1� 4g 2

p 1

2u 2

�
1ÿ �1� 4u 2�ÿ1=2�

Note. The function j�t� defines the shape of a pulse (4.3), t0 is the initial moment (dimensionless) of sub-barrier motion, cn is elliptic cosine [20]. In this

case, No. 1 corresponds to a constant field; for Nos 2, 9, and 10, the momentum pk transferred from the external field to the electron upon passing

through the barrier is zero.
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Figure 8.Dependence of the function g�g� from formula (4.4) on the form

of the field pulse. Curves 1 ± 5 correspond to j�t� � cos t, 1=cosh2 t,
exp �ÿt 2�, �1� t 2�ÿ3=2, and �1� t 2�ÿ1, respectively. Plotted on the

abscissa is the scaled variable g 0 � �����
a2
p

g.
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Figure 9. Function f �g; s� from expression (2.1) for the case of a

modulated pulse (4.5). The parameter s defines the envelope width

(s � 1, 3, 5, 10, and1, curves from bottom to top).

September, 2004 Tunnel and multiphoton ionization of atoms and ions in a strong laser éeld (Keldysh theory) 865



of the photoelectron momentum spectrum on the laser pulse
shape, as well as the effect of tunnel ionization in the energy
spectrum, was considered at length in Ref. [71].

This effect was noted [5] for the case of linear polarization
ofmonochromatic radiation. It arises from the interference of
transition amplitudes which correspond to two saddle points
in the complex plane t residing within one period of the
electric field E�t� � E cosot. When the longitudinal compo-
nent of the electronmomentum pk is nonzero, there emerges a
(real) phase shift between these amplitudes, which is respon-
sible for an additional factor in the momentum spectrum. In
the case of n-photon ionization,

dw�pn� ! dw�pn�
�
1� �ÿ1�n cosfn

�
; �4:6�

where, according to Refs [5] and [35],

fn �
2kpk

�������������
1� g2

p
og

; �4:7�

with p � pn �
������������������������
2o�nÿ nth�

p
and nth � K0�1� 2g2�=2g2 [see

formula (3.3)].
In the quasiclassical case, the phase fn is large: fn �

F 2=o3 4 1 for g5 1 and fn �
����������������
K0= ln g

p
for g4 1. There-

fore, in the integral of expression (4.6) over the photoelectron
exit angle, the contribution of the term with cosfn decreases
sharply. It can be neglected when calculating the ionization
rate, but it gives rise to the rapid oscillations in n-photon
ionization probabilities wn � w�En� depicted in Fig. 10.
Experimental investigations of the interference effect in the
case of elliptically polarized radiation were performed in
Refs [41 ± 43]. We note that expression (4.6) predicts the
threshold behavior of the probabilities wn, namely [4]
wn / �nÿ nth�1=2 /

������
En

p
for even n and wn / �nÿ nth�3=2 for

odd n, for n! nth.
A similar interference effect may show up in the case of

ionization by an ultrashort laser pulse when the pulse shape is
such that the transition amplitude has contributions from
several saddle points with a given momentum p and with
equal (or close) values of the imaginary part of the action. In
particular, rapid oscillations in the photoelectron energy

spectrum were predicted [70] for pulses of the form j�t� �
33=2 sinh t=2 cosh3 t and t exp

��1ÿ t 2�=2�, which can serve as
models of a one-cycle laser field [here, the normalization is so
selected that j�tm� � �1 at the peak].

5. Adiabatic case

The ionization of atoms in a low-frequency laser field �g! 0,
F5 1� occurs at the points in time when the electric field is
close to its peak value. In expression (4.3) for t � 0 we put

j�t� � 1ÿ a2
2!

t 2 � a4
4!

t 4 ÿ . . . ; a2 > 0 ; �5:1�

to arrive at formula (4.4), in which

g�g� � 1ÿ a2
10

g 2 ÿ 1

280
�a4 ÿ 10a22� g 4

ÿ 1

15120
�a6 ÿ 56a4a2 � 280a32� g 6 � . . . ; �5:2�

b1�g� � 1

3
a2g 2 � . . . ; b2�g� � 1ÿ 1

6
a2g 2 � . . .

Hence, for monochromatic light we obtain

g�g� � 3

2g
f �g� �

X1
n� 0

�ÿ1�ngng 2n

� 1ÿ 1

10
g 2 � 9

280
g 4 ÿ 5

336
g 6 � . . . �5:3�

(for more details, see Appendix 13.2).
Passing to the scaled variable t 0 � �����

a2
p

tmakes it possible
to compare variously shaped pulses:

g�g� � 1ÿ 1

10
g 0 2 � 9

280
kg 0 4 � . . . ;

�5:4�
k � 1ÿ a4 ÿ a 2

2

9a 2
2

; g 0 � �����
a2
p

g :

The dependence on the specific pulse shape manifests itself
here beginning with terms of order g 4. The coefficient k
depends only on the shape of the laser pulse and not on its
duration. As a rule 11, 0 < k4 1 and therefore the coefficients
of expansion (5.4) are numerically small. Hence, we can
conclude that the situation for g � 1 is closer to the tunnel
situation than to the multiphoton one, and the domain of
applicability of the asymptotic expansions extends up to
values g0 1. Interestingly, the radius of convergence of
these expansions is defined by the position of the nearest
singular point of the function w�u� in the complex plane [71].

In the adiabatic domain, the longitudinal momentum of a
photoelectron far exceeds the transverse one:

pk � a
ÿ1=2
2 gÿ1p? � k

������
F

a2

r
F

o
; p? �

���
F
p

k5 k ; �5:5�

which is attributed to the possibility of electron acceleration
along the slowly varying electric field E�t�. Here, a2 � ÿj 00�0�
is the curvature of the laser pulse in the vicinity of its peak.

0 10 20 30 40 50
100

101

102

103

104

Ee, eV

Ne

Figure 10. Photoelectron energy spectrum for the above-barrier ionization

of xenon [43] (the case of linear polarization). Ne is the number of

photoelectrons.

11 However, this coefficient may exceed unity when the pulse is flattened at

its summit. A specific example:

j�t� � 1� �1=2��1ÿ a�t 2
cosh t

� 1ÿ a

2
t 2 � 1

24
�6aÿ 1�t 4 � . . . ;

for which k > 1 for 0 < a < 3ÿ ���
8
p � 0:172.
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6. Effect of a magnetic field
on the ionization probability

We now consider time-constant fields E and H. Let y be the
angle between them and gc be the adiabaticity parameter:

gc �
oc

ot
� kH

cE ; �6:1�

where oc � eH=mc is the cyclotron, or Larmor, frequency
related to the gyration of a particle in the magnetic field and
ot � eE=k is the tunneling frequency in the electric field. As in
the case of ionization by a laser field, in this problem there are
two frequencies, oc [which plays the same part as the
frequency of light o in formula (1.1)] and ot. The ratio of
these frequencies significantly affects the ionization rate w.
The extremal sub-barrier path derivedwith the aid of the ITM
has the form [10, 82]

x � i
E
o2

c

�
tÿ t0

sinh t0
sinh t

�
sin y ;

y � E
o2

c

t0
sinh t0

�cosh tÿ cosh t0� sin y ; �6:2�

z � E
2o2

c

�t20 ÿ t2� cos y ;

where t � ioct and ÿt0 4t4 0 in the sub-barrier motion.
The initial moment t0 is determined from the equation

t20 ÿ sin2 y �t0 coth t0 ÿ 1�2 � g2c : �6:3�

The formula for the ionization rate is similar in form to
formula (3.6). The function g � g�gc; y� in the exponent has
the form

g�gc; y� �
3t0
2gc

�
1ÿ 1

g2c

� ��������������
t20 ÿ g2c

q
sin yÿ 1

3
t20 cos

2 y
��

: �6:4�

We note that this expression coincides with that obtained in
Ref. [10] but is written in a more compact form. With an
increase in gc, the function g increases monotonically and the
ionization probability accordingly decreases steeply. There-
fore, the magnetic field stabilizes the bound level. In terms of
the ITM, this is easily explained by the fact that the sub-
barrier electron path is affected by the Lorentz force and
`becomes twisted', with the result that the barrier width
increases.

Also calculated in the context of this problem were the
Coulomb correctionQ�gc; y� and the preexponential factor P
[72]. The inclusion of the Coulomb interaction significantly
increases the ionization probability of a neutral atom in
comparison with the case of a negative ion (for the same
value of the binding energy jE0j � k 2=2). We give the
expansions in the gc 5 1 domain (a `weak' magnetic field):

t0�gc; y� � gc �
1

18
g 3c sin

2 y�O�g 5c � ; �6:5�

g�gc; y� � 1� 1

30
g2c sin

2 y

ÿ g 4c
315

sin2 y
�
cos2 yÿ 11

24
sin2 y

�
� . . . ; �6:6�

Q�gc; y� � 1� 2

9
g2c sin

2 y� . . . ; P�gc; y� � 1ÿ 1

6
g2c � . . .

For y � 0 (the case E k H) we have t0 � gc, g�gc; 0� � 1,
and Q�gc; 0� � �2k 3=E�2Z=k. In the other limiting case,
y � p=2, the formulas are somewhat simpler (this case
will be considered in the following section). We note that
the ionization probability for gc > 1 is exponentially small
and yet nonzero (in contrast to the statement made in
Ref. [83]).

In concluding this section we point out one more
application of the ITM. As is well known, the series of the
perturbation theory (PT) in quantum mechanics and field
theory exhibit factorial divergence (the so-called `Dyson
phenomenon' [84 ± 87]). In Refs [88, 89], the ITM was
applied to the investigation of higher orders of the PT (in
powers of E and H) for the hydrogen atom in constant
external fields. It was shown [89] that the PT series turned,
for some value of the ratio H=E depending on the angle y
between the fields, from a series of constant sign (as in the case
of the Stark effect) into an alternating series (as for the
Zeeman effect). In Refs [89, 90], the ITM was successfully
employed to determine the asymptotics of the higher orders of
the 1=n expansion in multidimensional problems of quantum
mechanics, including those for the molecular hydrogen ion
H�2 (see also Refs [91, 92]).

We shall not go into further detail, because these issues are
outside of the scope of our review.

7. Lorentz ionization

When an atom or an ion enters a magnetic field H, in its rest
frame K0 there emerges (due to the Lorentz transformation)
an electric field E0, which may cause the ionization of the
atom. This process has come to be known as the Lorentz
ionization. We consider the quasiclassical theory of the
Lorentz ionization [93], which is applicable in the domain of
weak (in comparison with atomic) fields:

E � E0
k 3Ea 5 1 ; h � H0

k 2Ha
5 1 ; �7:1�

where k � �����
2I
p

and Ha � m 2e 3c=�h3 � 2:35� 109 G. We
restrict ourselves to the case of ionization of the s level �l � 0�.

