
Abstract. The ways in which Albert Einstein and David Hilbert
independently arrived at the gravitational field equations are
traced. A critical analysis is presented of a number of papers in
which the history of the derivation of the equations is viewed in a
way that ``radically differs from the standard point of view.''
The conclusions of these papers are shown to be totally un-
founded.

1. Introduction

Since the studies by J Earman and C Glymour [1], it has
become clear that the equations of Albert Einstein's general
relativity were discovered almost simultaneously, but with
different methods by David Hilbert and Einstein.

In 1997, the article entitled ``Belated Decision in the
Hilbert ± Einstein Priority Dispute'' appeared in Science [2];
its authors claim that ``...knowledge of Einstein's result may
have been crucial to Hilbert's introduction of the trace term
into his field equations.'' On this ground, they push forward
their point of view that ``radically differs from the standard
point of view'' and which is exposed at length in Ref. [3].

According to the standard point of view, Einstein and
Hilbert discovered the gravitational field equations indepen-
dently of each other and in different ways. The same question
was the subject of paper [4]. What is the question? In
Einstein's paper [5], the gravitational field equations

�������ÿgp
Rmn � ÿK

�
Tmn ÿ 1

2
gmnT

�

are given, where gmn is a metric tensor, Rmn is the Ricci tensor,
Tmn is the energy-momentum tensor density for matter, and T

is the trace of Tmn,

T � g mnTmn :

The authors of paper [2] assert that Hilbert, having gained
knowledge of these equations and having seen the `trace
term' �1=2�gmnT, also `introduced' the trace term into his
equations [6]

���
g
p �

Rmn ÿ 1

2
gmnR

�
� ÿ q

���
g
p

L

qg mn �1�

[in this case, the term �1=2�gmnR, where the trace is
R � g mnRmn].

We now consider in what field equation Hilbert needed,
according to the authors of Ref. [2], to `introduce the trace
term.' The authors of Ref. [2] do not take into account that in
Hilbert's approach, nothing can be `introduced' in principle
because everything is exactly determined by the world
function (Lagrangian)

H � R� L ;

introduced byHilbert, which plays a key role in the derivation
of the gravitational equations in the framework of the least
action principle.

The authors of Ref. [2] produced their discovery when
they became aware of the proofs of the Hilbert paper (in
which, by the way, some parts are missing; see Ref. [7], where,
in particular, the remaining parts of the proofs are repro-
duced) and saw that the gravitational field equations were
there presented in the form of the variational derivative of
� ���gp R� in g mn,

q
���
g
p

R

qg mn ÿ qk
q
���
g
p

R

qg mn
k

� qkq`
q
���
g
p

R

qg mn
k`

� ÿ q
���
g
p

L

qg mn ; �2�

but there are no equations of form (1). Thereof they draw
their conclusion that Hilbert did not derive the gravitation
equations in form (1).

But even if this had been the case, then Hilbert would still
have nothing to `introduce' additionally because Eqn (2)
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turns exactly into Eqn (1) after some quite trivial calculations.
Things, however, do not go in the way that the authors of [2]
write. In order to show that the statement by the authors of
Ref. [2] has no serious grounds, we have to give an account of
the basics of Hilbert's work (see Section 2).

On the basis of his idea of the equivalence of acceleration
and gravity, Einstein, in a joint article [8] with M Grossmann
in 1913, identified the gravitational field with the metric
tensor of a pseudo-Riemannian (below, just Riemannian)
space. The tensor gravitational field was thus introduced. In
this article, on the basis of a simple model, Einstein
formulates the general energy-momentum conservation law

qn
ÿ �������ÿgp

Yn
s

�� 1

2

�������ÿgp
Ymnqsg mn � 0 : �3�

``The first three of these relations �s � 1; 2; 3� express the
momentum conservation law, the latter �s � 4� that of energy
conservation,'' Einstein wrote. Here, Ymn stands for the
energy-momentum tensor of matter. It must be noted that
such a law of energy-momentum conservation for any matter
system was then introduced by Einstein just as a plausible
physical assumption. In the same article, Grossmann showed
that Eqn (3) is covariant under arbitrary transformations and
can be written as

HnYn
s � 0 ; �4�

where Hn is the covariant derivative with respect to the metric
gmn. Einstein posed the problem to construct gravitational
equations of the form

Gmn � KYmn ; �5�

where Gmn is a tensor constructed from the metric and its
derivatives. We note that in the part of this article written by
Grossmann, the possible use of the Ricci tensor Rmn as Gmn in
Eqn (5) was discussed.

Grossmann writes: ``But in the special case of an
infinitesimally small static gravitational field, this tensor
does not reduce to Dj. Therefore, the extent to which the
problem of gravitational field equations is related to the
general theory of differential tensors associated with the
gravitational field, remains an open problem.''

Later, Einstein, following his own ideas, searched for Gmn

as a quantity that behaves as a tensor only under arbitrary
linear transformations. He would follow this path till
November 1915. At the end of June (beginning of July)
1915, Einstein spent a week in GoÈ ttingen and, as he
recollected later, ``gave there six two-hour lectures.'' It is
evident that after havingmet him,Hilbert got interested in the
problem.

Einstein's formulation of the problem and his identifica-
tion of the gravitation potential with themetric tensor gmn of a
Riemannian space appeared to be the key ones for Hilbert.
That was sufficient for him in order to find the gravitational
field equation proceeding from the least action principle
(Hilbert's Axiom I) and from his profound knowledge of the
theory of invariants. All this is clearly seen in paper [6] by
Hilbert.

In Section 2, we describe Hilbert's approach to the
derivation of the gravitational field equation and also
critically review articles [2 ± 4] devoted to the same question.
In Section 3, we expound Einstein's approach to the
derivation of the same field equations.

2. Hilbert's approach

We scrutinize Hilbert's approach [6]. He formulates Axiom I:
``The law of a physical event is determined by the world function
H whose arguments are

gmn; gmn` � qgmn
qx `

; gmn`k � q2gmn
qx `qxk

;

qs; qs` � qqs
qx `

�`; k � 1; 2; 3; 4� ;

and the variation of the integral 1�
H

���
g
p

do �6�ÿ
g � jgmnj ; do � dx1 dx2 dx3 dx4�

vanishes for any of the 14 potentials gmn, qs''. He writes further:
``As to the world function H, additional axioms are needed
for its unambiguous determination. If only second derivatives
of the potentials g mn can enter the gravitational equations,
then the functionHmust have the form

H � R� L ; �7�

where R is an invariant following from the Riemann tensor
(scalar curvature of a four-dimensional manifold),

R � g mnRmn ; �8�
Rmn � qnGa

ma ÿ qaGa
mn � Gl

maG
a
ln ÿ Gl

mnG
a
la ; �9�

and L is a function of the variables g mn, g mn
` , qs, and qsk only.

For simplicity, we additionally assume in what follows that L
is independent of g mn

` .''
In the same paper, Hilbert writes: ``Axiom I implies that

variation in the 10 gravitational potentials yields the 10
Lagrange differential equations

q
���
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p

R

qg mn ÿ qk
q
���
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p

R
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� qkq`
q
���
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p

R

qg mn
k`

� ÿ q
���
g
p

L

qg mn .'' �10�

It is easy to see from (8) and (9) that both R and Rmn involve
second-order derivatives of the metric only linearly. Second-
rank tensors with such properties are

Rmn and gmnR : �10a�

All other tensors with such properties are obtained as combina-
tions of these tensors.

