
Abstract. The analogs of relativistic effects in classical me-
chanics, which are observed in the propagation of solitons in
solids, are discussed. These effects are described by formulas
similar to those of the special theory of relativity, with the speed
of sound entering them in lieu of the speed of light. These
parallels are shown to be a part of the correspondence between
the soliton theory and field theories (in particular, electrody-
namics). The effect of Lorentz-invariance breakdown in me-
chanical systems on dynamic soliton properties is considered.
It is shown that supersonic solitons (in particular, dislocations)
can propagate in such systems.

1. Introduction

It is common knowledge that classical mechanics 1 embraces
an analog of optics Ð linear acoustics. On the face of it,
relativistic mechanics (the special theory of relativity) cannot
have a classical analog. Meanwhile, the development of
nonlinear dynamics has led to the discovery of classical
particle-like objects Ð solitons [1] which are described by
Lorentz-invariant equations and have, like relativistic parti-
cles, a continuous and bounded velocity spectrum 04 v < vs,
where vs is the velocity of sound. The motion of solitons is
accompanied by effects related to the finiteness of the speed of

sound, which are similar to the relativistic effects in the special
theory of relativity. Among these are the Lorentzian contrac-
tion of the traveling solitonwidth [1], the form variation of the
mechanical stress field of a traveling topological defect [2], the
Lorentzian velocity dependence of the soliton energy [1], etc.
The formulas describing these effects are similar to the
formulas of the special theory of relativity, with the speed of
sound entering them in lieu of the speed of light in vacuum.

The effects stemming from the finiteness of the speed of
sound in mechanical systems possessing Lorentzian symme-
try will be referred to as `relativistic'. In the scientific
literature, this terminology has already been established,
although it may well surprise the reader unfamiliar with the
soliton theory. However, it comes as no surprise that different
optical effects have analogs in acoustics. The names of these
effects in optics and acoustics are the same: diffraction,
interference, and dispersion. The use of common terms
reflects the common character of the mathematical descrip-
tion of these effects despite the difference inmagnitudes of the
constants (the speeds of sound and light). The analogy
between soliton dynamics and the special relativity may be
considered as an extension of the analogy between acoustics
and optics. Apart from the waves, the particles (in the special
theory of relativity) and solitons (in classical mechanics) also
present in this case. Once again, we can see similar effects: the
Lorentzian dependence of the width of an object (a particle or
a soliton) on its velocity, the equivalence relation between the
mass and the rest energy of an object in the form E � mc2 (c is
the speed of light in the case of the special theory of relativity
or the speed of sound in classical mechanics), the particle ±
antiparticle annihilation (the soliton ± antisoliton annihila-
tion in mechanics) with the emission of energy in the form of
electromagnetic waves (sound waves in mechanics). Clearly
this all is no a mere coincidence but is a reflection of the
common character of the mathematical description of the
processes occurring in mechanics and electrodynamics alike.
This community stems from the finiteness of the rate of
information transfer (the speed of sound or light) or, in
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1 Throughout this paper, by classical mechanics is meant the mechanics

based on Newtonian laws, i.e., nonrelativistic mechanics.



other words, from the retardation of signals and from the
Lorentzian symmetry of dynamic equations. The community
of themathematical description also underlies the community
of terminology. Employing the term `relativistic' to describe
the mechanical effects related to the finiteness of information
transfer rate is therefore warranted to the same degree as
employing the term `diffraction' both for light and sound.

The analogy under discussion applies both to solitons in
one-dimensional systems (the simplest case is mechanical
models described by the sine-Gordon equation) and to, for
instance, screw dislocations in a three-dimensional elastic
continuum. However, the finiteness of information transfer
rate in classical mechanics does not necessarily lead to the
Lorentzian symmetry. In particular, there exist two rates of
information transfer in a solid even in the isotropic case: the
velocities of longitudinal and transverse sound waves. In the
propagation description of any dislocations, except for the
screw rectilinear ones, all physical quantities are therefore
split into components which are Lorentz-transformable with
different parameters (the velocities of longitudinal and
transverse sound waves) [2]. In anisotropic bodies, the
number of sound velocities in any direction increases up to
three, making the description of the dynamics of topological
effects all the more complicated. These cases still allow us to
employ the Lorentz transformations. But in the investigation
of real physical systems, quite often there is a need to include
the terms which account for the gradient nonlinearity [for
instance, terms of the form q2�u3�=qx2] and the gradient
dispersion (terms of the form q4u=qx4) in the equations of
motion of a continuous medium. This has the consequence
that the equations of motion do not satisfy the Lorentz
invariance condition. Nevertheless, effects related to the
finiteness of information transfer rate still persist in the
theory. The analogy with the special theory of relativity is
retained at a qualitative level. It is shown below (see Section 2)
that the soliton width, for instance, decreases with its velocity
in these systems as well. However, the Lorentz relations do
not apply to the description of the dynamic properties of these
systems. The effects related to the finiteness of information
transfer rate in the systems devoid of Lorentzian symmetry
will be referred to as `quasi-relativistic'. This term reflects the
fact that the source of these effects, like of the corresponding
effects in Lorentz-invariant models, is the finite rate of
information transfer. The difference consists only in the
symmetry of dynamic equations.

Some nonlinear equations not satisfying the Lorentz
invariance condition admit supersonic soliton solutions. In
Section 2 we will show that their existence violates neither the
causality principle nor the other laws of physics. The super-
sonic solitons in different mechanical systems can possess a
continuous velocity spectrum as well as a discrete one.

The situation is further complicated if the discrete
structure of real physical systems is taken into account.
Unfortunately, the equations which describe discrete
mechanical systems do not, as a rule, possess analytical
soliton solutions. That is why we can investigate their
properties only with the aid of a physical experiment or
numerical simulations.

The analogy between optics and acoustics can be extended
even further. In the framework of classical mechanics, there
exists an analog of classical electrodynamics, i.e., a theory
which describes not only the propagation of electromagnetic
waves but also their interaction with charged particles. As
shown by Kosevich [3], an analog of this sort is the dynamic

theory of dislocations, i.e., topological solitons in a crystal
lattice. The dislocations correspond to electric charges in this
theory, and the fields of elastic deformations and mechanical
stresses to the electromagnetic field.More recently,Musienko
and Koptsik [4] showed that the dynamic dislocation theory
can be formulated as a four-dimensional gauge theory. The
ambiguity of the potential of the dislocation elastic field (the
so-called `gauge freedom') is related to the ambiguity of the
choice of the particle displacement field in the medium (in the
continuous approximation) around a dislocation. The tensor
rank of many physical quantities in the gauge dislocation
theory is different from the dimensionality of their electro-
dynamic analogs. Furthermore, the distortion and mechan-
ical stress tensors in the most general case are neither
symmetric nor antisymmetric, while their corresponding
electromagnetic field tensor is antisymmetric. Nevertheless,
every formula and every effect in electrodynamics possess
exact and unambiguous analogs in the framework of
dislocation theory. The gauge theory of dislocations and
disclinations constructed in the works of Kadi�c and Edelen
[5] is also based on the analogy between the theory of defects
and electrodynamics, but this analogy is radically different
from that employed in Refs [3, 4]. This problem will be
discussed in greater detail in Section 4.

To avoid misunderstanding, first of all we want to explain
what we imply by the term `soliton'. Mathematicians use the
term soliton in reference to a localized particle-like solution of
a totally integrable nonlinear system of equations describing a
finite-energy excitation [6]. Physicists commonly give a
broader definition and assume that a soliton is a localized
stationary (or stationary on the average) perturbation of a
homogeneous or spatially periodic nonlinear medium [7].
Topological solitons, i.e., ones possessing topological
charges, make up a special class of solitons. This definition
permits us to include in the list of topological solitons all
topological defects in condensed matter: dislocations and
disclinations in crystals, quantized vortices in superfluid
liquid helium, vortex defects and domain walls in ferro-
magnets, disclinations in liquid crystals, Abrikosov vortices
in superconductors, frustration lines in spin glasses, etc. The
physical approach to the concept of a soliton is fundamentally
different from the mathematical one: not only does it allow us
to consider nonintegrable systems, but it also permits the
assignment to solitons of those configurations for which the
exact solutions of the corresponding nonlinear equations are
unknown. In some cases, it is possible to find numerically
such solutions and study their dynamic behavior by way of
computer simulations.Moreover, experimental physicists can
investigate the behavior of topological solitons in condensed
matter even though the governing equations themselves,
whose solutions are these solitons, may be unknown. The
solitons that are void of a topological charge are termed
dynamic.

We are reminded that topological charges are the elements
of a homotopy group pi�V�, where V is the order parameter
space (it is sometimes also termed the degeneracy space) [8, 9].
V covers the range of all values which the order parameter
(degeneracy parameter) can assume without a change in the
energy of the system. For instance, the order parameter in a
three-dimensional crystal is the three-dimensional vector of
atomic displacements. Since the lattice displacement by lattice
spacing results in the same structure which corresponds to the
zero displacement, the crystal-lattice degeneracy space forms
a cube whose opposite faces are equivalent, i.e., the three-
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dimensional torus surface T 3 in four-dimensional space [10].
Each element of the pi�V � group is given by the homotopy
class of mappings S i ! V of an i-dimensional sphere. The
choice of i is determined by the dimensionality n of the
solitons under study (in the mathematical literature, such
objects are also referred to as topological singularities):
i � dÿ nÿ 1, where d is the dimensionality of the space M
which harbors the solitons. For instance, measuring the
charges of dislocations, which are point-like (i.e., zero-
dimensional) topological solitons in the two-dimensional
space and one-dimensional solitons in the three-dimensional
space, requires choosing i � 1. The Burgers circuits g used in
the dislocation theory [10] are mapped onto closed circuits G
in the order parameter space V. When there is no dislocation
inside the Burgers circuit, its image G contracts into a point.
This mapping corresponds to the unit element of the group
p1�T 3�, i.e., to the zero topological charge. If a dislocation is
enclosed by the Burgers circuit, its image on the torus G is
characterized by three topological invariants n1, n2, and n3 Ð
the winding numbers of the three circles that form the torus.
The circuits characterized by different winding numbers
correspond to different homotopic mapping classes, i.e.,
cannot be brought into coincidence through a continuous
transformation. Each mapping class sets a specific topologi-
cal charge value Ð the set of topological invariants
(n1; n2; n3). This set unambiguously determines the value of
the Burgers vector b � n1a1 � n2a2 � n3a3, where a1, a2, and
a3 are the lattice translation vectors. A screw dislocation, i.e.,
a dislocation with the Burgers vector parallel to the defect
line, is depicted in Fig. 1. In the continuous approximation,
the Burgers vector constitutes the integral

bi �
�
L

dui �
�
L

qui
qxk

dxk ; �1�

where L is an arbitrary closed circuit enclosing the disloca-
tion, and ui is the vector of particle displacements in the
medium.

This paper is concerned primarily with solitons in
mechanical systems (except as otherwise noted). Particle
displacement serves as the order parameter for these
solitons. In solids, such solitons are the elementary plasticity
carriers. The best-known example of solitons of this kind
comprises dislocations in crystals. Presumably, less known is
the fact that point (zero-dimensional) topological solitons can
also be plasticity carriers in three-dimensional crystals. This
applies, for instance, to three-dimensional polymer crystals
consisting of parallel macromolecules. Such solitons strongly
affect the mechanical properties (plasticity, strength) of
solids. They also interact with the vibrational modes of a
body, dissipate their energy, and therebymake a contribution
to internal friction and thermal conductivity.

Of course, the function of order parameter can be fulfilled
not only by displacement, but by other physical quantities as
well. Other solitons correspond to a different choice of this
parameter. At the present time, solitons are being investigated
in virtually all branches of physics. Solitons have been
discovered in liquids (solitons on the water surface) [11], in
gaseous systems (Rossby waves) [11, 12], in plasmas
(Langmuir, cyclotron, ion-sound solitons, etc.) [12], in
different solids (in crystals, superconductors, spin glasses,
etc.), and in optical fibers (optical solitons) [13]. The possible
role of solitons in astrophysics [14] and elementary particle
physics [15] is being discussed as well.

The concept of solitons is extensively exploited in
biophysics. At present, Davydov solitons [13] are recognized
to play a fundamental part in efficient dispersionless energy
transfer in complex biological objects such as proteins, DNA,
and other biomolecules. The peak corresponding to these
solitons was discovered in the infrared spectra of crystalline
acetanilide. Of considerable interest is the possible role of
Davydov solitons in the mechanisms of nonthermal action of
electromagnetic fields on living cells. A comprehensive review
of theoretical and experimental papers dedicated to the study
of Davydov solitons is given in Ref. [16]. Furthermore, other
types of solitons are being investigated in biological entities
(in particular, in DNA [17, 18], nerve fibers, and biological
tissues [19]).

We shall not discuss the application of solitons in all these
systems for the following reasons. First, the volume of our
paper is limited. Second, the applications of soliton theory in
different fields of physics are the concern of a series of
monographs and review articles, which we do not want to
repeat. The principal aim of our paper is to review those
effects in soliton dynamics that are related to the finiteness of
information transfer rate (both relativistic and quasi-relati-
vistic effects). To greatly simplify for the reader the under-
standing of the physical nature of these effects, we decided to
restrict our consideration to the simplest systems that allow
the existence of solitonsÐmechanical systems. The intention
in this paper is to compare the relativistic and quasi-
relativistic effects in classical mechanics with similar effects
in the special theory of relativity; to discuss the causes of the
emergence of these effects in the framework of classical
mechanics, as well as the analogies between soliton dynamics
and gauge field theories (in particular, electrodynamics and
gravitation theory), and to show that soliton dynamics

z
y

x

Figure 1. Screw dislocation in a three-dimensional crystal.
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exhibits quasi-relativistic effects which have no analogs in the
special theory of relativity: in particular, formulas may
appear which do not satisfy the Lorentz invariance condi-
tion, while solitons may propagate with supersonic velocities.

In Section 2 of our paper we consider relativistic and
quasi-relativistic effects in the dynamics of solitons (both
topological and dynamic) in one-dimensional systems. The
analogy between the relativistic effects in the soliton theory
and those in the special theory of relativity is drawn by the
example of the best-known sine-Gordon equation.We review
the results obtained by different authors, which are related to
the supersonic propagation of solitons and soliton-like
excitations.