When an atom travels with a velocity v at an anglej to the
direction of magnetic field H, the fields E0 and H0 in the rest
frame are

E0 � qH � �G 2 ÿ 1�1=2H sinj � v sinj��������������
1ÿ v 2
p H ; ~E0 ? ~H0 ;

H0 � �1� q 2�1=2H � �G 2 sin2 j� cos2 j�1=2H

�
����������������������������
1ÿ v 2 cos2 j

1ÿ v 2

r
H ; �7:2�

where q � p?=mc, p? is the transverse (relative to the
magnetic field) particle momentum and G� �1ÿ v 2�ÿ1=2 is
the Lorentz factor. An important parameter defining the
sub-barrier electron motion is 12 gL � oc=ot [a special
case of expression (6.1)], where oc � eH0=mc is the
cyclotron frequency and ot � E0=k is the tunneling

12 This parameter is similar to the Keldysh parameter g in the theory of

multiphoton ionization. Note that gL � 2b=rL, where b is the barrier width
in the electric field and rL � ck=eH is the Larmor radius. At rL 9 b, or

g > 1, the magnetic field bends the sub-barrier trajectory and hampers

tunneling.
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frequency:

gL �
kH0

cE0 �
k
v

�
1� cot2 j

G 2

�1=2

� k
v sinj

��������������������������
1ÿ v2 cos2 j

p
�7:3�

(the velocity v is expressed in atomic units e 2=�h �
2:19� 108 cm sÿ1). For nonrelativistic particles,
E0=H0 � v?=c5 1 and gL � k=v? may assume arbitrary
values. On the other hand, in the case of ultrarelativistic,
G4 1, particles, E0=H0 � 1ÿ �2q 2�ÿ1 ! 1, and in the frame
K0 crossed fields emerge, i.e., ~E0 ? ~H0 and E0 � H0. In this
case, E0 can be many times greater than the initial magnetic
fieldH.

Invoking the quasiclassical solution [72] of the problem of
ionization of atoms in electric and magnetic fields, for the
Lorentz ionization probability in the laboratory frame of
reference K we find

wL � Gÿ1k 2C 2
k

�
E
2

�1ÿ2Z
P�gL�

�
Q�gL�

�Z
exp

�
ÿ 2

3E
g�gL�

�
:

�7:4�

Here,Ck is the asymptotic coefficient of the wave function for
a free atom (see Appendix 13.1), Z � Z=k is the Sommerfeld
parameter, Z is the charge of the atom core,

E � E0
k 3
� G

v?h
137k

; g�g� � 3t0
2g

 
1ÿ

��������������
t20 ÿ g2

q
g2

!
; �7:5�

and we omit the more cumbersome expressions [93] for the
preexponential factor P and the Coulomb correction Q. All
these quantities are expressed most simply in terms of t0 Ð
the imaginary `time' of sub-barrier electron motion deter-
mined from the equation [compare with Eqn (3.6)]

t20

�
1ÿ

�
coth t0 ÿ 1

t0

�2�
� g2L ; �7:6�

or tanh t0 � t0=
�
1� �t20 ÿ g2L�1=2

�
. The principal (exponen-

tial) factor in formula (7.4) was found in Ref. [10]. We give its
expansions:

g�g� �
1� 1

30
g2 � 11

7560
g 4 � . . . ; g5 1 ;

3

8
� g� 2gÿ1 � gÿ3 � . . . � ; g4 1 :

8>><>>: �7:7�

Although the functions P�g� and �g� exhibit a rather
strong dependence on the parameter g (Fig. 11), the prob-
ability wL is most sensitive namely to the variations of g�g�,
because this function enters in the exponent in expression
(7.4) and, what is more, with a large coefficient 2=3E4 1. The
functions g�g�;P�g�, and Q�g� have been tabulated [93]. The
probability wL is conveniently represented in the following
form:

wL � Gÿ1Swst�E0� ; �7:8�

where wst�E0� is the static ionization probability in the electric
field E0 and S is the stabilization factor which takes into
account the magnetic field-induced suppression of bound-
state decay probability. The effect of the Coulomb interaction

on the magnitude of S becomes appreciable for gL � 1:5, as is
evident from Fig. 12.

The static magnetic fields obtained in laboratory condi-
tions do not exceed 1 MG. The method of magnetic
cumulation (explosion-assisted compression of an axial
magnetic field), proposed by A D Sakharov in 1951 [94, 95],
made it possible to obtain the record-high valuesH � 25MG
in theUSSR andH � 15MG in theUSA. Further progress in
this area gives the hope of achieving 13 30 ± 100 MG fields.
Referring to Table 3, when the velocity of hydrogen atoms in
the H � 25 MG field is changed from 1 to 10 a.u., the
situation changes from nearly perfect stability of the atom to
its instantaneous ionization in a time comparable to the
atomic time.
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0.5

1.0

2.0

1.5

g

P�g�

g�g�

C�g� � 10ÿ1

Figure 11. The case of the Lorentz ionization. Plots of the functions

appearing in Eqn (7.4), with C�g� � ����������
Q�g�p

and g � gL.
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Figure 12. Stabilization factor S for the ground state of the hydrogen atom

(solid curves) and for a negative ion with the same binding energy (k � 1,

Z � 0, dashed lines). The values of the parameter gL are indicated by the

curves; h � H=k 2Ha is the reduced magnetic field. The curves are plotted

on a log ± log scale.

13 See Ref. [96]. We note that Karnakov et al. [93] gave a description of

magnetic cumulation, which is a certain development of the estimates

made by Sakharov [95].
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For negative ions with a low binding energy (for instance,
the Hÿ ion with I � 0:7542 eV and k � 0:236), the depen-
dence of the probability wL onH and v is qualitatively similar
in form to that for neutral atoms, but the transition region
between wL � 0 and wL ! 1 is located at lower values of H
and v. Weakly bound states with k5 1 are known in solid-
state physics (the Wannier ±Mott excitons in semiconduc-
tors; for instance, for germanium crystals, k � 0:01). In all
these cases, significantly weaker fields are required for
ionization than in the case of the hydrogen atom.

Superstrong magnetic fields are also encountered in
astrophysics. The field H on the surface of magnetic white
dwarfs varies from 2MG to� 1000MG (see the table on p. 35
in Ref. [97] containing a list of 50 such objects). In particular,
the magnetic field for the Grw� 70�08247 star changes from
its maximum valueHmax � 350MGat the poles to 0.5Hmax at
the equator. Lorentz ionization can also occur when a star in
its motion penetrates a cloud of neutral hydrogen (see
estimates in Ref. [93]).

The sub-barrier electron motion in the magnetic field is
characterized by two frequencies, oL and ot. In this respect,
the situation is similar to that which occurs in the ionization
of atoms by the laser field (there are two characteristic
frequencies, o and ot). This analogy is not superficial; suffice
it to compare Eqns (3.6) and (7.6) for the imaginary time t0
and the corresponding expressions for sub-barrier trajec-
tories. However, there is a distinction between these two
problems. In a magnetic field, the sub-barrier path `twists'
and the barrier width increases with an increase in the
parameter gL:

b � k 2

2E
1� 1

36
g2 � . . . ; g5 1 ;

g�1� gÿ2 � . . . � ; g4 1 ;

8<: �7:9�

while in the case of laser-induced ionization [5], the barrier
width becomes smaller with increasing g, for instance,

b � k 2

2E
�
1ÿ 1

4
g2
�

for g5 1 :

That is why the function g�g� and the ionization rate in
the region g4 1 behave in opposite ways (compare Figs 3
and 11).

In the foregoing it was assumed that the atom velocity
v5 c. In the relativistic theory of Lorentz ionization devel-
oped by Nikishov [98] on the basis of the Klein ±Gordon
equation (without taking into account the electron spin), the
formulas are significantly more complicated. It was possible

to obtain a simple result for Z � 0, v ? ~H, and gL 5 1:

wL�H; v� / E0 exp
�
ÿ 2Z3

3E0

�
1� 1

30
~g 2L

��
; �7:10�

where E0 � Hv=
��������������
1ÿ v 2
p

is the electric field in the rest frame
of the atom, ~gL � gL

��������������
1ÿ v 2
p

, Z � �m 2 ÿ e20�1=2, e0 is the
bound-state energy, and c � 1. Since ~gL 5 1, the ionization
in this case is determined only by the field E0 and the effect of
the magnetic field H0 is insignificant (the stabilization factor
S � 1). In the nonrelativistic limit we have Z � k � �����

2I
p

,
E0=Z3 � E, and formula (7.10) turns into formula (7.4), the
coefficient 1=30 in the correction being in agreement with the
first term of expansion (7.7).

8. Exactly solvable model

As usual, of interest is the investigation ofmodels which allow
the exact solution of the SchroÈ dinger equation. In our case,
such a model is the decay problem of a shallow-lying state
bound by short-range attractive forces exposed to a circularly
polarized electromagnetic wave.14 Considering this model
allows tracing in detail the tunnel-to-multiphoton ionization
transition, discussing the accuracy of the quasiclassical
approximation, etc.

Passing to the frame of reference co-rotating with the field
[100] leads to the stationary SchroÈ dinger equation with the
Hamiltonian

Ho � ÿ 1

2
D�U�r� ÿ oLz � Ex ; �8:1�

where o and E are the frequency and amplitude of the electric
field of the wave andLz is the projection of the orbital angular
momentum of the electron on the direction of its propagation
(the z-axis). The spectrum of complex quasi-energy [101, 102]
states coincides with the quasistationary level spectrum of the
Hamiltonian Ho. Its Green function, which satisfies the
Sommerfeld radiation condition at infinity, can be derived
in the analytical form. Employing the d-potential approxima-
tion, which is equivalent to the introduction of a boundary
condition at zero [73], for the quasi-energy E � Er ÿ iG=2 of
the quasistationary state it is possible to obtain the closed
equation [103, 104]

I�E; g;K0� �
��
E
p ÿ 1 ; �8:2�

where l � 0,

I � 1

�2piK0�1=2
�1
0

du

u 3=2

�
exp

�
i
2K0

g2
sin2 u

u

�
ÿ 1

�
� exp �ÿ2iK0Eu� ; �8:3�

E � e� gÿ2 ; e � E

E0
� 1� d� iZ ;

Er � E0�1� d� ; G � k 2
0 Z ;

g � ok0
E �

1

2K0F
; k0 �

�������
2I0

p
;

�8:4�

Table 3. Probability of the Lorentz ionization for the ground state of
atomic hydrogen.

H � 25MG H � 350MG

v E0 � 100 wL v E0 � 100 wL

1.0
1.25
1.67
2.0
2.5
5.0
10

1.06
1.33
1.77
2.13
2.66
5.32

10.7

1.03(ÿ9)
6.41(ÿ4)
2.40
1.55(5)
5.56(7)
6.24(12)
7.73(14)

0.167
0.20
0.22
0.25
0.3
0.4
0.5

2.48
2.98
3.28
3.77
4.47
5.96
7.45

7.6(ÿ12)
8.05(ÿ3)
50.4
1.06(5)
5.22(8)
1.33(12)
3.54(13)

Note.Here, the anglej � p=2, the velocity v of the atoms and the field E0
are given in atomic units, and the ionization rate wL in sÿ1.

14 This problem by itself is of interest for the theory of multiphoton

ionization of negative ions of the type Hÿ, Liÿ, Naÿ, etc. The earlier

results obtained in this area were discussed in monograph [17] and review

[99].
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e is the reduced quasi-energy, d � �ReEÿ E0�=E0 is the
relative level shift in the laser field, I0 � ÿE0 � k 2

0 =2 is the
binding energy in the absence of the wave, g is the Keldysh
parameter, F � E=k 3

0 is the reduced field, and K0 � I0=o is
the multiquantumness parameter. Equation (8.2) is formally
valid for arbitrary F and allows going beyond the weak-field
domain bounds (hereinafter, without loss of generality we
assume that k0 � 1). Although this equation has been known
for 30 years, for a long time it resisted numerical solution
(outside the framework of the perturbation theory in the field
F ). The reason lies with the fact that, since G > 0 and
Im E � G=2I0 > 0, the integral (8.3) diverges at the upper
limit 15 and necessitates determination, i.e., regularization.
For such regularization Mur et al. [105] proposed the use of
the Zel'dovich method [106], which had been developed for
applying the perturbation theory to quasistationary states
(see also Ref. [73], Chapter VII).