This conclusion, to some extent, was already known to
Einstein, and he, mentioning second-rank tensors that could
lead to the gravitational equations with derivatives of the
order at most two, wrote in a letter to H A Lorentz on
19 January 1916 [9]: ``...aside from tensors...

Rmn and gmnR

there are no (arbitrary substitutions for covariant) tensors...''
For mathematician Hilbert that was evident.

1 Here and in what follows, unless stated otherwise, we change the

equation numbers in quotations in accordance with our numbering. In

Ref. [6], Hilbert used the notation Kmn and K for the Ricci tensor and the

scalar curvature. For these, and also for other quantities, we use modern

notations.
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For brevity, we follow Hilbert in introducing the notation

� ���gp R�mn �
q
���
g
p

R

qg mn ÿ qk
q
���
g
p

R

qg mn
k

� qkq`
q
���
g
p

R

qg mn
k`

�11�

for the left-hand side of the equation. Then Eqn (10) takes the
form

� ���gp R�mn � ÿ
q
���
g
p

L

qg mn : �12�

We note that Hilbert's method of derivation of the gravita-
tional equations does not require concrete specification for
the Lagrangian function of the matter system. In paper [6],
Theorem II (see the Appendix),Hilbert infers the identity

dL� ���gp J� � ql�dx l ���
g
p

J� � 0 ; �12a�

where dL is the Lie variation and J is an arbitrary function
invariant under coordinate transformations. He uses this
identity in obtaining Eqn (48).

ThenHilbert proves the very important theorem III (see the
Appendix): ``Let J be an invariant depending only on the
components g mn and their derivatives; the variational deriva-
tives of

���
g
p

J in g mn are denoted, as earlier, as � ���gp J �mn. If h mn is
an arbitrary contravariant tensor, then the quantity

1���
g
p � ���gp J �mn h mn �13�

is also invariant; if one substitutes the standard tensor p mn

instead of h mn and writes

� ���gp J �mn p mn � �is p s � i `s p
s
` � ; �14�

where the expressions

is � � ���gp J �mnqs g mn ; �15�
i `s � ÿ2�

���
g
p

J �ms g m` �16�
depend only on g mn and their derivatives, then

is � qi `s
qx `

; �17�

in the sense that this equation holds identically for all
arguments, i.e., g mn and their derivatives.''

Hilbert applies this theorem to the casewhere J � R:Then
identity (17) becomes

q`
�� ���gp R�`s

	� 1

2
� ���gp R�mn

qg mn

qxs
� 0 : �18�

This identity is similar to (3), and it can therefore be also
written in form (4),

H` � ���gp R�`s � 0 : �19�

We see that the covariant derivative of the variational
derivative � ���gp R�`s is equal to zero. Thus, on the basis of (12),
we obtain

H `

�
q
���
g
p

L

qg s`

�
� 0 : �20�

According to Hilbert, the energy-momentum tensor density
Tmn of the matter system is defined as

Tmn � q
���
g
p

L

qg mn ; �21�

and equality (20) can be written as a covariant conservation
law of the energy-momentum tensor of the matter system,

HnT
n
m � 0 : �22�

Hilbert was the first to give definition (21) of the energy-
momentum tensor of the matter system and to show that this
tensor satisfies Eqn (22); in this way, he substantiated
Einstein's assumption in Ref. [8]. Hilbert thus found the
gravitational field equation 2

� ���gp R�mn � ÿKTmn ; �23�

from which the law of covariant conservation of energy-
momentum (22) follows exactly.

Multiplying both parts of Eqn (23) by g mn and summing
over the indices m and n, we obtain

g mn� ���gp R�mn � ÿKT : �24�

The left-hand side of Eqn (24) involves an invariant that
contains second derivatives linearly. But there exists only one
such invariant, R. Hence, we obtain the equation���

g
p

bR � ÿKT ; �25�

where b is an arbitrary constant.
Summarizing, we can say that the gravitational field

equations were found by Hilbert and thus the problem posed
by Einstein in 1913 was solved. Equations (23) are identical to
Eqns (1). They differ only in form. Below, we see that
according to Hilbert, Eqns (23) are easily transformed to
form (1). Hilbert, both in the proofs and in paper [6], wrote:
``In the following I want ... to establish ... a new system of
fundamental equations of physics.'' And further: ``my
fundamental equations'' , ``my theory''.

Hilbert could not write so if he did not consider himself the
author of the ``fundamental equations of physics.''

The tensor density � ���gp R�mn in Eqn (23) also involves, by
construction (11), the second-order derivatives only linearly,
and therefore from (10a), this energy density is given by

� ���gp R�mn �
���
g
p �Rmn � agmnR� : �26�

Expression (26) was quite evident for Hilbert. The authors
of Refs [2 ± 4] may find this difficult to understand, but this is
their personal affair. From (26), we express the left-hand side
of Eqn (24) as

g mn� ���gp R�mn �
���
g
p �4a� 1�R ; �27�

which completely agrees with (25). Just about these general
reasonings Hilbert wrote: ``...which is clear without calcula-
tions if we recall thatR is the only invariant andRmn is the only
(besides gmn) second-order tensor that can be constructed
from gmn and its first and second derivatives gmn

k , g mn
k` .''

2 Original paper [6] by Hilbert corresponds to the system of units where

K � 1.
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The authors of paper [2] (see also Ref. [3]) write in this
connection: ``This argument is, however, untenable, because
there are many other tensors of second rank and many other
invariants that can be constructed from the Riemann tensor.''

This statement by the authors of [2] has no relation to
Hilbert's exact argument because the authors of [2, 3] have
overlooked the main point: the construction of the gravitational
equations containing derivatives of g mn of the order not higher
than two. Hilbert specially wrote about that in his paper [6]:
``If only second-order derivatives of the potentials g mn can
enter the gravitational equations, then the function H must
have the form

H � R� L.''

Therefore, Hilbert was absolutely right that in this case,
there is only one invariantR and two tensors Rmn and gmnR that
contain second derivatives of the gravitational potential g mn

linearly. All other tensors with such properties are linear
combinations of these tensors.

Likewise, the author of paper [4] is wrong when he writes
(p. 1360): ``But variational derivation of the equations is then
absent, and the correct form of the equations (with the `half'
term) is justified (not quite correctly) by the uniqueness of the
Ricci tensor and the scalar curvature as generally covariant
quantities depending only on g mn's and their first and second
derivatives.''

It is quite surprising to see the author of paper [4] writing
about Hilbert's paper that ``...variational derivation... is then
absent.'' He must have forgotten the well-known circum-
stance that the Lagrange equations, which were presented by
Hilbert, are a consequence of the least action principle
(Axiom I of Hilbert). Therefore, the variational derivation
of the gravitational field equation is contained in Hilbert's
paper [6].