Considered in Section 3 are relativistic and quasi-
relativistic effects in the dynamics of dislocations (one-
dimensional topological solitons). The nature of these effects
is demonstrated to bemore complicated than the nature of the
effects of the special relativity, which is due to the existence of
several velocities of sound in solids. We consider the origin of
these effects in themechanics of solids. Papers concerned with
supersonic dislocations are also reviewed.

In Section 4 we discuss the analogies between the gauge
theory of dislocations and disclinations and the fundamental
field theories (electrodynamics and the gravitation theory).

In the concluding section we summarize the results of our
work and discuss further prospects for studying the problems
under discussion.

2. Relativistic and quasi-relativistic effects
in soliton dynamics in one-dimensional systems

2.1 Dynamics of soliton solutions
of the sine-Gordon equation
As the first example we consider the classical one-dimensional
Frenkel ± Kontorova dislocation model [2]. A chain of
particles of mass m, coupled by linear springs with coeffi-
cients of elasticity k, resides in a periodic sinusoidal potential.
This potential describes the interaction of the chain with some
external objectÐ a substrate. In a certain area, the chain may
be stretched (or squeezed), so that the number of particles
turns out to be smaller (or larger) by unity than the number of
potential wells. This configuration is termed a kink (or,
respectively, an antikink). Let a be the potential period, Un

the displacement of the nth particle relative to the nth well,
and un � Un=a. The equations of chainmotion (i.e., Newton's
second law) are written in the form

mq2t un ÿ k�un�1 ÿ 2un � unÿ1� � A

2pa 2
sin 2pun � 0 ;

where qt � q=qt, A is a constant, and ÿ1 < n <1.
To go over to a continuum description, we assume the

spatial scale measurement unit to be equal to eÿ1a, where
e5 1. The small parameter e characterizes the ratio between
the interparticle distance and the typical spatial scale of the
solution. With this choice of the unit of measurement, the
interparticle distance is equal to e. Then, we can replace the
discrete quantities un with a continuously varying parameter
u�n� (the variable n is also now assumed to be continuous) and
make use of the Taylor expansion

un�1 ÿ un � eqn u� 1

2
e 2q 2

n u� . . .

making it possible to obtain one nonlinear partial differential
equation in lieu of the initial infinite system of equations. In
the principal approximation, it constitutes the well-known
sine-Gordon equation [1, 15]

1

c 2
q 2
t uÿ

1

a 2
q 2
n u�

A

2pka 4
sin 2pu � 0 ; �2�

where qn � q=qn, and c � a�k=m� 1=2 is the speed of sound in
the chain under consideration. We go over to the system of
units whereby a � 1;A � 1; k � 1 and denote the continuous
spatial variable as x. Then, the kink (topological soliton) is
described by the solution of Eqn (2):

u�x; t� � 2

p
arctan exp

xÿ vt
g

; �3�

where g � �1ÿ v 2=c 2� 1=2, and v is the kink velocity. The
dependence of u on x for a fixed t is plotted in Fig. 2.
Therefore, the kink represents a localized extension region.
Hereinafter in this section we will consider only such solitons
which effect a particle displacement by some value. For
topological solitons, this quantity is equal to the topological
charge. If the kink travels all the way through the chain, from
the left end to the right one, the chain will shift by one period
to the left relative to the substrate. Conversely, an antikink
would shift the chain to the right. Therefore, topological
solitons are the elementary carriers of plasticity in this model.

From formula (3) it follows that a substantial part of the
variation of the quantity u occurs in the region about the kink
center of width

L �
�
1ÿ v

2

c 2

� 1=2

: �4�

This quantity is termed the kink width. Therefore, the kink
width depends on its velocity according to the Lorentz law,

1

u

0
x

Figure 2. Soliton solution (kink) of the sine-Gordon equation.
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much as the length of a moving object varies in the special
theory of relativity. But in place of the speed of light in
formula (4) there appears the speed of sound in the chain
involved.

The kinetic energy of the chain is given by

T � m

2

X
n

�qt un� 2 : �5�

The potential energy of the chain is written as

U � k

2
a 2
X
n

�un�1 ÿ un� 2 � A

4p 2

X
n

�1ÿ cos 2pun� : �6�

The total kink energy equalsE � T�U. On going over to the
continuous limit, the sums in formulas (5) and (6) are replaced
with integrals. We substitute the solution (3) into these
integrals to obtain the final result [1]

E � E0

�
1ÿ v

2

c 2

�ÿ1=2
; �7�

where E0 is the energy of an immobile kink (the rest energy).
Therefore, the energy of a classical kink varies with its
velocity by the well-known relativistic law. From formula
(7) it follows that the kinetic energy of a kink with a velocity
v5 c is described by the same formula as the kinetic energy of
a classical particle, E �Mv 2=2, where M is the effective
inertial mass of the kink. It is related to the rest energy of
the kink by the well-known equivalence relationship
E0 �Mc 2. We emphasize that these relativistic results were
obtained in the framework of classical Newtonian mechanics.

A kink and an antikink can annihilate at collision. As this
takes place, their energy is emitted in the form of sound
waves. This phenomenon is similar to a particle ± antiparticle
annihilation (electron ± positron, for instance) with the
emission of energy in the form of electromagnetic waves. In
some cases, a bound state of a soliton and an antisoliton Ð a
breather Ð may be produced.

Scott [20] developed a simplemechanical transmission line
which enabled him to carry out experimental investigations of
the soliton dynamics for the sine-Gordon equation. This line
comprises a chain of pendulums attached to a horizontal
string. The dynamics of this system is described by the sine-
Gordon equation (2). Then, the variable u�x� is the angle of
deviation of the pendulum at a point x from the equilibrium
position. This system enables one to observe relativistic
effects in mechanics with the naked eye. In particular, Scott
observed the Lorentzian contraction of width of a moving
soliton, described in the foregoing.

The sine-Gordon equation is employed to describe the
behavior of different physical systems. Zubova et al. [21]
showed that the dynamics of a polymer chain in a poly-
ethylene crystal is, under the assumption that the neighboring
chains are immobile, described by the sine-Gordon equation.
Then, the kinks (antikinks) constitute stretching (or, respec-
tively, contraction) defects, i.e., chain portions being
stretched (contracted) by the lattice constant relative to the
neighboring chains. The same authors [22] showed that the
system of equations of the sine-Gordon type describes other
defects existing in crystalline polyethylene Ð twistons.
Polyethylene crystals consist of parallel plane zigzag polymer
chains. Twistons are localized regions of twisting a polymer
chain through 180� with stretching (or contraction) by a half

period of the chain several dozen periods long. Savin and
Manevich [23, 24] investigated topological defects in crystal-
line polytetrafluoroethylene, which bore resemblance to
twistons. These defects are localized regions of the rotation
of the polymer chain by an angle of 14p=13 with a shift along
the molecular axis equal to 1/13 of the period (recall that the
polytetrafluoroethylene molecule in the crystal has the shape
of the spiral 13/6, i.e., contains 13 CF2 groups per 6 turns).

Therefore, it is possible to arrive at different relativistic
laws and effects in the framework of classical soliton theory in
one-dimensional space. The relationships constructed are
Lorentz-invariant. But in the framework of classical
mechanics it is also possible to obtain more complex
relativistic formulas which do not satisfy the Lorentz
invariance condition.

2.2 Supersonic dynamic solitons
The sine-Gordon equation considered above takes into
account the nonlinear interatomic interaction described by
the sine function dependent on the field components. But
nonlinear interactions in real solids are much more compli-
cated and may involve gradient terms. The inclusion of these
interactions has the result that the equation of atomic motion
loses the Lorentz invariance. It would appear natural that
these equations would possess soliton solutions to which the
supersonic velocities correspond. It has been the investigation
of supersonic nontopological solitons (in particular, the
soliton solutions of the Korteweg ± de Vries equation) that
has marked the beginning of the modern stage of nonlinear
dynamics, related to the advent of the method of the inverse
scattering transform [25]. Since the late 1960s, such solitons
have been vigorously studied both analytically and numeri-
cally.

Supersonic dynamic solitons in a discrete one-dimen-
sional lattice were analytically investigated for the first time
by Toda [26 ± 28]. He considered an atomic chain with an
exponential interaction potential (such chains have come to
be known as Toda lattices). Let a be the lattice constant, and

rn � unÿ1 ÿ un �8�

is the decrease of the distance between the neighboring atoms
of mass M due to their displacements un. The interatomic
interaction energy is given by

U �
X
n

F�rn� ;

where

F�rn� �
K
b

�
ÿ rn �

1

b

�
exp brn ÿ 1

��
; �9�

K and b are constants. In the limit b! 0, the Toda chain
transforms into a harmonic chain, and in the opposite limit
b!1 into a chain consisting of solid spheres.

The equations of atomic motion are of the form

Mq 2
t rn �

K
b

ÿ
exp brn�1 � exp brnÿ1 ÿ 2 exp brn

�
: �10�

There exists a soliton solution for these equations (Fig. 3):

rn �
1

b
ln

�
1� sinh2 qa

cosh2 �q�naÿ vt��

�
; �11�

August, 2004 Classical mechanical analogs of relativistic effects 801



where the soliton velocity is defined as

v � c

qa
sinh qa ; �12�

and c � a
����������
K=M

p
is the velocity of longitudinal sound waves

in the harmonic chain, i.e., at b � 0. The parameter q
characterizes the reciprocal of the soliton width: q � 2p=L,
where L is the soliton width. This soliton is devoid of
topological charge, i.e., is dynamic (use is sometimes made
of the term `acoustic soliton'). From formula (12) it follows
that acoustic solitons (11) are always supersonic. For v! c,
the soliton amplitude tends to zero, and the width to infinity
(Fig. 4). Therefore, the penetration of the sound barrier by a
soliton is impossible in this system. Supersonic solitons are
produced with velocities v > c.

When the soliton width L is large in comparison with the
interatomic distance, namely, qa5 2p, it is possible to move
to the continuous approximation. Then, the equations (10) of

motion of the system assume the form of the Boussinesq
equation�

q 2
t ÿ c 2

�
q 2
x �

a 2

12
q 4
x

��
rÿ bc 2q 2

xr
2 � 0 : �13�

This equation possesses a soliton solution

r � a 2q 2

b
sech2qz ; �14�

where z � xÿ x0 ÿ vt, and

v � c

�
1� a 2q 2

3

� 1=2

:

The velocity dependence of the soliton width is described
by the expression

L � 2pac����������������������
3�v 2 ÿ c 2�p : �15�

The energy of a supersonic soliton equals E � K�W,
where the kinetic energy is given by

K �M

2a

� �
qtu�z�

� 2
dz � 2q 3

3b 2
Mv 2a ;

and the potential energy is written down as

W � 1

a

�
F
�
r�z��dz � 2q 3

3b 2
Ka 3

�
1� 4

15
q 2a 2

�
:

When the velocity of a supersonic soliton approaches the
speed of sound, its energy (both kinetic and potential) tends to
zero (Fig. 5). Therefore, soliton behavior in the supersonic
velocity region is the reverse of the behavior of soliton
solutions of Lorentz-invariant equations in the subsonic
region, where the soliton energy tends to infinity, and soliton
width to zero, when its velocity approaches the speed of
sound.

Toda surmised that supersonic dynamic solitons should
make a significant contribution to the thermal conductivity of
dielectric crystals. Recent numerical experiments showed [29]
that the heat transfer by dynamic solitons which are close in
properties to Toda solitons is indeed observed in argon
crystals. In the view of the authors of Ref. [29], the energy
transfer along the [110] direction in a face-centered cubic
crystal can be regarded as a process occurring in the one-
dimensional lattice embedded in an external potential
produced by the neighboring atoms of the crystal. With
increasing temperature, the ballistic contribution to the
thermal conductivity, stemming from the solitons,
decreased, while the diffusion (phonon) contribution
increased.

The role of solitons in heat transfer in crystals was
investigated not only in numerical, but in real experiments
as well. Narayanamurti and Varma [30] undertook an
experimental investigation of heat pulse propagation in
sodium fluoride (NaF) crystals along the [100] direction at
temperatures from 1.4 to 4.2 K. This temperature range
corresponds to the ballistic regime of thermal conduction.
When the pulse energy exceeded some threshold value, they
observed the formation of a soliton from the thermal pulse.
With increasing pulse energy, the soliton amplitude increased
and the soliton width decreased.

r

x

Figure 3. Supersonic dynamic soliton in the Toda lattice.
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Figure 4.WidthL of different solitons vs. their velocity v: 1Ðfor a kink of

the sine-Gordon equation (Lorentzian dependence), and 2 Ð for super-

sonic dynamic solitons (in particular, the soliton in the Toda lattice).
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The Boussinesq equation (13) describes the behavior of
different physical systems. In this paper we shall not consider
its application to fluid dynamics, described in a plethora of
works. However, the Boussinesq equation also describes the
dynamics of other objects, for instance, carbon nanotubes
[31]. These structures are close in properties to fullerenes. At
present, carbon nanotubes hold great promise as a material
for practical use in nanotechnology. In particular, the
possibility of using them for the production of nanoscale
electronic devices is being looked into. A single-wall nanotube
comprises a cylindrical two-dimensional surface made up of
carbon atoms. The hexagonal surface structure is close to the
structure of the atomic (001) plane in the graphite crystal, but
the lengths of interatomic bonds and the angles between them
are somewhat different from the corresponding character-
istics of graphite because of the deformation arising from
rolling a plane into a cylinder. Astakhova et al. [31] showed
that the longitudinal displacements of carbon atoms in a
nanotube (i.e., displacements parallel to the cylinder axis) are
described by the Boussinesq equation. Therefore, supersonic
deformation solitons can propagate through the tube, which
is confirmed by numerical simulations [31]. It is conceivable
that the investigation of these solitons will allow an explana-
tion of the anomalously high values of the heat capacity and
thermal conductivity of the nanotubes. Also of considerable
interest is the study of the soliton influence on optomechani-
cal and mechanoelectric phenomena in nanotubes.