The heart of this method can be explained by the example
of calculating the normalization integral

N �
�1
0

��wk�r���2 dr :
For the Gamow wave function wk�r� � rRk�r� / exp �ikr�,
and therefore jwkj2 / exp �2k2r� for r!1, where
k � ������

2E
p � k1 ÿ ik2 and k2 > 0, and the normalization

integral N diverges. As shown by Zel'dovich, in the regular-
ized sense it should be treated as the limit

N � lim
a!�0

�1
0

w 2
k �r� exp �ÿar 2� dr ; �8:5�

which plays the part of the norm of this state (as noted in
Ref. [106], in the integral (8.5) there enters precisely the square
of the complex wave function w 2

k �r� rather than its squared
modulus, which ensures convergence of the integral). In
accordance with this recipe, for the solution of Eqn (8.2) we
will consider the a! �0 limit of the solutions to the equation

Ia�E; g;K0� �
��
E
p ÿ 1 ; �8:2 0�

where Ia�E� is obtained from expression (8.3) with the
replacement

exp �ÿ2iEK0u� ! exp �ÿ2iEK0uÿ au 2� ; a > 0 : �8:6�

The practical execution of the above procedure imposes
certain requirements on computational capability, which was
hardly possible in the 1960s. For instance, to calculate the
width G from Eqn (8.2 0) with a relative accuracy on the order
of 10ÿ4 was found to require reaching the regularization
parameter values a � 10ÿ6 ± 10ÿ7, which now is entirely
feasible with a personal computer. The problems of conver-
gence of the Zel'dovich method and the conditions of its
validity are considered in Ref. [105].

The results of calculation of the level width G versus
1=K0 � o=I0 are presented in Fig. 13 for several values of the
parameter g. The dashed lines show the quasiclassical
approximation GQ corresponding to the Keldysh theory [4,
5]. One can see that, when g4 1, it is always valid for K0 0 1;
when g4 1, it is required that K0 4 2 ln g. With a decrease in
the Keldysh parameter there occurs transition from the
multiphoton ionization mode to the tunnel one. Indeed, at
g0 3, in the dependence of the width G on o there emerges a
structure related to the opening of n-photon ionization
channels. This is clearly seen in Fig. 14, which shows the
ratio q � G=GQ, where GQ�g;o� is the result obtained in the
quasiclassical approximation [4, 5]. For g > 5 andK0 � 1, the
magnitudes of G and GQ for the same frequency omay differ
by an order of magnitude. With decreasing g, the threshold
oscillations smooth out rapidly as we enter the adiabatic
domain g9 1.

15 This is precisely the case with another equation, obtained by Demkov

and Drukarev [34] for the problem of s-level ionization by a constant

electric field; however, the regularization of this equation is achieved

simply by shifting the contour of integration from the real axis to the lower

half-plane [87]. We emphasize that the divergences occurring here are by

no means accidental and are directly related to the exponential growth of

the Gamow wave function of the quasistationary state at infinity.
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Figure 13.ThewidthG of a quasistationary level in the case of a d-potential
�rc � 0�. The solid lines G � G�g;o� represent the numerical solution of

Eqn (8.2) with the use of the Zel'dovich method and the dashed lines

represent the quasiclassical approximation [4, 5].
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Figure 14.Accuracy of the quasiclassical approximation for the level width

in the case of the d-potential: q � G=GQ; the values of the Keldysh

parameter g are indicated by the curves.
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Equation (8.2) corresponds to the zero range of force
action; however, a correction D�E; k0rs� for the effective
interaction radius is easily introduced in it [107]. The
numerical solution of this equation permits determining the
shifts and widths of the levels of singly charged negative ions
(in this case, the expansion parameter k0rs varies from 0.62 for
Hÿ to 0.54 for Rbÿ). The results of calculation [108] of the
width G suggest that, although the approximation of zero-
range forces provides a qualitatively adequate description of
the situation, the correction of the order of rs is nevertheless
rather significant and should be included in the comparison of
the theory with experiment.

We also note that the results of earlier numerical
calculations [103] of the width G as a function of parameters
g and o in the d-potential model are at variance with Fig. 13
and, as already noted [107], are erroneous. A technique for
regularizing Eqn (8.2) was recently proposed [109, 110], which
is substantially different from the Zel'dovich method16 and
takes advantage of the specific form of this integral equation.
The widths G obtained with its aid are in agreement with our
calculations; however, the Zel'dovich regularization method
is more universal and will undoubtedly find further use in
atomic and nuclear physics.

Andreev et al. [107] generalized Eqns (8.2) and (8.3) to the
case of states with a nonzero orbital angular momentum l by
considering the effective interaction radius rl (which is
significant for l5 1 because the approximation of zero-
range forces is valid only for s states [73]). On this basis they
solved the problem of ionization of a weakly bound p level by
the field of a circularly polarized wave and derived the
analytical expressions for the shifts and widths of three
quasi-energy states originating from the initial p level in the
wave field [107]. All three widths G1m in the antiadiabatic case
�K4 1; g0 1�were shown to be different from each other, the
width of the m � 0 state being the smallest of them. There-
fore, the situation here is significantly different from the case
of linear polarization (2.5), the probabilities wlm being
nonsymmetrical relative to the sign of m (here, m � 0;�1 is
the projection of the orbital angular momentum on the
direction of wave propagation).

9. Keldysh theory and experiment

We briefly consider the issue of experimental verification of
theKeldysh theory. During the last 10 ± 15 years, manyworks
have been concerned with the observation of single and
multiple ionization of rare-gas atoms from the optical to
near-ultraviolet spectral regions, but the accuracy of these
experiments is still not high enough. Significantly more
accurate data were obtained employing high-power infrared
lasers, for which o5 I, g9 1, and E < Ea (a CO2 laser with
l � 10:6 mm, �ho � 0:117 eV � 0:0043 a.u. is a typical exam-
ple). A tunnel ionization mode was realized in these experi-
ments, whereby the Keldysh parameter is smaller than unity,
the experimental data being compared, as a rule, with the
predictions of the so-called `ADK theory' [50, 51], which we
discuss in Appendix 13.3. In the subsequent discussion the
results of some experiments will also be compared with the
formulas from Ref. [5]. On averaging the ionization prob-
abilities wlm with statistical weights, these formulas assume

the form (13.3.1) from Appendix 13.3. Not pretending to
present a complete review of the experimental data, we will
consider just a few of the many dozens of papers concerned
with this problem.

Figure 15 shows the number Ni of potassium ions (in
arbitrary units) as a function of laser radiation intensity: the
experimental data of Ref. [111] are represented by points, the
curves having been plotted by the ADK formula (13.3.4) (the
solid curve) and by formula (13.3.1) without the correction of
the order of g2 in the exponent (the dashed curve) and with the
inclusion of this correction (the dash-dotted curve). We note
that the adiabatic correction/ g2 is more significant than the
difference between the coefficients Ck and CADK

k (although
0:1g2 5 1, this term in the exponent is large because of the
coefficient 2=3F ). Points at which the Keldysh parameter is
g � 1, 0.5, and 0.25 are marked on the ordinate axis (all
experimental points pertain to the domain in which g < 0:4,
and therefore advantage can be taken of the formulas relating
to the tunnel ionization mode). One can see from Fig. 15 that
both formulas, (13.3.1) and (13.3.4), are consistent with the
experimental data. This comes as no surprise, because the
difference between them for g5 1 is entirely related to the
difference between the coefficients Ck and CADK

k , which is
small (in this case, Ck=C

ADK
k � 0:87).

We give the formulas which provide an easy way of
calculating the electric field E and the parameter g:

E � 0:169
���
J
p

; g � ok
E �

������
J1
J

r
; J1 � 35o2I

IH
; �9:1�

with g2=15F � 0:133K0�J1=J �3=2, and the multiquantumness
parameter is

K0 � 0:011
lI
IH
� I

2oIH
: �9:2�

16 In Refs [109, 110] this technique was employed to consider the

stabilization of atomic decay probability in a strong field and to calculate

the rate of laser radiation-induced ionization of negative hydrogen ions.
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Figure 15. Number of K� ions (in arbitrary units) as a function of light

intensity J0, W cmÿ2, according to Ref. [111] (CO2 laser, x � 0,

K0 � 37:2). The solid curve was calculated by formula (13.3.1) (see

explanation in the text). The points at which the Keldysh parameter is

g � 1:0, 0.5, and 0.25 are indicated on the ordinate axis.
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Here, E is measured in atomic field units Ea, the intensity of
laser radiation J in 1015 W cmÿ2 � 1 PW cmÿ2, the frequency
o in atomic units me 4=�h3 � 4:13� 1016 sÿ1, and the wave-
length l in nm, with x � 0 (linear polarization). To move to
the general case of elliptical polarization it would suffice to
make the change J! J=�1� x2�. The tunnel ionization
domain corresponds to intensities J > J1.

Similar results were obtained [111] in experiments carried
out to produce xenon ions in the field of CO2-laser radiation
(Fig. 16) as well as in the case of ionization of atomic helium
[112] by the field of Ti : Sapphire laser radiation. The curves
constructed by formulas (13.3.1) and (13.3.4) are very close
(see Figs 15 and 16) and provide a fairly good description of
the experimental data (in this case, the curves for Xe�� were
calculated assuming a cascade mechanism of tunnel ioniza-
tion, which is evidently justified in this case). Since for atomic
helium Ck=C

ADK
k � 0:98, without the inclusion of the

correction / g2 the curves corresponding to formulas
(13.3.1) and (13.3.4) are indistinguishable to within the
accuracy of the drawing.

Recently, measurements were made [113] of the momen-
tum spectrum of the particles produced in the course of tunnel
ionization of neon atoms. Figure 17, which was borrowed
from Ref. [113], shows the distribution of Ne� ions ejected
along �pk� and across �p?� the direction of the polarization
vector of linearly polarized Ti : Sapphire laser radiation
(l � 795 nm, K0 � 13:9). The solid curves in Fig. 17 corre-
spond to formula (3.13) derived by expanding expressions
(2.1) in the parameter g. In this case, g � 0:35, and therefore
the difference between these formulas does not go beyond the
limits of experimental error [in particular, the coefficients of
the momentum spectra by Eqns (2.1) and (3.13) are
c2 � 0:343 and 0.350, respectively]. The energy distribution
of tunnel electrons [44] in the ionization of xenon atoms
�E � 0:051Ea, g � 0:01) is also consistent with Eqn (3.13).

Finally, we outline the results of Ref. [114] concerned with
the investigation of above-threshold ionization of helium
atoms. Figure 18 shows the photoelectron energy spectrum
and the results of calculations by the KFR (Keldysh ±
Faisal ±Reiss) theory for circularly polarized laser radiation.
The forms of both distributions are in qualitative agreement
with each other. The photoelectron distribution possesses a
peak at an energy Emax

e � 64 eV, which is significantly higher
than the peak energy in the case of linear polarization,
Emax
e � 10 eV. The difference is attributed to the fact that

electrons in the field of a circularly polarized wave acquire a
significantly higher orbital momentum than for a linearly
polarized wave.

