
Abstract. Continuous phase transitions that occur at zero tem-
perature as a result of quantum fluctuations required by Hei-
senberg's uncertainty principle are called quantum phase
transitions. In the present paper an elementary introduction to
quantum phase transitions is given. A few experimental exam-
ples from the physics of heavy-fermion systems and itinerant
ferromagnets are described.

1. Introduction

Recent studies in the field of strongly correlated electron
systems have largely been concentrated on the so-called
quantum phase transitions or quantum critical phenomena.
And although a number of monographs and numerous
reviews [1 ± 9] have already been devoted to this compara-
tively new problem, it is still very far from being completely
resolved.

As distinct from classical phase transitions, quantum
phase transitions result from nonthermal quantum fluctua-
tions, which arise due to the uncertainty principle 1. The
concept of quantum phase transitions was first introduced
by J Hertz in 1976 [10] 2, who showed that in view of the
inextricable relation between the static and dynamic proper-
ties of a quantum system its time characteristics significantly

affect the behavior of the substance in the critical region at
T � 0 and the effective dimension of a quantum system
always exceeds its spatial dimension 3. The latter fact largely
influences the behavior of a substance in the critical region.

Quantum phase transitions in a pure form only occur at
T � 0, although their effect on the properties of the substance
can spread to the region of finite temperatures. We will
emphasize that here and in what follows we only deal with
continuous or second-order phase transitions. First-order
quantum phase transitions (e.g., helium melting) do not
have a fluctuation region and are of no interest in this context.

Further, we will need a brief review of classical phase
transitions, which will be presented in the next section.

2. Brief review of phase transitions

The theory of second-order phase transitions developed by
Landau is based on the concept of the order parameter Z (for
more details concerning second-order phase transitions see
[14 ± 16]). In the framework of the Landau theory the order
parameter Z near the transition point behaves as

Z / jtj1=2 ; �1�

where t � �Tÿ Tc�=Tc.
Heat capacity, the coefficient of thermal expansion, and

compressibility experience finite jumps at the transition point.
In the general case, t in (1) should be replaced by the

quantity d which is a certain dimensionless distance to the
phase transition point and is expressed, depending on the
particular case, in terms of pressure, magnetic field strength,
concentration, etc. The behavior of the thermodynamic
(physical) quantities y1; . . . ; yN in the vicinity of a phase
transition point is typically expressed by power functions of
the form

y / jdjÿx ; �2�
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1 Although generally accepted, this formulation should obviously be

explained. It means that quantum fluctuations, which destroy the long-

range order in a system, are controlled by non-thermal parameters like

pressure, concentration, magnetic field etc.
2 Part of the results of that paper were revised in Ref. [11].

3 This circumstance was probably first noted in Ref. [12] (see also [13]) in

the analysis of the quantum two-dimensional Isingmodel with a spin 1/2 in

a transverse magnetic field.



where x is the so-called critical exponent determined from the
relation

x � lim
d!0

ln y�d�
ln d

: �3�

With such a definition, the critical indices of `nonsingular'
quantities, quantities with logarithmic divergence, or quan-
tities with a `peak-like' singularity turn out to be equal to zero.

In a simple version, the Landau theory totally ignores
spatial fluctuations of the order parameter and is therefore
invalid in a region close to a phase transition. However, in
some cases the fluctuation region is so narrow that it cannot
be resolved in a real experiment. The simplest way to allow for
fluctuations is to expand the thermodynamic potential, not
only in the power series of the order parameter, but also in its
gradients. The first significant term of the gradient expansion
is of the form

dF / �DZ�2 ' x2
�
qZ
qx

�2

: �4�

The quantity x with dimensionality of length is called the
correlation length and characterizes the spatial inhomogene-
ity of the system. In the framework of the Landau theory the
correlation length has the form

x � x0jtjÿ1=2 : �5�

In the general case the correlation length is written as

x � x0jtjÿn : �6�

Using relation (4) one can estimate the width of the
fluctuation region and, correspondingly, the range of applic-
ability of the Landau theory from the expression for the
relative mean-square order parameter fluctuation (see [17,
18]),

�DZ�2
Z2
� T 2

c

DCpx
d
0�Tÿ Tc�2ÿd=2

; �7�

where d is space dimensionality.
Expression (7) also establishes an important relation

between the space dimensionality and the intensity of
fluctuations. From (7) it follows that for d5 4 the order
parameter fluctuations are finite for any t and, accordingly,
diverge for d < 4. The dimension d � 4 is in this case called
the upper critical dimensionÐ d�c . A lower critical dimension
dÿc also exists, for which the long-range order is absent in the
system at any finite temperature.

