ролируемой манипуляции в джозефсоновском кубите, использующем зарядовую степень свободы [4], было проведено несколько других экспериментов с фазовым [5, 6], потоковым [7], зарядовым [8] и комбинированным (заряд/поток) [9] джозефсоновскими кубитами. Более того, недавно было продемонстрировано когерентное поведение цепей из двух взаимосвязанных кубитов [10, 11]. Получены четкие доказательства взаимодействия электростатически связанных кубитов. На основе двух взаимосвязанных зарядовых кубитов была продемонстрирована также стандартная логическая операция С–NOT, т.е. создан прототип квантового логического С–NOT-затвора [12]. Следующий важный шаг, который должен быть сделан, — организация контролируемого взаимодействия кубитов [13, 14].

В настоящее время усилия многих исследователей направлены на улучшение качества отдельных кубитов и понимание механизмов декогерентизации в джозефсоновских кубитах. Это сделано, например, с помощью реализации новых считывающих схем с высокой эффективностью и низким обратным действием [15, 16]. Комбинируя ловушку и одноэлектронный транзистор, мы смогли провести одиночные считывания показаний зарядового кубита, т.е. мы смогли измерить состояние кубита после каждого события при манипуляции [15]. Эта цепь также позволила нам определить динамику релаксации зарядового кубита [17]. Из результатов этих измерений мы сделали вывод, что зарядовый шум, исходящий от двухуровневого источника флуктуаций, играет ключевую роль в энергетической релаксации кубита.

Список литературы

- 1. Nielsen M A, Chuang I L *Quantum Computation and Quantum Information* (Cambridge: Cambridge Univ. Press, 2000)
- 2. Shnirman A, Schön G, Hermon Z Phys. Rev. Lett. 79 2371 (1997)
- 3. Averin D V Solid State Commun. 105 659 (1998)
- 4. Nakamura Y, Pashkin Yu A, Tsai J S Nature 398 786 (1999)
- 5. Martinis J M et al. Phys. Rev. Lett. 89 117901 (2002)
- 6. Yu Y et al. Science **296** 889 (2002)
- 7. Chiorescu I et al. *Science* **299** 1869 (2003)
- 8. Duty T et al. Phys. Rev. B 69 140503(R) (2004)
- 9. Vion D et al. Science 296 886 (2002)
- 10. Pashkin Yu A et al. Nature 421 823 (2003)
- 11. Berkley A J et al. Science 300 1548 (2003)
- 12. Yamamoto T et al. Nature 425 941 (2003)
- 13. Averin D V, Bruder C Phys. Rev. Lett. 91 057003 (2003)
- 14. Lantz J et al., cond-mat/0403285
- 15. Astafiev O et al. Phys. Rev. B 69 180507(R) (2004)
- 16. Lupascu A et al., cond-mat/0311510; submitted to Phys. Rev. Lett.
- 17. Astafiev O et al., submitted to Phys. Rev. Lett.

PACS numbers: 74.20.De, 74.25.Dw, 74.25.Op

Сверхпроводящие состояния и магнитный гистерезис в сверхпроводниках конечного размера

Г.Ф. Жарков

Макроскопическая теория сверхпроводимости Гинзбурга-Ландау (ГЛ) [1] (ГЛ, 1950) представляет собой пример торжества физической интуиции. Эта теория была успешно использована для описания поведения сверхпроводников в магнитном поле и для предсказания множества эффектов, получивших в дальнейшем экспериментальное подтверждение. Центральным пунктом этой теории является предположение, что физическое состояние сверхпроводника описывается комплексной функцией, называемой параметром порядка,

$$\Psi(\mathbf{x}) = \psi(\mathbf{x}) \exp\left[\mathrm{i}\Theta(\mathbf{x})\right],$$

