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Abstract. The so-called ‘interaction-free’ measurement is a very
interesting quantum effect that allows discovering the presence
of an opaque object in a given spatial domain, with the prob-
ability that the object absorbs a photon being, in principle, as
low as desired. This probability is bounded from below only by a
value of the order of 1/, where o is the frequency of light and
7 is the measurement time. This corresponds to the average
absorbed energy of the order of 7i/z. The ‘interaction-free’
technique can also be used to measure the coordinate of an
object but only under the condition that the object is prepared
in a special ‘discretized’ quantum state. Such is, for instance, the
state of a ponderomotive meter of electromagnetic energy,
which, in principle, enables the ‘interaction-free’ measurement
of the energy contained in an electromagnetic cavity. Estima-
tions show that with modern experimental equipment and with
the help of ‘interaction-free’ measurement, single atoms can be
registered inside optical cavities.

1. Introduction
The so-called ‘interaction-free’ measurement ! [1]is one of the

purely quantum phenomena where the wave and particle

! This term is not quite appropriate, but we accept it because it is already
used in the literature.
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features of objects manifest themselves simultaneously. Such
phenomena, which look paradoxical from the classical
standpoint, are nowadays especially interesting due to their
possible applications in quantum computing and quantum
cryptography (see, e.g., monograph [2]).

In principle, an ‘interaction-free’ measurement can be
realized by means of any setup where light (or electrons,
atoms, etc.; to be specific, we speak of photons) can take any
of two possible paths and hence gives rise to an interference
pattern. This can be a two-slit interference experiment, a
Mach —Zehnder interferometer (as in the original paper [1]),
or a Michelson interferometer [3, 4]. In this work, we consider
the last of these.

We consider a Michelson interferometer with the dis-
tances between the central beamsplitter and the mirrors N
and E fixed such that all radiation from the light source is
reflected back and no light hits the detector D (Fig. 1a). If an
opaque object is then inserted in one of the interferometer
arms (Fig. 1b), the interference is destroyed and the prob-
ability of detector firing becomes nonzero.

/N a —N b
c C 1] c
= ] = ]
f
I
6D D

Figure 1. A simple version of the ‘interaction-free’ measurement scheme:
(a) the lengths of the interferometer arms are chosen such that all light is
reflected back to the laser; (b) if an opaque object is placed into one arm,
the probability of photons hitting the detector becomes nonzero.
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Let a single photon be fed into the interferometer. In the
presence of the opaque object, there is no interference
because the two evolution paths of the photon never meet
again. Hence, the photon can be considered as a classical
particle. There are three possible outcomes in this case.
With the probability p_ = R, where R is the reflection
coefficient of the central beamsplitter, the photon takes the
path blocked by the object and is absorbed. We call this
outcome the unsuccessful result. With the probability
p+ = RT, where T=1— R, it takes the second path and
hits the detector (the successful result), and with the
probability p, = T2, it also takes the second path but
returns to the source (goes left in Fig. 1b). In the last case,
the photon can be registered by an auxiliary detector, and
hence this outcome can be distinguished from the one in
which the photon is absorbed.

The successful result (which is thus named because it is the
goal of the experiment) allows us to unambiguously conclude
that one of the interferometer paths is blocked. At the same
time, somewhat conventionally, it allows us to assert that the
photon did not take this path and did not interact with the
object: otherwise, it would have been absorbed. This argu-
ment, based on the idea of a photon as a classical particle, has
led to the term ‘interaction-free measurement’.

The unsuccessful result also allows the object to be
detected but in an ‘uninteresting’ way, via direct interaction
with the photon.

The neutral result is similar to the situation of ‘missing the
target’: the photon reaches the point that it could reach in the
absence of the object. In this case, the experiment can be
repeated — until either a successful or unsuccessful result is
achieved, or until the total probability of ‘target missing’,
Py =pl’ (where N is the number of experimental runs),
becomes less than some given threshold. In this case, the
probabilities of successful and unsuccessful results can be
easily calculated as

1—pg Pe
= - — l.1a
+ 1= po P+ Pt ( )
N
el S (1.1b)

Tp 7= b

This reasoning was recently confirmed in several experi-
ments [S—7], one of them [7] using the interference of
neutrons.

We stress at this point that the question of whether the
interaction with the object occurs ‘in reality’ cannot be
answered unambiguously, at least in the framework of
modern physics. The answer can be different depending on
the practiced interpretation of quantum mechanics. In
addition to a simple ‘yes’ or ‘no’, the spectrum of answers
given by various interpretations includes answers like ‘yes,
but in a parallel universe’ or ‘we do not know and there is no
way to know’. In this paper, we try to approach the problem
in a positivistic way, i.e., to consider some limitations for this
class of measurements and some possibilities for its applica-
tion from a ‘consumer’ standpoint.

An advanced version of the ‘interaction-free’ measure-
ment has been proposed and experimentally realized in
Ref. [4]. In that experiment, the probability P, (following
Ref. [4], we call it the quantum efficiency of the setup) can
be made as close to unity as desired. In Section 2, we
consider this advanced version in detail and find the

principal lower limit for the probability of absorbing a
photon.

Among its other curious features, the ‘interaction-free’
measurement violates the simple logic of the Heisenberg
microscope, which is ‘a measurement of the coordinate
entails a perturbation of the momentum’. In the ‘interac-
tion-free’ measurement scheme, the object becomes definitely
localized in space (its coordinate wave function is reduced),
while there is no random force of the measurement device
acting on the object and causing the perturbation of its
momentum. It should be stressed at the very beginning that
the Heisenberg uncertainty relation is by no means violated
here: the Heisenberg microscope is just an illustration of the
uncertainty relation but not its proof.