How can the authors of Refs [2 ± 4] make up their minds to
analyze and to judge Hilbert's papers [6] if they do not
understand the essence of his exact mathematical argu-
ments? The authors of papers [2, 3] write further: ``Even if
one requires the tensors and invariants to be linear in the
Riemann tensor, the crucial coefficient of the trace term
remains undetermined by such an argument.'' This is again
wrong. The coefficient is easily determined.Hilbert proved the
identity (19)

Hs� ���gp R�sm � 0 : �28�

With Eqn (26), in the local frame where the Christoffel
symbols are zero, identity (28) takes the simple form

qs�R s
m � ads

mR� � 0 : �29�

From (8) and (9), we find

qmR � Km ; qsR s
m �

1

2
Km ; �30�

where

Km � g nsg lrqsqnqm glr ÿ g nsg alqsqaqm gln : �31�

Using these expressions, we obtain

qs�R s
m � ads

mR� �
�
1

2
� a
�
Km � 0 ;

whence

a � ÿ 1

2
; �32�

and therefore,

� ���gp R�mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
; �33�

i.e.,

���
g
p �

Rmn ÿ 1

2
gmnR

�
� ÿKTmn : �34�

Thus `the critical coefficient' that is of concern to the authors
of Refs [2, 3] is obtained in Hilbert's approach in a trivial way
by using ordinary derivatives accessible to a érst-year
university student. It is also clear that the trace term
�1=2�gmnR does not arise as a result of some arbitrary
`introduction' into the éeld equations formulated by Hil-
bert; it is inherent there.

Later, in 1921, in paper 60 in [10] (see Ref. [19]), in writing
the gravitational equations, Einstein would construct the
geometric part of the gravitational equations using the tensor

Rmn � agmnR ;

i.e., in the same way as was done earlier by Hilbert in
transforming gravitational equations (12) to form (34).

The creative endeavor of the authors of Refs [2, 3] is
crowned with the following thoughtful conclusion: ``Taken
together, this sequence suggests that knowledge of Einstein's
result may have been crucial to Hilbert's introduction of the
trace term into his field equations.''

It is difficult to imagine that reading Hilbert's paper can
lead one to such an idea. But the authors of Ref. [2] prove that
this is possible. We remind them that in Hilbert's formalism,
one does not need to introduce anything. As soon as one wrote
the world function H in the form

H � R� L ;

and established Theorem III, the rest was just a matter of
calculational techniques and nothing more.

Thus, the analysis that we have undertaken on the
judgements of the authors of Ref. [2] shows that all their
reproofs to Hilbert are either wrong or do not concern him.
Therefore, all their arguments supporting the point of view `that
radically differs' from the standard one are untenable.

Before publication of Einstein's paper with the trace term,
Hilbert has already obtained equality (33). Using (19) and
(33), we find

Hn

�
R n

m ÿ
1

2
dn
mR

�
� 0 : �35�

But this is the Bianchi identity.
Poor knowledge of Hilbert's paper can be met not only in

Ref. [2]. For instance, A Pais, in book [11], § 15.3, wrote:
``Evidently Hilbert did not know the Bianchi identities
either!'' and further: ``I repeat one last time that neither
Hilbert nor Einstein was aware of the Bianchi identities in
that crucial November 1915.''

``Interesting enough, in 1917 the experts were not aware
that Weyl's derivation of Eqn 15.4 (The identity in
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question. ì the authors) by variational techniques was a
brand new method for obtaining a long-known result,'' Pais
continues.

Pais was right that Einstein did not know the Bianchi
identity in that crucial November 1915.All the rest in [11] that
concerns Hilbert is wrong. It can be said that Hilbert did not
know the Bianchi identity, indeed. He obtained it himself.With
the variational method, Hilbert proved a general identity (see
Theorem III by Hilbert) from which, putting J � R, he also
obtained the Bianchi identity. Thus, it was not Weyl in 1917
but Hilbert in 1915 who obtained the Bianchi identity with the
variational method. Pais wrote in § 15.3 [11]: ``In November
1915, neither Hilbert nor Einstein was aware of this royal
road to the conservation laws. Hilbert had come close.''

The authors of Ref. [3] write similarly: ``...Hilbert did not
discover royal road to the formulation of the field equations
of general relativity. In fact, he did not formulate these
equations at all...''

All this is wrong. It was Hilbert who found the shortest
and most general way to construct the gravitational equa-
tions. He found the Lagrange function of the gravitational
field, R, which yields the gravitational equations automati-
cally via the least action principle. This is just how these
equations are obtained in modern presentations of Einstein's
general theory of relativity. It is a pity that Pais seems to have
looked through Hilbert's paper superficially; the same is true
for the authors of Refs [2, 3].

Later, in 1924, Hilbert wrote [12]: ``In order to define the
expression � ���gp R�mn one first chooses the frame in such a way
that all g mn

s ; taken at the world point, vanish. We thus find

� ���gp R�mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
.'' (36)

The authors of Ref. [2] write, concerning this: ``To summar-
ize: Initially Hilbert did not give the explicit form of the field
equations; then, after Einstein had published his field
equations, Hilbert claimed that no calculation is necessary;
finally, he conceded that one is.''

This statement is a creation of the mind of the authors
of Ref. [2]. There is no reason to believe that Hilbert did not
himself obtain the explicit form of the field equations. They
can be obtained in an elementary way from Eqns (23) and
expression (26) with the use of identity (28). Can one seriously
assume that Hilbert was unable to obtain (33) from (28)?
Hilbert's addition made in 1924 does not mean a ``recogni-
tion that calculation is necessary.'' He introduced it as a
reminder of a simple method for finding a tensor. But this in
no way invalidated his exact argument (``...clear without
calculation'').

The authors of Refs [2, 3] claim, referring to the proofs,
that Hilbert had the gravitational equation only in form (23).
Equation (23) contains the derivatives

q
���
g
p

R

qg mn ;
q
���
g
p

R

qg mn
k

;
q
���
g
p

R

qg mn
k`

: �37�

It is impossible to imagine a theoretical physicist or
mathematician who would not calculate these derivatives
and explicitly obtain the differential equations containing
only the derivatives gmn

k , g mn
k` . As we have seen, it was not

necessary for Hilbert to calculate them, because he deter-
mined the structure of the expression � ���gp R�mn from the
general and rigorous mathematical statements, which made
the calculation of the `critical coefficient' trivial.

That is why the conclusion of the authors of papers [2 ± 4],
that Hilbert did not obtain the ``explicit form of the gravita-
tional field equations'' cannot be true. It also contradicts, as we
see in Section 4, the correspondence between Einstein and
Hilbert, fromwhich everything becomes absolutely clear, and
no additional arguments are needed. There exists no more
decisive argument than the evidence from Einstein himself.
But precisely this most important evidence from Einstein was
left out by the authors of [2, 3], who focused their analysis on
unpublished (and incomplete) materials of Hilbert.

The evidence from Einstein in his letter of 18 November
1915 to Hilbert unambiguously disproves any false conjec-
tures about Hilbert's paper [6]. Thus, the `archive finding' of
the authors of Ref. [2], as a matter of principle, cannot shatter
the evidence from Einstein himself. One could stop further
discussion of the question here. But alongside their argu-
ments, the authors of Refs [2 ± 4] make erroneous conclusions
about Hilbert's paper [6], and we therefore have to specially
concentrate on this.