где ψ — модуль и Θ — фаза параметра порядка, **х** — пространственная координата. Из условия однозначности $\Psi(\mathbf{x})$ следует, что в любой точке сверхпроводника фаза определена лишь с точностью до фактора $2\pi m$, где $m = 0, \pm 1, \pm 2, ...,$ причем $\psi(\mathbf{x})$ в этой точке может иметь особенность: $\psi(\mathbf{x}) \sim x^{|m|}$ при $x \to 0$. Позже было выяснено, что с этой особенностью связано наличие вихрей [2] (Абрикосов, 1957) в сверхпроводниках II рода, для которых значение материального параметра теории $\varkappa > \varkappa_0 = 1/\sqrt{2} = 0,707.$

Деление сверхпроводников на две группы (с $\varkappa < \varkappa_0$ и $\kappa > \kappa_0$) было предложено уже в исходной работе ГЛ, которые нашли, что свободная энергия поверхности раздела между сверхпроводящим (s-) и нормальным (n-) состояниями металла в магнитном поле (в так называемом промежуточном состоянии) обращается в нуль при $\varkappa = \varkappa_0$ [1], что свидетельствует о неустойчивости n-состояния в сверхпроводниках I рода (с $\varkappa < \varkappa_0$) относительно образования s-фазы и приводит (при уменьшении внешнего поля Н) к фазовому переходу первого рода (скачком) из переохлажденного (в магнитном поле) сверхпроводящего состояния в нормальное. Они же нашли, что в сверхпроводниках I рода в достаточно слабом поле соблюдается эффект Мейснера (т.е. полное выталкивание поля из сверхпроводника), а с ростом поля происходит фазовый переход первого рода из перегретого s-состояния в нормальное n. Однако, следуя Абрикосову [2], можно также говорить, что при $\varkappa > \varkappa_0$ магнитное поле начинает проникать внутрь сверхпроводника II рода в виде вихрей (образуя так называемое смешанное состояние), причем с ростом поля нормальные сердцевины вихрей полностью перекрываются и сверхпроводник переходит в нормальное состояние фазовым переходом второго рода (в поле $H_{\rm c2} = \phi_0/(2\pi\xi^2)$, где $\phi_0 = hc/2e$ — квант потока, ξ — длина когерентности сверхпроводника [2]). Таким образом, в [2] был описан вихревой механизм проникновения внешнего поля внутрь сверхпроводника II рода.

Заметим здесь, что описанная выше картина проникновения магнитного поля в сверхпроводники была получена в [1, 2] на основе термодинамических соображений для однородных сверхпроводников бесконечной протяженности, без учета возможных краевых эффектов. Ниже будет продемонстрировано, что в сверхпроводниках конечного размера (цилиндр или пластина, находящиеся в вакууме в продольном магнитном поле) существует еще один, краевой, механизм проникновения поля в сверхпроводник. При этом механизме вихри могут не образовываться, однако параметр порядка $\psi(x)$ вблизи краев сверхпроводника сильно подавляется и растущее магнитное поле почти свободно начинает проникать в сверхпроводник вблизи его краев. При дальнейшем усилении поля такое краевое (edge) е-состояние окончательно подавляется при достижении полем значения *H*_{c2}. Краевые е-состояния могут существовать лишь в сверхпроводниках II рода с $\varkappa > \varkappa_c = 0.93$ при достаточно Ниже также показано, что при ослаблении сильного внешнего поля в сверхпроводниках конечного размера со значениями \varkappa , лежащими в интервале $\varkappa_0 < \varkappa < \varkappa_c$, из переохлажденного нормального п-состояния сперва зарождается особое р-состояние (предвестник, или precursor), из которого затем скачком в поле H_r (индекс г означает restoration) полностью восстанавливается сверхпроводящее мейснеровское (М) состояние. В сверхпроводниках с $\varkappa < \varkappa_0$ промежуточное р-состояние не образуется и при ослаблении поля сразу происходит скачок из п-состояния в М. Таким образом, сверхпроводники конечного размера можно условно разделить на три группы: со значениями $\varkappa < \varkappa_0, \varkappa_0 < \varkappa < \varkappa_c$ и $\varkappa > \varkappa_c$.