This problem is discussed in Section 3. In the same section,
we also detail the analysis of the possibility of measuring the
coordinate of an object in an ‘interaction-free’ way, as
proposed in Ref. [3], by performing the above-described test
for the object in a series of space points.

In Section 4, we consider the measurement of the number
of quanta in an electromagnetic cavity. In this measurement,
the number of quanta is transformed into the coordinate of a
mechanical object and the coordinate is then measured in an
‘interaction-free’ way.

Finally, Section 5 is devoted to the experimental scheme
where the opaque object is replaced by a Fabry —Perot cavity.
We recall that at resonance, a Fabry—Perot cavity transmits
light, i.e., acts as an ‘absorber’, and off-resonance, it reflects
light, i.e., acts as a ‘mirror’. It is known that the presence of an
atom in the cavity shifts the resonance frequency; hence, an
atom appearing inside the cavity can turn it from a ‘mirror’
into an ‘absorber’. We show that modern experimental
techniques allow performing ‘interaction-free’ detection of
single atoms in optical cavities.

2. Minimal energy cost
of the ‘interaction-free’ measurement

For the simple scheme of ‘interaction-free’ measurement
shown in Fig. 1, the quantum efficiency is

T

P =
T+ T

(2.1)
As T — 1, it becomes close to 1/2. It was shown in Ref. [4]
that the quantum efficiency can be made as close to unity as
desired by introducing an additional mirror S into the ‘South’
arm of the Michelson interferometer. In this paper, we
consider another scheme, containing an additional mirror in
the “West’ arm (Fig. 2). The second mirror provides auto-
matic recycling of light quanta in the case of neutral results.
For this new scheme, the probabilities of both unsuccessful
and neutral results can be made as small as desired even for a
single measurement.

It is shown in Appendix 7.1 that if the matching
condition

Ts Tw

T=—"2> & R—=_—""% 2.2
Ts +Tw Ts +Tw (22)

is satisfied, where Ts and Ty are the transmission coefficients
of the respective mirrors S and W and the light pulse duration
7 is sufficiently long such that the pulse bandwidth is much
narrower than that of the interferometer, 7!, then the
probabilities of the unsuccessful and neutral results are
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[———N which is in full agreement with the standard concept of the
minimal energy consumed for obtaining one bit of informa-
r—r—ni tion.
I Jl We emphasize that this energy is consumed on the
W T E average: in most cases, there is no energy loss, but seldom,
with the probability ~ 1/wt, the photon goes ‘in a wrong
|-| direction’ and is absorbed by the object.
[
3. Reduction of the state of the object
due to the ‘interaction-free’ measurement
—TSs
3.1 ‘Yes—no’ measurements
D It is commonly supposed that localizing an object in space

Figure 2. Using additional mirrors in the ‘South’ and ‘West’ arms, one can
make the quantum efficiency of the ‘interaction-free’ measurement as
close to unity as desired.

equal, respectively, to

N\ 2
Ts + Tw T
== % =(=) . 2.3
4 ) Po <‘L') ( )
For Ts w < 1, the probability p_ can be as close to zero as
necessary.

The conclusion follows that for an unlimited measurement
time, the setup under consideration produces one bit of
information (the answer to the question of whether the object
is present in a given space domain) at the expense of the
energy that can be made as small as desired. Indeed, the
photon detector can be replaced, in principle, by a quantum
nondemolition energy meter [§]. Such a meter would register a
quantum passing through the ‘South’ arm without absorbing
it; further, this quantum can be used again, for instance, in
similar measurements.

At the same time, it is shown in Appendix 7.1 that as
Ts.w — 0, the transmission bandwidth of the interferometer
also tends to zero. Therefore, the smaller the probability p_
required, the longer the light pulses should be. As a result, for
a given 7, the average energy absorbed by the object per trial is
of the order of

(i.e., obtaining information about its coordinate) must be
accompanied by a perturbation of its momentum. Indeed, as
arule, under a measurement of the coordinate x, the relatively
broad a priori coordinate wave function ¥, (x) transforms
into a more narrow a posteriori wave function ¥, (x)
(Figs 3a, b). Accordingly, the relatively narrow a priori wave
function ¢, (p) in the momentum representation (Fig. 3c)
transforms into a broader a posteriori wave function ¢, (p)
(Fig. 3d). The additional random momentum is in this case
provided by the meter.

An ‘interaction-free’ meter seems to cause no effect of this
kind. Indeed, an object placed outside the interferometer
cannot receive any momentum from the field inside the
interferometer (Fig. 4a). If the object is in one arm of the
interferometer and blocks this arm completely, its momentum
is also not perturbed, because photons do not reach this arm
(Fig. 4b). But there is a third case, the intermediate one, where
the object partly blocks the interferometer arm. With some
finite probability, the photon then reaches the North arm, is
scattered by the object, and passes random momentum to it
(Fig. 4¢).