The investigation of solitons in the Toda lattice brings up
the natural question: are supersonic soliton-like solutions
possible for one-dimensional chains with other interatomic
interaction potentials V�r�? This problem was attacked by
Collins [32]. We write the equations of motion for an atomic
chain (10) in a more general form

Mq 2
t rn � qr

�
V�rn�1� � V�rnÿ1� ÿ 2V�rn�

�
: �16�

Let us assume that a soliton-like wave

rn�t� � r�naÿ vt� � r�z�

propagates along this chain, the wave form changing slowly
with n. By employing expansion in a Taylor series it is possible
to obtain the following relation for an arbitrary function f�n�:

f�n� 1� � f�nÿ 1� ÿ 2f�n�

�
�
exp

�
d

dn

�
� exp

�
ÿ d

dn

�
ÿ 2

�
f �n�

�
�
2sinh

�
1

2

d

dn

�� 2

f �n� :

Then, Eqn (16) can be written down as

M
v 2

a 2

d2r�z�
dn 2

�
�
2sinh

�
1

2

d

dn

�� 2

qrV�r� :

Hence follows

M
v 2

a 2

d2

dn 2

�
1

2
cosech

�
1

2

d

dn

�� 2

r�z� � qrV�r� :

We replace the function in square brackets with its Taylor
expansion and ignore the terms of the higher order of
smallness than d2r=dn 2 to arrive at

M
v 2

a 2

�
rÿ 1

12

d2r
dn 2

�
� qrV�r� :

Integrating this equation gives

Mv 2

24a 2

�
dr
dn

�2

�Mv 2

2a 2
r 2 ÿ V�r� � V�0� : �17�

Employing the expansion of the potential V�r� into the
Taylor series

V�r� ÿ V�0� � 1

2
q2rV�0�r2 �

1

6
q 3
rV�0�r3 � . . . ;

we can write down Eqn (17) in the form

Mv 2

24a 2

�
dr
dn

�2

� M

2a 2
�v 2 ÿ c 2�r2 ÿ 1

6
q3rV�0�r3 ÿ . . . ; �18�

where c � a�q2rV�0�=M�1=2 is the speed of sound. This
equation allows the following conclusion: when the inter-
atomic interaction potential is characterized by a stronger
repulsion than the harmonic one, soliton-like supersonic
compression waves are possible in this system. This conclu-
sion follows from the nonnegativity of the quantity �dr=dn�2
and the requirement r! 0when z! �1. Tensionwaves are
unstable in this case.

The simplest particular case of the class of systems under
discussion is the well-known Fermi ± Pasta ±Ulam (FPU)
chain whose numerical investigation lent impetus to modern
progress for the soliton theory. More recently, different
authors performed analytical investigations of soliton propa-
gation through this chain for different interatomic interaction
potentials. In particular, Pnevmatikos [33] studied supersonic
dynamic solitons in a one-dimensional chain of particles
coupled via a polynomial interaction potential. In the

E

0 c v
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2

Figure 5.EnergyE of different solitons as a function of their velocity v: 1Ð
for the kink of the sine-Gordon equation (Lorentzian dependence), and

2Ð for supersonic dynamic solitons (in particular, the soliton in the Toda

lattice).
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continuous approximation, the dynamics of this chain is
described by the modified Boussinesq equation

q2tjÿ q2x�c 2j� Bj3 ÿ hq2xj� � 0 ; �19�

where j � qxu. The soliton solution of this equation,
corresponding to a velocity of travel v, is of the form

u � �2
�
ÿ 2h

B

�1=2

arctan

�
exp

�
2

L
�xÿ vt� � x0

��
; �20�

where the soliton width equals

L � 2

�
h

c 2 ÿ v 2
�1=2

: �21�

Solitons (20) may be both subsonic (v < c) and supersonic
(v > c), depending on the sign of the dispersion parameter h.

Balabaev et al. [34, 35] proposed another modification of
the Boussinesq equation to describe the nonlinear dynamics
of a polymer molecule in a planar trans-zigzag conformation
(Fig. 6). The authors of Refs [34, 35] investigated the
dynamics of a polyethylene molecule in the united atom
approximation. On passing to the continuous limit, their
resultant equation for the longitudinal displacement u of the
polymer chain took the form

q2t uÿ c2
�
q 2
x u�

3s 2

n 2
qxu q

2
x u�

s 2l 2

3
q4xu
�
ÿ s 4l 2

4n 2
q2t q

2
xu � 0 ;

�22�

where c is the speed of sound, l is the valence bond length
(these bonds are assumed to be nonstretchable),
s � sin�y0=2�, n � cos�y0=2�, and y0 is the equilibrium value
of the valence angle.

Balabaev et al. [34, 35] found the soliton solution of Eqn
(22):

u � d

2

�
1� tanh

�
k�xÿ vt��	 ; �23�

where v is the soliton velocity, k defines the reciprocal of the
soliton width, and d is the chain displacement after the
passage of the soliton. The parameters v and k should satisfy

the conditions

k 2 � 2n 2

s 2d

�
4n 2

3s 2
� 1

�
kÿ n 2

l 2s 4
� 0 ;

v 2 � c 2
�
1� s 2d

2n 2
k

�
:

Therefore, the soliton (23) turns out to be supersonic. Such
solitons transfer mechanical excitations along an isolated
polyethylene molecule. In the investigation of polymer
crystals, the natural question arises as to how the properties
of the soliton (23) change when this molecule is incorporated
into the three-dimensional polyethylene crystal. The answer
to this question will be provided in Section 2.3, when
considering supersonic topological solitons.

The problem of supersonic soliton propagation in poly-
ethylene molecules was also considered by Manevich and
Savin [36, 37]. They proposed the following Lagrangian to
describe the dynamics of a zigzag polymer chain:

L �
X
n

�
1

2
M�qtun�2 � 1

2
M�qt vn�2 ÿ V�rn� ÿU�yn�

�
;

�24�

where M � 14mp is the mass of a CH2 group (i.e., united
atom), mp is the proton mass, un and vn are the longitudinal
and transverse displacements of the nth united atom from the
equilibrium position, respectively, the potential of the nth
valence bond (i.e., the bond between the neighboring carbon
atoms) is

V�rn� � D0

�
1ÿ exp

�ÿ a�rn ÿ r0�
�	2

;

rn is the length of the nth valence bond, r0 � 0:153 nm is the
equilibrium magnitude of this bond, the potential of the nth
valence angle yn (i.e., the angle formed by two valence bonds)
is

U�yn� � g
2
�cos yn ÿ cos y0�2 ;

and y0 � 113� is the equilibrium magnitude of the valence
angle. Manevich and Savin [36, 37] used the following values
of potential parameters: D0 � 334:72 kJ molÿ1,
a � 19:1 nmÿ1, and g � 130:122 kJ molÿ1.

The supersonic dynamic solitons present in this model
were investigated numerically. It turned out that in this
system there exist supersonic solitons with a finite velocity
spectrum c < v4 c1, where c � 1 is the dimensionless
velocity of longitudinal sound waves in the polyethylene
molecule, v is the dimensionless soliton velocity, and
c1 � 1:0203. In the soliton localization region there occurs a
longitudinal stretching and transverse contraction of the
molecular chain. With an increase in soliton velocity, its
energy and amplitude increase monotonically, while the
width decreases. For v � c1, the soliton energy is
E � 4:6 eV, and the width is R � 0:53 nm. Numerical
simulations showed that the soliton is dynamically stable for
all velocities in the c < v4 c1 range. The existence of the
upper velocity spectrum boundary for supersonic solitons in
the polyethylene molecule (the velocity c1) and the exact
value of this velocity have been found through numerical
experiments. The relation of the velocity c1 to the parameters
of the model has yet to be theoretically investigated.

y

x

Figure 6. Schematic representation of the polymer chain in the plane trans-

zigzag conformation.
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The majority of authors who investigated the properties
of solitons (including the supersonic ones) in one-dimensional
systems restricted themselves to the consideration of the
simplest case Ð the interaction only between the nearest
neighbors in a one-dimensional chain. However, more
complex kinds of interaction can also be realized in real
physical systems. Remoissenet and Flytzanis [38] studied the
soliton properties in a one-dimensional chain wherein the
interaction was not confined to the nearest neighbors. They
considered a chain of atoms of mass m with a lattice constant
a. The Hamiltonian of this chain was of the form

H � 1

2

X
i

�
m�q t ui�2 �Wi

�� 1

2

X
i6�j

Vi j�ui ÿ uj�2 ;

where the potential

Wi � G

2
�ui ÿ uiÿ1�2 � A

3
�ui ÿ uiÿ1�3

characterizes the interaction between the nearest neighbors,
and the potential

Vi j � J

2
�1ÿ r� r jiÿj jÿ1

the long-range interactions in the system. Here, J is a constant
and the quantity r (04 r < 1) characterizes the interaction
radius: for r � 0, the chain turns into a system wherein only
the nearest neighbors interact, and for r! 1 the atomic
interaction radius becomes infinitely long. Using the designa-
tion j � qxu and disregarding higher-order derivatives,
Remoissenet and Flytzanis [38] obtained the following
equation of motion (the generalized Boussinesq equation) in
the continuous approximation:

q2tjÿ q2x
�
c 2�r�jÿ pj2 ÿ h�r� q2xjÿ f �r� q2tj

� � 0 ; �25�

where the speed of sound equals

c�r� �
�

1� r

�1ÿ r�2 J 0 � G 0
�1=2

a ;

J 0 � J

m
; G 0 � G

m
; p � 2A 0a3 ; A 0 � A

m
;

h�r� �
�

1� r

�1ÿ r�2 J 0 � G 0
�
a4

12
ÿ ra4

�1ÿ r� 2 G 0 ;

f �r� � ra2

�1ÿ r�2 :

Equation (25) possesses the soliton solution

j�x; t� � B�r� sech2 xÿ vt
L�r� ; �26�

where the soliton amplitude is given by

B�r� � 3

2p

�
v 2 ÿ c 2�r�� ;

the soliton width is defined as

L�r� � 2

�
h 0�r�

v 2 ÿ c 2�r�
�1=2

;

and h 0�r� � h�r� � f�r�v 2. At r � 0, Eqn (25) transforms into
the Boussinesq equation (13), and soliton (26) to the soliton

solution of the Boussinesq equation (14). In the limit r! 1,
when the atomic interaction radius tends to infinity, the width
of the soliton becomes infinite, and its amplitude tends to
zero.

A significant feature of the model under consideration is
that it allows the existence of both subsonic and supersonic
solitons. This is impossible in the system described by the
Boussinesq equation. For h 0�r� > 0, the solitons are super-
sonic [v 2 > c 2�r�]. When p > 0, they constitute extension
regions; when p < 0, they form compression regions. For
h 0�r� < 0, the solitons propagate with subsonic velocities. In
this case, the condition

v 2 < G 0a2 ÿ �1ÿ r� 2
12r

c 2�r�

should be fulfilled. Therefore, in the subsonic area there exists
a `gap' (a forbidden velocity region) which separates the
supersonic and subsonic parts of the soliton velocity
spectrum. When the atomic interaction radius r shortens,
the gap width increases until it occupies the entire subsonic
area.

A simple generalization of the nonlinear chains consid-
ered in this section is a one-dimensional grain medium, i.e., a
chain of macroscopic elastic granules. Nesterenko [39] was
the first to theoretically show that there exist dynamic
supersonic solitons in such a system, and he investigated
their behavior in numerical experiments. More recently,
Lazaridi and Nesterenko [40] observed these solitons in real
experiments. For a one-dimensional grain medium, advan-
tage was taken of a chain of steel balls 4.75 mm in diameter.
One of the chain ends leaned against a rigid wall, while the
other was subjected to a blow. The initial disturbance
produced by the blow disintegrated rapidly into several
solitons. Coste et al. [41] also observed such solitons in a
chain of spherical granules. In these experiments, they used
the balls manufactured of various materials: steel, bronze,
tungsten carbide, etc. In particular, they observed solitons
with a velocity of 1000 m sÿ1 and of width 3 ± 4 cm (i.e., 4 ±
5 granules) in the chain of small steel balls. The experimental
data of Coste et al. [41] agree nicely with the theoretical
predictions by Nesterenko [39].

The investigation of solitons in granular media is of
importance not only from the fundamental standpoint, but
from the practical one as well. In particular, the study of
acoustic pulse propagation in soils is important for the
understanding of the processes occurring during earth-
quakes and for building protection from earthquakes.
Granular materials are employed in engineering, for
instance, as dampers.

The study of solitons in granular media leads us to the
conclusion that there is a close interrelation between super-
sonic dynamic solitons and shock waves. Indeed, the
disintegration of a shock wave into several solitons was
observed not only in the experiments by Lazaridi and
Nesterenko [40]. Thus, Batteh and Powell [42] performed a
series of numerical experiments on the propagation of shock
waves in a one-dimensional chain of particles with the
exponential Morse interaction potential. The Hamiltonian
of the chain took the form

H � m

2

XN
i�1
�qt ui�2 �D

XN
i�2

�
exp

�
a �uiÿ1 ÿ ui�

�ÿ 1
	2
;
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where ui is the displacement of the ith particle of massm from
the equilibrium position, while D and a are constants. This
chain is close in properties to the Toda chain. Batteh and
Powell [42] discovered that the propagation of a shock wave
across a thermalized chain is accompanied by the formation
of supersonic compression solitons with different velocities
behind the wave front. The difference in soliton velocities is
responsible for the broadening of the shock front and does
not allow the stationary profile to set in. In the case of an
initially nonthermalized chain, the amplitudes and velocities
of all the solitons behind the front tended to the same fixed
values. Peyrard et al. [43] discovered a similar effect in the
simulation of detonation in the two-dimensional nitro-
methane crystal employing the molecular dynamics
method2. They observed a detonation regime in which the
shock front transformed into a chain of soliton-like excita-
tions whose velocities decreased with distance to the front.
This velocity difference resulted in a permanent broadening
of the front of the shock wave in its propagation. The shock
wave disintegration into separate solitons is attributed to the
fact that the solitons are the stable elementary excitations in
these nonlinear systems. That is why an unstable disturbance
of arbitrary form (in particular, a shock wave) eventually
disintegrates into solitons whose further breakup does not
occur.

It is evident that elastic rods are close in properties to one-
dimensional chains. The dynamics of rods would therefore be
expected to obey similar nonlinear equations, and these
equations also have soliton solutions. The corresponding
equations were indeed obtained and their soliton solutions
were found. Detailed reviews of the work concerned with
solitons in elastic rods (as well as in plates and shells)
appeared in the monographs of Ostrovsky and Potapov [44]
and Erofeev et al. [45].Wewill discuss the paper by Samsonov
et al. [46], since they not only theoretically described the
dynamic solitons in rods, but also observed them experimen-
tally.