Разнообразные краевые эффекты подробно описаны в работах [6-17]; ниже поясняются лишь наиболее существенные моменты проведенных исследований. Рассмотрен для простоты случай цилиндрической геометрии, когда вихрей в сверхпроводнике нет, т.е. m = 0. Самосогласованные решения системы нелинейных уравнений ГЛ для параметра порядка $\psi(\mathbf{x})$ и безразмерного потенциала магнитного поля $a(\mathbf{x})$ находились методом итераций [6]. (Заметим, что результаты не зависят от метода расчетов.) Вид этих уравнений и граничных условий к ним можно найти в [6-17]. За единицу измерения длины x можно выбрать либо ξ (длину когерентности), либо λ (глубину проникновения поля), которые входят в систему уравнений ГЛ на равных основаниях. В качестве единицы измерения поля можно выбрать либо $H_{\xi} =$ $=\phi_0/(2\pi\xi^2)\equiv H_{c2}$, либо $H_{\lambda}=\phi_0/(2\pi\lambda^2)=H_{\xi}/\varkappa^2$. Рассматриваются лишь одномерные решения (или состояния), которые кроме радиальной координаты х зависят также от параметров задачи: к, R, H. Результаты проведенного исследования удобно привести в виде рисунка.

Рисунок 1 представляет собой диаграмму состояний цилиндра, изображенную на плоскости параметров \varkappa и $R_{\lambda} = R/\lambda$. Каждой точке этой плоскости отвечает конкретный сверхпроводник, состояния которого зависят от внешнего поля *H*. Эти зависимости можно увидеть, если мысленно проделать отверстия в каждой точке (\varkappa, R_{λ}) и заглянуть сквозь них под эту плоскость. Изучив такие зависимости, можно найти четыре критические линии (π , μ , ζ , *i*), разделяющие плоскость (\varkappa, R_{λ}) на пять областей (*A*, *B*, *C*, *D*, *E*), в каждой из которых реализуются свои состояния с характерным поведением параметра порядка $\psi(x)$ и намагниченности $4\pi M(H) = \bar{B} - H$ (здесь \bar{B} — среднее значение магнитного поля внутри образца). Смысл этих состояний, линий и областей поясняется ниже.

Далее мы будем различать два режима воздействия внешнего поля *H* на сверхпроводник: режим увеличения поля (УП), когда сверхпроводник первоначально находился в сверхпроводящем состоянии в отсутствие поля, которое затем усиливается, и режим ослабления поля (ОП), когда сверхпроводник первоначально находился в нормальном состоянии в сильном поле, которое затем ослабляется. Последовательность состояний, возникаю-

Рис. 1. Диаграмма состояний цилиндра при m = 0. Критические линии (π , μ , ζ , i) на плоскости параметров (\varkappa , R_{λ}) разделяют области существования (A, B, C, D, E) различных сверхпроводящих состояний. Критические линии пересекаются друг с другом в одной точке G.

щая в этих двух режимах, разная, что свидетельствует о возможности гистерезиса в системе.

На рисунке 2 схематически изображено поведение параметра порядка $\psi_0(h)$ в центре цилиндра, в каждой из областей рис. 1 в зависимости от нормированного поля h (нормировка произвольная). В области A в слабом поле $(h \sim 0$ и $R_{\lambda} \gg 1)$ реализуется мейснеровское (M) состояние с $\psi_0 \sim 1$, когда внешнее поле экранируется и не проникает внутрь образца. Сверхпроводящее М-состояние при увеличении поля сохраняется вплоть до некоторого значения h₁, когда М-состояние разрушается фазовым переходом первого рода $M \rightarrow n$. При ослаблении поля n-состояние переходит в переохлажденное \bar{n} -состояние ($\psi \equiv 0$), которое устойчиво (относительно малых флуктуаций) вплоть до точки h_r, где оно теряет устойчивость и восстанавливается М-состояние (скачок $\bar{n} \to M$). При $h < h_r$ нормальное состояние (\dot{n} , с $\psi \equiv 0$) динамически неустойчиво, поскольку оно имеет положительный временной инкремент.