Even if one does not followHilbert's general statements, it
is still possible, using definition (11), to perform simple
differentiation and to express the tensor density � ���gp R�mn in
terms of the Ricci tensor density and the scalar density

���
g
p

R.
The first term in (11) can be written in the form

q
���
g
p

R

qg mn �
���
g
p

Rmn �
q
���
g
p

qg mn R�
���
g
p

g ab qRab

qg mn : �38�

Because

q
���
g
p

qg mn � ÿ
1

2

���
g
p

gmn ; �39�

we obtain

q
���
g
p

R

qg mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
� ���

g
p

g ab qRab

qg mn : �40�

From (11) and (40), we have

� ���gp R�mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
�
� ���

g
p

g ab qRab

qg mn ÿ qk
q
���
g
p

R

qg mn
k

� qkq`
q
���
g
p

R

qg mn
k`

�
:

It is easy to see that the sumof the terms in braces is identically
equal to zero. The simplest way is to use the local Riemannian
frame where the Christoffel symbols are zero. In such a
simple, although not very elegant way, we arrive again at the
expression

� ���gp R�mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
:

The authors of paper [3] wrote: ``In both the Proofs and
the published version of paper [6], Hilbert erroneously
claimed that one can consider the last four equations (i.e.,
electromagnetic éeld equations. ì the authors) as a conse-
quence of the 4 identities that must hold, according to his
Theorem I, between the 14 differential equations...''

Things, however, are not as the authors of Ref. [3]
suppose. Theorems I and II are formulated for J, which is
invariant under arbitrary transformations of the four world
parameters. According to these theorems, there exist four
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identities for any invariant. In his paper, Hilbert considers
two invariants,R andL. He composes the general invariantH
of these two invariants:

H � R� L :

In Hilbert's notation, the gravitation equations have the
form

� ���gp R�mn � ÿKTmn :

Hilbert chooses the invariant L as a function of the variables
g mn, qs, qnqs, and he therefore obtains the generalized
Maxwell equations

� ���gp L� n � 0 ; �41�

where

� ���gp L� n � q
���
g
p

L

qqn
ÿ qm

�
q
���
g
p

L

q�qmqn�
�
: �42�

Then, on the basis of Theorem II, Hilbert establishes that
the Lagrange function L depends on the derivatives of the
potential qn only through the combination Fmn, i.e.,

L�Fmn� ; �43�

where

Fmn � qmqn ÿ qnqm : �44�

This does not forbid L to explicitly depend on qn, of course.
Based on this, Hilbert chooses the Lagrangian in the form

L � aQ� f �q� ; �45�

where

Q � FmnFls g
msg nl ; q � qmqn g

mn ; �46�

and a is a constant.
Hilbert then notes that the equations of electrodynamics

``can be considered as a consequence of the equations of
gravity.''

According to Theorem II, the four identities hold for the
invariant L:

HmT
m
n � Fmn� ���gp L�m � qnqm� ���gp L�m : �47�

It follows from identity (47) that if the equations of motion
(41) for the matter system hold, then the covariant conserva-
tion law

HmT
m
n � 0

is satisfied for the matter system. But if we follow Hilbert in
using gravitational equations (34) in identity (47), we obtain
Hilbert's equations

Fmn� ���gp L�m � qnqm� ���gp L� m � 0 ; �48�

which were assigned number 27 in his paper [6]. Equations
(48) must be compatible with the equations that follow from the
least action principle with the same Lagrangian L. This is only

possible in the case where the generalized Maxwell equations
hold:

� ���gp L�n � 0 : �49�

Therefore, the author of paper [4] is completely wrong
considering that ``in the case of gauge-noninvariant Mie's
theory with a Lagrangian of type (45), one has in general to
use not the generalized Maxwell equations (49) but equa-
tions (48).''

This statement contradicts the least action principle, i.e.,
Hilbert's Axiom I. Thus, four identities (47) due to Theorem II
and equations of gravitation (34) lead to four equations (48),
which are compatible with the generalized Maxwell equations
obtained on the basis of Hilbert's Axiom I. This is what Hilbert
emphasized in paper [6]: ``...from gravitation equations (10),
there indeed follow 4 mutually independent linear combina-
tions (48) of the electrodynamics equations (41) (authors'
emphasis) together with their first derivatives.''

It must be stressed that Hilbert writes about a ``linear
combination of the electrodynamics equations (41),'' but not
expressions (42). Precisely here the authors of Refs [3, 4] find
themselves a muddle.

We note that in the particular case where

L � aQ ; �50�

the second term in Eqns (48) vanishes identically and we
obtain the equations

Fmn� ���gp L�m � 0 :

It follows, therefore, that if the determinant jFmnj is not zero,
the Maxwell equations hold,

� ���gp L�m � 0 ;

in full agreement with the least action principle (Hilbert's
Axiom I). Therefore, theMaxwell equations are a consequence
of gravitational equations (34) and four identities (47). All this
follows from Hilbert's article if one reads it attentively.
Afterwards, Einstein, together with Infeld and Hoffmann in
paper 117 inRef. [10] (see Ref. [20]) and also Fock inRef. [13],
would obtain the equations ofmotion of amatter system from
the gravitational equations.

It is noticed quite often that Hilbert obtained the
gravitational field equation ``...not for an arbitrary material
system, but specifically basing on Mie's theory'' [14]. That is
not quite right. The method that Hilbert used is general and
imposes no restrictions on the form of the function L. But the
fact that the gravitational equations imply four equations for
the material system looked attractive for Hilbert and he
applied his general equations to Mie's theory. Such a
unification of gravity and Mie's theory was not fruitful, but
Hilbert's general method for obtaining the gravitational
equations proved to be very far-reaching.

Now a few words about auxiliary noncovariant equa-
tions.

To solve a problem, it is always necessary to have a
complete system of equations. There are only ten equations
of general relativity. One still needs to add four equations,
which cannot be generally covariant. These auxiliary condi-
tions are called coordinate conditions and can be of various
kinds. Hilbert meant exactly this when he wrote (see Proofs in

612 A A Logunov, M AMestvirishvili, V A Petrov Physics ±Uspekhi 47 (6)



Ref. [7]): ``As our mathematical Theorem shows us, the
previous Axioms I and II 3 can give only 10 mutually
independent equations for 14 potentials. On the other hand,
due to general invariance, more than 10 essentially indepen-
dent equations for the 14 potentials gmn, qs, are impossible,
and, because we wish to hold on Cauchy's theory for
differential equations and to give the basic equations of
physics a definite character, an addition of auxiliary non-
invariant equations to (4) and (5) is inevitable.'' 4

This is a mathematical requirement and it is necessary for
the theory. Hilbert tried to obtain these additional equations
in the framework of the theory itself but failed to do so and
did not include that into the published article.

Thus, the basic system of the 10 equations of general
relativity is generally covariant, but the complete system of
equations that is necessary to solve problems is not generally
covariant because four equations expressing coordinate
conditions cannot be tensorial; they are not generally
covariant. A solution to the complete system of the gravita-
tional field equations can always be written in any admissible
coordinate system. Precisely here the notion of the chart atlas
arises. That is why the statement by the authors of [2 ± 4] that
Hilbert's theory is not generally covariant, in contrast with
Einstein's theory, is wrong. The complete system of equations of
both Hilbert and Einstein is not generally covariant.

The only difference was that Hilbert tried to uniquely
construct these noncovariant equations in the framework of
the theory itself. This proved impossible. The equations were
made quite arbitrary but not tensorial. They then determine
the choice of a frame.