To describe the nonlinear dynamics of an elastic cylind-
rical rod (an acoustic waveguide), Dre|̄den et al. [46] proposed
the following modification of the Boussinesq equation:

q 2
t uÿ c2l q

2
x u �

1

2
q2x

�
b
r
u 2 � n 2R 2�q2t uÿ c2t q

2
x u�
�
; �27�

where u are the longitudinal displacements of rod particles,
cl � �E=r�1=2 is the velocity of longitudinal sound waves in
the rod, r is the material density, E � 2m�1� n� is the Young
modulus, m is the shear modulus, n is the Poisson coefficient,
ct � �m=r� 1=2 is the velocity of transverse sound waves, b is
the material nonlinearity factor, and R is the cross sectional
radius of the rod. In the derivation of Eqn (27) it was assumed
that the deformations were small and the characteristic
wavelength was far greater than the radius of the rod. Then,
the cross sections of the rod remain flat under deformation
and its side surface is left free from radial stress. Equation (27)
possesses the soliton solutions

uk�x; t� � Dk � Ak sech2
xÿ vk t

Lk
; �28�

where k � 1; 2, D1 � 0, D2 � ÿ2A2=3, Ak is the soliton
amplitude, the soliton velocity squared is

v 2
k � c2l �

Ak b
3r

; �29�

and the soliton width squared is given by

L2
k � 2n 2R 2

�
3�Eÿ m�

bAk
� 1

�
: �30�

The upper sign in relations (29) and (30) corresponds to the
value of k � 1, and the lower to k � 2. When the nonlinearity
factor is negative (this property is inherent, in particular, in
the majority of metals, crystals of sodium chloride, and
polystyrene), compression solitons can propagate through
the rod; when b is positive (this is typical of glass and fused
quartz), extension solitons are possible.

The condition L2
k > 0 imposes limitations on the velocity

spectrum (28) of solitons. For the solutions u1, this spectrum
consists of two intervals: 0 < v1 < ct and v1 > c l. Therefore,
the modification of the Boussinesq equation had the effect
that subsonic nontopological solitons can propagate through
the rod along with supersonic solitons. For the solutions u2,
only transonic velocities ct < v2 < cl are permissible.

To experimentally examine dynamic solitons, Dre|̄den
et al. [46] employed a 5.5-cm-long cylindrical polystyrene
rod 1 cm in diameter. The rod was immersed in water. The
solitons were excited in the sample when an unfocused pulse
of a ruby laser irradiated an aluminum mirror located in
water immediately in front of the input end of the sample. To
measure the soliton characteristics, the authors of Ref. [46]
used a holographic interferometer which recorded the rod
images. The soliton amplitude was measured from the fringe
displacements in the interference pattern. As a compression
soliton passed through the rod, a Poisson widening of the side
surface of the rod occurred. As a result, conic waves (the so-
called Poisson waves) were excited in the fluid surrounding
the rod. Observation of these waves enabled themeasurement
of the soliton velocity. The soliton width was measured
directly from the photographs.

With the use of this facility, Dre|̄den et al. [46] observed
the propagation of compression solitons in the sample and
measured their characteristics. In particular, they discovered
a soliton of width L � 8 mm with a velocity v � 2400 m sÿ1.
The soliton parameters measured by the authors of Ref. [46]
were found to be in satisfactory agreement with their
theoretical predictions. More recently, Samsonov et al. [47]
theoretically investigated the soliton propagation across a
varied-diameter rod and experimentally examined solitons in
such a sample.

Recently, Sharon et al. [48] experimentally discovered a
new class of dynamic solitons in the investigation of crack
propagation in glass. As a crack passed through a local
inhomogeneity of the material, localized waves were excited
at the crack front. They propagated a considerable distance
without a significant change in amplitude and had a well-
defined shape independent of their excitation conditions.
Upon collision these waves retained their shape and ampli-
tude, experiencing only a phase shift. This allowed Sharon et
al. [48] to draw a conclusion about the soliton nature of such
waves. Their velocity is close to that of Rayleigh waves.

2.3 Supersonic topological solitons
By now, different nontopological solitons in quasi-one-
dimensional atomic chains have been thoroughly studied.

2We are reminded that the termmolecular dynamics method is commonly

used in reference to themethod of numerical solution of physical problems

by simulating the motion of particles (atoms, molecules) that make up the

system under investigation.
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When several such chains are placed some distance apart, a
strongly anisotropic crystal forms. Polymer crystals contain-
ing parallel macromolecules give an example of such crystals.
This brings up the natural question: how are nontopological
solitons transformed in this case? In a three-dimensional
system they acquire a topological charge which takes only
discrete values. Indeed, each dynamic soliton displaces the
chain over some distance. In a separate chain this displace-
ment can be arbitrary. But in a crystal, the total displacement
induced by a soliton (or a group of solitons) must be a
multiple of the lattice constant. This is required for the
soliton-carrying chain to be `built into' the crystal. As we
recede from a topological soliton (a defect), the crystal lattice
structure should asymptotically approach the perfect (defect-
free) structure. Therefore, the acquisition of a topological
charge by a group of dynamic solitons imposes limitations on
the displacements produced by these solitons. In some cases,
these limitations lead to the formation of a discrete soliton-
velocity spectrum. However, below in this section we will
show that certain types of solitons possess a continuous
velocity spectrum.

But after such a transformation, will the possibility of
supersonic propagation persist for these, now topological,
solitons? Balabaev et al. [34, 35] replied in the affirmative: they
showed that in a three-dimensional system of loosely bound
polymer chains (in other words, in a polymer crystal) there
forms a bound state of several dynamic solitons, which has a
topological charge. This group of solitons propagates with a
supersonic velocity, like nontopological solitons in separate
polymer chains. Similar results were somewhat earlier
obtained by Savin [49] for a one-dimensional chain on a
substrate. These cases are considered in greater detail below.

When the individual polymer chains forming a crystal are
weakly coupled to each other, the possibility that the soliton
localizes primarily in one chain persists after a group of
dynamic solitons acquires a topological charge. In this case,
the simplest model proves to be realistic Ð that is, the model
wherein the weakly excited chains surrounding the strongly
excited chain with the soliton are replaced by an external
potential Ð the so-called `substrate'. The overwhelming
majority of investigations dedicated to the topological
solitons were performed in this approximation. As a rule,
only the chain ± substrate interaction is taken into account in
the analysis, but not the intrachain anharmonicity. Then, the
problem reduces to the integration of the nonlinear Klein ±
Gordon equation, whose most studied special cases are the
sine-Gordon equation discussed in the foregoing and an
equation of the type j 4. The localized solutions of these
equations in the form of topological solitons possess, in
conformity with the analogy discussed in our paper, a
continuous velocity spectrum in the subsonic area. How-
ever, the simultaneous inclusion of the intrachain anharmo-
nicity may radically change the situation.

The possibility for the supersonic propagation of a
topological soliton was first demonstrated by Kosevich and
Kovalev [50]. They considered the Frenkel ±Kontorova
model with the inclusion of the anharmonicity of interatomic
interaction. In the continuous approximation, the equation of
chain motion takes the form

mq2t u � mc 2
�
q 2
x u�

a 2

12
q 4
x u�

p 2

2
�qxu�2 q 2

xu

�
ÿ 2p

a
U0 sin

2pu
a

; �31�

where m, c, a, and U0 are constants. The solution of this
equation is a kink traveling with a velocity v:

u � 2a

p
arctan exp

�
ÿ xÿ vt

LK

�
; �32�

where the kink width LK is the solution of the following
biquadratic equation

48p 2U0L
4
K � 12ma 2�v 2 ÿ c 2�L2

K ÿmc 2a4 � 0 : �33�

The dependence of the soliton width LK on the soliton
velocity v that follows from this equation is described by a
rather cumbersome formula which we do not present here.
The functionLK�v� is plotted in Fig. 7 (curve 3). Interestingly,
Eqn (31) represents a `unification' of two equations: the sine-
Gordon equation [it can be obtained from Eqn (31) by
discarding the second and third terms in the right-hand side]
and the modified Boussinesq equation [it can be obtained
from Eqn (31) by removing the substrate, i.e., putting
U0 � 0]. Accordingly, the Kosevich ±Kovalev soliton (32)
combines the properties of the kink of the sine-Gordon
equation and the supersonic dynamic solitons considered in
Section 2.2. Indeed, let us consider two limiting cases. When
the interaction between the anharmonic chain and the
substrate is strong, i.e., U0 4mc 2, the last term on the left-
hand side of Eqn (33) can be disregarded. Then, the velocity
dependence of the soliton width is described by the well-
known Lorentzian law:

LL � a

2p

������
m

U0

r ����������������
c 2 ÿ v 2
p

:

This dependence is plotted in Fig. 7 (curve 1).
The second limiting case corresponds to a free chainwhich

does not interact with the substrate. Then, U0 � 0, and the
second and third terms remain on the left-hand side of
Eqn (33). The velocity dependence of the soliton width

3

2

1

L

0 c v

Figure 7. Widths L of different solitons as functions of their velocities v:
1 Ð for the kink of the sine-Gordon equation (the Lorentzian relation-

ship); 2 Ð for supersonic dynamic solitons (in particular, for the soliton

solution of themodified Boussinesq equation), and 3Ðfor theKosevich ±

Kovalev soliton.

August, 2004 Classical mechanical analogs of relativistic effects 807



results in the form

LB � ac

2
����������������������
3�v 2 ÿ c 2�p : �34�

The function LB�v� is depicted in Fig. 7 (curve 2). Formula
(34) for L�v� differs from the similar expression for the width
(15) of the soliton of the Boussinesq equation by a constant
numerical factor.

Therefore, the function LK�v� for the topological Kose-
vich ±Kovalev soliton is the `joining' of two solutions: the
Lorentzian function LL�v� for subsonic topological solitons
and the function LB�v� for supersonic dynamic solitons.
Interestingly, the `limiting solutions' LL�v� and LB�v� behave
in the opposite way when the soliton velocity approaches the
speed of sound: as this takes place, the width of the subsonic
kink tends to zero, and the width of the supersonic dynamic
soliton to infinity. The Kosevich ±Kovalev soliton width
LK�v�, which corresponds to the `joining' of the solutions
LL�v� and LB�v�, remains nonzero and finite at v � c and
asymptotically tends to zero as v!1. This soliton possesses
a continuous velocity spectrum ranging from zero to infinity.
The speed of sound for the Kosevich ±Kovalev soliton (32) is
not a singularity at all. Of course, when the velocity is high
enough this soliton becomes so narrow that its width turns
out to be of the same order of magnitude as the lattice
constant. In this case, the continuous approximation is no
longer valid and the description of chain dynamics calls for
using a different equation instead of Eqn (31) to take into
account the discrete nature of the system. However, provided
that the interaction between the atoms in the chain is much
stronger than their interaction with the substrate, i.e.,
U0 5mc 2, the continuous approximation remains valid for
rather high velocities from the supersonic area.

The Kosevich ±Kovalev soliton possesses a continuous
velocity spectrum in the supersonic area owing to the fact that
both `limiting cases' of Eqn (31) Ð the sine-Gordon equation
and the modified Boussinesq equation Ð admit soliton
solutions in the form of the same function (32), which differ
only by the form of the dependence L�v�. As indicated below,
the dynamic-to-topological soliton transformation upon
embedding a one-dimensional atomic chain in the crystalline
environment also occurs for other chains which may have
other intrachain interactions. However, in those cases when
the `limiting equations' (i.e., the equations for the subsonic
topological and supersonic dynamic solitons) possess solu-
tions described by different functions, the velocity spectrum
of the supersonic topological soliton becomes discrete. A
similar `joining' of subsonic and supersonic soliton solutions
would be expected to occur for other equations as well,
including those whose solutions cannot be represented in
elementary functions.

Kosevich and Kovalev [50] considered yet another
modification of the Frenkel ±Kontorova model by including
a cubic term in the atomic interaction potential. The potential
accounting for the interaction with the substrate was taken to
be of the polynomial form. The equation of chain motion
assumed then the form

mq 2
t u � mc 2

�
q 2
x u�

a 2

12
q4xuÿ 3bqx u q

2
xu

�

ÿ 2U0

a 4
u�aÿ u��aÿ 2u� : �35�

This equation describes, in particular, the dynamics of a
bistable molecular chain, i.e., a chain possessing two stable
equilibrium states. Equation (35) admits the soliton solution

u � a

�
exp

3b�xÿ vt�
a

� 1

�ÿ1
: �36�

A characteristic feature of this soliton is that it can propagate
only with a single velocity v � v0 :

v0 � c

�
1� 3b 2

4
ÿ 2U0

9b 2 mc 2

�1=2

:

When b 4 > 8U0=27mc 2, this velocity is supersonic. For
soliton (36), the speed of sound is not a singularity. It can
propagate with this velocity and in so doing possess a finite
energy. Below we provide other examples which indicate that
the existence of a discrete velocity spectrum is the common
property of many supersonic topological solitons.

More recently, Savin [49] investigated this model employ-
ing a modified substrate potential. After this modification,
Eqn (35) assumed the form

�1ÿ v 2� q2zu�
1

12
q4zuÿ 3bqzu q

2
zuÿ 4Gu�u 2 ÿ 1� � 0 ;

�37�
where z � xÿ vt and use is made of the system of units
wherein a � 1, c � 1, andm � 1. In the limitG! 0, equation
(37) upon one integration passes into the Boussinesq equation

1

12
q2zj� �1ÿ v 2�jÿ 3b

2
j 2 � 0 ;

where j � qzu. We are reminded that the solution of this
equation is a supersonic acoustic soliton traveling with a
velocity v:

j � bÿ1�1ÿ v 2� sech2 qz ; �38�

where the reciprocal of the soliton width equals
q � �3�v 2 ÿ 1�� 1=2. With a substrate, this soliton acquires a
topological charge

Q�v� � u��1� ÿ u�ÿ1� �
��1
ÿ1

j�z� dz

� ÿ
�
4�v 2 ÿ 1�

3b 2

�1=2
� ÿ1 : �39�

This relation fixes the velocity of the supersonic soliton.
Formula (39) is also valid when N identical acoustical
solitons exist in the chain. It then assumes the form

NQ�vN� � ÿ1 :

From this equation it follows that the velocity of each
acoustic soliton is given by

vN �
�
1� 3

4

�
b
N

�2�1=2
:

Therefore, Savin [49] showed that in the limit G! 0 the
topological soliton conforming to the Frenkel ±Kontorova
model with a cubic anharmonicity of interatomic interactions
possesses a finite discrete supersonic velocity spectrum for
which the speed of sound is an accumulation point.
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Savin [49] performed a numerical investigation of the
dynamics of topological solitons in this chain for a small
height G � 10ÿ3 of the potential barrier. Numerical simula-
tions showed that the topological soliton always possesses a
continuous subsonic velocity spectrum 04 v4 v0 < 1. With
an increase in the anharmonicity parameter b, the upper
boundary of the continuous spectrum tends toward the speed
of sound: v0 ! 1 as b!1. The numerical simulations
confirmed that the soliton displays a finite discrete super-
sonic velocity spectrum v � vn, n � 1; . . . ;N, where
v1 > . . . > vN > 1. The number N of admissible supersonic
velocity values and the velocity values vn themselves are
increasing monotonically with an increase in the anharmoni-
city parameter b.