В области В в режиме ОП восстановление сверхпроводящего М-состояния начинается в поле h_p фазовым переходом второго рода из переохлажденного п-состояния в промежуточное р-состояние, которое существует вплоть до точки $h_{\rm r}$, где p-состояние теряет устойчивость и скачком восстанавливается М-состояние. Заметим, что р-состояние метастабильно, поскольку наряду с ним существует М-состояние с бо́льшим параметром порядка ψ и с меньшей свободной энергией. В области *B* кроме упомянутых существует еще одна ветвь решений (u), которая, однако, абсолютно неустойчива. (Малые отклонения от u-состояния имеют положительный инкремент, т.е. нарастают во времени. Неустойчивость и-решений очевидна также из того, что на математической и-ветви производная $\mathrm{d}\psi_0/\mathrm{d}h>0,$ т.е. внешнее поле усиливает сверхпроводимость, а не подавляет ее, как на физической М-ветви, где $d\psi_0/dh < 0$. Стрелками на кривых отмечены точки бифуркации решений, здесь в малой окрестности полей $h_{\rm r}, h_{\rm p}, h_{\rm l}$ имеются два мало отличающиеся друг от друга состояния.)

Рис. 2. Характерное поведение параметра порядка $\psi_0(h)$ в разных областях (*A*, *B*, *C*, *D*, *E*) рис. 1 (схематически). Сплошными линиями показаны устойчивые состояния (M, e, n), штриховыми — метастабильные (гистерезисные) состояния (\bar{n} , p, d), пунктирные линии отвечают абсолютно неустойчивым состояниям (u, \dot{n}).

На границе областей A = B точки бифуркации h_r и h_p лежат на вертикальной прямой ($h_r = h_p$). Это происходит при значениях \varkappa , принадлежащих линии π на рис. 1. Эта линия показывает границу, где в режиме ОП сверхпроводящее р-состояние пропадает и восстановление сверхпроводимости происходит сразу скачком из \bar{n} -состояния в М. Асимптотика линии π при $R \gg \lambda$ совпадает со значением $\varkappa_0 = 1/\sqrt{2}$.

В области *C* в режиме УП происходит скачок (в поле h_1) из М- в е-состояние с конечной амплитудой $\psi_0 > 0$, которая обращается в нуль в максимальном поле h_2 (это поле совпадает со значением $H_{c2} \equiv H_{\xi}$). В режиме ОП е-состояние плавно превращается в d-состояние (depressed), из которого в поле h_r скачком восстанавливается в М-состояние. В области *C* отсутствует переохлажденное \bar{n} -состояние.

На границе областей B = C точки бифуркации h_1, h_p и h_2 лежат на одной прямой ($h_1 = h_p = h_2$). Это отвечает значениям \varkappa , принадлежащим линии μ на рис. 1, которая показывает границу существования переохлажденного \bar{n} -состояния. Асимптотика линии μ при $R \ge \lambda$ совпадает со значением $\varkappa_c \approx 0.93$.

На границе областей C = D скачок $\mathbf{M} \to \mathbf{e}$ (существующий в области C) исчезает и одновременно исчезает гистерезисное d-состояние. Точки бифуркации h_1 и h_r лежат при этом на прямой $h_1 = h_r$, а зависимость $\psi_0(h)$ принимает обратимый (безгистерезисный) вид, причем в точке ζ производная $d\psi_0/dh = \infty$. Соответствующие значения \varkappa отмечают границу гистерезиса (линия ζ на рис. 1).

В области *D* на кривых $\psi_0(h)$ имеется точка перегиба *i* с конечным значением производной $d\psi_0/dh < \infty$. На

Рис. 3. Координатные зависимости $\psi(x)$ и b(x) в цилиндре с $R_{\lambda} = 7$: (a, б) $\varkappa = 1, 2$, область *C*, режим УП; (в, г) $\varkappa = 0, 8$, область *B*, режим ОП. Обозначения пояснены в тексте.

границе областей D = E точка перегиба *i* опускается вниз на ось абсцисс ($\psi_0 = 0$, $h_i = h_2$; таким точкам отвечает линия *i* на рис. 1). В области *E* кривые $\psi_0(h)$ монотонно спадают, не имея точек перегиба.