In this regard, J Synge [15] writes: ``A number of
coordinate conditions occur in the literature of relativity,
designed for special purposes. To put matter in general form,
we shall denote the coordinate conditions by

Ci � 0 ;

these are equations (perhaps differential equations) satisfied
by metric tensor gi j. They are of course not tensor equations,
since they are satisfied only when coordinates are specially
chosen.''

What is the material on which the authors of paper [2]
base their conclusions? In the so-called proofs of Hilbert's
paper from which they proceeded, the invariantsH and K are
used but their definition is lacking in the existing part of the
proofs. Hilbert writes in the proofs: ``I would like to construct
below a new system of basic equations of physics, following
the axiomatic method and proceeding, essentially, from the
three axioms.'' Evidently, Hilbert had to define the invariants
H and K in order to do that.

It is impossible to imagine that Hilbert, having posed such
an aim, did not define these fundamental quantities. But this
means that the parts absent from the proofs are absolutely
essential and contain important information. Valid conclusions
cannot be made without taking this key information into
account.

But the authors of Ref. [2] neglected this important issue
andwere in a hurry to conclude that Hilbert did not derive the

gravitation equations in the form

���
g
p �

Rmn ÿ 1

2
gmnR

�
� ÿKTmn :

They presented this conclusion to the scientific community in
the popular and well-known journal Science [2]. For all that,
the authors of Ref. [2] did not inform the readers that the so-
called proofs that they used are incomplete. Only later, in
Ref. [3], did they mention that. The authors of Ref. [2] claim
that the proofs allowed them to substantiate their point of
view ``that radically differs from the standard'' one. How
could this be done on the basis of a preliminary and
incomplete material?

Here is one more method of `analysis' used by the authors
of Ref. [3]: ``Remarkably, in characterizing his system of
equations, Hilbert deleted the word `neu', a clear indication
that he had meanwhile seen Einstein's paper and recognized
that the equations implied by his own variational principle are
formally equivalent to those which Einstein had explicitly
written down (because of where the trace term occurs), if
Hilbert's stress-energy tensor is substituted for the unspeci-
fied one on the right-hand side of Einstein's field equations.''

But everything written by the authors of Ref. [3] makes no
sense because their `clear indication' actually disappears since
Hilbert wrote quite clearly in published article [6]: ``I would
like to construct below ... a new system of fundamental
equations.''

It is extremely tactless to reach conclusions on Hilbert's
ideas on the basis of his marginal remarks in preliminary
unpublished materials. The system of gravitational equations
obtained by Hilbert is indeed a new one. He obtained it
without the knowledge that Einstein came to the same
gravitational equations. Einstein wrote to Hilbert about this
in a letter of 18 November 1915 (see Section 3). The way the
authors of [3] chose to substantiate their `radically different '
point of view is strange. The multi-page composition [3]
abounds in both similarly doubtful arguments and erroneous
statements. Such an approach to the study of the most
important physics papers can hardly be considered profes-
sional, based on a profound analysis of the material.

In concluding this section, we note that Hilbert's papers
under the general title ``Die Grundlagen der Physik'' are very
important and instructive. It would be very good if theoreti-
cians who deal with similar problems knew them. Thus, for
instance, article [16] was published inPhysics ±Uspekhi. If the
authors of this paper had read Hilbert's paper [17], published
in 1917, they would have seen that the critical coordinate
velocity Vc, which they calculated approximately, is in fact
equal to

Vc � 1���
3
p
�
rÿ a
r

�
; a � rg � 2GM :

The acceleration is equal to zero at just this velocity. The
velocity Vc depends on the radius, while the corresponding
proper velocity v is independent of r and is given by

v � 1���
3
p :

To obtain the critical coordinate velocity Vc in the first order
in G, one needs to keep terms of the second order in G in the
acceleration. A gravitational field does not exert action on a

3 In accordance withAxiom II, the world functionH is invariant under any
coordinate transformation. (Authors' note.)
4 The respective equation numbers (4) and (5) are given to gravitational
éeld equations (10) and generalized Maxwell equations (41). (Authors'
note.)
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body if the latter moves with the velocity Vc under the action
of some external force.

In paper [17], Hilbert obtains the equation

d2r

dt 2
ÿ 3a
2r�rÿ a�

�
dr

dt

�2

� a�rÿ a�
2r 3

� 0

and gives its integral,�
dr

dt

�2

�
�
rÿ a
r

�2

� A

�
rÿ a
r

�3

;

where A is a constant; for light, A � 0.
In particular, this implies formula (20) in paper [16] for the

velocity,�
dr

dt

�2

� 1

3

�
1ÿ rg

r

�2�
1� 2rg

r

�
;

which differs from the critical velocity Vc. At this velocity, the
acceleration is not exactly equal to zero.

Hilbert writes further: ``According to this equation, the
acceleration is negative or positive, i.e., gravitation attracts or
repulses depending on whether the absolute value of the
velocity satisfies the inequality���� drdt

���� < 1���
3
p
�
rÿ a
r

�

or the inequality���� drdt
���� > 1���

3
p
�
rÿ a
r

�
.''

For light, Hilbert finds that���� drdt
���� � rÿ a

r
;

and further notes: ``The light propagating rectilinearly
towards the center always experiences a repulsion according
to the latter inequalities; its speed increases from 0 at r � a to
1 at r � 1.''

We note that the local speed of light is equal to 1 (in units
of c). It is also necessary to note that the velocity Vc is not a
solution of the initial equation.

One more remark. The authors of Ref. [16] write: ``Maybe
this is the reason why the proper time is sometimes called
`genuine', or `physical' in the literature, with the meaning of
these terms unexplained.'' And further: ``As a result, many
experts in general relativity consider coordinate-dependent
quantities nonphysical, so to say `second-quality' quantities.
However, the coordinate time is even more important for
some problems than the proper time t .''

Thus, as the authors of Ref. [16] notice, ``...to speak about
the proper time as a `genuine' or `physical' in contrast with the
coordinate velocity is not logical.'' In vain the authors of
Ref. [16] think that experts in general relativity do not
understand the significance of coordinate quantities. All the
description in general relativity is in terms of coordinate
quantities. One cannot avoid them in principle. This has
been well known for a long time.

As an example of the physical quantity, we consider the
proper time, which differs from the coordinate time in that it

does not depend on the choice of coordinates. As one sees,
there is a difference, one that is quite essential. Another
example is the coordinate velocity of light,

V � c

�������
g00
p

1ÿ g0ie i=
�������
g00
p ;

here i � 1; 2; 3; e i is a unit vector in the three-dimensional
Riemannian space.

The coordinate velocity V is certainly measurable but
depends on the choice of coordinates and can have an
arbitrary value satisfying the condition

0 < V <1 ;

while the physical speed of light is exactly equal to c. As one
can see, there is also a difference, and it is also very essential.
Therefore, there is nothing `illogical' in the use of notions of
physical and coordinate velocities, contrary to the arguments
made by the authors of Ref. [16].