We restrict ourselves to the above examples although they
could easily be raised in number. On the whole, the ionization
of atoms in the tunnel domain g9 1, where it is nonresonant
in nature, is adequately described (both qualitatively and
quantitatively) by the Keldysh theory. In the literature this is
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Figure 16. Experimental data [111] on the tunnel ionization of atomic

xenon with the production of Xe� ��� and Xe�� ��� ions. Curves 1

correspond to formula (13.3.4), curves 2 were plotted by formula (13.3.1).
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Figure 17. Momentum distribution of Ne� ions (linear polarization). The

experimental data of Ref. [113] are represented by points; the solid curves

were plotted by formula (3.13).

0 50 100 150
Ee, eV

0.5

1.0

1.5

2.0

2.5

N
e
,a

rb
.u

n
it
s

Figure 18. Photoelectron energy spectrum in the above-barrier ionization

of helium atoms by the circularly polarized light of a CO2 laser with the

intensity J � 6� 1015 W cmÿ2 (solid line, Ref. [114]). Results of numerical

calculations by the KFR model (dashed line).
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commonly formulated as the experimental confirmation of
the `ADK theory' [115, 51]. However, since the `ADK theory'
can be reduced to a trivial modification of the results obtained
in Refs [4 ± 7] long before the publication of Ref. [115], this
statement does not appear to be unbiased (in this connection
see Ref. [52] and Appendix 13.3).

The situation is more complicated in the g > 1 domain, in
which transition from the tunnel ionization mechanism to
the multiphoton one occurs. Here, the ionization of atoms
may be substantially affected by the resonances with the
excited states adjacent to the continuum boundary. At the
same time, the analytical theory of Keldysh and his followers
considers only one (initial) bound state and the continuum
and does not take into account explicitly the structure of the
upper levels of a specific atom. In this case, in general the
theory cannot pretend to be a direct comparison with
experimental data, and more adequate are numerical
calculations based on the perturbation theory of high order
in the field which includes resonance energy denominators.
Many authors have carried out such calculations, including
those for hydrogen atoms, alkali atoms, etc. for different
numbers of absorbed photons. This generates the need for
calculating complex multiple sums over intermediate states
typical of high orders of the perturbation theory. To this
end, special methods of calculation have been elaborated,
including the use of Green functions as well as quantum
defect and model potential methods. On all these issues we
refer the reader to monograph [17], which also gives further
references.

However, it is pertinent to note that the values g > 1
correspond to strong fields, in which atomic levels acquire
large widths and overlap with each other, so that the
resonance structure does not always become apparent. That
is why the Keldysh theory quite often turns out to be
applicable in the region g0 1 as well.

In summary, one can say that the Keldysh ionization
theory provides convenient analytical formulas for atom
ionization rates, the energy and momentum spectra of
photoelectrons, their angular distribution, and so forth,
furnishes a qualitative and, sometimes, quantitative descrip-
tion of the tunnel ionization of atoms and ions, and is valid in
the intermediate �g � 1� domain as well. On the other hand,
numerical calculations on the basis of the transient high-order
perturbation theory can yield rather accurate values of the
above quantities, which apply, however, to a specific atom
and to specific values of the frequency o, electric field
intensity E, and ellipticity x. That is why these two
approaches complement each other and a comprehensive
understanding of the problem of atom ionization in a strong
laser field calls for a combination of analytical and numerical
approaches.

10. Relativistic tunneling theory

The rapid progress of laser physics and technology has made
it possible to achieve record-high intensities J � 1021 W cmÿ2,
and their increase by 1 ± 2 orders of magnitude is planned for
the immediate future [116]. Such a strong field can produce
ions with a charge Z � 40ÿ60, for which the electron-level
binding energy Eb � mec

2 ÿ E0 becomes comparable to the
rest energymec

2. In this case, the sub-barrier electron motion
responsible for ionization can no longer be treated as
nonrelativistic, and a generalization of the Keldysh ioniza-
tion theory is called for.

A linearly polarized plane electromagnetic wave is defined
by the potentials 17

A �
�
0; ÿE0

o
a�Z� ; 0

�
; j � 0 ; �10:1�

where E0 is the wave field amplitude, E � H � E0 a 0�Z�,
Z � o�tÿ x�, the x-axis coincides with the direction of wave
propagation, the electric field is directed along the y-axis and
the magnetic field along the z-axis. The function a�Z� defines
the pulse shape. In particular, a�Z� � sin Z corresponds to
monochromatic laser light, a�Z� � Z to a constant crossed
field, a�Z� � tanh Z to a soliton-like pulse E�t; x� �
E0=cosh2 Z, etc. The equations of motion for the electron
four-momentum p i � �p;E� take the form

_px � eEvy ; _py � eE�1ÿ vx� ; _pz � 0 ;

_E � e�~Ev� � eEvy ; �10:2�

where the point denotes a derivative with respect to
laboratory time t. For any dependence E�Z� there exists the
integral of motion [2, 3]

J � Eÿ px � 1ÿ vx��������������
1ÿ v 2
p � Z

ot
; �10:3�

where t � � t ��������������
1ÿ v 2
p

dt is the proper time of the particle. The
second equation in (10.2) gives

dpy
dZ
� eE0

o
a 0�Z� ; py�Z� � eE0

o
a�Z� � ÿeAy�Z�

(when selecting the constant of integration we take into
account that upon passing to the imaginary time, t! it, the
variable of the light wave front Z and the momentum py
become purely imaginary). Next,

dy

dZ
� 1

Jo
dy

dt
� py�Z�

Jo
;

y�Z� � eE0
Jo2

� Z

Z0

a�Z 0� dZ 0; y�Z0� � 0 ;

and px�Z�, x�Z� are defined in a similar way. The solution can
be obtained in explicit form for any dependence of the wave
field on Z.

The sub-barrier trajectory for the case of monochromatic
laser radiation, where a�Z� � sin Z, has the form

px�Z� � 1

4b 2J

�
sinh 2Z0
2Z0

ÿ cosh 2Z
�
; py�Z� � ibÿ1 sinh Z ;

x � iZ

4ob 2J 2

�
sinh 2Z0
2Z0

ÿ sinh 2Z
2Z

�
; �10:4�

y � 1

obJ
�cosh Z0 ÿ cosh Z� ; z � 0 ;

where b � o=eE0 and we have made the substitution Z! iZ
corresponding to the ITM. In this case, Z0 � ÿiot0, where t0
is the initial (imaginary) instant of time for sub-barrier
motion.

17 In this section, use is made of the relativistic units �h � m � c � 1 and the

ellipticity of radiation is denoted by the letter r.

September, 2004 Tunnel and multiphoton ionization of atoms and ions in a strong laser éeld (Keldysh theory) 873



The quantities Z0 and J are determined from the initial
conditions

E�Z0� �
����������������������������������������
p 2
x �Z0� � p 2

y �Z0� � 1
q

� E ; px�Z0� � Eÿ J

�10:5�
(here, E � E0=mec

2, 0 < E < 1, and E0 is the initial level
energy, including the rest energy of the electron), whence

sinh2 Z0 � g2
1ÿ 2EJ� J 2

1ÿ E 2
;

sinh 2Z0
2Z0

� 1� 2g2
1ÿ J 2

1ÿ E 2
;

�10:6�

where g is the adiabaticity parameter, which is the relativistic
generalization of the Keldysh parameter,

g � oTt � o
eE0

�������������
1ÿ E 2
p

; �10:7�

and Tt is the typical tunneling time in the electric field E0.
From the system of equations (10.6) it is easy to determine Z0
and J as functions of the parameters of the problem g and E.

We calculate the function of `shortened action'

W �
� 0

t0

�ÿ ��������������
1ÿ v 2
p

� e�Av� � E0
�
dt ;

along the sub-barrier trajectory to find with an exponential
accuracy the ionization rate for a relativistic bound state:

wR / exp �ÿ2�hÿ1 ImW� � exp

�
ÿ 2

3F
g�g; E�

�
; �10:8�

where

g �
����������������������������������������������
1� �2=3�x 2 ÿ �1=3�x 4

q
x 2g

Z0�Jÿ E� ;

F � E0=Ech, and Ech is the characteristic field defined by the
initial level energy:

Ech � �
���
3
p

x�3
1� x 2

Ecr ; x �
�
1ÿ 1

2
E
ÿ �������������

E 2 � 8
p

ÿ E�
�1=2

; �10:9�

Ecr � m 2
e c

3=e�h � 1:32� 1016 V cmÿ1 is the `critical', or
Schwinger, field in quantum electrodynamics [117 ± 120].

The value of Ech monotonically increases as the bound
level becomes deeper. In the nonrelativistic limit, E! 1 and
Ech � �2I �3=2Ea, where Ea � a 3Ecr, a � 1=137, and I is the
ionization potential (in atomic units). In this case, formula
(10.8) turns into the Keldysh formula (2.1). Equations
(10.6) ± (10.8) furnish its extension to the case of deep-lying
levels and are easily solved with a computer (Fig. 19).

In a similar way it is possible to calculate the rate of s-level
ionization by an elliptically polarized electromagnetic wave
(the general case of monochromatic radiation). In lieu of
expressions (10.6) we obtain the equations

sinh2 Z0 ÿ r2
�
cosh Z0 ÿ

sinh Z0
Z0

�2

� g2
�
1� �Jÿ E�2

1ÿ E2

�
;

�1ÿ r2� sinh 2Z0
2Z0

� r2
�
2

�
sinh Z0
Z0

�2

ÿ 1

�
� 1� 2g2�1ÿ J 2�

1ÿ E 2
; �10:10�

where r is the ellipticity of light �ÿ14r4 1, r � 0
corresponds to linear polarization and r � �1 to the circular
one). The function g�g; x� calculated numerically is plotted in
Fig. 19. With an increase in ellipticity, the function
g � g�g; E; x� monotonically increases and the ionization
probability accordingly decreases. We give the expansion

g�g; E; r� � 1ÿ 1ÿ r2=3

10�1ÿ x 2=3� g
2 �O�g 4� ; �10:11�

which is valid in the adiabatic domain g5 1. In the
nonrelativistic limit �x � a

��
I
p

5 1�, this formula agrees with
Ref. [5] for the case of arbitrary ellipticity r and with the
results obtained in Refs [4, 5] for the case of circular
polarization. The increase in light ellipticity leads to a
lowering of the ionization probability wR, while a decrease
in E, i.e., a deepening of the bound level, conversely, raises it
(for a fixed value of the reduced field F, which itself depends
on the level energy).