This situation occurs not only for the ‘interaction-free’
measurement. We consider the simple example shown in
Fig. 5, which is a version of the well-known method of ‘knife
and slit’. The problem is to measure the position of a
reflecting object M on the axis x. For this, a light beam is
sent to the probable position of the object. The beam is either
not reflected by the object (and is then registered by the
detector D1, see Fig. 5a) or reflected and registered by the

E=lwp_ 2 ﬁ7 (2.4)  detector D2 (Fig. 5b). Evidently, there is no momentum
T perturbation in case (a). In case (b), perturbation of the x-
w (\,) a l//apost(x) b
apr \”
X X
Gune?) ¢ Dupon ) d
4 p

Figure 3. As a rule, localization of an object (i.e., narrowing of its coordinate wave function, top) is accompanied by a perturbation of its momentum

(spreading of the momentum wave function, bottom).
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Figure 4. ‘Interaction-free’ measurement leads to a perturbation of the object momentum only if the object partly blocks the light.
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Figure 5. A simpler example of a ‘yes—no’ measurement. Here, the momentum of the object is also perturbed only in the case where the object partly

blocks the light.

component of the momentum can be made as small as desired
because reflection of light from a perfect mirror occurs with
no momentum transferred to the mirror in the tangential (x)
direction. The situation is the same as for ‘interaction-free’
measurements: the x-component of the momentum is
perturbed only in the case where the beam hits the edge of
the object and is diffracted by it (Fig. 5c).

In both examples, the meter provides information not
about the coordinate of the object but about whether the
coordinate lies within a given interval. Quantum measure-
ments of this kind were first considered in monograph [9].
They consist of measuring binary observables (Eigenschaf-
ten), which can take only two values, ‘yes’ or ‘no’. Hereafter,
we call them ‘yes —no’ measurements.

Clearly, the initial state of the object may not allow
realization of the case shown in Figs 4¢ and 5c. Let the initial
coordinate wave function of the object have the form of a
double-humped curve with the maximums at points x =0
and x = X > A, the width of each maximum being éx < X
(Fig. 6a). In the momentum representation, this wave
function has a cosine behavior with the period 2n/i/X and
the envelope of the width Ap ~ 7i/26x > i/ X (Fig. 6c).

According to our reasoning, a ‘yes—no’ measurement
must result in zero perturbation of the momentum in this
case. Indeed, after the measurement, only one hump of the
coordinate wave function is left (Fig. 6b), and the wave
function in the momentum representation loses its fine
structure (Fig. 6d). But the width of the momentum wave
function remains equal to its initial value Ap.

These considerations by no means contradict the Heisen-
berg uncertainty relation in its strict mathematical sense.
Indeed, the rigorous Heisenberg inequality relates the

minimal variances for two observables of an object measured
in a given quantum state. This relation is not violated: the
product of the coordinate and momentum uncertainties in the
initial state (Fig. 6a) is much greater than /i/2, and therefore,
although the coordinate variance is reduced due to the
measurement, the product of the variances in the final state
remains larger than or equal to /2 (Fig. 6b).

On the other hand, in the quantum measurement theory,
the uncertainty relation is often understood as an inequality
relating the error in the measurement of some observable to
the perturbation caused by the measurement of some other
observable. Just this kind of the uncertainty relation is
illustrated by the Heisenberg microscope. A rigorous
analysis shows that it does not always hold. We do not
linger here on this rather nontrivial subject; a discussion of
its various aspects can be found, e.g., in monographs [10, 11]
and paper [12].

On the other hand, we give a rigorous definition of the
‘momentum perturbation’. The momentum perturbation
cannot be measured by the increase of the momentum
uncertainty after the measurement; indeed, in some cases the
meter acts on the object with a random force but the
momentum uncertainty of the object not only has no increase
but even reduces. (An example of such behavior is given in the
Conclusion.) We assume the measure of the momentum
perturbation to be

(Bp)ien = <(]§final _ﬁ)2> ) (31)
where
ﬁf’mal = I/?Jrﬁz;{ (32)
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Figure 6. For a ‘yes—no’ measurement, perturbation of the momentum can be zero.

is the operator of the object momentum after the measure-
ment (in the Heisenberg picture) and I/ is the joint evolution
operator for the object and the meter. Measure (3.1) agrees
well with the intuitive view of the perturbation of an object
by a meter. In particular, in simple ‘linear’ measurement
schemes [10],

15 R
Prinat — P = J Frydr, (33)
1

where F(t) is the random force of the measurement device
acting on the object and represented by an operator in the
Hilbert space of the device and ¢, and #, are the time moments
of the beginning and the end of the measurement.

Let the width of the light beam in these examples be 6x
and the transverse size of the object be 4 > 6x. We assume
that the coordinate x of the object is the coordinate of its
middle point and that the light beam crosses the x axis at
x = 0. Then for |x| < (4 — dx)/2, the meter gives the answer
‘yes” with certainty and for |x| > (4 + dx)/2, it gives the
answer ‘no’ with certainty. In the intermediate cases, any
answer is possible.

If the initial wave function of the object is ¥, (x), then in
the case of the answer ‘yes’, the object goes into the state with
the wave function

l//+(x) _ Q+(x)wapr(x) ’

Wy

(3.4)

and in the case of the answer ‘no’, into the state with the wave
function

2 (pelx)

¥ (x) N

(3.5)

Here, Q. is the reduction function, which is equal to unity for
|x| < (4 —9x)/2 and zero for |x| > (4 + dx)/2, and falls
from unity to zero as |x| increases from (4 —dx)/2 to
(A +0x)/2,and

Q_(x)=/1 -2 (x)

(3.6)

and

we = [ B0 e (3.7)

are the respective probabilities of the ‘yes” and ‘no’ answers.
In Appendix 7.2, it is shown that the momentum
perturbation in a ‘yes—no’ measurement is

x (‘ de+x(x)

T |8 2) [Wape0) [ i

(3.8)

(5= |

—00

and therefore, the momentum is perturbed in such a
measurement only if the a priori wave function is nonzero in
the ‘gray’ domain where the reduction function falls from
unity to zero and its derivative differs from zero. But in the
case shown in Fig. 6, dQ. /dx = 0 wherever . # 0.