3. Einstein's approach

Einstein wrote in 1913: ``The theory stated in what follows
arose from the conviction that the proportionality between
the inertial and gravitational masses of bodies is an exact law
of Nature, which must be manifested in the foundations of
theoretical physics. I have tried to express this conviction in a
number of previous works (Ann. Phys. 1911, 35, 898; 1912, 38,
355: papers 14 and 17 in ``Collection of Scientific Works'' I
[10]), where an attempt was made to reduce the gravitational
mass to the inertial one; this intention ledme to the hypothesis
that the gravity field (homogeneous in an infinitesimally small
volume) can be physically substituted by an accelerated
frame.''

It is precisely this path that led Einstein to the conviction
that in the general case, the gravitational field is characterized
by the 10 space-time functions (metric coefficient of the
Riemann space) gmn,

ds 2 � gmn�x� dx m dx n : �51�

He further published a series of papers (articles 21, 22, 23,
25, 28, 29, 32) [10] about which he wrote later in paper 34 [10]
(see Ref. [21]): ``My efforts in recent years were directed
toward basing a general theory of relativity, also for nonuni-
form motion, upon the supposition of relativity. I believed
indeed to have found the only law of gravitation that complies
with a reasonably formulated postulate of general relativity;
and I tried to demonstrate the truth of precisely this solution
in a paper � [8] that appeared last year in the `Sitzungsber-
ichte'.

Renewed criticism showed to me that this truth is
absolutely impossible to show in the manner suggested. That
this seemed to be the case was based upon amisjudgment. The
postulate of relativity Ð as far as I demanded it there Ð is
always satisfied if the Hamiltonian principle is chosen as a
basis. But in reality, it provides no tool to establish the
Hamiltonian function H of the gravitational field. Indeed,
equation (77) l.c. which limits the choice ofH says only thatH
has to be an invariant toward linear transformations, a

* Equations in that paper are quoted in what follows with the additional

note `l.c.' in order to keep them distinct from those in the present paper.
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demand that has nothing to do with the relativity of
accelerations. Furthermore, the choice determined by equa-
tions (78) l.c. does not determine equation (77) in any way.

For these reasons I lost trust in the field equations I had
derived, and instead looked for a way to limit the possibilities
in a natural manner. In this pursuit I arrived at the demand of
general covariance, a demand from which I parted, though
with a heavy heart, three years ago when I worked together
with my friend Grossmann. As a matter of fact, we were then
quite close to that solution of the problem, which will be given
in the following.

Just as the special theory of relativity is based upon
postulate that all equations have to be covariant relative to
linear orthogonal transformations, so the theory developed
here rests upon the postulate of the covariance of all systems of
equations relative to transformations with the substitution
determinant 1.

Nobody who really grasped it can escape from its charm,
because it signifies a real triumph of the general differential
calculus as founded by Gauss, Riemann, Christoffel, Ricci,
and Levi-Civita.''

Einstein chose the gravitational equation in the coordi-
nate system where

�������ÿgp � 1 in the form5

qaGa
mn � Ga

mbG
b
na � ÿKTmn ; �52�

where

Ga
mn � ÿ

1

2
g as�qm gns � qngms ÿ qsgmn� ;

with being Tmn the energy-momentum tensor for the material
system. The left-hand side of Eqn (52) is obtained from the
Ricci tensor under the condition

�������ÿgp � 1.
Einstein finds the Lagrange function for the gravitational

field

L � g stGa
sbG

b
ta : �53�

With the relation

2Ga
sb d�g stGb

ta� � Ga
sb dg

sb
a �54�

taken into account, it is easy to obtain

dL � ÿGa
sbG

b
ta dg

st � Ga
sb dg

sb
a ; �55�

whence

qL
qg mn � ÿGa

mbG
b
na ;

qL
qg mn

a
� Ga

mn : �56�

With the help of these formulas, gravitational equation (52)
can be written as

qa

�
qL
qg mn

a

�
ÿ qL
qg mn � ÿKTmn : �57�

Multiplying (57) by gmn
s and summing over the indices m and n,

Einstein obtains

qlt ls �
1

2
Tmn qsg mn ; �58�

where the quantity

t ls �
1

2K

�
d l
sLÿ g mn

s
qL
qgmn

l

�
�59�

characterizes the gravitational field. Taking the equality

Gl
mn qsg

mn � 2g amGn
asG

l
mn

into account, one finds

t ls �
1

K

�
1

2
d l
sg

mnGa
mbG

b
na ÿ g amGn

asG
l
mn

�
: �60�

All further calculations are made in the reference frame where�������ÿgp � 1. Einsteinwrites the basic equations of gravity (52) in
the form

qa�g nlGa
sn� ÿ

1

2
d l
sg

mnGa
mbG

b
na � ÿK�T l

s � t ls � : �61�

We show below how close to the true gravitational field
equations Einstein was when writing his paper of 4 November
1915 (paper 34 in Ref. [10], see Ref. [21]).

From 1913, Einstein had mentioned, in one or another
way, that the quantity t ls characterizing the gravitational field
must enter the gravitational equation in the same way as the
quantity t ls characterizing matter systems. For instance, he
wrote in 1913 in paper [8]: ``...the gravitational field tensor is a
source of the field on equal footing with the tensor of matter
systems Ymn. Exceptional position of the gravitational field
energy in comparison with all other kinds of energy would
lead to inadmissible consequences.'' However, Einstein
ignored this important intuitive argument when he wrote
paper 34 in Ref. [10] (see Ref. [21]).

The argument regarding the symmetry between the
quantities T l

s and t ls is rather a product of Einstein's
intuition, but not a general physical principle. The impor-
tant point is that the transformation properties of these
quantities are different. But intuition is a great asset if it
leads to fulfillment of one's aims. This was precisely the case
with Einstein. We note that as a rule, basic physical
equations are not derived. Rather, they are guessed at on
the basis of experimental data, general physical principles,
and intuition. That is why it is sometimes difficult to
logically explain in what way they are obtained by an
author.

With the help of (60), it is easy to find the trace of t ls ,

t � t ll �
1

K
g mnGa

mbG
b
na ; �62�

and to rewrite Einstein's equation (61) in the form

qa�g nlGa
sn� � ÿK

�
T l
s � t ls ÿ

1

2
d l
s t

�
: �63�

It is seen that there is no symmetry between the quantities T l
s

and t ls in Eqn (63). One can easily see that this symmetry can
be restored in a simple way. We consider this in what follows.
Based on (63), we derive the conservation laws. For this, we
find the trace of the equations,

qa�g nbGa
nb� � ÿK�Tÿ t� : �64�5 In this section, we use Einstein's notation.
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We multiply both sides of Eqn (64) by �1=2�d l
s and subtract

the result from (63):

qa

�
g nlGa

sn ÿ
1

2
d l
sg

nbGa
nb

�
� ÿK

�
T l
s � t ls ÿ

1

2
d l
sT

�
: �65�

It is easy to verify that the equalities

qlqa�g nlGa
sn� �

1

2
qlqaqsg al ; �66�

qlqad
l
sg

nbGa
nb � qlqaqsg al �67�

hold. Using these equalities, we find from Eqn (65) that

ql�T l
s � t ls � �

1

2
d l
sqlT ; �68�

and similarly, using (58), we find the relation

qlT l
s �

1

2
Tmnqsg mn � 1

2
d l
sqlT : �69�

It is evident from this that Eqn (63) does not provide the
conservation laws and there is no symmetry between T l

s and
t ls in Eqn (68). To restore the symmetry in (63) and (68) and to
ensure that the conservation laws hold, we must make the
substitution