The exponential factor (10.8) is independent of the
particle spin. In the framework of the ITM, the spin
correction to the action function is [121]

dSspin � ie

2mc
Eablm

�
F abu ls m dt

� e

mc

���sH� ÿ �vs��vH� � �vs�~E	 dt : �10:12�

Taking into consideration that the sub-barrier trajectory
(10.4) lies in the �x; y� plane and E � H, we obtain

dSspin � eE0
mc

� 0

t0

sza
0�Z��1ÿ vx� dt � ÿ eE0J

mc

� Z0

0

sza
0�Z� dt :

The rotation of the spin in an external electromagnetic
field is defined by the Bargmann ±Michel ± Telegdi equation
[122]. In the case of crossed fields it implies that sz�t� � const
and therefore

dSspin � ÿmB
E0
o

sz a�iZ0� : �10:13�

For a constant field,

a�iZ0� � i
o
eE0

��������������
3x 2

1� x 2
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;
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Figure 19. Results of the relativistic ionization theory: the function g�g; E�
in the case of linearly �l� and circularly �c� polarized radiation for the

ground state of a hydrogen-like atom with Z � 60 �E � 0:899�.
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furthermore, one should take into account that the exponen-
tial factor in formula (10.8) changes due to the splitting of the
initial level E in the magnetic field. The splitting depends on
the magnetic moment m of the bound electron, different from
the Bohr magneton when Za � 1 [123, 124]. Eventually we
obtain the spin factor in the rate of the level ionization by a
constant crossed field:

S ITM
� � exp

�
�

���
3
p

x��������������
1� x 2

p �
1ÿ m

mB

��
; �10:14�

where the� signs correspond to the��h=2 spin projections on
the direction ~H, and therefore states with different sz possess
different ionization rates.

Another way of calculating the spin correction involves
squaring the Dirac equation.18 In this case, instead of
expression (10.14) we obtain

S� � Sÿ1ÿ �
1� s
1ÿ s

exp

�
ÿ

���
3
p

x��������������
1� x 2

p m
mB

�
;

s �
���
3
p

x

1�
��������������
1� x 2

p :
�10:15�

The results of these two calculations are only slightly
different. For instance, for the ground state 1s1=2 in a
hydrogen-like atom with a charge Z � 60, according to
Breit [123], we have m � 0:933mB, whence S� � 1:046, and
S ITM
� departs from it by only 1.5%.
When Za5 1, S� � S ITM

� � 1�O
ÿ�Za�3�, i.e., the tun-

neling probability is virtually independent of the electron spin
projection. This is natural: the operator ŝ commutes with the
SchroÈ dinger Hamiltonian and the spin variable splits off.

The highest radiation intensities J are realized for IR
lasers, where g5 1. In this case, for the rate of tunnel
ionization of the s level it is possible to derive a formula
asymptotically exact in the weak-field limit �F5 1�:

wR � mc 2

�h
jClj2GF 3=2ÿ2n exp

�
ÿ 2

3F

�
1ÿ g2

10�1ÿ x 2=3�

��
;

r � 0 ; E0 5 Ech ; �10:16�

where n � ZaE=
�������������
1ÿ E 2
p

is the relativistic analog for the
efficient principal quantum number n � � Z=

�����
2I
p

, and Cl is
the asymptotic (at infinity) coefficient of the wave function of
a free (in the absence of the wave field) atom, which can be
determined numerically from the Hartree ± Fock ±Dirac
equations. However, in the case of a hydrogen-like atom,
there exists an analytical solution as well [120, 127]. For the
ground 1s1=2 state for arbitrary Z,

E � n �
��������������������
1ÿ �Za�2

q
; C 2

1s �
22Eÿ1

G�2E� 1� : �10:17�

Finally, we omit here the factor G � G�E;Z�, which is
independent of the wave amplitude and has a rather
cumbersome form. For an elliptical polarization, the expo-
nential factor in formula (10.16) should be changed according
to formula (10.11), while the index of the characteristic field F
(in the pre-exponent) in the case of a circular polarization
should be replaced with 1±2n. In the nonrelativistic limit,
formula (10.16) assumes the form of formula (13.3.1).

We now estimate the range of validity of the nonrelativis-
tic ionization theory. With an exponential accuracy,

wR / exp

�
ÿ 2� ���3p x�3Ecr

3�1� x 2�E

�
;

wNR / exp

�
ÿ 2k 3Ea

3E
�
� exp

�
ÿ 2

3

�
2�1ÿ E��3=2 EcrE

�
:

�10:18�

Putting E � 1ÿ �1=2�a 2k 2 �
��������������������
1ÿ �Za�2

q
, we find

R � wNR

wR
� exp

�
ÿ 1

36
�Za�5 EcrE

�
; Za5 1 : �10:19�

One can see from Fig. 20 that the range of validity of the
nonrelativistic Keldysh theory extends up to rather large Z
values. For instance, forZ � 40, 60, and 80 and the radiation
intensity J � 1023 W cmÿ2, the values ofwNR andwR differ by
respective factors of 1.15, 3, and 65. For Z0 60, use must be
made of the relativistic tunneling theory (see Fig. 20 and
Ref. [128]).

It is pertinent to note that the ionization of a relativistic
bound state by a constant crossed field was first considered by
Nikishov and Ritus [4]. Using the exact solution of the
Klein ±Gordon equation these authors calculated the ioniza-
tion probability for the s level bound by short-range �Z � 0�
forces in the case of a spin-zero particle. Their resultant
expression for wR actually coincides with the results of Refs
[129 ± 131] for Z � 0, although is written in a somewhat
different form. The agreement of results obtained by two
independent methods is of significance for the ITM: although
this method possesses heuristic strength and physical clarity,
it cannot, nevertheless, be considered as being rigorously
substantiated from the mathematical standpoint, despite
some attempts made along this line [121]. The Coulomb
factor in the probability wR, which is highly significant for
Z 6� 0, was calculated in Ref. [130]. The recently published
papers byMilosevic et al. [132, 133] are discussed inRefs [128,
134] and in Appendix 13.3.

11. Electron ± positron pair production
from a vacuum by the field of high-power optical
and X-ray lasers

Quantum electrodynamics (QED) predicts the possibility of
e�eÿ-pair production from a vacuum in a strong electric field.

18 This approach is similar to the one used in Refs [125, 126] for solving the

relativistic Coulomb problem with Z > 137.

0 20 40 60 80 Z

0.5

1.0

1.5

2.0

R

21 22 23

24

25

Figure 20. Ratio R � wNR=wR as a function of Z for the ground state of a

hydrogen-like atom. The values of lg J, where J is the radiation intensity

[W cmÿ2], are indicated by the curves.
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This nonlinear and inherently nonperturbative effect, which
was initially considered for a constant field [117 ± 119],
subsequently was theoretically studied for variable fields of
the electric type: I1 � �B2 ÿ E2�=2 < 0, I2 � �EB�=2 � 0. In
particular, the model case of a spatially uniform field with a
linear polarization19,

E�t 0� � �Ej�t�; 0; 0	 ; B�t 0� � 0 ; t � ot 0 �11:1�
was comprehensively investigated for j�t� � cos t (see
Refs [135 ± 140]). Here, t 0 is the time, t is the dimensionless
time, E and o are the amplitude and characteristic frequency
of the external electric field, while the functionj�t� defines the
laser pulse shape. For simplicity it will be assumed that
j�ÿt� � j�t� and ��j�t���4j�0� � 1 for ÿ1 < t <1 (the
electric field attains its peak for t � 0, and at this instant e�

and eÿ escape through the barrier [136]). It is assumed that
j�t� is an analytical function, which is required for the
validity of the ITM.

With the aid of the ITM we describe the sub-barrier
electron motion through the gap 2mc 2 between the upper
and lower continua to obtain the production probability for a
e� pair with the momenta �p:

w�p� � d3W

dp 3
/ exp

�
ÿ p

E

�
~g�g� � ~b1�g�

p 2
k

m 2
� ~b2�g� p

2
?

m 2

��
;

�11:2�
where E � E=Ecr is the reduced electric field, Ecr � m 2

e c
3=e�h,

K0 � 2mec
2=�ho is the multiquantumness of the process and g

is the adiabaticity parameter:

g � o
ot
� meco

eF
� �ho

eFl�e
� 2

K0E
: �11:3�

Here,ot � eE=me � 1=Tt, l�e � �h=mec,Tt is the characteristic
tunneling time, Tt � b=c, and b � 2mec

2=eE is the barrier
width. Hereinafter we assume that

E5 1 ; K0 4 1 ; b4 l�e ; �11:4�
and the value of g may be arbitrary in this case.

The function ~g�g� appearing in expression (11.2) and the
coefficients ~b1; 2�g� of the momentum spectrum are deter-
mined by the shape of the field pulse j�t�. The total e�-pair
production probability in the invariant Compton four-
volume l�4

e =c � 7:25� 10ÿ53 cm3 s (hereinafter �h � c � 1) is
obtained by integrating the expression (11.2) with respect to
d3p with an account for the energy conservation law in the
course of n-photon absorption. The corresponding formulas
(rather cumbersome) can be found in Ref. [137].

Here, we restrict ourselves to the limiting cases of small
and large g. The former (low-frequency radiation, �ho5mc 2)
relates to the adiabatic domain:

w � c1m
4E 5=2 exp

�
ÿ p

E
~g�g�

�
; g5 1 ; �11:5�

where c1 � 2ÿ3=2pÿ4 � 3:63� 10ÿ3,

~g�g� � 1ÿ 1

8
g2 � 3

64
g4 � . . . ;

~b1 � 1

2
g2 ; ~b2 � 1ÿ 1

4
g2 :

�11:6�

The numerical coefficients of these expansions correspond to
the monochromatic laser field j�t� � cos t. In this case, the
transverse (to the field) momentum e� is always nonrelativis-
tic: p? �

�����
eEp � m

��
E
p

5m, but their longitudinal momentum
pk � gÿ1p? � K0E 3=2mmay become relativistic when g9

��
E
p

.
In the other limiting case �g4 1� we obtain

~g�g� � 4

pg

��
1� 1

4g2

�
ln g� 0:386

�
;

~b1 � 2

pg
�ln g� 0:386� ; ~b2 � 2

pg
�ln g� 1:39� ;

�11:7�

and the pair production probability w is equal to the sum of
the probabilities of n-photon processes wn; n > K0. In this
case, wn�1=wn � gÿ2n 5 1 and

w �
X1
n�K0

wn � c2m
4

�
o
m

�5=2�
4g
e

�ÿ2K0

; e � 2:718 . . . ;

�11:8�
where c2 � �

���
2
p

p�ÿ3 � 0:0114.
The magnitudes of the threshold field Eth required for the

production of one e�eÿ pair in the volume20 V � l3 during
one period T � 2p=o are collected in Table 4, where
l � 2pc=o is the wavelength and Eth is measured in units of
1015 V cmÿ1. The threshold for observing the Schwinger effect
for infrared and optical lasers is reached at E �
�0:7ÿ1:0� � 1015 V cmÿ1, which is lower than Ecr by one and
a half orders of magnitude. For E > Eth, the number of pairs
produced rises quite rapidly, which is evident from Fig. 21.

In the g0 1 domain, the functions in expression (11.2)
exhibit a strong dependence on the pulse shape j�t�.
Formulas similar to formula (4.2) hold; in particular [137,
140],

~g�g� � 4

p

� 1

0

w�gu�
��������������
1ÿ u 2
p

du � 4

p

� p=2

0

w�g sin y� cos2 y dy ;
�11:9�

19 Such a field, in principle, is formed at an antinode of a standing light

wave, which results from the superposition of two coherent laser beams. 20 The diffraction limit for focusing the laser radiationwith awavelength l.