Solution (38) found in the continuous approximation is
not exact for the soliton in a discrete chain. That is why the
real values of supersonic velocities ��vn� are different from the
calculated ones �vn�. Since the width of a supersonic soliton
decreases with its velocity, the accuracy of results obtained in
the continuous approximation is simultaneously lowered.
The difference 4vn � vn ÿ �vn therefore increases as the
velocity vn recedes from the speed of sound. When the
supersonic kink velocity v > �vn, its motion is accompanied
by the emission of phonons, resulting in the deceleration of
the soliton. For the velocity v � �vn, the emission vanishes and
the kink travels at this constant velocity. In a substrate-free
chain (G � 0), the kink disintegrates into n uncoupled
acoustic solitons and a subsonic phonon radiation.

More recently, Zolotaryuk et al. [51] performed a
numerical investigation of the behavior of topological
solitons in the `Toda chain on a substrate' model. Like the
Kosevich ±Kovalev model, this model represents a modifica-
tion of the Frenkel ±Kontorova model with an anharmonic
interatomic interaction. An exponential potential [the Toda
potential (9)] was chosen as the potential of interatomic
interaction, and a sinusoid was selected as the substrate
potential. As in the case considered above, the velocity
spectrum of topological solitons is discrete. A special feature
of the `Toda chain on a substrate' model is the discreteness of
the soliton velocity spectrum not only in the supersonic area,
but in the subsonic as well. This spectrum is bounded from
below, i.e., there exists a minimal velocity of solitons in this
chain. With an increase in anharmonicity parameter b
entering potential (9) (for small b), the number of soliton
velocities in the spectrum increases and the lower spectral
boundary decreases. With b!1, the properties of solitons
in this chain approach the properties of ordinary Toda
solitons. Braun [52] also investigated the Frenkel ±Kontor-
ova model with an exponential interatomic interaction to
arrive at the conclusion that the solitons in this chain can
propagate with both supersonic and subsonic velocities.

Zolotaryuk et al. [53] also investigated the supersonic
motion of topological solitons in a bistable chain. They
considered a one-dimensional chain of molecules coupled by
hydrogen bonds: ±X-H±X-H±X-H± . This structure was
modeled with a chain consisting of alternating atoms of
different mass: protons of mass m, and heavy ions Xÿ of
mass M. Let qn � yn=a be the dimensionless displacement of
the proton in the nth hydrogen bond, Qn � Yn=a be the
dimensionless displacement of the ion, and a be the period
of both sublattices. We introduce the following variables:
Rn � �Qn �Qn�1�=2 for the center-of-mass displacement of
the cell formed by the nth and �n� 1�th heavy ions,
rn � Qn�1 ÿQn for the relative displacement of these ions,

and un � qn ÿ Rn for the nth proton displacement relative to
the center of the segment connecting the nth and (n� 1)th
ions. The chain is free, for it does not experience any external
forces.

In the continuous approximation, the soliton dynamics in
this chain is described by the equation

dr
du
� �1ÿ v

2� qF=qu
�v 2 ÿ s 2� qF=qr ; �40�

where the potential is given by

F � r 2

2

��
1� 1

m

�
v 2 ÿ

�
1� s 2

m

��
� mO 2

0

�
V�u� ÿ g0r

�
;

c and c0 are the respective speeds of sound in the proton and
ionic sublattices, the dimensionless soliton velocity v is
expressed in units of the velocity c, s � c0=c, m � m=M, V�u�
is the ion ± proton interaction potential, while g0 and O0 are
constants. An analytical solution of Eqn (40) was found in
Ref. [53]:

duK
dz
� � g1O0

�
2V�uK�

�1=2
;

rK � �
mO0

�
2V�uK�

�1=2
g1�s2 ÿ v 2�

; �41�

where uK�z� is the proton component of the soliton solution,
which is a kink (or an antikink), z � xÿ vt, and t � ct=a is
the dimensionless time. The kink satisfies the boundary
conditions uK��1� � �q0 and constitutes a negative ionic
defect, while the antikink corresponds to the opposite
boundary conditions uK��1� � �q0 and constitutes a
positive ionic defect. The chain may reside in one of the two
degenerate ground states: ±X-H±X-H±X-H± or ±H-X±
H-X±H-X±. The solitons transfer the chain from one state
to the other. The quantities �q0 stand for the local minima
of the potential V�u�, which correspond to the two equili-
brium proton positions. The quantity

g1 �
�

1

1ÿ v 2
� m
s 2 ÿ v 2

�1=2

�42�

is the generalization of the Lorentzian factor to the case of a
one-dimensional problem with two speeds of sound. On
passing to the limit of `frozen' heavy ions, m! 0 and g1
transforms into a conventional Lorentzian factor.

The supersonic soliton solutions to Eqn (40) possess an
electric charge. But all quasi-relativistic effects in this problem
are related only to the speeds of sound. Therefore, the
supersonic motion of the soliton (41) exhibits a purely
mechanical effect. From formula (42) it follows that this
soliton possesses two allowed velocity areas: the subsonic
area 0 < v < s, and the supersonic one (it can also be termed
transonic, because it lies between the velocities of sound for
the proton and ionic sublattices) c1 < v < 1, where

c1 �
�
s 2 � m
1� m

�1=2

:

When the soliton falls within the supersonic velocity range,
the ionic sublattice deformation rK changes sign: the kink is
accompanied with a localized compression (rK < 0) in the
subsonic area, and with extension (rK > 0) in the supersonic

August, 2004 Classical mechanical analogs of relativistic effects 809



one, while the antikink, conversely, is attended with extension
in the subsonic area and with compression in the supersonic
one.

The following result was obtained for the soliton energy in
the continuous approximation [53]:

E �
�
21=2

g1

�3

mc 2O0

�
1

�1ÿ v 2�2 �
ms 2

�s 2 ÿ v 2�2
�

�
�q0
0

�
V�u��1=2 du :

It follows from this formula that the soliton energy E in the
subsonic range 0 < v < s tends to infinity for v! s. In the
supersonic area, the soliton energy for velocities close to c1
decreases sharply with velocity. However, on further increase
in soliton velocity the soliton energy resumes its increase and
tends to infinity as v! 1 (Fig. 8).

Also investigated in Ref. [53] was the subsonic and
supersonic soliton propagation in this system in the situation
where the potentialV depends not only on u, but on r as well.
In this case, the effects related to the motion of the center of
massRn were ignored. However, numerical simulations of the
soliton motion in this system showed that this approximation
(which the authors of Ref. [53] termed the second approxima-
tion) was in poor agreement with the results of simulations.
The results outlined above agree well with the data of
numerical experiments.

Zolotaryuk et al. [53] used the following values of the
system parameters in their simulations: a � 0:276 nm,
mÿ1 � 17, and s � 0:1. Numerical experiments showed that
the supersonic soliton motion is unstable, with the exception
of the v � 0:67ÿ 0:69 velocity range. The supersonic solitons
which initially possess other velocities propagate with
variable velocities until they either reach the stable domain
or go over to the subsonic region. The collision of two
supersonic solitons results in their reflection accompanied
by a strong emission of sound waves. Upon collision, both
solitons fall within the subsonic region. In the case where the
chain interacted with the substrate, only subsonic solitons
were observed in numerical simulations.

The model investigated in Ref. [53] describes proton
transport in molecular systems with the chains of hydrogen

bonds. Such chains are encountered in various substances, for
instance, in ice and proteins. Solids with hydrogen bonds are
void of free electrons and should therefore be insulators. In
spite of this, charge transfer does take place in them owing to
the proton transport. As is known from experiments, when
the electric field and the chain of hydrogen bonds coincide in
direction, the conductivity of such a material turns out to be
three orders of magnitude higher than on application of the
field in the perpendicular direction [54]. The proton transport
plays a significant part in biosystems, in particular, in the
energy transformation at the cellular level [55, 56]. At present,
it is believed that chains of the polar groups of amino acid
residuals of transmembrane protein molecules form proton
channels in mitochondria. The bacteriorhodopsin molecule
constitutes one proton pump of this kind. In this case, the
proton path lies through the amino acid residuals containing
the OH hydroxyl group.

The supersonic motion of topological solitons in bistable
energy-nondegenerate systems was investigated by Mane-
vich, Smirnov and co-workers [56 ± 60]. In particular,
Manevich and Smirnov [59] considered a quasi-one-dimen-
sional model of a diatomic molecular crystal. Here, molecules
form a flat zigzag-like chain. The Hamiltonian of the system
has the form

H �
X
j

�
M

2
�qt uj�2 �m

2
�qt wj�2 �U�wj ÿ uj�

� d
2
�uj�1 ÿ wj�2 � K

2
�uj�1 ÿ uj�2 � k

2
�wj�1 ÿ wj�2

�
;

whereM andm are the masses of `heavy' and `light' particles,
uj and wj are their displacements from the equilibrium
positions in the lattice, and d, K, and k are the rigidities of
intermolecular bonds. The intramolecular potential U has
two energy-nondegenerate minima.

Let us introduce new variables: the center-of-mass
displacements wj � �Muj �mwj�=�M�m� of the molecules,
the intramolecular coordinates jj�wj ÿ uj, Mt�M�m, m �
Mm=Mt, c

2��d�K�k�=Mt, c
2
1 ��dÿKm=Mÿ kM=m�=Mt,

b � �d�Mÿm�=2� kMÿ Km
�
=Mt, g� ad=6, o2� d=ma 2,

h � a 2c 2=12, and a is the lattice constant. The crystal
dynamics in the continuous approximation is then described
by the system of equations

q 2
t wÿ c 2q 2

xwÿ hq 4
xw�

�d=a� qxjÿ bq 2
xj� gq 3

xj
Mt

� 0 ;

q2tj� c 21 q
2
xj� o 2j

� �qjU=a
2� ÿ �d=a� qxwÿ bq2xwÿ gq 3

xw
m

� 0 :

As shown in Ref. [59], the solution of this equation is a
supersonic topological soliton traveling with a velocity v:

j � jk

1ÿ tanh�z=d�
2

;

qz w�ÿ ajk

2Mt�v 2ÿc2�
�
d
�
1ÿ tanh

�
z
d

��
ÿ ab

d
sech2

�
z
d

�

ÿ
�
ag� dh

v 2 ÿ c 2

�
sech2 �z=d � tanh�z=d �

2d 2

�
;

E

0 v

Figure 8. Energy E of the topological soliton in a bistable chain as a

function of its velocity v.
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where z � xÿ vt, and d is a constant. This soliton transfers
the system from the initial state (j � 0) to the intermediate
one (j � jk). The latter is nonequilibrium, because the
center-of-mass velocities of the molecules are nonzero in this
state. The subsequent crystal relaxation from the intermedi-
ate state to the final state (with zero center-of-mass velocities
of the molecules) proceeds rather far from the soliton and
does not significantly affect its dynamics. The initial and
intermediate states correspond to the two minima of the
effective potential F, i.e., are defined by the condition

qjF�jk; vk� � 0 : �43�

For the specific soliton velocity vk, these minima are equal:

F�0; vk� � F�jk; vk� : �44�

The topological soliton in this system can propagate only
with a certain velocity defined by Eqns (43) and (44).

This model and its modifications are employed to describe
the propagation of detonation waves in solid explosives,
topochemical reactions (in particular, combustion) in mole-
cular crystals, the proton transfer along the chains of
hydrogen bonds, and the structural transitions in polymers
[56]. In all these cases, the topological soliton effects the `state
transport', i.e., transfers the system from the initial state to
the intermediate one. Subsequently, the system relaxes from
the intermediate state to the final one. Among the topochem-
ical reactions which proceed by the soliton mechanism,
mention should be made of the solid-phase polymerization
of diacetylene [56]. As a result of the reaction, the molecular
monomer monocrystal transforms to the polymer monocrys-
tal without participation of the liquid intermediate state. In
this case, the displacement of the topological soliton by a
distance equal to the lattice constant corresponds to an
elementary act of growth of the polymer chain (i.e., to the
displacement of one monomer molecule and its addition to
the chain). The soliton stopping signifies the chain termina-
tion and the formation of a defect in the polymer crystal.

In the foregoing we considered the propagation of the
supersonic dynamic soliton (23) in a zigzag polymer macro-
molecule. Balabaev et al. [34, 35] studied the following
problem: how the properties of this soliton change when the
molecule is incorporated in a polymer crystal? For the first
time, they investigated the effects related to the acquisition of
a topological charge by the dynamic soliton owing to a weak
interchain coupling. The research was conducted not only in
the `anharmonic chain on a substrate' approximation, as in
the works by Kosevich and Kovalev [50] and Savin [49], but
with the inclusion of themobility of all molecular chains in the
crystal as well. They considered a polyethylene crystal
consisting of parallel polymer chains in the plane trans-
zigzag conformation. The authors of Ref. [35] discovered,
both analytically and numerically, the solution of the
equations describing the dynamics of this crystal in the
approximation of immobile neighboring chains. It constitu-
tes a supersonic topological extension soliton traveling with a
velocity v � 1:49� 104 m sÿ1 � 1:012c, where c is the speed
of sound in the chain. Balabaev et al. [34, 35] also reported the
results of molecular-dynamics simulations of the behavior of
extension solitons (vacancies) in a three-dimensional polymer
crystal, when all the chains are immobile. The extension
soliton was observed to propagate with a supersonic velocity
v � 1:5� 104 m sÿ1 � 1:019c. When disregarding the inter-

action between the soliton-carrying chain and the neighbor-
ing chains, the supersonic topological soliton disintegrated
into four dynamic solitons propagating with close velocities.
Ignoring the interaction signifies the removal of the crystal-
line environment of the soliton-carrying chain. In other
words, this chain was instantly extracted from the crystal in
such a way that the relative velocities and displacements of
none of the atoms changed at the instant of extraction. Of
course, such an operation can be performed only in a
numerical experiment. Naturally, the law of topological
charge conservation is violated in this case, for it is precisely
the crystalline environment that fixes the magnitude of the
topological charge. The observed soliton disintegration
proves that the supersonic topological solitons in polyethy-
lene constitute the bound states of several dynamic solitons.
We are reminded that similar behavior of supersonic solitons
in the one-dimensional systemwas earlier discovered by Savin
[49]. Balabaev et al. [34, 35] observed this phenomenon in a
three-dimensional crystal for the first time.