Note that at the tricritical point

�DZ�2
Z2
/ Tc

xd0�Tÿ Tc��3ÿd�=2
; �8�

the upper critical dimension is d�c � 3.
Let us now focus our attention on the relation between

static and dynamic phenomena in the critical region:

t / xz ; �9�

where t is the relaxation time of the order parameter and z is
the dynamic critical exponent.

It is appropriate to denote t as xt and rewrite (9) in the
form

xt / xz : �10�

Relations (6) and (10) imply

xt / jtjÿzn �11�

or

o� / jtjzn ; �12�

where o� is the characteristic frequency of fluctuations.

3. What are quantum phase transitions?

Phase transitions occurring at T � 0 upon variation of
variables determining the intensity of quantum fluctuations
are called quantum phase transitions.

We will consider Fig. 1, where Tc�P� is the line of a
continuous phase transition corresponding, for example, to a
certain magnetic transformation. At a normal pressure, the
phase transition temperature has an entirely finite value. An
increase in pressure leads to a progressive fall in the transition
temperature, down toT � 0 K at a certain critical pressurePc

(another control parameter, for instance, the magnetic field,
concentration, etc., may be used here instead of pressure).
The `disordered' phase due to quantum fluctuations at T � 0
is a realization of `quantum' disorder, which is essentially
different from `classical' disorder. In particular, for a
magnetic quantum phase transition, the paramagnetic phase
cannot be treated as a system of individual spins fluctuating,
for example, between `up' and `down' states in real time. The
ground state of a quantum paramagnet is described by the
wave function, which is a quantum superposition of these
states and therefore possesses zero entropy [1].
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Figure 1. Schematic phase diagram of a substance undergoing a second-

order phase transition where there is a negative slope of the transition

curve dT=dP < 0.o� is the characteristic frequency of fluctuations, which
vanishes at the phase transition point. The region around the phase

transition line Tc�P� is the region of classical fluctuations. dT=dP � 1
at the quantum critical point (QCP) for P � Pc.
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In this case, the quantum phase transition at T � 0 is a
limiting case of the classical phase transition that occurs at
T 6� 0. However, as has been mentioned above, the situation
is possible (a system in a state of the lower critical dimension)
where a phase transition may occur at T � 0 4 only.

Phase transitions occurring at T > 0 can always be
described in the framework of classical statistical mechanics
(henceforth, the description of a phase transition is under-
stood as an analysis of the behavior of the order parameter,
correlation functions, and thermodynamic quantities in the
vicinity of Tc). This also applies to such essentially quantum
phenomena as superfluidity and superconductivity. The
cause can readily be understood with the help of relation
(12), implying that as t! 0, that is, in the nearest neighbor-
hood of Tc, the following inequality always holds:

�ho�5 kT ; �13�

which corresponds to the classical behavior of critical
fluctuations. According to (13) the selected region around
the phase transition line is the region of classical fluctuations
[19, 20]. This naturally does not mean that quantum
mechanics plays no role in this case. Quantum mechanics
determines the very existence of the order parameter, whereas
its behavior in the critical region 5 at T > 0 is controlled
precisely by the classical thermal fluctuations.

It is a known fact [1, 4, 10, 12, 13, 19, 20] that the quantum
statistical problem of a phase transition in a d-dimensional
space at T � 0 can be reduced to the classical problem 6 with
effective dimension (d� 1). Imaginary time in the interval [0,
ÿi�hb ], where b � 1=kT, stands as an additional coordinate
here. Generally, the coordinate space of such a system is finite
in the direction of time, but as T! 0 the time interval
becomes infinite and the system acquires all features of a
classical system in a (d� 1)- dimensional space. However,
when it concerns the critical properties of the system, its
effective dimension appears to be equal to d� z, where z is the
dynamic exponent. So, the effective dimension of a quantum
system in the critical region at T � 0 may appear to equal or
even exceed the upper critical dimension d�c with all ensuing
consequences (see above). This effect is illustrated in Fig. 2,
which shows the results of the analysis of the evolution of the
exponent b corresponding to the critical behavior of the order
parameter (magnetization in this case) upon the phase
transition in the antiferromagnet MnCl2 � 4H2O [21]. One
can see in Fig. 2 that, as the temperature drops, the exponent
b increases and tends to the mean-field value b � 0:5.