T l
s ! T l

s ÿ
1

2
d l
sT : �70�

Under (70), the trace of Tmn changes as

T! ÿT : �71�

We note that symmetrization is not related to any assump-
tions on the structure of matter. Having performed this
operation, we obtain the new gravitational equations

qa�g nlGa
sn� � ÿK

�
�T l

s � t ls � ÿ
1

2
d l
s �T� t�

�
: �72�

The same replacement applied to (68) and (69) leads to the
restoration of the conservation laws

ql�T l
s � t ls � � 0 �73�

and similarly,

qlT l
s �

1

2
Tmn qsg mn � 0 : �74�

Equations (73) and (74) arise only from new equations (72).
In paper 35 in Ref. [10] (see Ref. [22]), which is an

addendum to paper 34 in Ref. [10] (see Ref. [21]), Einstein
takes a further step and chooses the gravitational equations in
the form

Rmn � ÿKTmn ; �75�

which is generally covariant under arbitrary coordinate
transformations. He abandons the condition

�������ÿgp � 1: In
the frame where

�������ÿgp � 1, these equations are equivalent to
Eqns (52). But Eqn (52) provides neither the symmetry
between T l

s and t ls nor the conservation laws and the

replacement operation in (70) and (71) was required for
symmetrization; it would therefore be natural to make
replacement in the initial equations (75) as well. In this way,
we obtain the new gravitation equations

Rmn � ÿK
�
Tmn ÿ 1

2
gmnT

�
: �76�

Exactly these equations were obtained by Einstein several
days later and then published in paper 37 in Ref. [10] (see
Ref. [5]). We note that Einstein found the conservation law
equations (73) still with the gravitational equations (63). This
circumstance probably satisfied him, and he did not pay
attention to the symmetry breaking between T l

s and t ls in
Eqns (63). But his method of deriving the conservation laws
led to a situation where the choice of the frame

�������ÿgp � 1 was
possible only if the trace of the matter tensor was equal to
zero. Instead of restoring the symmetry via (70) and (71),
Einstein chose another, more radical, way. In paper 35 in
Ref. [10] (see Ref. [22]), he proposed a new physical idea that
``in reality, only the quantity T m

m � tmm is positive, while Tm
m

vanishes.'' Such an approach restored the symmetry, but
despite its radicalness, was not fruitful and this idea existed
but a short time.

Later, Einstein returned to his old idea on symmetry and
obtained the gravitational field equations (76) in paper 37 in
Ref. [10] (see Ref. [5]). He mentioned there: ``As it is not
difficult to see, our additional term leads to that energy
tensors of the gravitational field and of matter enter Eqn (9)
in the same way.'' There is some inexactitude in this
statement. A gravitational field energy tensor, does not exist
in general relativity. But taken as a heuristic notion, it led
Einstein directly to his goal.

We see that Einstein's path led him inevitably to the same
equations that were also obtained by Hilbert. It is quite
evident that Einstein obtained them independently. More-
over, he gained them through much suffering for several
years.

For a better understanding of what is written above, of no
small importance is the quite vivid correspondence between
Hilbert and Einstein, which took place during the period of
their work on the gravitational field equations. This corre-
spondence bears witness that no `radically different' point of
view, other than the standard one, can exist, as a matter of
principle.

4. Einstein ±Hilbert correspondence

From Einstein to Hilbert
Berlin, Sunday, 7 November 1915

``Highly esteemed Colleague,
With return post I am sending you the correction to a

paper in which I changed the gravitational equations, after
having myself noticed about 4 weeks ago that my method of
proof was a fallacious one. My colleague Sommerfeld wrote
that you also have found a hair in my soup that has spoiled it
entirely for you. I am curious whether you will take kindly to
this new solution.

With cordial greetings, yours
A. Einstein

When may I expect the mechanics and history week to
take place in GoÈ ttingen? I am looking forward to it very
much.''
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From Einstein to Hilbert
Berlin, Friday, 12 November 1915

``Highly esteemed Colleague,
I just thank you for the time being for your kind letter. The

problem has meanwhile made new progress. Namely, it is
possible to exact general covariance from the postulate�������ÿgp � 1; Riemann's tensor then delivers the gravitation
equations directly. If my present modification (which does
not change the equations) is legitimate, then gravitation must
play a fundamental role in the composition of matter. My
own curiosity is interfering with my work! I am sending you
two copies of last year's paper. I have only two other intact
copies myself. If someone else needs the paper, he can easily
purchase one, of course, for 2M (as an Academy offprint).

Cordial greetings, yours
Einstein''

From Hilbert to Einstein
GoÈ ttingen, 13 November 1915

``Dear Colleague,
Actually, I first wanted to think of a very palpable

application for physicists, namely reliable relations between
the physical constants, before obliging with my axiomatic
solution to your great problem. But since you are so
interested, I would like to lay out my theory in very complete
detail on the coming Tuesday, that is, the day after the day
after tomorrow (the 16th of this mo.). I find it ideally
handsomemathematically and absolutely compelling accord-
ing to axiomatic method, even to the extent that not quite
transparent calculations do not occur at all and therefore rely
on its factuality. As a result of gen. math. law, the (generalized
Maxwellian) electrody. eqs. as a math. consequence of the
gravitation eqs., such that gravitation and electrodynamics
are actually nothing different at all. Furthermore, my energy
concept forms the basis: E �P�esTs � eiht

ih�, which is
likewise a general invariant, and from this then also follow
from a very simple axiom the 4 missing ``space-time equa-
tions'' es � 0. I derived most pleasure in the discovery already
discussed with Sommerfeld that normal electrical energy
results when a specific absolute invariant is differentiated
from the gravitation potentials and then g is set � 0:1. My
request is thus to come for Tuesday.You can arrive at 3 or 1=2
past 5. The Math. Soc. meets at 6 o'clock in the auditorium
building. My wife and I would be very pleased if you stayed
with us. It would be better still if you came already on
Monday, since we have the phys. colloquium on Monday,
6 o'clock, at the phys. institute. With all good wishes and in
the hope of soon meeting again, yours,

Hilbert
As far as I understand your new paper, the solution given

by you is entirely different from mine, especially since my es's
must also necessarily contain the electrical potential. ''

From Einstein to Hilbert
Berlin, Monday, 15 November 1915

``Highly esteemed Colleague,
Your analysis interests me tremendously, especially since

I often racked my brains to construct a bridge between
gravitation and electromagnetics. The hints your give in
your postcards awaken the greatest of expectations. Never-
theless, I must refrain from travelling to G�ottingen for the
moment and rather must wait patiently untill I can study
your system from the printed article; for I am tired out and
plagued with stomach pains besides. If possible, please send

me a correction proof of your study to mitigate my
impatience.