Table 4. Laser-driven e�eÿ-pair production from a vacuum.

l, nm �ho, eV N � 1

�Eth�
N � 103 N � 106 N � 109 Laser

type

106(4)

1064(3)

785

694

109

25

0.117

1.165

1.580

1.786

11.4

49.6

0.739
0.481

0.873
0.521

0.899
0.527

0.912
0.530

1.07
0.569

1.26
0.61

0.838
0.521

1.02
0.570

1.05
0.577

1.06
0.58

1.29
0.627

1.56
0.67

0.967
0.570

1.21
0.628

1.25
0.636

1.27
0.64

1.61
0.697

2.04
0.75

1.14
0.627

1.49
0.698

1.56
0.707

1.59
0.71

2.13
0.785

2.91
0.86

CO2

Nd :YAG

Ti : Sa

Ruby

FEL

ì

Note.Given in the table are themagnitudes of the electric field E (in units
of 1015 V cmÿ1) at whichN pairs are produced in the focal volumeV � l3

during one field cycle (first line) and during 1 s (second line, for given

values of l andN). The threshold field Eth is sufficient for the production
of one pair.
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w�u� being the same function as in the multiphoton ionization
theory [see formula (4.2)].

In the case of monochromatic field, w�u� � 1=
��������������
1� u 2
p

,

~g�g� � 4

p
�������������
1� g2

p D�v� ; ~b1�g� � 2g2

�1� g2�3=2
D�v� ;

~b2�g� � 2

p
�������������
1� g2

p K�v� ; v � g�������������
1� g2

p ;
�11:10�

where K and D are complete elliptic integrals of the first and
third kinds [135, 136]. Hence, there follow the asymptotics
(11.5) ± (11.7).

Another example is the soliton-like pulsej�t� � 1=cosh2 t,
for which w�u� � �1� u 2�ÿ1,

~g�g� � 2

1�
�������������
1� g2

p ; ~b1 � g2

�1� g2�3=2
; ~b2 � 1�������������

1� g2
p ;

�11:11�

which is, in the quasiclassical limit (11.4), consistent with the
exact solution obtained inRef. [141]. The function ~g�g� for the
modulated pulse (4.5) is plotted in Fig. 22. Its g-dependence is
similar to the function g�g� in the nonrelativistic ionization
theory, but the adiabaticity parameter g is different in the
order of magnitude in these two cases.

In all cases considered, ~g�g� decreases monotonically with
g and the probability w rises sharply (for a fixed field
amplitude E). This effect shows up in the high-frequency
domain o > ot and is referred to [140] as the dynamic
Schwinger effect. In recent years, the possibility of experi-
mental observation of the Schwinger effect has become a
question of considerable interest [116, 142 ± 145].

A uniform electric field of the form (11.1) is an idealiza-
tion, which overrates the number of resultant pairs N. A real
wave always contains a magnetic field, which reduces N (in a
purely magnetic field, as in a plane wave in a vacuum, the
pairs are not produced at all [119]). Bulanov et al. [145]
considered a realistic three-dimensional model of a focused
laser pulse reliant on the exact solution of the Maxwell

equations derived by Narozhnyi and Fofanov [146]. Numer-
ical integration of expression (11.5) over the entire four-
momentum volume allowed studying the dependence of the
resultant e�eÿ-pair number N on the parameters of the
problem: R (the focal spot radius), L � R=D (the diffraction
length), and D � c=oR � l=2pR (the focusing parameter,
which characterizes the difference of the laser pulse from a
plane wave). The dependence of N on the peak radiation
intensity J is extremely sharp: for instance, varying J from
8� 1027 to 3� 1028 W cmÿ2, i.e., only by a factor of four,
increases the number of e�eÿ pairs produced by a single pulse
from N � 0:03 to N � 6� 109 (for D � 0:1).

Recent years have seen rapid progress in shortening the
wavelength l of laser radiation and increasing its intensity J
[116]. The values J0 1021 W cmÿ2 have already been
achieved, which exceeds the atomic field Ea by two orders of
magnitude. Increasing further the power of infrared and
optical lasers is supposedly the most promising way towards
the experimental observation of the Schwinger effect.

Furthermore, there are projects to develop free-electron
X-ray lasers, which are executed in DESY and SLAC [143].
When these lasers with �ho0 1 keV are commissioned and if
their radiation is possible to focus in a diffraction-limited
volume on the order of l3, the minimal laser powerP required
for the observation of the Schwinger effect will become
significantly lower, because E � ����

P
p

=l. In particular, for
l � 0:1 nm and a pulse duration T � 0:1 ps, the power
Pmin � 1016 W would be high enough for the production of
one e�eÿ pair in a vacuum [143]. This power level has long
been reached in optics, but the transition to the X-ray region
calls for the solution of a number of difficult problems. These
possibilities are now being discussed.

For charged particles other than e�, it will hardly ever be
possible to observe the Schwinger effect in a laboratory,
because Ecr / m 2 and even for p-mesons it assumes a
fantastic value of � 1021 W cmÿ1. However, the dispersion
law in solid-state physics, in particular for semiconductors,
can be approximately written as

E�p� � D

������������������
1� p 2

m�D

s
; �11:12�
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Figure 21.Number of electron ± positron pairsN produced from a vacuum

in the focal volume l3 by the field of a Ti : Sapphire laser with a pulse

duration T � 2=6 fs (one field cycle), 10 fs, 1 ps, 100 ps, 10 ns, and 1 s

(curves, from right to left).
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Figure 22. Function ~g�g� for a modulated laser pulse of the form (4.5).
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where m� is the effective mass and D is the width of the gap
separating the valence band from the conduction band. This
expression formally possesses the same form as the expression
for a free particle in relativistic mechanics: E�p� �

�����������������
m 2 � p 2

p
.

That is why the results outlined abovemay be employed in the
theory of multiphoton ionization of semiconductors by a
laser pulse (for monochromatic light this has already been
done in Ref. [1]). Since the part of the Schwinger field Ecr is
played here by the fields on the order of 106ÿ107 V cmÿ1, the
corresponding effects are much easier to investigate in
experiments.

12. Conclusion

Let us make several concluding remarks.
1. On the saddle-point technique and ITM. According to

Ref. [1], the ionization rate w0 is determined by the matrix
element

V0p �
�
c�p�e~Er�c0 d

3r ; �12:1�

where c0�r� � pÿ1=2 exp �ÿr� for the ground state of the
hydrogen atom and cp is the Volkov [2] wave function
of a free electron in the external field~E�t� �~E0 cosot:

cp�r; t� � exp

�
i

�
Prÿ 1

2

� t

0

P 2�t 0� dt 0
��
;

P�t� � p� e~E0
o

sinot :
�12:2�

The expression for w0 comes out in the form of the sum of
n-photon event probabilities, each of which contains the
square of a rapidly oscillating integral (see formulas (14) and
(15) in Ref. [1]). Applying the saddle-point technique gives the
equation for the saddle points in the complex plane,

I0 � 1

2

�
p� e~E0

o
sinot

�2

� 0 ; I0 � k 2

2
;

sinot0 � igkÿ1
� �����������������

k 2 � p 2
?

q
� ipk

�
�12:3�

(I0 is the ionization potential; for the 1s level, k � 1), or

t0 � ioÿ1
�
arcsinh g

� g�������������
1� g2

p �
i
pk
k
� 1

2k 2

�
g2

1� g2
p 2
k � p 2

?

��
�O

�
p 3

k 3

��
;

�12:4�

which coincides exactly with the expression for the initial
instant t0 of sub-barrier electronmotion in the ITM [5]. These
equations define the complex points t0 at which there occurs a
transition from the bound state to the state described by the
Volkov function (12.2). The contribution of a point t0 to the
tunneling amplitude is [1], with an exponential accuracy

A0 / exp

(
i

2o

� sinot0

0

�
k 2 �

�
p� e~E0

o
v

�2�
dv

�1ÿ v 2�1=2
)
:

�12:5�
It is easy to verify that this integral coincides with the
imaginary part of the action function W�t0; 0�, which leads
to formula (2.1) when expression (12.5) is expanded in powers

of p up to the second order inclusive [similar to expression
(12.4)]. Therefore, as regards the exponential factor, both
methods lead to the same result and are equivalent.21 This
conclusion, which was demonstrated by the above example of
monochromatic light, is valid in the general case as well. In
this connection, note that for pulses of the form
j�t� � 1=cosh2 t and �1� t 2�ÿ1, the corresponding expo-
nents in the expression for w0 calculated [70, 71] indepen-
dently by the two above techniques coincide [to within the
accuracy of the quasiclassical approximation itself, i.e., for
instance, coshS � �1=2� expS when S4 1].

2. The question of the pre-exponent, however, arises,
which we first discuss using the example of a constant electric
field, o � 0. This problem was first considered and solved in
the framework of quantummechanics by Oppenheimer [147].
In this case, the wave function of the final state cp�r� can be
expressed in terms of the Airy function [16, 20]. In Ref. [147],

w0�E� � 0:1093E1=4 exp
�
ÿ 2

3E
�

�12:6�

was obtained. Subsequently, however, it became clear that an
error was made in the calculations of Ref. [147] (`a slight
computational error'; see the remark on p. 885 in Ref. [148]).
Upon correction it turns out that [148]

w0�E� � p
2
exp

�
ÿ 2

3E
�
; �12:7�

but this formula is not correct, either. To the best of our
knowledge, the correct asymptotics of w0 in a weak field for
the 1s level was first obtained by Landau and Lifshitz [149]:

w0�E� � 4Eÿ1 exp
�
ÿ 2

3E
�
; E ! 0 : �12:8�

The ITM [8] with the inclusion of the Coulomb correction [6]
leads to the same result. Collected in Table 1 in Ref. [148] is an
impressive list of erroneous (in the pre-exponent) formulas
for different states of the hydrogen atom published in the
literature. Generally speaking, the asymptotics for
w � ÿ2 ImEn1n2m�E� in weak fields is of the form

wn1n2m�E� � Cn1n2m exp

�
ÿ 2

3n 3E
�
E ÿ�2n2�jmj�1��1�O�E�� ;

�12:9�

where n1, n2, and m are parabolic quantum numbers [16] and
n � n1 � n2 � jmj � 1 is the principal quantum number of the
level. For the ground state �n1 � n2 � m � 0� this formula
turns into formula (12.8).

The exponential factors in expressions (12.6) ± (12.8)
coincide with one another, but the pre-exponents are
significantly different. Therefore, a formula like (12.1) does
not give the correct pre-exponent. The reason is clear enough:
the external field E is exactly taken into account in cp, but the
Coulomb interaction between the outgoing electron and the
nucleus (proton) is neglected. Since the method of calculation
used in Ref. [1] is in essence the generalization of the
Oppenheimer method to the case of variable field E�t�, it is
supposedly beyond reason to expect that the correct pre-

21 Although the ITM is, in our view, physically more clear.
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exponent in the probability w�E;o� can be obtained in this
case.

On the other hand, for Z � 0 (the short-range potential)
and E�t� � E0 cosot the ITM leads to the same result as
solving the SchroÈ dinger equation with the saddle-point
technique used at only the final stage of calculations [5]. In
this case, not only the exponents, but also the expressions for
the photoelectronmomentum and energy spectra and the pre-
exponential factors coincide [5, 8]. The same is generally true
of elliptic polarization and arbitrary g (compare formulas
(23) ± (28) of Ref. [5] with formulas (40) ± (43) in Ref. [8]).
Finally, in the problem of pair production by an electric field
the ITM agrees [137] with the exact solution derived [141] for
E�t� � E0=cosh2 ot. These facts, even if they do not furnish
rigorous proof, nevertheless definitely count in favor of ITM
validity and, in particular, show that the ITM may be used
validly to calculate the pre-exponent. An attempt to sub-
stantiate the ITM (at the physical level of rigor) was under-
taken in Ref. [121].