Сказанное выше дополнительно иллюстрирует рис. 3, на котором изображены координатные зависимости параметра порядка $\psi(x)$ и поля b(x) (нормировано на H_{ξ}) для цилиндра с $R_{\lambda} = 7$ при $\varkappa = 1,2$ (рис. 3a, б) и $\varkappa = 0,8$ (рис. 3в, г). Видно, что при $\varkappa = 1,2$ (область *C*) в режиме УП параметр порядка, первоначально имевший вид $\psi(x) \equiv 1$ (при h = 0), постепенно принимает вид мейснеровской кривой М (сплошная линия), которая при $h_1 =$ = 0,7692 скачком трансформируется в краевое е-состояние. Смысл е-состояния особенно отчетливо выявляется на кривых b(x), где видно, что при $h = h_1$ М-состояние (в котором внешнее поле h_1 экранируется и почти не проникает в цилиндр) сменяется е-состоянием (в котором поле h_1 почти свободно проникает по краю цилиндра, но сверхпроводимость сохраняется в центре). Таким образом, путем образования е-состояний реализуется дополнительный краевой механизм проникновения поля в сверхпроводник, отличный от обычного вихревого механизма [2]. При дальнейшем увеличении поля h амплитуда е-состояния постепенно уменьшается (см. кривые е') и при $h_2 = 1,0013$ е-состояние исчезает и переходит в n-состояние. В режиме ОП из n-состояния вновь возникает е-состояние, плавно переходящее в d-состояние, которое в поле $h_{\rm r} = 0,6418$ скачком перестраивается в М-состояние (штриховые линии на рис. 3а, б). Таким образом, при переходах $d \to M$ реализуется дополнительный механизм выталкивания поля из сверхпроводника, не связанный с движением вихрей через границу образца.

При $\varkappa = 0.8$ (область *B*) в режиме УП из М-состояния (сплошные линии на рис. 3в, г) в поле $h_1 = 1,2358$ скачком образуется п-состояние, а в режиме ОП п-состояние сперва переходит в переохлажденное (гистерезисное) \bar{n} -состояние, из которого в поле $h_p = 1,0009$ сперва зарождается р'-состояние малой амплитуды, которое затем в поле $h_r = 0,9219$ скачком перестраивается в М-состояние (пунктирные линии). Таким образом, при переходах р \rightarrow М также реализуется дополнительный (невихревой) механизм проникновения поля в сверхпроводник, обязанный динамической перестройке р-состояния в точке неустойчивости решения.

(Заметим, кстати, что р-состояние $\psi(x)$ на рис. Зв напоминает по виду (s, n)-стенку [1]. Можно убедиться [15–17], что при $R_{\lambda} \to \infty$, $\varkappa \to \varkappa_0 = 1/\sqrt{2}$ и $h \to 1$ (т.е. $H \to H_{\xi}$) последнее из р-состояний (отмеченное на рис. 2 (A = B) буквой π) в точности совпадает с (s, n)-стенкой, рассмотренной Гинзбургом и Ландау [1], причем свободная энергия этого состояния обращается в нуль ($\sigma_{s,n} = 0$), и оно может быть описано аналитически с помощью вырожденных уравнений Богомольного [18–20]. Таким образом, (s, n)-стенка является частным случаем метастабильных р-состояний, существующих в области B в режиме ОП.)

На рисунке 4 представлены критические поля цилиндра с $\varkappa = 0.8$ и $\varkappa = 1.2$ как функции радиуса R_{λ} . Поясним обозначения, используемые на этом рисунке.

Рис. 4. Критические поля цилиндра: (a) $\varkappa = 0.8$ (область *B*), (б) $\varkappa = 1.2$ (область *C*). Обозначения пояснены в тексте.