A well-known example of a ‘yes—no’ measurement is the
‘which-way’ procedure [13]. This procedure determines, in a
nonperturbating way (as in quantum nondemolition mea-
surements), which of the two possible paths was taken by a
particle in a two-slit interferometer. The idea of the which-
way procedure is shown in Fig. 7. Here, D1 and D2 are
detectors that click when the particle passes them. The

D1

D2

Figure 7. The which-way procedure: detectors D1 and D2 perform a
nondemolition registration of a particle passing through their apertures.
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Figure 8. In an ‘interaction-free’ measurement, the mean-square perturbation of the object momentum can be equal to zero if the object was prepared

beforehand in a ‘discretized’ state.

apertures of the detectors must be larger than the widths of
both interfering beams. It is also important that in accordance
with the basic principle of quantum nondemolition measure-
ments, the detectors should not provide any additional
information about the state of the passing particle, for
instance, about the value of its coordinate. Then the state of
the passing particles changes as shown in Fig. 6; in accordance
with (3.8), their momentum perturbation is equal to zero.

[t is interesting to note that the which-way measurement is
in fact a ‘reversed version’ of the ‘interaction-free’ measure-
ment. Indeed, one of the detectors in Fig. 7, for instance,
detector D2, can be removed. We then have the scheme of the
‘interaction-free’ measurement: particles taking the lower
path and surely not having interacted with DI still “feel’ its
presence because they lose the fine structure of their
momentum wave function. The only difference between the
‘interaction-free’ measurement and the which-way procedure
is that in the latter, the interfering particles are the objects
under study and the detector is the measurement device, while
in the former, these roles are exchanged.

It is also worth mentioning Ref. [14], the authors of which
claimed (in our opinion, erroneously) that destroying inter-
ference in the which-way procedure requires a direct local
interaction of the particles with one of the detectors D1 and
D2. There was a reply in Ref. [15]. The which-way procedure
was also discussed in detail in monograph [11].

3.2 ‘Interaction-free’ measurement of the coordinate
Evidently, the above procedure of ‘interaction-free’ binary
detection of an object can be developed into the ‘interaction-
free’ measurement of its coordinate x. For this, it suffices to
scan the x axis by the device described above, with the
scanning step X < 4 determined by the required accuracy.
The minimum value of this step is given by the width 6x of the
‘gray intervals’ of the function Q, (x), i.e., the intervals where
its x-derivative is nonzero. For the Michelson interferometer
considered in Section 2, this value is slightly larger than the
wavelength of the quanta used for the measurement.

We consider the scanning process in more detail. To be
specific, we suppose that the initial wave function 1, (x)
differs from zero only at x > 0. The interferometer is first

placed such that the optic axis of its ‘north’ arm has the
coordinate x = —4/2 and is then stepwise moved to the right
until the object is detected, i.e., until a photon hits the
detector.

Let this happen at the nth step, i.e., for the coordinate x of
the ‘North’ arm optic axis equal to —A4/2 + nX. This means
that the coordinate x of the middle of the object is somewhere
between the points (n — 1) X and nX. In accordance with this,
the a posteriori wave function of the object becomes

Q0 (X)W e ()

Yu(x) = — (3.9)
where
Wwo(x) = Jjo |92 (x = nX) [} e ()] dx (3.10)

is the probability of obtaining this particular result and the
functions

Q,(x) = Q(x — nX) (3.11)
describe the reduction of the object wave function in this
measurement. The function Q(x) is equal to unity for
0x/2 < x< X—0x/2 and zero for x< —06x/2 and
x> X+ 0x/2.

It is shown in Appendix 7.2 that the perturbation of the
object momentum in this procedure is

(3P ) pert = i r ‘M ‘2|l//apr(x)‘2dx.

2] P (3.12)
It is important that the factor |dQ(x —nX)/dx ® is nonzero
only in the vicinities of the boundary points x = nX. There-
fore, similarly to the previous case, the momentum perturba-
tion occurs only if the a priori wave function ¥, (x) is
nonzero in the neighborhoods of these points, i.e., if the
cases shown Fig. 4c are possible.

On the other hand, let the initial wave function of the
object, ¥, be given by a set of peaks ,(x) with widths

dx < X, placed at a distance X from each other, such that the
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values of the wave function at the points nX are equal to zero:

W) = 30 W (=) (3.13)
n=0

(see Fig. 8a). Let the total width Ax of the wave function be
sufficiently large, Ax > X, such that the wave function
envelope is almost constant within the interval X. It follows
from (3.11) that for this initial state of the object, there must
be no momentum perturbation in the above procedure of
‘interaction-free’ measurement.

It is shown in Appendix 7.3 that the corresponding wave
function ¢, (p) in the momentum representation also
consists of a set of peaks but the distance between the peaks
is P = 2nh/ X (Fig. 8c). The width of the envelope of ¢, (p) is
determined by the width of a single peak of ¥, (x),

Ap~T (3.14)

dx’

and vice versa: the width of a single peak of the wave function
Pap:(p) is determined by the width of the envelope of ¥, (x):
/

op ~—.
P Ax

(3.15)
Of the entire set of the ¢, (p)-peaks, only one peak
remains after the measurement:

lpapost(x) = l:bl (X - nX) (3'16)
(see Fig. 8b). After the measurement, by virtue of formula
(7.24), the wave function in the momentum representation
becomes proportional to the envelope of the initial momen-
tum wave function (Fig. 8d).