3. The extremal [8] sub-barrier path for a linearly
polarized field E�t� corresponds to the momentum p � 0 on
escape from the barrier. For this path, t0 and the `time' t in the
sub-barrier motion are purely imaginary (hence the origin of
the name ITM). For the neighboring trajectories with pk 6� 0,
the initial point t0 shifts from the imaginary time axis, but, as
is evident from expression (12.4), this shift is small for all g.

For a periodic field, for instance, E0 cosot, to every half-
period there corresponds a saddle point of its own, tk. Their
contributions Ak to the transition amplitude are similar in
magnitude, but are different in phase for pk 6� 0 (because
tk�1 ÿ tk 6� poÿ1 due to the above-mentioned shift of the
saddle points). The coherent composition of the amplitudes
Ak is responsible for rapid oscillations in the photoelectron
momentum spectrum, which was first noted in Ref. [5] [see
formula (53) in this paper]. More recently, these oscillations
were discussed in Refs [35, 70, 71]. At present, they are being
investigated in experiment [43].

4.The case of negative-ion �Z � 0� ionization is especially
convenient for the experimental verification of the Keldysh
theory. In Refs [150, 151], measurements were made of the
photoelectron momentum distribution in the ionization of
Hÿ and Fÿ. The energy spectra and the angular distributions
agree nicely with the results of calculations by the formulas of
Ref. [35] (which, in contrast to the formulas of Ref. [5], do not
use the expansion of ImW in powers of p2). It is pertinent to
note that for a long time measurements were made only of the
total photoelectron yield, althoughmultiphoton ionization of
atoms was observed as far back as the 1960s [22]. The
spectrum of above-threshold ionization was first observed in
Ref. [152], whose publication fostered numerous theoretical
and experimental investigations in this area.

5. Remarkable advances have been made in laser physics
and technology during the 40 years that have elapsed since the
advent of Ref. [1]. At present, the investigations of nonlinear
photoionization of atoms and ions constitute a vast and
rapidly developing domain of atomic physics. In the 1960s,
which saw the publication of the first theoretical papers in this
field, it was hard to imagine that such subtle features of laser-
induced atomic photoionization as the photoelectron
momentum and angular distribution and quantum tunnel
interference in the energy spectrum would become the
subjects of comprehensive experimental studies. But, how-
ever, this has already happened! Further significant advances
in this area would be expected to occur, including, for

instance, investigations of the structure and dynamics of
molecules and clusters, solution of applied problems of
quantum chemistry, or controlling molecular processes in a
strong laser field [153].

Naturally, in the context of a relatively brief review it is
impossible to comprehensively discuss the numerous applica-
tions and generalizations of the Keldysh theory. Our aim was
to recall the early papers [1, 4 ± 8], which have not lost their
significance even now, to outline several new results obtained
in the elaboration of ideas proposed in Ref. [1], including the
relativistic ionization theory and the Schwinger effect in a
varying electric field, and to briefly compare the Keldysh
theory with experiment. It is beyond question that the
pioneering work by Keldysh will long underlie the theoretical
description of tunnel and multiphoton ionization effects in
atomic and laser physics.

This review has its origin in the papers which the author
reported at the 3rd International Sakharov Conference on
Physics (Moscow, June 2002), the 11th JST International
Symposium (Tokyo, September 2002), the International
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13. Appendices

13.1 Asymptotic coefficients for atoms and ions
Assuming that the atomic potential isU�r� � ÿZ=r for r4 rc,
from the SchroÈ dinger equation we obtain the asymptotics of
the radial wave function at infinity:

wkl�r� � 2k1=2Ckl e
ÿkr�kr�n

�
1ÿ �n� l��nÿ lÿ 1�

2kr
� . . .

�
;

r4
1

k
;

�13:1:1�

where n � Z=k � n � and the normalization condition is of the
form

� 1
0 w 2

kl�r� dr � 1. The asymptotic coefficients Ckl are
frequently encountered in atomic and nuclear physics, the
inverse problem of quantum scattering theory, etc. [13 ± 17].
Their values are determined by solving the Hartree ± Fock
equations, the inaccuracy of numerical calculations for
certain multielectron atoms and ions (for instance, for Ne,
K, Ca, Rb, Liÿ, Kÿ, and so forth) ranging up to 10 ± 30% or
more [14].

According to Hartree [11], an approximate value of Ckl is
given by formula (2.7), its inaccuracy for the first s and p levels
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in the rubidium atom amounting [11] to 2 ± 2.5% (see also
Table 1). When n �4 1 and l � 1, formula (2.7) takes on the
form

Ckl � 1����������
8pn �
p

�
2e

n �

�n��
1ÿ l�l� 1�

2n �
� . . .

�
; e � 2:718 . . .

�13:1:2�

Recently, Mur et al. [19] obtained an effective radius
expansion for these coefficients; for the s states, it has the
form

Ck � C �0�k

�
1ÿ c1krcs �O

ÿ�krcs�3��ÿ1=2 ; �13:1:3�
where

C �0�k �n� � CH
k f �n� ; c1�n� � 1

2

�
sin pn
pn

f �n�
�2
; �13:1:4�

f �n� �
(
1ÿ

�
sin pn
pn

�2�
n 2c 0�n� ÿ

�
n� 1

2

��)ÿ1=2
;

CH
k is the Hartree coefficient (2.7) for l � 0, c�n� �

G 0�n�=G�n� is the logarithmic derivative of the gamma
function, and rcs is the effective nuclear-Coulombian [154]
radius of the system. To the purely Coulombian spectrum
�rcs � 0, n � n � 1; 2; . . .� there correspond the values C

�0�
k �

CH
k � 2 nÿ1=n! and c1 � 0, with C

�0�
k � 1 for the ground level.

In the atomic spectral domain �n0 1�, the coefficients
C
�0�
k and CH

k are close while c1�n� are numerically small, and
therefore the correction for the effective radius can be ignored
here [19]. This serves as a substantiation of the Hartree
formula.22 On the other hand, for n! 0 (the passage to the
limit of a short-range potential) the expansion assumes the
form

1

2C 2
k
� 1ÿ krs � c3�krs�3 � . . . ; Z � 0 ; �13:1:5�

or

Ck � 1���
2
p
�
1� 1

2
krs � 3

8
�krs�2 ÿ 1

2

�
c3 ÿ 5

8

�
�krs�3 � . . .

�
;

�13:1:5 0�

where rs � limZ! 0 rcs is the effective radius for the short-
range potential. A few remarks are quite in order.

1. The quadratic terms in the effective radius are absent in
the expansions for 1=C 2

k . This fact is nontrivial, because the
Coulomb wave function for r! 0 and a non-integer n
contains terms of the order [154, 155] r ln r, r 2 ln r, r 2, and
r 3 ln r, which mutually annihilate upon sewing together the
outer and inner wave functions at the point r � rc 5 aB.

2. The first correction / rcs (or rs) is independent of the
form of potential for r < rc. Calculations of the c3 coefficient
for several model potentials showed [19] that it is numerically
small, which broadens the domain of applicability of
expansions (13.1.3) and (13.1.5).

3. For n � 0, the coefficient c1 � 1, i.e., is two or three
orders of magnitude greater than for n0 1 (see Table 1), and
therefore the correction for the effective radius for negative
ions is more significant than for neutral ions [108].

4. The asymptotic coefficients A given in reference book
[14] are related to our coefficients as

A � 2kn�1=2 Ckl ; n � Z

k
; �13:1:6�

the scatter ofCk being substantially smaller than in the case of
coefficients A. This formula was employed to calculate the
numerical values of Ck (see Table 1, the HF column).

13.2 The Keldysh function and its expansions
The frequency dependence of the ionization rate of an atom is
determined primarily by the function f �g; x� [see formulas
(2.1) and (3.4)]. This function, which was first calculated in
Ref. [1] for x � 0 and in Ref. [5] for an arbitrary ellipticity x,
will be referred to as the Keldysh function. We give the
expansion terms next to expression (2.2); in this case, it is
convenient to proceed from the representation (4.2). For
x � 0 we have

f �g� �
X1
n� 0

�ÿ1�n fng2n�1 ;

fn � 2

3
gn � �2nÿ 1�!!

n! 2nÿ1�2n� 1��2n� 3� ;
�13:2:1�

and similar series for the coefficients of the momentum
spectrum c1; 2�g�. Since fn / nÿ5=2 for n!1, the series
converge for jgj4 1. In the antiadiabatic domain,

f �g� �
�
1� 1

2g2

�
ln g�

X1
n� 0

angÿ2n ; g!1 ; �13:2:2�

where a0 � ln 2ÿ 1=2, a1 � ln 2=2, a2 � 3=32, a3 � ÿ5=192,
and so on.

When w�u� is known in the analytical form, from
expression (4.2) it is easy to obtain adiabatic expansions. In
particular, putting

w�u� � �1� u 2�ÿr ; �13:2:3�

we obtain

f �g� � 2

3
g 2F1

�
1

2
; r;

5

2
; ÿg2

�
;

fn � 2G�n� r�
n!�2n� 1��2n� 3�G�r� / n rÿ3 ;

�13:2:4�

and for g!1

f �g� !
���
p
p

G�rÿ 1=2�
2G�r� ; r >

1

2
; �13:2:5�

while for r � 1=2 the function f �g� grows as ln g.
The shape of the field pulse corresponding to formula

(13.2.3) is characterized by the asymptotics

j�t� � 1ÿ rt 2 � 1

6
�7r 2 ÿ 3r� t 4 � . . . ; t! 0 ;

j�t� �
t!1

�
2�rÿ 1�t�ÿr=�rÿ1� ; r > 1 ;

4 exp �ÿ2t� ; r � 1 ;

(

with j�t� � cos t, 1=cosh2 t, and �1� t 2�ÿ3=2 corresponding
to the values of r � 1=2, 1, and 3=2, respectively. For an

22 Another substantiation of the Hartree formula was obtained with the

aid of the quantum defect method [17, 18].
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arbitrary j�t� we have the expansion

w�u� � 1ÿ 1

2
a2u

2 � 5

12
�a 2

2 ÿ 0:1a4� u 4

ÿ 7

18

�
a 3
2 ÿ

1

5
a2a4 � 1

280
a6

�
u 6 � . . . ; �13:2:6�

which gives, upon substitution into expression (4.2), the
expansion of g�g� and the coefficients of the momentum
spectrum b1; 2�g� in the adiabatic domain [here, an are the
coefficients of the series (5.1)].

For the problem of pair production there exists formula
(11.9), which is similar to expression (4.2). The expansion
coefficients for f �g� and ~f �g� are therefore related as

~fn � 4

3
���
p
p G�n� 5=2�

G�n� 2� fn � �2n� 3�!!
�n� 1�! 2 n � 3 fn ; �13:2:7�

this relation being valid for an arbitrary pulse shape j�t�. In
the asymptotics ~fn /

���
n
p

fn, n4 1, and therefore the series for
f �g� and ~f �g� possess the same radius of convergence.

The preceding formulas pertain to the case of linearly
polarized radiation. For the case of elliptical polarization, the
function f �g; x� is defined by Eqns (3.5) and (3.6), which are
simplified in the case of circular polarization:

sinh 2t0
t0

ÿ
�
sinh t0
t0

�2

� 1� g2 ;

fc�g� � 2

�
t0 ÿ 1

2g2
�sinh 2t0 ÿ 2t0�

�
;

�13:2:8�

where fc�g� � f �g; x � �1�; hence, it follows that

fc�g� � 2

3
g
�
1ÿ 1

15
g2 � 13

945
g 4ÿ 517

127575
g6 � . . .