При $\varkappa = 0.8$ (рис. 4a) и больших R_{λ} максимальное поле, вплоть до которого в режиме УП еще сохраняется сверхпроводящее М-состояние, совпадает с полем фазового перехода первого рода h_1 ; при $h > h_1$ имеется лишь n-состояние. В режиме ОП появляется переохлажденное (гистерезисное) п-состояние, которое существует вплоть до поля $h_{\rm p}$, где в результате фазового перехода первого рода зарождается метастабильное р-состояние. Эти рсостояния существуют вплоть до поля $h_{\rm r}$, где они теряют устойчивость и скачком восстанавливается М-состояние. При $h < h_r$ нормальные (n) решения абсолютно неустойчивы и существуют лишь одни устойчивые М-состояния. При уменьшении R_{λ} область существования р-состояний сужается и в точке π она исчезает. (Критическая линия π на рис. 1 состоит из критических точек л, найденных аналогичным способом при других значениях к.) Поле h_1 и область переохлажденного \bar{n} -состояния существуют вплоть до точки ζ, где гистерезисное п-состояние исчезает. (Линия ζ на рис. 1 отмечает границу гистерезиса и состоит из ζ -точек, найденных при других \varkappa .) Поле $h_{\rm r}$ соответствует точкам динамической неустойчивости переохлажденного п-состояния, где М-состояние восстанавливается сразу в результате фазового перехода первого рода, без образования промежуточного р-состояния. При малых радиусах R_{λ} (лежащих ниже точки ζ) переход из М- в п-состояние (и обратно) происходит путем обратимого фазового перехода второго рода в поле h_2 .

При $\varkappa = 1,2$ (рис. 4б) и больших R_{λ} с ростом поля (режим УП) происходит скачок из М- в е-состояние (в поле h_1) с последующим фазовым переходом второго рода е \rightarrow п (в поле h_2). В режиме ОП из п-состояния в поле h_2 вновь зарождается е-состояние, которое плавно переходит в d-состояние. Последнее существует вплоть до поля h_r , где скачком восстанавливается М-состояние. При уменьшении R_{λ} область существования гистерезисных d-состояний сужается и в точке ζ она исчезает. (Линия ζ на рис. 1, отмечающая границу гистерезиса, состоит из таких критических точек ζ .) При $R_{\lambda} < \zeta$ скачки (*j*), связанные с d-состояниями, сменяются точками перегиба (*i*). Кривая $h_i(h)$ соответствует полям, при которых точка перегиба функции $\psi_0(h)$ (т.е. $d^2\psi_0/dh^2 = 0$) лежит при $\psi_0 > 0$. В точке *i* область перегибов функции $\psi_0(h)$ (а также намагниченности, $4\pi M(h)$) исчезает. (Линия *i* на рис. 1 состоит из соответствующих критических точек.)

Аналогичные вычисления можно провести для случая плоской пластины в параллельном магнитном поле в отсутствие вихрей [14–17]. Диаграмма состояний, решения и критические поля для пластины полностью аналогичны тем, что изображены выше на рис. 1–4 для цилиндра. Сверхпроводящие пластины достаточно большой толщины (с $D_{\lambda} = D/\lambda \ge 1$) также можно разбить на три группы: с $\varkappa < \varkappa_0$, $\varkappa_0 < \varkappa < \varkappa_c$ и $\varkappa > \varkappa_c$, где $\varkappa_0 = 1/\sqrt{2} = 0,707$ и $\varkappa_c = 0,93$. При меньших D_{λ} вновь можно выделить пять областей (A, B, C, D, E), аналогичных показанным на рис. 1.

Одномерные уравнения ГЛ могут быть использованы для описания состояний цилиндра с произвольным числом вихрей *m* на оси (здесь m > 0 — мощность вихря). В этом случае, как уже упоминалось выше, размер нормальной сердцевины вихря растет с *m* как x^m , поэтому остаточное сверхпроводящее состояние (с $\psi(x) \neq 0$) оттесняется к поверхности образца, где оно удерживается внешним полем (см., например, [11]). В результате с ростом числа *m* в массивных образцах (с фиксированным, но большим радиусом *R*) может существовать так называемая поверхностная сверхпроводимость, которая сохраняется вплоть до максимального поля поверхностной сверхпроводимости H_{c3} [21, 22]:

$$H_{c3} = 1,69H_{c2}, \qquad H_{c2} \equiv H_{\xi} = \frac{\phi_0}{2\pi\xi^2}.$$
 (1)

Существование явления поверхностной сверхпроводимости, предсказанного в [21, 22], подтверждено многими экспериментами.