To summarize the discussion of the properties of super-
sonic solitons, we emphasize their radical difference from the
recently discovered supraluminal electromagnetic solitons
[61, 62]. These supraluminal solitons can propagate only
through nonequilibrium media Ð they do not carry informa-
tion. By contrast, the supersonic topological solitons con-
sidered in our paper propagate in equilibrium systems and
carry information.

3. Relativistic and quasi-relativistic effects
in dislocation dynamics

We nowmove on tomultidimensional mechanical systems. In
this section and in Section 4 we restrict our consideration to
the mechanics of continua that obey the relations of the linear
theory of elasticity. Although our attention has heretofore
been focused on different nonlinearmodels, in this case such a
restriction is fully justified. The occurrence of a topological
charge is a geometrical property, and it is therefore not
necessary that the dynamic equations be nonlinear. Topolo-
gical solitons, and dislocations in particular, can exist in linear
systems as well. Naturally, real crystals are always nonlinear,
but the nonlinear properties of a crystal lattice are most
pronounced near the dislocation center, about its core, and
they do not exert an appreciable influence on a variety of
dislocation effects. That is the reasonwhy the equations of the
linear theory of elasticity are extensively used in the study of
dislocations [2, 63]. When considering the analogs of
relativistic effects in dislocation physics (of course, for not-
too-high defect velocities) we can well restrict ourselves to the
linear theory of elasticity.

3.1 Dynamics of screw dislocations
First, we consider a rectilinear screw dislocation in a three-
dimensional crystal, namely, the dislocation parallel to the
z-axis and traveling with a velocity v in the direction of the
x-axis (see Fig. 1). We will pass to the continuous approxima-
tion and assume the continuous medium to be isotropic.
Then, the displacements u3 of the medium particles around
the dislocation are the solutions of the equation

m
ÿ
q21 � q22

�
u3 � rq2t u3 �45�

subject to an additional boundary condition: the solution to
equation (45) satisfies the definition of the Burgers vector (1),
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which assumes, in this instance, the form

b �
�
L

du3 :

From this point on, the subscript i on the ui variable denotes
the displacement direction: 1 Ð displacement in the x-axis
direction, 2 Ð in the y-axis direction, and 3 Ð in the z-axis
direction; m is the shear modulus; r is the continuum density,
and q1 � q=qx. Equation (45) is invariant under the Lorentz
transformations with a parameter ct � �m=r� 1=2 (i.e., trans-
formations in which the velocity ct of transverse sound waves
occupies the place of the speed of light). Its solution
corresponding to a moving screw dislocation has the form [2]

u3 � b

2p
arctan

gy
xÿ vt ; �46�

where g � �1ÿ v 2=c 2t � 1=2. The dislocation is adopted as the
origin of coordinates. The displacements u1 and u2 are zero in
this case.

The mechanical stress about the dislocation takes on the
form

s13 � mq1u3 � ÿ mbgy

2p
��xÿ vt�2 � g 2y 2

� ;
s23 � mq2u3 � mbg�xÿ vt�

2p
��xÿ vt� 2 � g 2y 2

� : �47�

We now move to cylindrical coordinates. The only nonzero
component of the mechanical stress tensor is then described
by the formula

sjz�r;j� � mbg

2pr�cos2 j� g 2 sin 2 j� ; �48�

where r 2 � �xÿ vt�2 � y 2, and the angle j is measured from
the x-axis. Figure 9 shows the sections through the surface
defined by the condition sjz � const, which are produced by
the plane z � const in the cases v � 0 and 0 < v < ct. The
same dependence on the coordinates and the velocity is
inherent in the electric field intensity of an infinite rectilinear
charged rod parallel to the z-axis andmoving with a velocity v
in the x-axis direction:

E�r;j� � 2qrg

r 2�cos 2 j� g 2 sin 2 j� ; �49�

where q is the linear charge density of the rod, and
r � �xÿ vt; y� is the radius vector from the rod to the point
of field observation. In formula (49), g � �1ÿ v 2=c 2�1=2 ,
where c is the speed of light. The origin of the analogy
between relations (48) and (49) will be elucidated in Section 4,
where we will discuss the parallels between the dynamic
theory of topological defects and the fundamental field
theories, namely, electrodynamics and gravitation theory.

The kinetic dislocation energy constitutes the kinetic
energy of the elastic continuum in the vicinity of the defect:

T � 1

2

�
rqt ui qt ui dV : �50�

We substitute the displacement field (46) of the screw
dislocation in formula (50) to obtain [63, 64]

T � r
2

�
�qtu3�2 dV � E0v

2

2c2t g
;

with the rest energy of the screw dislocation being equal to

E0 � mb 2

4p
ln

R

r0
;

whereR and r0 are the limits of integration with respect to r in
the cylindrical coordinates.R is generally taken to be equal to
the distance between the dislocation and crystal boundary,
and r0 equal to the lattice constant. The potential energyU of
the defect is the energy of its elastic field. In the continuous
approximation it is defined as

U � 1

2
ci d f h

�
qd ui qh uf dV ; �51�

where ci d f h is the tensor of elastic modules. We substitute the
displacement field (46) into formula (51) to obtain

U � E0

g

�
1ÿ v 2

2c 2t

�
:

The total energy of the screw dislocation is given by

E � T�U � E0

�1ÿ v 2=c2t �1=2
:

Therefore, the energy of the screw dislocation depends on its
velocity by the Lorentzian law.

3.2 Dynamics of edge dislocations
We consider an edge dislocation in a two-dimensional crystal,
shown schematically in Fig. 10. The Frenkel ±Kontorova
model discussed above provides an approximate description
of atomic behavior in the glide plane of the edge dislocation
(i.e., in the plane passing through the dislocation, parallel to
the Burgers vector). We move to the continuous approxima-
tion, assuming themedium to be isotropic and obedient to the
relations of the linear theory of elasticity. Then, the displace-

y

v � 0

05 v5 ct

x

Figure 9. Sections through the surface defined by the condition

sjz � const, which are produced by the plane z � const for an immobile

screw dislocation and a dislocation traveling with a velocity ranging

0 < v < ct.
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ments of the particles in the medium about the edge
dislocation with the Burgers vector b � �b; 0�, the dislocation
traveling with a velocity v � �v; 0�, are solutions of the system
of equations [2]

mqj qj ui � �m� l� qi qj uj � rq2t ui �52�

subject to an additional boundary condition: the solution of
Eqn (52) satisfies the definition of the Burgers vector (1).
Here, l is the LameÂ constant. In the two-dimensional crystal
there exist longitudinal and transverse sound waves. Their
velocities are always different. It is therefore reasonable that
the formulas which describe themotion of an edge dislocation
[in particular, Eqn (52)] are not Lorentz-invariant. The
solution of Eqn (52), which corresponds to the traveling
edge dislocation, is of the form [64]

u1�x; y; t� � bc2t
pv 2

�
arctan

y�1ÿ v 2=c2l �1=2
xÿ vt

�
�
v 2

2c2t
ÿ 1

�
arctan

y�1ÿ v 2=c2t �1=2
xÿ vt

�
;

u2�x; y; t� � bc2t
2pv 2

�
v 2=�2c2t � ÿ 1

�1ÿ v 2=c2t �1=2

� ln

�
�xÿ vt�2 �

�
1ÿ v

2

c2t

�
y 2

�

�
�
1ÿ v

2

c2l

�1=2

ln

�
�xÿ vt�2 �

�
1ÿ v

2

c2l

�
y 2

��
; �53�

where cl �
��l� 2m�=r�1=2 is the velocity of longitudinal

sound waves. The dislocation is adopted as the origin of the
coordinates. The mass ± energy equivalence relation also
changes. For the edge dislocation it takes the following form
[2, 64]

E0 � Mc2t
1� c4t =c

4
l

; �54�

whereM is the dislocation mass.
The displacements (53) can be divided into two additive

components ut and ul which are Lorentz-transformable with

different parameters (the speeds of sound ct and cl) [2].
However, this separation would be impossible for the
dislocation energy and momentum. Indeed, from formulas
(50) and (51) it follows that in the expression for dislocation
energy there appear Lorentz-transformable terms with the
parameter ct and the parameter cl, as well as the cross terms
arising from the multiplication of the derivatives of the
displacements ut and u1. Consequently, if we know, for
instance, the value of the rest energy of an edge dislocation,
we cannot find its energy for some velocity v by the direct
application of the Lorentz transformations or some more
complex local transformations. First, it is necessary to
calculate the displacements of the particles of the medium,
which are produced by the given dislocation, resolve them
into the components ut and ul, apply the Lorentz transforma-
tions of the two different types to these components, and then
calculate the energy of the dislocation traveling with a
velocity v. Therefore, in the soliton theory in a two-
dimensional space, unlike the one-dimensional case consid-
ered above, the Lorentz transformations lose their signifi-
cance as a universal instrument for the calculation of
dislocation characteristics at different velocities. The equa-
tions of dynamic dislocation theory (see Section 4) do not
satisfy the Lorentz invariance condition, either.

Fushchich and Nakonechnyi [65] showed that the wave
equation describing the propagation of elastic waves in an
isotropic continuous medium is invariant with respect to the
nonlocal conformal group C(3,1) containing integro-differ-
ential transformations. This group plays the same part in the
elasticity theory of isotropic continuum as the Lorentz group
in electrodynamics. However, the situation is much more
complicated in the description of dislocation motion in an
anisotropic medium, where sound waves with three different
velocities can generally propagate in any direction. To date,
an analog of the Lorentz group has not been found for such
an instance. Nevertheless, in the framework of the dislocation
theory it is possible to obtain analogs of different formulas of
the special theory of relativity. Therefore, the dislocation
theory may well be referred to as quasi-relativistic. But its
relationships become Lorentz-invariant [this can be verified
by the example of formulas (53) and (54)] only in the limiting
case, when the velocity cl of longitudinal soundwaves tends to
infinity. Only in the case of a rectilinear screw dislocation in a
three-dimensional isotropic continuum are all the formulas
Lorentz-invariant irrespective of the value of cl.

3.3 On the origin of relativistic
and quasi-relativistic effects in dislocation theory
All the results of Section 3.2 remain in force for a rectilinear
edge dislocation in a three-dimensional crystal as well. The
Burgers vector of a rectilinear screw dislocation is parallel to
the dislocation line, and the Burgers vector of an edge
dislocation is perpendicular to this line. In the most general
case, most often encountered in real crystals, the angle made
by this vector with the dislocation is equal to neither 0 nor
p=2, this angle assuming different values at various points of
the dislocation line (because the direction of the Burgers
vector always remains invariable, and the dislocation direc-
tion may arbitrarily change). Therefore, one and the same
dislocation may be an edge dislocation in one portion of the
line, and a screw dislocation in another portion. We have
shown that the dynamic theory of screw dislocations satisfies
the Lorentz invariance condition, and the theory of edge
dislocations does not. Consequently, there is bound to exist a

y

x

Figure 10. Edge dislocation in a two-dimensional crystal.
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continuous passage from the Lorentz-invariant relations to
the formulas which do not satisfy the Lorentz invariance
condition. All these results may be obtained employing the
same general relations of dislocation theory.

It is important to remember that all the relativistic and
quasi-relativistic relationships given abovewere derived in the
framework of the classical mechanics of an elastic continuum.
They can therefore be obtained by purely classical methods
which are ordinarily not invoked in relativistic physics. In
particular, expressions (46) and (53) can be found by employ-
ing the Mura formulas for dislocation-induced distortions
[66]. These relatively complex relations assume a simpler form
in the four-dimensional notation [4]:

bjn�xf� � qn uj �xf� � cÿ2t Ciabdenhag

�
O
Jhi

g �x0f �
� qd Gbj �xf ÿ x0f � dO 0 ; �55�

where b; i; j � 1; 2; 3; a; d; f; g; h; n � 0; 1; 2; 3;
ct � �c 1212=r� 1=2, q0 � cÿ1t qt,

Ciabd � c iabd for a � 1; 2; 3 ;

ÿdbi d adrc2t for a � 0 :

�
Here, c iabd is the three-dimensional tensor of elastic modules,
dbi is the Kronecker symbol, enhag is the four-dimensional
completely antisymmetric Levi ±Civita tensor, e0123 � 1,

Jhi
g �x0f � � thbi Vgd�x0f ÿ xf

0� �56�

is the dislocation flux density tensor, th is a unit vector
tangential to the dislocation line, Vg � � �ct;ÿV� is the
four-dimensional dislocation velocity, V is the three-dimen-
sional dislocation velocity vector, d�x0f ÿ xf

0� is the Dirac
delta function, xf

0 are the coordinates of the dislocation line,
dO 0 � dV 0 d�ctt 0� is a volume element in the four-dimen-
sional spacetime, and Gbj is the tensor Green function of the
equations of classical linear theory of elasticity of the
continuum under consideration. Our attention is engaged by
the fact that the above expression for the four-dimensional
dislocation velocity is different from the usual formula of the
special theory of relativity. This is due to the fact that the
formulas of dynamic dislocation theory are in general not
Lorentz-invariant.

An analysis of the above examples of the relativistic and
quasi-relativistic effects leads to the following conclusion: all
these effects ensue from the retardation of signals in the
propagation of solitons. The function of signals in these
instances is fulfilled by longitudinal and transverse sound
waves rather than electromagnetic ones, as in the special
theory of relativity. Indeed, the contraction of width of a
traveling kink by the Lorentzian law, which was considered in
Section 2.1, is attributed to the fact that the chain atoms
situated in front of the kink have no time to shift to the
positions corresponding to the maximal kink width. In the
time during which they shift, the kink approaches, and
therefore the same difference of displacements u is observed
in a narrower regionL. The same retardation accounts for the
shape variation of the elastic field of a traveling dislocation,
which is demonstrated in Fig. 9.