It is important that the width of the momentum wave
function, i.e., the momentum uncertainty, does not increase.
Only the ‘fine structure’ of the wave function changes, its
peaks being smeared. No random momentum transfer from
the meter to the object (as mentioned at the beginning of this
section) is then to occur, and hence, such a ‘discretized’
quantum state enables an ‘interaction-free’ measurement of
the coordinate of the object.

4. Measurement of the number of quanta
in an electromagnetic cavity

4.1 Measurement scheme

In principle, the measurement of the ‘discretized’ coordinate
for a mechanical degree of freedom can be used to measure
the number of quanta in an electromagnetic cavity. We note
that the procedure described in this section is to be considered
as a gedankenexperiment rather than a real measurement
scheme. At the same time, it is of considerable interest from
the methodological standpoint.

This procedure is based on the scheme of a ponderomotive
meter of the number of quanta [8], which was initially
proposed as a gedankenexperiment but later became a basis
for practical schemes of nondemolition electromagnetic
energy measurement.

We consider an electromagnetic cavity (for instance, a
microwave cavity) with one wall, of mass m, being movable
(Fig. 9); the frequency of the cavity then depends on the

l .

TIMTTTnN

x
Fig. 9. The idea of a ponderomotive meter of electromagnetic energy: the
force of the electromagnetic pressure acting on the piston is proportional
to the number of quanta in the cavity.

coordinate of the wall:

we(x) = we(l - 3) :

Let the wall, together with a rigidity mo?, attached to it, form
a mechanical oscillator with the eigenfrequency wp. The
coordinate of the oscillator is measured with respect to its
equilibrium position in the absence of the cavity.

Due to the electromagnetic pressure, the oscillator
coordinate operator evolves in the Heisenberg picture as

(4.1)

X(t) = Xcos ot + sin Wyt

m

hwe(1 —coswyt) (. 1

_—— 2 = . 4.2
+ mw2 d e 2 (4.2)
where 71 is the operator of the number of quanta in the cavity.
At the time instant t = 1/, this formula becomes

NE AN A+2hwe A+l
xwmix mwrzndn 2/

Hence, a measurement of the coordinate x at time ¢ allows
determining the number of quanta » to an accuracy depend-
ing on the initial coordinate uncertainty Axj,;; and the
accuracy of the coordinate measurement AxXpeas:

(4.3)

maw?d
2hwe

2
(Arieas)* = ( ) [(Axini)? + (Axmeas)?] - (4.4)

It is known that the measurement of the number of quanta in
a cavity is accompanied by a perturbation of the cavity phase.
We consider the mechanism of this perturbation in more
detail. As a starting point, we consider the ‘usual’ measure-
ment and then pass to the ‘interaction-free’ measurement.

4.2 ‘Usual’ measurement

In the joint evolution of the mechanical oscillator and the
electromagnetic cavity, the cavity frequency (4.1) does not
have a precise value because the oscillator coordinate (4.2)
has no precise value either. Therefore, the electromagnetic
cavity acquires a random phase shift

We

o =] swar,

7l (4.5)

where 7 is the interaction time. If t=mn/wy, then the
component of ¢ depending on the initial state of the
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mechanical oscillator (i.e., the perturbation proper) is

2w,

5 =~ p, (4.6)

2
mw2 d

the uncertainty of this value being

2w,

A(ppert = motd Apinit 5 (47)

where Apinie is the initial uncertainty of the oscillator
momentum. It is easy to see that the accuracy of measuring
the number of quanta in (4.4) and phase perturbation (4.7)
satisfy the uncertainty relation

\/(Axinit)2 + (Axmeas)2 Apinit
h
- AXinitApinit 1

> > — . 4.8
r 3 (4.8)

AnmeasA(ppcrl =

In the procedure under consideration, perturbation of the
phase of the electromagnetic cavity is determined by the
initial momentum uncertainty Apj,; of the mechanical
oscillator. But the procedure can easily be modified such
that the perturbation of the phase is independent of the initial
momentum uncertainty but is proportional to the momentum
perturbation 8p caused by the measurement of the oscillator
coordinate. This can be done by extending the interaction
between the oscillator and the cavity from the time instant
7/ wm, when the coordinate is measured, until the time instant
271t/wy,. Then, in the time interval between ©t/wy, and 21/ @y,
the operator x(7) is given by

X(t) = Xcos wyt +p + 3
MOy
Jrhwe(l — COS W) < 1> 7

maw?2d n 2

Sin wy, ¢

(4.9)

where 0p is the perturbation of the oscillator momentum
caused by the coordinate measurement. From the mathema-
tical standpoint, dp is an operator in the Hilbert space of the
coordinate meter, which is typically interpreted as resulting
from back-reaction of the random force of the meter
fluctuation on the oscillator.

It follows from formulas (4.2) and (4.9) that at
7 = 21/, the terms in (4.5) proportional to x and p both
vanish, and the phase perturbation becomes

2w,

op (4.10)

5 = mw2d

Uncertainty relation (4.8) then takes the form

\/(Axinit)2 + (Axmeas)z Apmeas
h

2%21, (4.11)

A”lmeasA@pert =

[\

where Appess 18 the uncertainty of 8p.

4.3 ‘Interaction-free’ measurement

The coordinate of a mechanical oscillator can be measured, in
principle, by means of the device described in Section 3, i.e., in
the ‘interaction-free’ way.