Здесь уместно сделать следующее методическое замечание. Формулу (1) можно переписать в эквивалентном виде, используя иную нормировку:

$$H_{c3} = 1,69 \sqrt{2 \varkappa H_{cb}} = 2,4\varkappa H_{cb} , \qquad (2)$$

где $H_{\rm cb} = \phi_0 / (2\pi\sqrt{2}\,\lambda\xi) = H_{\xi} / (\sqrt{2}\,\varkappa)$ — термодинамическое критическое поле массивного сверхпроводника [1]. Рассматривая формулу (2) как уравнение относительно и, в ряде работ (например, [23-27], см. также [2-5]) авторы делают заключение, что якобы существует "особое" значение $\varkappa_* = (2,4)^{-1} = 0,417$, которое разделяет сверхпроводники I рода, у которых $H_{c3} < H_{cb}$ (при $\varkappa < \varkappa_*$), и сверхпроводники, у которых $H_{c3} > H_{cb}$ (при $\varkappa > \varkappa_*$). Такое заключение, однако, основано на недоразумении. Действительно, поле H_{cb} в (2) зависит от \varkappa , в силу чего уравнение (2) на самом деле не зависит от и потому из него нельзя извлечь никакой дополнительной информации, кроме содержащейся в формуле (1). Согласно (1) в массивном сверхпроводнике существуют два критических поля H_{c2} и H_{c3} , причем их отношение не зависит ни от масштаба измерения поля, ни от и. Таким образом, "особое" значение $\varkappa_* = 0,417$ является, по нашему мнению, иллюзорным и не имеет ни физического, ни математического смысла. Это же видно из рис. 1, на котором значение $\varkappa_* = 0,417$ ничем не выделено, т.е. оно является регулярной точкой уравнений ГЛ.

В заключение подчеркнем, что описанные выше особенности поведения параметра порядка $\psi_0(H)$ и аналогичные особенности в поведении намагниченности $4\pi M(H)$ образцов достаточно малых размеров, в принципе, могут наблюдаться на опыте. Полученную информацию (скачки между состояниями, гистерезис, границы гистерезиса, точки перегиба кривых намагничения, точные значения критических полей переходов между состояниями и др.), вероятно, можно использовать для уточнения параметров R и z реальных образцов. Очевидно, что такая информация может быть полезной, особенно в связи с перспективами создания малоразмерных сверхпроводящих устройств на основе мезоскопических сверхпроводников. Поэтому ясна необходимость дальнейшего теоретического и экспериментального изучения затронутых выше вопросов.

Я признателен В.Л. Гинзбургу за интерес к работе и ценные замечания, а также В.Г. Жаркову, А.Ю. Цветкову, А.Л. Дышко и Н.Б. Конюховой за полезные обсуждения. Данная работа поддержана грантом РФФИ № 02-02-16285.

Список литературы

- 1. Гинзбург В Л, Ландау Л Д ЖЭТФ **20** 1064 (1950)
- 2. Абрикосов А А Основы теории металлов (М.: Наука, 1987)
- 3. Tinkham M Introduction to Superconductivity (New York:
- McGraw-Hill, 1975)
 de Gennes P G Superconductivity of Metals and Alloys (Redwood City, Calif.: Addison-Wesley, 1989)
- Saint-James D, Sarma G, Thomas E J Type II Superconductivity (Oxford: Pergamon Press, 1969)
- 6. Zharkov G F, Zharkov V G Phys. Scripta 57 664 (1998)
- 7. Zharkov G F, Zharkov V G, Zvetkov A Yu *Phys. Rev. B* 61 12293 (2000)
- Жарков Г Ф, Жарков В Γ, Цветков А Ю Кратк. сообщ. по физ. ΦИАН (11) 31 (2001)
- Жарков Г Ф, Жарков В Г, Цветков А Ю Кратк. сообщ. по физ. ФИАН (12) 31 (2001)
- 10. Zharkov G F Phys. Rev. B 63 224513 (2001)
- 11. Zharkov G F Phys. Rev. B 63 214502 (2001)