�
; g! 0 ;

�13:2:9�
fc�g� � ln

ÿ
g
�������
ln g

p �ÿ 1

2
�1ÿ ln 2� ÿ 1

4 ln g
� . . . ; g!1 :

�13:2:10�

The dependence of t0�g; x� and f �g; x� on the ellipticity of
light becomes significant on passing to the circular polariza-
tion, as is evident from Fig. 3.

The Keldysh function for the case of linear polarization
can be written in the form similar to expressions (13.2.8):

f �g; 0� � t0 ÿ 1

4g2
�sinh 2t0 ÿ 2t0� ; �13:2:11�

where t0 � arcsinh g [see Eqn (3.6) for x � 0].

13.3 Remarks on the `ADK theory'.
Some authors compare the results of their experiments on
tunnel ionization with the so-called23 `ADK formulas' or
`ADK theory' (Ammosov, Delone, Krainov [115]). We make
several remarks here on this `theory' and its relation to earlier
papers.

In the case of the ionization of an s-level by low-frequency
�g5 1� laser radiation with a linear polarization, formula

(2.5) is simplified:

wa � k 2C 2
k

�������
3F

p

r
22n

�
F 1ÿ2n� exp

�
ÿ 2

3F

�
1ÿ 1

10
g2
��

;

�13:3:1�
and for the case of circular polarization,

wa � k 2C 2
k2

2n�F 1ÿ2n� exp
�
ÿ 2

3F

�
1ÿ 1

15
g2
��

; x � �1
�13:3:2�

(here, l � 0, Ck � Ck0, F � E=k 3Ea is the reduced electric
field, and �h � m � e � 1). Specifically, for the ground state of
the hydrogen atom, k � n � � 1, F � E, and the tunnel
ionization rate (in atomic units) is

wa � 4

�������
3

pE

r
exp

�
ÿ 2

3E
�
1ÿ 1

10
g2
��

; x � 0 : �13:3:3�

These formulas are asymptotically exact in the weak-field
limit 24 like the well-known formula [16] for the ground state
of the hydrogen atom in a constant electric field [see formula
(12.8)].

We note that the factor
�����������
3F=p

p
appearing in formula

(13.3.1) for the case of linear polarization and absent in the
case of circular polarization emerges due to the averaging of
wst

ÿ
F �t�� over a period of laser radiation subject to the

condition g5 1 [see Eqn (3.20)]. This factor was derived in
Ref. [5]. In this case, it was suggested that the asymptotic
coefficients Ckl from numerical calculations for a free �E � 0�
atom be borrowed, for instance from tables like those in
Ref. [14].

On the other hand, the ADK formula is written as follows
[51, 156, 157]:

wADK �
�������������
3n �3E
pZ 3

r
ED2

8pZ
exp

�
ÿ 2Z 3

3n �3E
�
; D �

�
4eZ 3

n �4E
�n�

;

�13:3:4�
where e � 2:718 . . ., n � is the effective principal quantum
number of the level, and Z � 0; 1; 2; . . . is the atomic core
charge. On passing to the variables

F � n �3E
Z 3

; k � Z

n �
�

������
I

IH

r
;

it is easily seen that the ADK formula differs from formula
(13.3.1) in only the expression for the asymptotic coefficient
Ck and in that the correction/ g2 in the exponent is neglected:

wADK � k 2�CADK
k �2

�������
3F

p

r
22n

�
F 1ÿ2n� exp

�
ÿ 2

3F

�
; �13:3:5�

where 25

CADK
k � 1����������

8pn �
p

�
2e

n �

�n�

�13:3:6�

23 These terms, which were introduced in Ref. [156], are quite frequently

used in the literature, including by the authors themselves (see, for

instance, Refs [50, 51, 132, 157]).

24 Special investigation is invited by the question: up to what values of F

and with what accuracy can use be made of these asymptotics valid for

F! 0? For the hydrogen atom it was carried out in Refs [72, 82] and for a

short-range potential, in Ref. [105].
25 The numerical values of CADK

k usually exceed the exact coefficients Ck

by 10 ± 15%. Specifically, for the ground state of the hydrogen atom,

C 2
k � 1 and �CADK

k �2 � e2=2p � 1:18; the difference for the helium atom

amounts to 47%, for potassium 30%, for cesium 35%, etc.
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[compare with formula (13.1.2)]. Note that formula (13.3.6)
follows directly from the Hartree formula26

CH
k �

2n
�ÿ1

G�n� � 1� ; l � 0 ; �13:3:7�

if the Stirling approximation, G�n � � 1� � ����������
2pn �
p �n �=e�n� is

substituted for the gamma function in the Hartree formula.
The generalization of formula (13.3.6) to the case of arbitrary
l was given in Ref. [115] and results from expression (2.7),
proposed by Hartree, with the use of the same Stirling
formula,

C 2
nl �

22nÿ2

nG�n� l� 1�G�nÿ l� ! �C
ADK
nl �2

� 1

8pn

�
4e2

n 2 ÿ l 2

�n�
nÿ l

n� l

�l�1=2
�13:3:8�

and the subsequent replacement of n and l with the effective
quantum numbers n � and l �. This trivial transformation
exhausts the original contribution of the authors of the
`ADK theory' compared to the earlier works [4, 5, 11].
Eventually, a rather cumbersome expression results for the
ionization rate w (see Eqn (30) in Ref. [156], in which the term
`ADK theory' was introduced).

It is pertinent to note that the very notation for w in the
form (13.3.4) is unnatural: the seemingly straightforward
implication is that the main factor exp �ÿ2Z 3=3n �3E�
depends sharply on the charge of the atomic core Z and,
moreover, the passage to the case Z � 0 (the ionization of
negative ions like Hÿ, Naÿ, etc.) is not obvious. Meanwhile,
this factor does not depend on Z whatsoever and is
determined only by the bound-state energy E0 � ÿk 2=2 (in
which it is possible to include the Stark shift of the level) and
the external electric field E, which is easily seen even with the
simplest one-dimensional model:

w / exp

�
ÿ2
� b

0

�������������������
k 2 ÿ 2Ex
p

dx

�
� exp

�
ÿ 2k 3

3E
�
; �13:3:9�

where the barrier width is b � k 2=2E4 kÿ1. The dependence
on Z enters Eqns (13.3.1), (13.3.2) via n � � Z=k and begins
(in the exponent) with the Coulomb correction 2n � lnF,
which is small in comparison with the principal term 2=3F
for F5 1. In the ADK formula (13.3.4), this fact is masked by
the designation adopted in it, making it less clear. Moreover,
this formula offers no computational advantages in compar-
ison with formula (13.3.1). The latter actually is even simpler
(with the understanding that the asymptotic coefficients Ck

are borrowed from Ref. [14] or similar tables) and is no less
accurate. Therefore, one cannot agree with the statement that
``the formulas obtained in Refs [4, 5] ... did not completely
satisfy the demands of experiment. In Ref. [115], the formula
derived in Ref. [5] was recast in the form most convenient for
practical use in the cases of tunnel ionization of atoms and
theirmultiply charged ions'' (see Ref. [157], p. 228). The entire

`recasting' consisted of replacing the factorials in expressions
(2.5), (2.7) with the Stirling approximation, which was done
for no good reason (for the quantum numbers n, l are
ordinarily on the order of unity).

We also note that the photoelectron momentum distribu-
tion in the case of linear polarization [5] for g5 1 turns
directly into formula (3.13) obtained by a separate calculation
in Refs [48, 49]. The distribution (2.9) for circularly polarized
radiation follows from the formulas in Refs [4, 5] valid for all
values of g and has already been written in explicit form (see
Eqn (29 00) in Ref. [4]). The Coulomb interaction was taken
into account by employing the quasiclassical perturbation
theory in Refs [49 ± 51], the corresponding mathematical
manipulation being a replication of Ref. [5]. Lastly, we note
that formula (2.5) derived in Ref. [5] is valid for an arbitrary
level of any atom and not exclusively for the hydrogen atom.
Nor does it necessitate generalization with the aid of the
quantum defect method ± contrary to what is stated in
Refs [51, 115].

Therefore, all results of the `ADK theory' follow from the
formulas of Refs [4 ± 7], which are valid for arbitrary g, in the
special case g5 1. However, this is not noted in Refs [50, 51,
156] or elsewhere, although Refs [4 ± 7] are familiar to these
authors and are occasionally cited by them but not concern-
ing this point.

In summary, we enlarge onRefs [132, 133] concerned with
the `semiclassical Dirac theory of tunnel ionization'. Refer-
ence [132] contains formula (8) for the ionization ratewr of the
ground state in constant crossed fields. This formula (which is
considered [132] the `main result' of this work) can be written
in the form

wr � mc 2

�h
C 2

lPQExp ; �13:3:10�

where the factors Exp [see (10.8), (10.11)], the Coulomb factor
Q, and the pre-exponent P are identically equal to the
expressions previously obtained in Refs [4, 129 ± 131] and
the coefficient C 2

l can be found in any textbook on quantum
mechanics [120, 127].

Neither the spin factor (10.14) in the tunneling prob-
ability, nor the correction of the order of g2 in the exponent
(10.11) were calculated in Ref. [132]. Nor was the adiabatic
correction included [5], which changes the power of the field
in the pre-exponent. Formula (8) of Ref. [132] might therefore
bear relation only to the case of constant fields. However, in
this case, too, the authors actually assume that the Dirac
bispinor Ŝ, which defines the electron polarization and is
predetermined near the atomic nucleus, remains invariable in
the course of sub-barrier motion (see formulas (1), (2), and (5)
in Ref. [132]), which is wrong [128] [see formulas (10.14) and
(10.15)]. The original contribution of the authors of Ref. [132]
reduces to the multiplication of the factors Exp, Q, and P
derived in the earlier works [4, 129 ± 131], which is nowhere
mentioned, though. In this case, the asymptotic coefficientC 2

l
refers to the spin s � 1=2 and the spin correction to the action
is not considered, and therefore formula (8) of Ref. [132] is
physically senseless.

`The main result' of that paper is mere rewriting of the
formulas from our papers with retention of the notation,
including the passage from the energy level E � E0=mc 2 to the
convenient auxiliary variable x (10.9) introduced inRef. [129],
which emerges in a natural way in the ITM. Added to this in
Ref. [133] were the formulas of the relativistic theory of

26 See Eqn (7.6) in Ref. [11], where formula (2.7) was derived from the

analysis of the recurrence relations satisfied by the normalization integrals�
w 2
n� l�r� dr with the neighboring values of quantum numbers n �, n � � 1 in

the Coulomb field distorted at short distances r9 rc. Subsequently, a

more rigorous derivation of the Hartree formula (with an estimate of

corrections to it) was made employing the quantum defect method [17, 18]

and from the effective range expansion [19].
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ionization by a constant electric field, which were entirely
borrowed from Ref. [130] (compare, for instance, formula
(35) in Ref. [133] with expressions (6) and (32) in Ref. [130]),
the necessary references also missing from Ref. [133]. Con-
sidering this situation to be not only strange but also at
contradiction with the elementary principles of scientific
ethics, I would like to draw the attention of the scientific
community to these facts.
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