Let the oscillator be initially prepared in a state with the
wave function ) (x) for which the mean coordinate is zero
and the coordinate uncertainty is small compared to the
coordinate shift due to the attraction force caused by a single
quantum:

hiwe
AXipit € ——— .
mawz d

(4.12)

The initial wave function of the electromagnetic cavity can be
written as

00

Valn) . (4.13)
0

n=

It can then be easily shown that at time 7 = nt/wy,, the
‘oscillator + cavity’ system passes to the entangled state

[ de S Wy, (x — nX) ), (4.14)
0 n=0
where |x) are oscillator states with a given coordinate,

Y1 (x) = o(—x) (4.15)

[the sign is reversed because the oscillator coordinate has the
same absolute value at t = n/wy, as at t = 0, see (4.2), but the
opposite sign], and
_ 2hwe
- modd’

(4.16)

The coordinate probability distribution for state (4.14),
similarly to state (3.13), consists of nonoverlapping peaks
separated by the distance X. Therefore, the ‘interaction-free’
measurement of the number of quanta can be applied. As a
result, the system passes into one of the states

|n)J001//|(x—nX) xydx, (4.17)

0

with the probability |¥,[*. It is important that this does not
involve any random force acting on the oscillator from the
coordinate meter [there is no term with Jp in (4.9); see also
Section 3]. The electromagnetic cavity is perturbed at this
time instant because of the initial momentum uncertainty of
the oscillator, see formulas (4.5)—(4.7). This perturbation can
be made zero, as we have already mentioned, by extending the
interaction until the time instant 21t/wy,. We then have

we J‘ 21’(/(1)m

3¢ = y £()dr=0. (4.18)

0

As a result, both possible ‘physical’ sources of the cavity
phase perturbation, the initial uncertainty of the oscillator
momentum and the perturbation of this momentum caused
by the coordinate measurement, are eliminated. Nevertheless,
from the arbitrary initial state (4.13), the cavity passes into a
state with a definite number of quanta |n), where the phase is
totally uncertain.

One can easily find some similarity between the procedure
we have just described and the which-way measurement
mentioned in Section 3.1. Both procedures involve selecting
one of the components of the initial wave function (in the
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present example, it is one of the wave functions |n) and in the
which-way measurement, it is one of the paths for the
particles) without any direct physical contact between the
object and the meter. 2 In both cases, this selection makes the
wave function of the object lose its fine interference structure.

5. Possible applications

5.1 A Fabry—Perot cavity instead of the opaque object
The resolving power X of the scheme considered above
cannot be less than the width of the light beam, which, in its
turn, much exceeds the wavelength of light: X > A. The value
of X can be reduced by several orders of magnitude by using
the scheme shown in Fig. 10. In this scheme, the opaque body
in the ‘North’ arm of the Michelson interferometer is replaced
by a Fabry—Perot cavity with a movable back mirror. The
scheme allows the coordinate of this mirror to be measured in
the ‘interaction-free’ way.

"
Lep [ g
—
b H
|
—T—s

/

Figure 10. The scheme of ‘interaction-free’ measurement with the opaque
object replaced by a Fabry—Perot cavity.

If both mirrors of the Fabry—Perot cavity have the same
transmission coefficient Tgp < 1 and no losses, the coefficient
of reflection from the cavity depends on the coordinate y of
the back mirror,

Kee :vi(cio(o:i)oc?)o) :TCTFPI;*iyj G0
where

o =7 (5.2)
is the resonance frequency (# is an integer) and

r =5 (53)

is the half-width of the Fabry—Perot cavity transmission
band. The origin is chosen such that y = 0 corresponds to
the resonance.

2 Of course, this statement is conventional, as any verbal description of a
quantum phenomenon: there certainly is a ‘contact’ for the a priori wave
function of the object but there is no such contact for its a posteriori wave
function.

We see that at resonance, the reflection coefficient is equal
to zero, i.e., the Fabry —Perot cavity behaves as an absorbing
object. On the other hand, for the detuning greater than y, i.e.,
for y > Tgp/, the reflection coefficient of the cavity is close to
unity and the cavity is similar to a highly reflecting mirror.

Hence, the entire ‘interaction-free’ argument described in
the previous section is applicable to this scheme. However,
the scanning step Y is here bounded from below by TgpA.
With modern high-quality mirrors, this value can be made
4—5 orders of magnitude smaller than the wavelength of light.

5.2 ‘Interaction-free’ detection of single atoms

in a Fabry— Perot cavity

In conclusion, we mention the possibility of using the scheme
with the Fabry—Perot cavity for ‘interaction-free’ detection
of a single atom inside a cavity. It is known that an atom
placed inside a cavity can split its resonance frequency if this
resonance frequency is close to the frequency of one of the
atomic transitions,

)= wytg, (5.4)

where g is the frequency of the Rabi oscillations. If the offset g
exceeds the Fabry —Perot bandwidth 7, then the cavity with
the atom inside behaves as an absorbing object and the cavity
without the atom behaves as a highly reflecting mirror. For
quanta with the frequencies wq + g, the situation is reversed.

A Fabry—Perot cavity satisfying the condition g >y,
together with the second condition g > 7y, (where y, is the
decay constant of the atom in an excited state) necessary in
such experiments, was demonstrated in Ref. [16]. The authors
used a Fabry—Perot cavity with the finesse Fpp =
n/Trp = 4.2 x 10°. For the wavelength of the transition
Aatom = App = 852.4 nm, the cavity length Lpp = 44.6 um,
and the beam width wy = 29 um, the Rabi frequency of a
Rydberg cesium atom was

g=2mx322x10°s7!, (5.5)
and the values of y and y, were
y, =2.6x10%s7", (5.6)
ne
P =253 x 10°s71, 5.7
" 2FreLep e (5.7)

For the cavity frequency detuned from the resonance by g, the
reflection coefficient was very close to unity:

g

This example shows that modern technology allows the
‘interaction-free’ detection of single atoms.