- 12. Zharkov G F J. Low Temp. Phys. 128 (3/4) 87 (2002)
- 13. Жарков Г Ф ЖЭ*ТФ* **122** 600 (2002)
- Цветков А Ю, Жарков Г Ф, Жарков В Г Кратк. сообщ. по физ. ФИАН (1/2) 42 (2003)
- 15. Zharkov G F J. Low Temp. Phys. 130 (1/2) 45 (2003)
- 16. Zharkov G F Cent. Eur. J. Phys. 2 (1) 220 (2004)
- 17. Zharkov G F, in *Horizons in Superconductivity Research* (Ed. F Columbus) (New York: Nova Sci. Publ., 2004)
- 18. Богомольный Е Б ЯФ 24 861 (1976)
- 19. Dorsey A T Ann. Phys. (New York) 233 248 (1994)
- 20. Luk'yanchuk I Phys. Rev. B 63 174504 (2001)
- 21. Saint-James D, de Gennes P G Phys. Lett. 7 306 (1963)
- 22. Saint-James D Phys. Lett. 15 13 (1965)
- 23. Park J G Phys. Rev. Lett. 16 1196 (1966)
- 24. Feder J Solid State Commun. 5 299 (1967)
- 25. Park J G Solid State Commun. 5 645 (1967)
- 26. Christiansen P V, Smith H Phys. Rev. 171 445 (1968)
- 27. McEvoy J P, Jones D P, Park J G Phys. Rev. Lett. 22 229 (1969)

PACS numbers: 74.25.Ha, 74.81.-g

Сосуществование ферромагнетизма и неоднородной сверхпроводимости

В.Ф. Елесин, В.В. Капаев, Ю.В. Копаев

1. Явления сверхпроводимости и ферромагнетизма представляются антагонистическими по отношению к магнитному полю: сверхпроводник выталкивает магнитное поле (эффект Мейснера–Оксенфельда), а ферромагнетик, наоборот, его концентрирует. Поэтому название антиферромагнетик по смыслу больше подходит для сверхпроводников, чем для веществ, которые принято называть антиферромагнетиками. Впервые вопрос о возможности сосуществования этих состояний был исследован В.Л. Гинзбургом [1] в 1956 г. еще до появления микроскопической теории БКШ [2].

Согласно работе [1] сосуществование возможно, если критическое магнитное поле H_c выше магнитной индукции *I*. С микроскопической точки зрения [2] в большинстве случаев величина H_c определяется посредством влияния магнитного поля (и индукции) на орбитальное движение пар. Кроме того, из-за спаривания с противоположно направленными спинами зеемановское расщепление также приводит к подавлению сверхпроводимости (парамагнитный эффект), и именно оно является определяющим [3].

В случае, когда температура сверхпроводящего перехода T_c существенно выше температуры ферромагнитного перехода T_m , в области сосуществования магнитное состояние неоднородно [4]. (Имеющиеся теоретические и экспериментальные результаты обсуждаются в обзоре [5].)

В случае $T_c \leq T_m$ существует узкий интервал по намагниченности *I*, когда в условиях сосуществования неоднородным оказывается сверхпроводящее состояние [6, 7].

В последнее время появилось большое количество работ (см., например, [8, 9]) по наблюдению сосуществования ферромагнетизма и сверхпроводимости в слоистых купратных соединениях RuSr₂GdCu₂O₈, в которых $T_{\rm m}$ значительно больше $T_{\rm c}$ ($T_{\rm m} = 132$ K, $T_{\rm c} = 46$ K). Такое соотношение $T_{\rm m}$ и $T_{\rm c}$ недопустимо в рамках простой сферической формы поверхности Ферми, лежащей в