One should also bear in mind that for xt < Lt, where
Lt � �h=kT is the time extent of the space-time continuum, the
system is unaware of being at a finite temperature and
behaves as if it were in a (d� 1)-dimensional space. The
lines xt � Lt conditionally divide the phase diagram of the
substance with a quantum critical point (QCP) into regions
with different effective dimensions. The same lines mark the
crossover between phenomena occurring at small and large
times characterized by the correlation time xt (Fig. 3). We
should stress that for xt < Lt the description of the phenom-
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Figure 2. Dependence of the critical exponent b determining the behavior

of the order parameter on the temperature of measurement for the

antiferromagnet MnCl2 � 4H2O [21]. The inset gives the corresponding

phase diagram in magnetic fieldHÐ temperature T coordinates.

4 This is the case, for example, with the one-dimensional Ising model.
5 Quantum fluctuations are undoubtedly very important at distances on

the order of interatomic ones, but fluctuations of much larger scale, with a

correlation length of dozens and hundreds of interatomic spacings, which

control the behavior of the system in the critical region at T > 0, are

described adequately within classical statistical mechanics [4, 5, 19, 20].
6 Recall in this connection that in the framework of fluctuation theory the

values of critical exponents characterizing a phase transition are indepen-

dent of the microscopic nature of a substance, but are defined by the

symmetry of the Hamiltonian and the dimensionality of space, which

determines the particular class of universality [15, 16, 19]. It has turned out

that the critical exponents of the Ising quantum model in a transverse

magnetic field at T � 0 correspond to a higher space dimension than the

initial dimension of the problem [12, 13]. It is precisely this situation that

was explained in the pioneering paper by Hertz [10].
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ena requires a quantum-mechanical approach, whereas for
xt > Lt the corresponding phenomena become classical
because of the loss of phase coherence.

Figure 3 presents schematically the phase diagrams of
substances possessing QCP for which two cases are possible:
the ordered phase exists at T � 0 only (Fig. 3a) or the ordered
phase exists also at T > 0 (Fig. 3b). The lines corresponding
to the condition xt � Lt separate regions with predominantly
classical and predominantly quantum fluctuations.

Thus, in the phase diagrams one can distinguish between
regions corresponding to ordered and quantum-disordered
(quantum-fluctuation) states of a substance and a region of
mixed nature, referred to as the quantum critical region. Since
practically always d� z5 4, the behavior of the correlation
function in the former two regions corresponds to the
Gaussian case x / jdjÿ1=2. In the mixed region, along the
trajectory d � 0 the behavior of the correlation function is
controlled exclusively by the temperature, which indicates the
absence of any other energy scales. For metallic systems it
means that the Fermi energy EF (or the Fermi temperature
TF) no longer plays the role of a universal scaling factor in the
description of the electronic properties of materials in a
quantum critical region, and accordingly the absolute
temperature assumes this role as the energy scale. As will be
seen below, this situation is due to the divergence of the
effective mass of carriers at the QCP. It is this fact that
determines the so-called non-Fermi-liquid behavior [22 ± 24].
In systems whose effective dimension is less than the upper
critical dimension, d < d�c , the absolute temperature deter-
mines the scale of all phenomena in the quantum critical
region. This situation is described in the English literature as
E=T or o=T scaling (see, e.g., [6, 7]).

Section 4 presents a description of experimental examples
illustrating some of the above statements. However, we will
first give necessary explanations concerning the thermody-
namics of phase diagrams of substances with quantum critical
behavior. Figure 1 schematically shows a particular case
where the phase transition line Tc�P� at T > 0 has a negative
slope, dTc=dP < 0. This type of behavior is rather wide-
spread but not the only possible. Cases are possible when
dTc=dP reverses sign at a certain positive pressure or when
the derivative dTc=dP is always positive. The latter case is of
no interest in the present context. Naturally, the aforesaid is
also valid when a control parameter other than pressure is
considered.

We shall note further that the slope of the phase transition
curve tends to infinity with approaching the QCP 7

�dTc=dP!1 as Tc ! 0�. Similarly, for the phase diagram
in coordinates T-H (H is the magnetic field) one can write
dTc=dH!1 as Tc ! 0. If the concentration e of the
impurity element is taken as the `control' parameter, the
situation becomes somewhat more complicated, but when
the impurity, creating the so-called `chemical pressure', plays
to an extent a passive role, we can againwrite dTc=dc!1 as
Tc ! 0. It should also be recalled that, as follows from the

Nernst heat theorem, all temperature derivatives of thermo-
dynamic quantities are equal to zero at the absolute zero of
temperature 8. Accordingly, the amplitudes of anomalies
(jumps) of specific heat, thermal expansion coefficients, etc.
observed during a high-temperature phase transition tend to
zero when approaching the QCP. Hence, the results of
measurements of specific heat and other thermal quantities
along a trajectory corresponding to the critical coordinate
d � dc are not perturbed by the nearness of the phase
transition line.