6. Conclusion

‘Interaction-free’ measurement is in no way the only example
of a quantum measurement procedure where obtaining
information about the coordinate of an object is not
accompanied by an increase in its momentum uncertainty.
For instance, it was shown in Refs [17, 18] that for a certain
choice of the initial wave function of the object, the
momentum uncertainty can decrease even after a ‘usual’
measurement of the coordinate. As regards the momentum
perturbation calculated in accordance with (3.1) for a ‘usual’
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measurement, one can easily see that it always satisfies the
uncertainty relation ((8p)%)(Ax)> = /i%/4, where (Ax)? is the
accuracy of the coordinate measurement.

We also touch upon the accuracy limit for the ‘interaction-
free” measurement. The above consideration shows that if a
single quantum participates in the procedure, the accuracy is
the same as for a ‘usual’ measurement. It is of the order of the
light wavelength 4 if no additional optical cavity is used and of
the order of 1/Fpp if a cavity of finesse Fgp is used. In a
‘usual’ measurement, the accuracy can be improved by
increasing the number N of optical quanta: it becomes
Ax x 1 /\/N if the optical field is in a coherent state and
Ax oc 1/N if the field is in an optimal nonclassical state. This
method of improving the accuracy is also applicable to the
‘interaction-free’ measurement but at the expense of compli-
cating the measurement protocol. However, we note once
again that ‘interaction-free’ measurements are important not
because of some additional advantages they provide for
experiments but because they bring a deeper understanding
of quantum measurement theory and quantum physics in
general.
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7. Appendices

7.1 A scheme of ‘interaction-free’ measurement

with the quantum efficiency close to unity

7.1.1 Field amplitudes. Let the amplitudes of the fields
incident on the central beamsplitter and reflected from it be
denoted as shown in Fig. 11 (according to the geographic
coordinates). The amplitude reflection and transmission
coefficients of the beamsplitter are denoted by —r and if and
the corresponding coefficients of the ‘West” and ‘South’
mirrors by —rw, itw and —rs, its, respectively. The ‘North’
and the ‘East’ mirrors are assumed to be perfectly reflecting.
We suppose that in the ‘East’ arm, the light acquires the phase
shift /2 (multiplication by i), and in the ‘South’ arm, the
phase shift —n/2 (multiplication by —i). This is necessary for
the suppression of light on the detector. We also introduce the
notation

Rw = —rwexp (2iot), (7.1a)
Rs = —rsexp (2iwty), (7.1b)
RN = —rnexp (2ioty), (7.1¢)
Re = —exp (2iwt,), (7.1d)

where rNy = 0 in the presence of the absorbing object and
rN = 1 in its absence, w is the light frequency, ;2 = L; »/c,
L, is the length of the “West’ arm and the ‘South” arm, and L,
is the length of the ‘North’ arm and the ‘East” arm.

Ag

Bg

As Bg
——— s
Bp

Figure 11. Notation used in the calculation of the minimal absorbed energy
in the ‘interaction-free’ measurement.

The equations for the field amplitudes can then be written

as
Aw = RwBw +ay, Bw=—rAn —tAg, (7.2a)
As = RsBs, Bs = —rdg + tAn, (7.2b)
AN = RNBN, BN = —rAw + tAs, (7.2¢)
Ap = R, Bp = —rAs — itAw (7.2d)
By = —rw Ay + itw Bw exp (iwt;) , (7.2¢)
Bp = itsBsexp (iwt)) , (7.2f)

where ay = ity exp (iwL;)A4p. The solution of this system of
equations is

Aw = %(1 — VZ'RS'RE — lstRN) s

(7.3a)
By = % (r*Rn + t*Re — RsRNRE)
As . rtag(Rg — RN)
Ry D= 5 : (7.3b)
AN rag(—1 + RsRg)
. D 7.3
RN N D ’ ( C)
Ag tap(—1 + RsRN)
=B = 7.3d
Rg B D ’ (7.3d)
_ Ao 2 2 .

By = D [—rw + (=r*Rn — 1°Rg + RsRNRE) exp (2iwr))

+ rwRs(r*Rg + t*RN)] (7.3¢)

where

D=1-r*(RwRn + RsRe) — t*(RwRE + RsRn)

+ RwRsRNRE . (7.4)
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7.1.2 The absorbing object is absent. In the absence of the
absorbing object,

RN = Rg = —exp (2iwt,), (7.5)
and, accordingly,
Bs=0= Bp =0, (7.53.)
_r 2i
By — rw + exp(iwt,) (7.5b)

T 1 — rwexp (2iwt)))

where 7> = 11 + 72. In this case, therefore, all quanta are with
certainty reflected back into the laser (|By|* = |4o/?).

7.1.3 The absorbing object is present. In the presence of the
absorbing object (RN = 0), the amplitudes By, By, and Bp
satisfy the relations

_ By irtw [—1 + rsexp (2iwt)]

Kn=—= - , 7.6
N A() 1— (}’275 =+ lzrw) exp (21(,()‘[12) ( 3.)
By -— 12 42 2i
Ky =B rw + (2 + rzrsrw)exp< iot),) (7.6b)
A 1 — (r2rs + t%rw) exp (2iwt2)
B ttst 2i
KD _bp rits WCXp( 1(0’!,'12) (76C)

T4, 1- (r2rs + 12rw) exp Qiwty)