The effect of signal retardation on the shape of displace-
ment field is described by the Mura formula (55) which
expresses the dislocation distortions in terms of the dynamic
Green function.We would remind the reader of the definition

of this function in the continuous theory of elasticity. The
dynamic Green function is defined as the solution of the
classical equations of motion of an elastic continuum [67]:

ci j n lql qjGnr�x; t� � dird�x�d�t� � rq 2
t Gir�x; t� :

It is well known that the Green function Gi j�x; t� represents
the component of elastic displacement in the xi direction at a
point x at the instant of time t;which is caused by a unit pulsed
force applied in the xj direction at the point x � 0 at the
instant of time t � 0. It is precisely the dynamic Green
function that describes the retardation of signals in the
system under different actions. The motion of dislocations is
one such action. All the above-discussed relativistic and
quasi-relativistic effects emerging in the soliton theory are
eventually governed by the properties of the Green function
and are consequences of theMura formula (55). This formula
represents the most general relation of dynamic dislocation
theory: consequences of this formula are both the Lorentz-
invariant relativistic formulas (Section 3.1) and the quasi-
relativistic relations which do not satisfy the Lorentz
invariance condition (Section 3.2). The Mura formula (55)
was derived in the framework of the classical mechanics of an
elastic continuum, and therefore all the above-discussed
relativistic and quasi-relativistic formulas of soliton theory
ensue from Newton's postulates.

From the consideration conducted it follows that only
those quantities which are expressed in terms of dislocation
distortions depend on the dislocation velocity according to
the Lorentzian law. In other words, the relativistic and quasi-
relativistic velocity dependences are inherent only in the
physical quantities related to the retardation of signals in the
soliton motion: the fields of elastic deformations and
mechanical stresses generated by dislocations, the soliton
energy, the momentum, the force exerted on the dislocation
by the elastic field, etc. Those quantities that are not expressed
in terms of the Green function, i.e., are not related to signal
retardation (the dislocation velocity, the lattice parameters),
do not depend on the soliton velocity in the relativistic
manner. However, this does not hinder from using four-
dimensional designations for these quantities [4].

3.4 Transonic and supersonic dislocations
In Section 2 we considered different examples of supersonic
topological solitons propagating in one-dimensional systems.
It would therefore appear natural that topological solitons in
two- and three-dimensional systems (in particular, disloca-
tions in crystals) would possess the capacity to travel faster
than sound. Unfortunately, the problem of supersonic
dislocation motion has been poorly studied in comparison
with the problem of supersonic solitons in one-dimensional
systems. Although the first papers on this subject date back to
the 1940s, they are currently of no special interest because
their authors endeavored to solve this problem in the frame-
work of the linear theory of elasticity. From the above-
considered examples of supersonic solitons it follows that
solving the supersonic dislocation problem calls for the
inclusion of nonlinear and dispersion terms in the equations
of the theory of elasticity.

We introduce several new terms, because both transverse
and longitudinal sound waves can propagate through two-
and three-dimensional crystals. The dislocation velocity v,
which is below the velocity ct of transverse sound waves, will
be referred to as subsonic velocity. The velocity v of a
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transonic dislocation satisfies the inequality ct < v < cl,
where cl is the velocity of longitudinal sound waves. The
dislocation which travels faster than the longitudinal sound
waves will be termed supersonic.

Hoover et al. [68] published the first paper on the problem
of transonic dislocations that took into account the crystal
lattice anharmonicity. They carried out numerical simula-
tions of the propagation of edge dislocations in a closely
packed hexagonal lattice. The lattice atoms obeyed a central-
force interaction law. Hoover and co-workers observed the
dislocation motion with a transonic velocity v � 0:89cl.
However, the authors provided no details on this dislocation
propagation mode. More recently, Gumbsch and Gao [69]
performed a closer investigation of this problem. They
undertook numerical simulations of the motion of edge
dislocations in a body-centered cubic tungsten lattice using
themolecular dynamics method. The sample was subjected to
an applied shear stress. For a light load, the dislocations
traveled with subsonic velocities (0:65ct ÿ 0:7ct). As the
applied shear stress increased, they started moving with
transonic velocities. The dislocation would then move
slower, come to a halt, and stay at one point for 0.5 ps.
During this pause, the broad core of the transonic dislocation
would contract to the size of the subsonic defect core,
following which the dislocation would move with a velocity
of about 0:7ct. Subsonic dislocations were not observed to
overcome the sound barrier: the dislocations produced
possessed transonic velocities. As noted in the foregoing,
this property is inherent in the solitons in one-dimensional
systems Ð they can also be produced with supersonic
velocities.

When the load was gradually increased, the velocity of
transonic dislocations was observed to rise from 1:38ct to
1:5ct. Since the dislocation is a source of the elastic field, its
motion with a velocity higher than the velocity of the field
itself (i.e., faster than the speed of sound) is bound to be
accompanied by the emission of sound waves (this effect is the
acoustic analog of the well-known Vavilov ±Cherenkov
effect). Gumbsch and Gao [69] observed this emission,
though only in that part of the elastic field of the dislocation
where the crystal was stretched. No emission was observed in
the area of the compression field.

Under still heavier applied loads, the dislocation moved
faster than the longitudinal sound waves. In this case, the
configuration of the dislocation core differed little from the
configuration of the transonic dislocation core, but the
anisotropy of dislocation radiation was still stronger. One
wave front of longitudinal oscillations was observed in the
area of the extension field, while from four to five localized
fronts were observed in the area of the compression field. The
linear theory of elasticity predicts in this case the emergence of
two symmetric pairs of wave fronts (one pair corresponds to
the emission of transverse sound waves, and the other to the
emission of longitudinal ones). It is conceivable that the
additional fronts correspond to the nonlinear modes of the
sound spectrum.

The results of Gumbsch andGao [69] were later borne out
by the works of other researchers. Shi et al. [70] also carried
out a series of numerical experiments on the tungsten lattice
and observed the transonic motion of edge dislocations in
that crystal. Koizumi et al. [71] discovered the transonic
motion of screw dislocations in their numerical experiments.
They modeled a three-dimensional cubic lattice. The atomic
rows parallel to the z-axis moved in that lattice as perfectly

rigid rods. When the dislocation velocity exceeded 0:7ct, the
dislocation field of mechanical stress gave birth to pairs of
dislocations with the Burgers vectors of the opposite sign (this
process is the reverse of the annihilation of a topological
soliton and an antisoliton).

Rosakis [72] came up with a modification of the Peierls
model describing transonic and supersonic dislocations. We
are reminded that the dislocation-bearing crystal in the Peierls
model [2] was considered as a linear elastic continuum
everywhere except in the glide plane of the dislocation,
where account was taken of the discreteness of a real crystal
and the nonlinearity of its elastic properties characterized by
the potentialF�u�, where u is the atom displacement. Rosakis
showed that adding the term describing the gradient non-
linearity of the form c�qxu� 2, where the x-axis is the direction
of dislocation motion, to the derivativeF 0�u� of the potential,
makes possible the transonic and supersonic propagation of
edge dislocations. It would be instructive to investigate the
relation between this finding and the above-outlined results
on the supersonic propagation of topological solitons in one-
dimensional models with a gradient nonlinearity.

4. Gauge theory of line defects
and fundamental field theories

In Section 3.1 we noted the equivalence (correct to a change of
constants) between the formula describing the dependence of
the mechanical stress field induced by a rectilinear screw
dislocation on its velocity and coordinates and the formula
describing the dependence of the electric field intensity of an
infinite rectilinear charged rod on its coordinates and
velocity. Clearly, this coincidence is not accidental. It is part
of the analogy between the dynamic dislocation theory and
electrodynamics [3, 4]. An understanding of this analogy is
required for elucidating the linkage between the relativistic
effects in electrodynamics and classical mechanics.

4.1 Gauge theory of line defects and electrodynamics
Indeed, dislocations are sources of elastic fields (the fields of
mechanical stress and deformation), while electric charges are
sources of electromagnetic fields. However, any defects in
crystals (for instance, cracks) are sources of elastic fields. A
distinctive property of linear defects (dislocations and
disclinations) is their topological nature. This is precisely the
reason for the gauge nature of the dynamic theory of these
defects. The topological charges of defects (the Burgers
vectors in the case of dislocations) are analogous to electric
charges. These charges are conserved quantities. The gauge
transformations in the theory of defects constitute an analog
to the well-known gradient potential transformations in
electrodynamics. By way of example we consider a rectilinear
screw dislocation parallel to the z-axis (see Fig. 1). We
introduce a cylindrical coordinate system and adopt the
dislocation as the origin of the coordinates. In the contin-
uous approximation (the continuum is assumed to be
isotropic), the particle displacement field in the medium
about an immobile dislocation is of the form uz � bf=2p.
The angle f can be measured from any axis perpendicular to
the dislocation. Moving from one such axis to another (i.e.,
the passage to another coordinate system) has the result that
some constant is added to the displacements uz. In doing this,
the distortions bjn � qnuj and the mechanical stresses

sbh � Cbh j n b
jn �57�
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remain unchanged. Once again, we draw an analogy with
electrodynamics: in the gauge transformations of the poten-
tial Aj, the electromagnetic field tensor Fjn � qjAn ÿ qnAj (its
components are the components of the electric E and
magnetic H field vectors) remains unchanged.

The fact that the distortion (bjn) and mechanical stress
(sjn) tensors are precisely the analogs to the electromagnetic
field tensors Fjn and Hjn, is easily verified by comparing the
expression for the electromagnetic field energy density

Wem � 1

16p
�ÿ4F 0iH 0

i � FinH
in� � 1

8p
�ED�HB� ;

where i; n � 1; 2; 3; D is the electric induction, and B is the
magnetic induction, with the formula for the elastic field
energy density (in the three-dimensional notation)

Wel � 1

2

�
r�qtui�2 � binsin

�
:

Using the four-dimensional notation introduced above, the
elastic field energy density can be written down in the form

Wel � 1

2
�ÿb i0si0 � b insin� ;

where i; n � 1; 2; 3.
It is pertinent to note a significant distinction between the

gauge theory of defects and electrodynamics. In electrody-
namics and all gauge theories of the Yang ±Mills type, the
gauge-field tensor Fa

jn (a � 1 in electrodynamics) is antisym-
metric with respect to permutation of the indices j and n. In
the theory of defects, the analogous tensors bjn and sjn are,
generally speaking, neither symmetric nor antisymmetric. In
the framework of the linear theory of elasticity, in the
majority of cases it is possible to ignore both the antisym-
metric part of the distortion tensor describing small rotations
of the continuum and the antisymmetric part of the mechan-
ical stress tensor (ignore couple stresses). Then, instead of the
distortion tensor, use should be made of the symmetric
deformation tensor ejn � �qn uj � qj un�=2. In this case, the
analogy with the electromagnetic field tensor Fjn becomes all
the more evident.

The difference in symmetry and tensor dimensionality of
the quantities describing gauge fields leads us to the
conclusion that there is no way to directly use the relations
of electrodynamics or gauge theories of the Yang ±Mills
type in the gauge dislocation theory. In particular, the
Lagrangian of the interaction of dislocations with elastic
fields cannot have the form of the convolution of the in-
medium particle displacement vector ui and the dislocation
flux density tensor Jhi

g, because this is a tensor of rank 3.
Next in this section we briefly outline the method for
constructing the Lagrangian of the interaction of linear
defects (dislocations and disclinations) with elastic fields,
which was proposed by Musienko and Koptsik [4]. How-
ever, since such defects as disclinations are relatively little
known, we first give several definitions.

The dislocations considered above are local breakdowns
of the translation symmetry of a crystal. By contrast,
disclinations represent local breakdowns of orientation
crystal symmetry (i.e., the symmetry with respect to a
rotation group). Disclinations possess topological charges
Ð the Frank vectors (strictly speaking, pseudovectors). In the
continuous approximation, the Frank vector is represented

by the integral [73, 74]

oi � 1

2

�
L

eimnqsqmun dxs ;

where L is an arbitrary closed circuit enclosing the disclina-
tion.

Taking advantage of the four-dimensional notation
introduced in Section 3.3, we represent the Lagrangian of
elastic fields in an anisotropic continuum as

L0 � ÿ 1

2
Cirjn qr ui qn uj : �58�

Here, n; r � 0; 1; 2; 3, and i; j � 1; 2; 3. In Section 3.3 we gave
the Mura formula which expresses the dislocation distortions
in terms of the dislocation density. The corresponding
expressions for disclinations were derived by Kossecka and
de Wit [75]. In the four-dimensional notation, their results
take on the form

qf un�xa� � ÿ 1

c 2t

�
O
etghf C

jilhqi Gjn�xa ÿ x 0a� I tlrg�x0a�

� �x 0 r ÿ ~xr� dO 0 ÿ 1

2

�
S
Cjilh qi Gjn �xa ÿ x 0a� eghbq Ol f

� Vg df 0 bqd�x 0a ÿ xa
0� ; �59�

where a; f; g; h; i; t � 0; 1; 2; 3, and b; j; l; n; q; r � 1; 2; 3; the
disclination flux density tensor is given by

I tlr
g�xi� � tt Olr V

g d�xi ÿ xi
0� ; �60�

Onj � enijo i (at n � 0 or j � 0, the components of the tensor
Onj are assumed to be zero), xi

0 are the coordinates of the
disclination line, ~xr are the coordinates of the point of Frank-
vector application to the disclination line, Vg is the disclina-
tion velocity, df 0 bq is the area element lying in the plane
formed by the unit vectors eb and eq, and S is the disclination
formation surface, i.e., an arbitrary surface bordering the
disclination.