Concluding this section, we will emphasize that in the
classical case the phase transition temperature does not
become zero for a finite value of the parameter d, and
therefore the very shape of the phase transition curves
shown in Figs 1 and 3 is a manifestation of quantum effects.

4. Examples of systems with quantum critical
behavior

4.1 Heavy-fermion compounds 9 CeCu6 ±xAux, YbRh2Si2,
YbRh2(Si,Ge)2, CePd2Si2, and CeIn3
(i) The compound CeCu6ÿxAux has an antiferromagnetic
ground state for x < 0:1 with a Neel temperature TN that
rises linearly with increasing x up to x � 1 (Fig. 4) [26, 27]. In
the neighborhood of the quantum critical point for
x � xc � 0:1 the behavior clearly differs from that of a
Fermi liquid 10 [27 ± 29]. In particular, in the quantum critical
region the heat capacity varies as C=T � a ln�T0=T� and the
static magnetic susceptibility depends on the temperature

7 This conclusion is a corollary of the Nernst heat theorem stating that the

entropy S is identically equal to zero at T � 0. From this, for first-order

phase transitions we obtain directly from the Clausius ±Clapeyron

equation dTc=dP! DV=DS (DV and DS are volume and entropy jumps

upon the phase transition), dTc=dP!1 as Tc ! 0. For second-order

phase transitions one should use one of the Ehrenfest equations:

dTc=dP � D�dV=dP�=D�dS=dP�. From the identity S � 0 at T � 0 we

again obtain dTc=dP!1 asTc ! 0.However, the temperature at which

the corresponding effects are observed can be fairly low.
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Figure 4. Concentration phase diagram of CeCu6ÿxAux [28]. Separate

regions are named according to the nomenclature used in paper [28]. In

terms of the diagrams presented in Fig. 3a, b, the free-spin region

corresponds to the quantum-critical area.

8 In this connection, the statement made in [25] about the divergence of the

coefficient of thermal expansion at a quantum critical point looks rather

strange.
9 Heavy-fermion compounds constitute a class of metallic materials with a

strong electron correlation that possess a chemically ordered lattice of

magnetic ions (a Kondo lattice). In these compounds, conduction

electrons interact with local magnetic moments of the ions. As a result,

the effective mass of conduction electrons becomes very large [26].
10 In the case of a normal Fermi liquid we have C � gT or C=T � const;

w � const and Dr � T 2.
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according to the expression wÿ1 � wÿ10 � cTa, a < 1; the
electrical resistance behaves quasilinearly, namely,
Dr � rÿ r0 � Tm, m � 1. For the compound CeCu6ÿxAux
the quantum critical point can be reached under hydrostatic
pressure (e.g., for x � 0:2 the critical pressure is Pc � 5 kbar,
Fig. 5a), and the corresponding temperature dependences
have essentially the same form as dependences obtained in a
`chemical' realization of the QCP. The situation is different
when the quantum critical point in CeCu6ÿxAux is attained
through a variation of the magnetic field (Fig. 5b). In this
case, specific heat in the quantum critical region varies
according to the expression C=T � g0 � a00T 0:5 and the
electrical resistance is described by the formula
r � r0 � A00T 1:5. The authors of paper [29] believe that the
magnetic field has a substantial effect on the character of
fluctuations in the compound CeCu5.8Au0.2 at a QCP. We
note, however, that the shape of the phase transition line
TN�P� contradicts the Nernst heat theorem, and it therefore
can not be excluded that amore accurate determination of the
QCP coordinate may affect the conclusions drawn in [29].