The value of Kp is maximal under the matching condition

1—r 1—r
2 \\ 2 _ S
’ 72—l‘w—rs®l 2—rw—rg (7.7)
Then
2 (l+l"w)(2—l’s—i’w) 41’5 .2
= 1
| KN 4D, + 0 rs)2 sin” wtyy |,
(7.8a)
|1<0|2:L (1 —Vw)2—|-4rw =+ !
4D, I—rs 1—rw
1 rsrw .2
X <1 - + T i‘w) sin” wtyp |, (7.8b)
1+rs)(1 +rw)
Ko = LU+ rw) .
| D| 4D0 I (7 8C)
where
DO =1 —+ ! —+ 1 s —+ s SiIl2 wT) .
l—rs 1—rw/\l—rs 1—rw
(7.8d)

We now suppose that the reflection coefficients of the
‘West’ and ‘South’ mirrors are close to unity,

TS7W = [527W <1, (7961)

the central frequency of the light pulse wy corresponds to the
resonance,

sin woT12 = 07 (79b)

and the length of the light pulse well exceeds the geometric size
of the interferometer,

1
1] = | —wy| < —. (7.9¢)
712
Formulas (7.8) then become
» Ts+Tw 16Q°t%,
|Kn|” = 2D, 1+ 72 , (7.10a)
QZ~2
|Ko|? ~ DT , (7.10b)
|Kp|* ~ ! (7.10¢)
D| ~ D() ) .
Do =1+ Q%22 (7.10d)
where
1 1
T=2(=+-— 7.11
T <Ts + TW>T12 (7.11)

is the inverse frequency band of the interferometer.

For the probabilities of the neutral and negative results to
be small, the frequency bandwidth of the light pulse t ~! must
be much smaller than the interferometer transmission
bandwidth,

t>ie Qi< (7.12)
This leads to
Ts+ T
KNI~ po = (7.13a)
2 22 2
|Ko|” = Q% (:)pozf—z. (7.13b)

The average energy absorbed by the object per single photon
is then

Ts + Tw

(&) = hawop- = hwy y)

(7.14)

By virtue of formula (7.12) and the evident condition
wot12 > 1, it follows from (7.14) that

/] (Ts-‘rTw) hfl I\NTs+Tw h _#
> ——" L= — | ———>=>—.
<>>‘L’12 4 T TS+TW 4 >‘Z'>‘L'
(7.15)
7.2 Proof of formulas (3.8) and (3.12)
If [/ ,r) is the initial wave function of the object and [/,e(er)

the initial wave function of the meter, formula (3.1) can be
written as

<(6ﬁ)2> = <l//apr|<lﬁmeter (Zj+ﬁa 715)2}!//meter>|l//apr> ‘ (716)

Let k be the operator corresponding to the observable of
the meter that is directly registered in the schemes considered
in Section 3. This operator has a discrete spectrum of
eigenvalues (k = 0,1 for the ‘yes—no’ measurement scheme
in Section 3.1 and k=0, 1,... for the measurement of the
discretized coordinate in Section 3.2). The corresponding
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discrete set of eigenstates {|k)} satisfies the completeness
condition

> k) (k| = (7.17)
k
With this condition, we can rewrite formula (7.16) as
<(6ﬁ)2> = Z(lpelpr' (<lpmeter|z’?+ |k>l32 <k| ZJ"//meter>
k
<lpmeter|u+|k> <k‘u|lpmeter>
A<lpl'l’1€[€l"|2/{4>| > <k|u|lpmeter>
+ <l//meter|u+ |k> <k‘u|l:bmeter> ) |l//apr>
Z l»[/apr| kﬁ2f2k _ﬁﬁljﬁé/&
k
— QF pOup + PR Qp) W) (7.18)
where
Qo= [ 1995 dx = (K Ui (7.19)

are the reduction operators for the measurement under
consideration.
In the coordinate representation, formula (7.18) takes the

" IR N (R

dQy (X) wapr (x)
dx

2

- l//apr(x)Qk( )

dQ; () (%)
_ ”d—xp QX)W ()

2 dl//apr(x) 2) dy —

|l//apr

+ |Q(x)

:hZZJ ‘dgk

k

(7.20)

) dx.

7.3 Coordinate and momentum wave functions

in a discretized state

We consider a state with the coordinate-representation wave
function

i Y (x — nX) = VX ¥(x

n=-—0o0

Z Vi (x —nX),

(7.21)
where the function i, (x — nX) is nonzero only for 0 < x < X,

¥ = \/)_(lP<kX+§>, (7.22)

and the envelope ¥ (x) is almost constant within the interval X
(Fig. 8a). In the momentum representation, this function
takes the form

oo

1 o0
B \/ﬁ n;oc '1]” J—x
=¢,(p) Z ¥, exp <lp};X)

n=—00

o) V1 (x — nX) exp (%) dx

(7.23)

where

¢1(p) (7.24)

- ﬁ | wew (1’7) dx

The second factor in (7.23) is a periodic function with the
period P = 2nhi/ X,

= X
5 ron(220) -

n=-—o00
where the function ®(p) is nonzero only for |p| < P/2.
Moreover, because the coefficients ¥, vary insignificantly as
the index changes by unity, summation in (7.23) can be
replaced by integration:

VP Z d(p—kP),  (71.25)

k=—00

L e (P

&(p) = N J_OC ¥(x)exp ( h ) dx (7.26)
As a result, we obtain

b(p) = VP (p) Z O(p—kP). (7.27)

k=—00

In other words, the wave function in the momentum
representation has the same form as in the coordinate
representation, but the role of the slowly varying envelope is
now played by the spectrum ¢, (p) of the narrow function
W, (p) and the role of a narrow peak that determines the
periodic pattern of the wave function is played by the
spectrum @(p) of the slowly varying envelope ¥(y).
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