We replace the distortions in the Lagrangian (58) with the
sums of distortions produced by the applied elastic field and
the distortions (55) and (59) arising from defects. We
rearrange the resultant expression to find the Lagrangian of
the interaction of elastic fields with the defects:

Lint � ÿ 1

ct
Bgij K

gij ;

where the four-dimensional tensor of the defect current is
expressed as

Kgij�xd� � e gajb
�
Ja

i
b�xd� � Ia

ir
b �xd��~xr ÿ xr �

��
� 1

2

�
S
O gi Vf e

jfqt d�xd ÿ x 0d� df 0qt ;

a; i; q; r; t � 1; 2; 3, and b; d; f; g; j � 0; 1; 2; 3; Bgi j is the tensor
potential presenting an analog of the vector potential Aj in
electrodynamics. The four-dimensional mechanical stress
tensor and the tensor potential are related as

si j � q d Bdij :

The total Lagrangian of the medium with defects is
written in the following way:

L � L0 � Lint � Lm : �61�
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Here, Lm is the material Lagrangian which characterizes the
energy of defects without the inclusion of their elastic
interaction. Its analog in electrodynamics is the Dirac
Lagrangian of the electron ± positron field. The exact form
of the Lagrangian Lm for dislocations and disclinations
remains to be found. This is the reason why attempts to
derive the Lagrangian of the interaction between defects and
elastic fields employing the canonical gauge method Ð by
substituting the covariant derivatives in the material Lagran-
gian for the partial onesÐup to the present have notmet with
success. Several authors (for instance, Kadi�c and Edelen [5])
employed this method, but they relied on a radically different
analogy between the gauge theory of linear defects and the
field theories (in particular, electrodynamics). In the
approach taken by Kadi�c and Edelen, the dislocation flux
density turns out to be an analog to the intensity and
induction of electric and magnetic fields. The material
Lagrangian in this theory is the Lagrangian of the elastic
field in the defect-free continuum. Kadi�c and Edelen
described the interaction between the defects and the elastic
fields by changing from partial derivatives in the elastic-field
Lagrangian to covariant ones. We believe this approach to be
incorrect. From the above consideration it is evident that the
defects possessing a topological charge should be treated as
analogs to charged particles rather than massless quantum-
carriers of the interactions, as is done byKadi�c andEdelen [5].
In our approach, as in Kosevich's work [3], the analog for the
electromagnetic field is the elastic field.

We emphasize that it was precisely the analogy proposed
by Kosevich [3] which was later employed in the construction
of the theory of dislocation melting of two-dimensional
crystals [76]. Such melting constitutes a topological phase
transition, which is also known as the Berezinski ±Koster-
litz ± Thouless phase transition. The dislocation theory of
melting is based on the analogy between the gas of edge
dislocations and a two-dimensional Coulomb gas (a gas of
charged particles).

By varying the field potentials, from expression (61) we
obtain the equations for elastic fields:

q hsnh � 1

ct
Cngi j K

gij ; �62�

where i, n � 1, 2, 3, and g; h; j � 0, 1, 2, 3. For immobile
dislocations, these equations (in three-dimensional notation)
were found by Kosevich [3]. Equations (62) are similar to the
second pair of the Maxwell equations

qhHnh � ÿ 4p
c

j n : �63�

In the dislocation theory there also exists the analog to the
first pair of the Maxwell equations. Since these equations are
rather cumbersome, we write them for a disclination-free
continuum:

qgqa un�xb � ÿ qaqgun�xb � � egiah J
i
n
h �xb� : �64�

Here, n � 1, 2, 3, and a; b; g; h; i � 0, 1, 2, 3. These equations
constitute the definition of a dislocation and the statement
that this continuum is void of disclinations. They are similar
to the first pair of Maxwell equations

e i jlb qjFlb � 0 : �65�

As is well known, these equations are equivalent to the
statement that there exist no magnetic charges (monopoles)
in nature. If Eqns (64) are summed in threes, they acquire a
form which is more similar to that of Eqns (65). Equations
(62), like analogous Eqns (63), were obtained by varying the
Lagrangian of the system. Equations (64) and (65) are not
variational.

Invoking the principle of least action, from the Lagran-
gian (61) we find the force exerted by the elastic field on a unit
length of the linear defect:

fi � 1

ct

�
V

Kidj s dj dV : �66�

For a static dislocation, expression (66) in the three-dimen-
sional notation assumes the form

fi � eigttg bd sdt : �67�

This is the well-known Peach ±Kaeler force, being an analog
to the Coulomb force in electrodynamics. We consider, for
example, two parallel screw dislocations in an isotropic
medium with the Burgers vectors b1 and b2 parallel to the
z-axis. We substitute the mechanical stress (47) produced by
one of the dislocations in the right-hand side of formula (67).
This gives the expression for the force of dislocation
interaction in cylindrical coordinates:

F � m�b1 � b2� r
2pr 2

;

where r is the vector connecting the two dislocations.
Consequently, the dislocations of like signs (b1 � b2 > 0)
repel each other, and the dislocations of opposite signs
(b1 � b2 < 0) attract each other.

In the dynamic case, there emerges a correction to force
(67), which depends on the defect velocity. In the three-
dimensional notation it takes the form

fi � rvnbneirl trVl :

Here, vn is the velocity of the particles in the medium. This is
the so-called dislocation Lorentz force found by Kosevich [3]
in a different way.

Menski|̄ [77] showed that the gauge group of a theory is
the representation of the fundamental group of the space of
order parameter variation. The order parameters in the
continuous theory of dislocations and disclinations are the
particle displacements in the medium. The fundamental
group in this case is SO�3� . T�3�, where . symbolizes the
semidirect product of the groups of rotations SO(3) and
translations T(3) in a three-dimensional space. Conse-
quently, the gauge group of this theory in the most general
case is the group SO�3� . T�3�.

At present it is a wide-spread opinion (see, for instance,
Ref. [15]) that the conservation of topological charges is not
related to the symmetries of the Lagrangian of the system, i.e.,
is not a corollary of theNoether theorem. In the framework of
the gauge theory of dislocations and disclinations, the laws of
conservation of the topological charges of these defects can be
obtained with the aid of the second Noether theorem, as
shown by Musienko and Koptsik [4]. Indeed, let us consider
the gauge transformations of the potential, which leave the
values of the observed fields (mechanical stress and deforma-
tion tensors) unchanged:

Bgib ! B
0
gib � Bgib � egbdaq

aei d � q nq axgibna : �68�
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Here, i � 1, 2, 3, the Greek indices assume the values from 0
to 3, ei d is an arbitrary tensor function of the coordinates and
the time, and xgibna is also an arbitrary function of the
coordinates and the time which is antisymmetric in the last
two indices and satisfies the following conditions

q nq axgibna 6� 0 ;

q gq nq axgibna � 0 :

According to the second Noether theorem, some con-
servation law corresponds to every gauge transformation.
Transformations (68) with the parameters eid lead to the
conservation laws

qm�J m
i
n ÿ J n

i
m� ÿ I mim

n � I n im
m � 0 : �69�

This is an analog to the law of electric charge conservation in
electrodynamics, which also follows from the secondNoether
theorem. In the absence of disclinations in this continuum,
expression (69) at n � 0 signifies that dislocations cannot
terminate inside a crystal: they should either form closed
loops or crop out at the surface, and for n 6� 0 it transforms
into the continuity equation for the dislocation flux density.
In the presence of disclinations, expression (69) at n � 0
signifies that dislocations may terminate at disclinations;
and for n 6� 0 it signifies that the disclination motion [under
the conditions defined by expression (69)] is accompanied by
the production or cancellation of dislocations.

Transformations (68) with the parameters xgibna lead to
similar disclination conservation laws

qm�I digm ÿ I mig
d� � 0 : �70�

The topological charge conservation laws (69) and (70) were
previously found [78] in the three-dimensional form as a result
of topological relationships. Therefore, the second Noether
theorem makes it possible to deduce the continuity equations
for the dislocation and disclination fluxes, which describe the
conservation of the topological charges of linear defects in
their motion, along with the static relationships characteriz-
ing the spatial continuity of the extended defects themselves
and the equality of topological characteristics at different
points of one and the same linear defect.

Musienko and Koptsik [79] generalized the above-out-
lined gauge theory of dislocations and disclinations to the
case of crystals with complex lattices, i.e., crystals containing
more than one atom in the elementary cell.

4.2 Gauge theory of line defects and gravitation theory
Many authors [80 ± 82] have called attention to yet another
analogy Ð that is, between the dynamic theory of linear
defects and the gravitation theory. This analogy is closer than
the analogy to electrodynamics considered above. Indeed, a
crystal containing topological defects constitutes a manifold
with non-Euclidean geometry. When studying the dynamic
behavior of this crystal in the continuous approximation, we
can introduce the concepts of metric and connectivity. The
metric tensor gi j, as is generally known, defines themagnitude
of the square of the interval:

ds 2 � gij dx
i dx j :

The connectivity G i
jn characterizes the variation of the

components of a vector under an infinitesimal parallel
translation

dAi � ÿG i
jnA

j dxn :

In the case of a defect-free crystal, the metric is Euclidean and
the connectivity is identically equal to zero. When our
concern is only with the processes occurring on greater scales
than the interatomic distance (i.e., when the continuous
approximation is valid), the mechanical properties of the
crystal are determined exclusively by its geometry. Therefore,
the situation is the same as in the gravitation theory, where the
interaction of particles depends on the geometric character-
istics of spacetime.

The deformation of continuum (possibly including the
formation of topological defects) is described by the mapping
of the initial manifold: xi ! yi�x�. This manifold transforms
the initial Euclidean metric to the metric

gi j � qxn

qy i

qx l

qy j
dnl � dij ÿ qiuj ÿ qjui � di j ÿ 2ei j :

The curvature tensor

Rijn
l � qiGjn

l ÿ qj Gin
l � Gir

lGjn
r ÿ Gjr

lGin
r

and the disclination flux density tensor (60) are related as

Ri jnl � e iajbIa
nl
b :

In the gravitation theory, as is well known, the source of
torsion is particles and, in general, any objects possessing
energy (e.g., an electromagnetic field).

The torsion tensor

Tg
i j � G g

i j ÿ G g
ji

and the dislocation flux density tensor (56) are related as

Tgij � e iajbJa
g
b : �71�

The source of torsion in the gravitation theory is the four-
dimensional spin density tensor S l

mn � v lSmn, where v
l is the

velocity of a particle possessing spin, and Smn is an
antisymmetric tensor. Its spatial components make up the
three-dimensional vector s � �S 23;S 31;S 12�, which is equal
to the three-dimensional spin density in the rest frame of the
particle. In particular, the spin density tensor of the Dirac
field is [83]

Slmn � C�g�lgmgn�C ;

where C is the Dirac spinor, C� is the Dirac adjoint spinor,
and gm are the Dirac matrices; antisymmetrization is per-
formed over the indices in the square brackets. The spin
density and the torsion are related by the formula [83, 84]

T l
mn � 16pG

c3

�
S l

mn � 1

2
dl
mSn ÿ 1

2
dl
n Sm

�
: �72�

Here, G is the Newtonian constant of gravitation, c is the
speed of light, and Sm � S l

ml .

5. Conclusions

Thus, we have shown that the propagation of solitons in the
framework of classical mechanics is accompanied by effects
related to the finiteness of the velocity of information
transmission. When the equations describing the dynamics
of the system possess Lorentzian symmetry, these effects
coincide in form with the effects of the special theory of
relativity. In this case, the speed of sound appears in the
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corresponding formulas instead of the speed of light. Like
many other authors, we call these effects relativistic. The
equations describing some mechanical systems need not be
Lorentz-symmetric. However, the effects arising from the
finiteness of the velocity of information transmission exist in
these systems, too. The analogy to the special theory of
relativity is nevertheless retained at a qualitative level. In
particular, in the Kosevich ±Kovalev model (the modified
Frenkel ±Kontorova model with an intrachain anharmoni-
city), the soliton width decreases with its velocity, while its
energy therewith increases. The same qualitative analogy can
be traced for other relativistic effects as well. However, the
mathematical description of soliton dynamics in the Kose-
vich ±Kovalev model is different from the usual Lorentzian
one. That is why we applied the term `quasi-relativistic' to
these effects, which is indicative of their qualitative similarity
to the effects in the special theory of relativity, as well as of
some distinctions. The most significant of these distinctions is
the possibility of supersonic motion of topological solitons in
systems devoid of the Lorentzian symmetry. We emphasize
that the soliton's passage through the sound barrier does not
lead to any paradoxes like the violation of the causality
principle or the emergence of imaginary soliton energy.
Unlike the supraluminal solitons in active media, which do
not carry information [61, 62], the supersonic solitons
considered in our paper propagate in passive media and
convey information.

Owing to the absence of Lorentzian symmetry, classical
mechanics possesses a greater diversity of different effects
related to the finiteness of the velocity of information
transmission than the special theory of relativity. Investiga-
tions in this field have been undertaken relatively recently,
and new results would therefore be expected to emerge here.
Of special interest is, in our view, the study of systems whose
behavior is close to the Lorentzian one for low soliton
velocities but which depart from Lorentzian behavior when
the soliton velocity approaches the speed of sound. An
example of such a system is provided by the Kosevich ±
Kovalev model.

The most part of the results, especially the theoretical
ones, pertaining to the dynamics of solitons in general and
topological supersonic solitons in particular were obtained in
the study of one-dimensional systems. An important line of
future investigation is the generalization of these results to the
case of multidimensional (two- and three-dimensional)
systems. The theory of solitons in such systems is being
developed intensively [85]. In particular, it would be instruc-
tive to theoretically describe the supersonic motion of
dislocations in crystals with the use of the available data on
the supersonic motion of topological solitons in one-dimen-
sional systems. Undeniably, such works would be beneficial
from the fundamental, as well as applied, viewpoints.

The investigation of supersonic solitons, both dynamic
and topological, is of considerable applied interest. Such
solitons (for instance, dislocations) play a significant part in
the processes occurring in solids under heavy loads. Their
investigation is important for understanding the phenomena
like the propagation of shock waves, detonation, tectonic
processes (and, in particular, earthquakes), the plasticity and
disruption of solids, and the ballistic regime of thermal
conduction. The progress of nanotechnologies makes parti-
cularly topical the study of the dynamics of solitons, because
they play a large role in the processes occurring at the
nanoscale level.

In this workwe restricted ourselves to the consideration of
solitons in mechanical systems. However, as noted in the
Introduction, solitons are the subject of research in quite
different branches of physics Ð from biophysics to elemen-
tary particle physics. It is hoped that many results outlined in
our review will find use not only in mechanics, but in other
areas of physics as well.

The history of science testifies that the study of analogies
between different phenomena has repeatedly fostered the
production of new results. The most striking example in this
area is the optical ±mechanical analogy whose investigation
led to the discovery of the SchroÈ dinger equation. We hope
that the knowledge and the employment of the analogies
between the theory of classical solitons, on the one hand, and
the relativity theory and gauge field theories, on the other
hand, will prove to be beneficial for experts in different realms
of physics.
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