(ii) As was shown in paper [30], the heavy-fermion
antiferromagnet YbRh2Si2 can be transformed into a para-
magnetic state by a comparatively small magnetic field
Hc � 0:6 T (Fig. 6). Electrical resistance in the antiferromag-
netic state is best described by the expression Dr � AT 2 with
a very large coefficient A � 22 mO cm Kÿ2 in the region
204T4 60 mK and H � 0. In a magnetic field H � Hc the
temperature dependence of the resistance follows the linear
law up to the lowest attainable temperatures (20 mK). For
H > Hc and T < T � (see Fig. 6), electrical resistance is again

described by the Fermi-liquid expression Dr � AT 2. Being
proportional to the electron-electron scattering cross section,
the coefficient A diverges as A�H� / 1=�HÿHc� when
H! Hc (Fig. 7). An analysis of the behavior of electrical
resistance and specific heat in longitudinal and transverse
magnetic fields suggests the quasiparticle effective mass
divergence 1=�HÿHc�1=2 when H! Hc. This conclusion
was confirmed in a study of the doped compound
YbRh2(Si0.95Ge0.05)2 in weak magnetic fields [31]. In this
case, a small germanium impurity expands the lattice to shift
the magnetic coordinate of the QCP nearer to the value
H � 0, which makes it possible to check whether any new
property appears in a QCP obtained in a strong magnetic
field. In the particular case of YbRh2(Si,Ge)2 the properties
of QCPs with coordinates Hc � 0 and Hc 6� 0 turn out to be
identical. In both compounds in the quantum critical region
for H � Hc the magnetic susceptibility behaves like
wÿ1 / T a, where a � 0:75 (0.3 ± 1.5 K), and the coefficient
of electronic specific heat Cel=T diverges logarithmically at
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temperatures between 0.3 and 10 K. The electrical resistance
exhibits a linear temperature dependence in the range of 0.02
to 0.5 K.

(iii) CePd2Si2, and CeIn3 [32] are heavy-fermion com-
pounds with an intriguing phase diagram (Figs 8, 9). One can
see from the figures that the phase diagrams of these
compounds are similar. The antiferromagnetic phase transi-
tion temperature TN drops in both cases as pressure
increases. In both cases, the phase transition curve should
have crossed the pressure axis with the formation of a QCP
crowning the antiferromagnetic-paramagnetic transition.
However, at low temperatures both curves actually end at
the top of the `superconducting dome', which evidently
points to the genetic relation between quantum critical
phenomena and superconductivity in these magnetic sys-
tems. In this connection it is of interest to compare the phase
diagrams of Figs 8 and 9 with the generalized phase diagram
of superconductive cuprates (Fig. 10) [9]. Isomorphism of
the phase diagrams becomes obvious if we assume the
pseudogap line TPG to be in a sense equivalent to the
magnetic phase transition curve.

It is noteworthy that the temperature dependence of the
electrical resistance of both substances in the quantum critical
region does not correspond to Fermi-liquid behavior.

4.2 Itinerant ferromagnets UGe2 and ZrZn2
The properties of the ferromagnetic compound UGe2 [33 ±
35] represent another interesting example of the relation
among quantum critical phenomena, magnetism, and super-
conductivity. As Fig. 11 shows, a small superconducting
domain in this case lies entirely in the region of ferromag-
netic phase stability near the phase boundary. It is of
importance that, as established with the help of elastic
scattering of neutrons, ferromagnetic ordering is preserved
in the transition to a superconducting state. At low
temperatures, a ferromagnetic phase transition becomes a
first-order phase transition, and therefore the role of
quantum fluctuations in the possible formation of a triplet
superconducting state in UGe2 seems to be vague. Useful
information in this respect can be gained from the phase
diagram of another ferromagnetic superconductor, ZrZn2
[36] (Fig. 12). The relation between ferromagnetism and
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transition temperatures are multiplied by 10.
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superconductivity seems obvious in this case 11, but the
quantum critical fluctuations have apparently nothing to
do with this.

With this it seems expedient to conclude the present
review, which may to some extent be called an introduction
to the subject. Its goal is to draw the attention of Russian
researchers to an important and rapidly developing trend in
the physics of strongly correlated systems. Although not
exhaustive, the list of references includes the most important
original studies and reviews. The present survey is based on a
talk given at the seminar `Strongly correlated electron systems
and quantum critical phenomena' held on April 11, 2003 in
Troitsk.

References

1. Sachdev S Quantum Phase Transitions (Cambridge: Cambridge

Univ. Press, 1999)

2. Continentino M A Quantum Scaling in Many-Body Systems

(Singapore: World Scientific, 2001)

3. Continentino M A Phys. Rep. 239 179 (1994)

4. Sondhi S L et al. Rev. Mod. Phys. 69 315 (1997)

5. Vojta T Ann. Phys. (Leipzig) 9 403 (2000)

6. Coleman P et al. J. Phys.: Condens. Matter 13 R723 (2001)

7. Stewart G R Rev. Mod. Phys. 73 797 (2001)

8. Lavagna M Philos. Mag. B 81 1469 (2001)

9. Varma CM, Nussinov Z, van SaarloosW Phys. Rep. 361 267 (2002)

10. Hertz J A Phys. Rev. B 14 1165 (1976)

11. Millis A J Phys. Rev. B 48 7183 (1993)

12. Pfeuty P, Elliott R J J. Phys. C: Solid State Phys. 4 2370 (1971)

13. Young A P J. Phys. C: Solid State Phys. 8 L309 (1975)

14. Landau L D, Lifshitz E M Statisticheskaya Fizika (Statistical

Physics) Pt. 1 (Moscow: Fizmatlit, 1995) [Translated into English

(Oxford: Pergamon Press, 1980)]

15. Patashinski|̄ A Z, Pokrovski|̄ V L Fluktuatsionnaya Teoriya Fazo-

vykh Perekhodov (Fluctuation Theory of Phase Transitions) 2nd ed.

(Moscow: Fizmatlit, 1982) [Translated into English of 1st Russian

ed. (Oxford: Pergamon Press, 1979)]

16. Stanley H E Introduction to Phase Transitions and Critical Phenom-

ena (Oxford: Clarendon Press, 1971) [Translated into Russian

(Moscow: Mir, 1973)]

17. LevanyukA PZh. Eksp. Teor. Fiz. 36 810 (1959) [Sov. Phys. JETP 9

571 (1959)]

18. Ginzburg VLFiz. Tverd. Tela 2 2034 (1960) [Sov. Phys. Solid State 2

1824 (1961)]

19. GoldenfeldNLectures onPhase Transitions and theRenormalization

Group (Reading, Mass.: Addison-Wesley, Adv. Book Program,

1992)

20. Cardy J Scaling and Renormalization in Statistical Physics 2nd ed.

(Cambridge: Cambridge Univ. Press, 2002)

21. Erkelens W A et al. Europhys. Lett. 1 37 (1986)

22. Andraka B, Tsvelik A M Phys. Rev. Lett. 67 2886 (1991)

23. Aronson M C et al. Phys. Rev. Lett. 75 725 (1995)

24. Tsvelik A M, Reizer M Phys. Rev. B 48 9887 (1993)

25. Zhu L et al. Phys. Rev. Lett. 91 066404 (2003)

26. Hewson A C The Kondo Problem to Heavy Fermions (Cambridge:

Cambridge Univ. Press, 1993)

27. Pietrus T et al. Physica B 206 ± 207 317 (1995)

28. SchroÈ der A et al. Nature 407 351 (2000)

29. Stockert O et al. Physica B 312 ± 313 458 (2002)

30. Gegenwart P et al. Phys. Rev. Lett. 89 056402 (2002)

31. Custers J et al. Nature 424 524 (2003)

32. Mathur N D et al. Nature 394 39 (1998)

33. Saxena S S et al. Nature 406 587 (2000)

34. Settai R et al. J. Phys.: Condens. Matter 14 L29 (2002)

35. Sandeman K G, Lonzarich G G, Schofield A J Phys. Rev. Lett. 90

167005 (2003)

36. Pfleiderer C et al. Nature 412 58 (2001)

37. Stishov S M et al. (to be published)

0 1 2

Pressure P, GPa

T
em

p
er
at
u
re

T
,K

Ferromagnetism

Superconductivity

TC

10TSC

UGe2

20

40

60

Figure 11. Phase diagram of UGe2 [33]. TC is the Curie temperature, TSC

is the superconducting transition temperature (TSC values are multiplied

by 10).
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ducting (TSC) transition temperatures in ZrZn2 [36] (TSC values are
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11 The recent study of the phase diagram of ZrZn2 [37] is apparently

indicative of the absence of a direct relation between superconductivity

and magnetism in this compound because a superconducting phase

transition is also observed in the paramagnetic phase stability region.

August, 2004 Quantum phase transitions 795


	1. Introduction
	2. Brief review of phase transitions
	3. What are quantum phase transitions?
	4. Examples of systems with quantum critical behavior
	4.1 Heavy-fermion compounds CeCu_{6-x}Au_x, YbRh_2Si_2, YbRh_2(Si,Ge)_2, CePd_2Si_2, and CeIn_3
	4.2 Itinerant ferromagnets UGe_2 and ZrZn_2

	 References