With best regards and cordial thanks, also to Mrs.
Hilbert, yours,

A. Einstein''

16 November 1915, Hilbert gave a talk. The author of
paper [18] writes about that:

```Grundgleichungen der Physik' was the title of Hilbert's
lecture to the GoÈ ttingen Mathematical Society of November
16. It was also the title under which his communication in the
letter of invitation circulated among the Academy members
between November 15 and the meeting of November 20...''
He mentions also: ``The invitation for the meeting of
20 November was issued on November 15 and was, as
always, circulated among the members to confirm their
participation and announce any communications they
intended to present at the meeting. Into this invitation
Hilbert wrote: `Hilbert legt vor in die Nachrichten: Grund-
gleichungen der Physik'.''

``In response to Einstein's request'', as the author of
Ref. [18] notes, ``Hilbert had to report his findings in
correspondence to Einstein (authors' emphasis), unfortu-
nately lost. He probably sent Einstein the manuscript of his
lecture to the GoÈ ttingenMathematical Society, or a summary
of its main points.''

From Einstein to Hilbert
Berlin, 18 November, 1915

``Dear Colleague,
The system you furnish agrees Ð as far as I can see Ð

exactly with what I found in the last few weeks and have
presented to the Academy (authors' emphasis). The difficulty
was not in finding generally covariant equations for the gmn's;
for this is easily achieved with the aid of Riemann's tensor.
Rather, it was hard to recognize that these equations are a
generalization, that is, simple and natural generalization of
Newton's law. It has just been in the last few weeks that I
succeeded in this (I sent you my communications), whereas
3 years ago with my friend Grossmann I had already taken
into consideration the only possible generally covariant
equations, which have now been shown to be the correct
ones. We had only heavy-heartedly distanced ourselves from
it, because it seemed tome that the physical discussion yielded
an incongruency with Newton's law. The important thing is
that the difficulties have now been overcome. Today I am
presenting to the Academy a paper in which I derive
quantitatively out of general relativity, without any guiding
hypothesis, the perihelion motion of Mercury discovered by
Le Verrier. No gravitation theory had achieved this untill
now.

Best regards, yours
Einstein''

Such is the content of Einstein's reply letter. There does
not exist an argument more forcible than the words in the
letter, written by Einstein himself: ``The system you furnish
agrees Ð as far as I can see Ð exactly with what I found in the
last few weeks and have presented to the Academy.'' An
evidence more exact cannot exist in principle, but just this
evidence remained aside in Refs [2 ± 4]. This evidence alone by
Einstein is already sufficient to exclude completely and
forever any attempts to push forward a point of view
``radically different'' from the standard. The authors of
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Refs [2, 3] made a whole series of other wrong conclusions
about Hilbert's paper. That is why we had to consider their
compositions in some detail in Section 2.

We nonetheless suppose that Einstein received the
gravitational equations in form (12) from Hilbert, i.e.,

� ���gp R�mn � ÿ
q
���
g
p

L

qg mn : �77�

It is improbable that Einstein would have agreed that these
equations are in accord with his equations,

Rmn � ÿK
�
Tmn ÿ 1

2
gmnT

�
; �78�

where the Ricci tensor enters explicitly. To agree with this,
Einstein would have needed to calculate the derivatives

q
���
g
p

R

qg mn ;
q
���
g
p

R

qg mn
k

;
q
���
g
p

R

qg mn
k`

:

But he did not calculate them at that time. He wrote about
that later, in a letter to HA Lorentz of 19 January 1916 [9]: ``I
avoided the somewhat involved computation of the
qR=qgmn's and qR=qg mn

s 's by setting up the tensor equations
directly. But the other way is certainly also workable and even
more elegant mathematically.''

It is also improbable that Hilbert, knowing that the Ricci
tensor enters the Einstein equations (he was informed of that in
the letter fromEinstein of 7November 1915), could send him his
equations in form (77). No doubt, Einstein received from
Hilbert the equations in the form

���
g
p �

Rmn ÿ 1

2
gmnR

�
� ÿ q

���
g
p

L

qg mn ; �79�

because it was not difficult for Hilbert to find, from general
considerations and practically without computations, as we
have seen above, the equality

� ���gp R�mn �
���
g
p �

Rmn ÿ 1

2
gmnR

�
:

In the letter to Hilbert of 18 November 1915, Einstein wrote:
``The system you furnish agreesÐ as far as I can seeÐ exactly
to what I found...''

This is easily verified by comparing Eqns (78) and (79).
Einstein's words ``as far as I can see'' were possibly caused by
the energy-momentum tensor density being defined in
Hilbert's paper as

q
���
g
p

L

qg mn ;

where L is a function of g mn, qs, and qsn. Such a definition was
new and unknown to Einstein. He needed time to understand
its essence. But Einstein replied to Hilbert immediately. Later
on, in paper 42 in Ref. [10] (see Ref. [23]), Einstein would use
precisely this definition of the energy-momentum tensor. In
this paper, he introduced, like Hilbert, a function M of the
variables g mn, q�r�, q�r�a and wrote the energy-momentum
tensor density as

Tmn � ÿ qM
qg mn :

Therefore, it is impossible to understand on what ground
the authors of Ref. [3] try to conclude quite the opposite:
``The new energy expression that Hilbert now took over
from Einstein...''. As we have just seen, it is absolutely
wrong. Namely, Einstein adopted the definition of the
energy-momentum tensor density from Hilbert and used it
in paper 42 in Ref. [10] (see Ref. [23]).

Furthermore, the authors of Ref. [3] conclude: ``...Ein-
stein's generalization of Hilbert's derivation made it possible
to regard the latter as merely representing a problematic
special case.''

All this is wrong. Hilbert's method is general; it allows
obtaining the gravitational equations without assuming a
specific form of the Lagrange functionL of thematter system.
Therefore, there was no (and could not be any) generalization
of Hilbert's derivation. It is a different matter that afterwards
Hilbert applied his method to the concrete case of Mie's
theory.

As we have already mentioned in Section 2, the transfor-
mation of (77) to (79) was not a great labor for Hilbert with
the help of Theorem III, proven by him.

Therefore, the proofs, moreover incomplete, cannot show
that Hilbert did not write the gravitational field equations in
form (79).

5. Conclusion

The analysis in Sections 2 and 3 shows that Einstein and
Hilbert independently discovered the gravitational field
equations. Their pathways were different but they led to
exactly the same result. Nobody copied from the other.
Therefore, no ``belated decision in the Einstein ±Hilbert
priority dispute,'' about which the authors of Ref. [2] wrote,
can be taken. Moreover, the very Einstein ±Hilbert dispute
never took place. Everything is absolutely clear: both authors
did everything to give both their names to the gravitational field
equations. But general relativity is Einstein's theory.
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6. Appendix

Below, for pedagogical purposes, we give a detailed proof of
Hilbert's theorems II and III.

Theorem II. IfH is an invariant that depends on gmn, qlgmn,
qsqlgmn, An, and qlAn, then an infinitesimal contravariant
vector dxs satisfies the identity

dL� ���gp H� � qs� ���gp H dxs� ; �A:1�

where dL is the Lie variation.
To prove this theorem, we consider the integral

S �
�
O
d4x

���
g
p

H : �A:2�

We make an infinitesimal coordinate transformation

x 0 n � x n � dx n ; �A:3�

where dxn is an arbitrary infinitesimal four-vector. The
integral then remains unchanged and therefore the variation
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dcS vanishes:

dcS �
�
O 0
d4x 0

�����
g 0

p
H 0 ÿ

�
O
d4x

���
g
p

H � 0 : �A:4�

The first integral can be written as�
O 0
d4x 0

�����
g 0

p
H 0 �

�
O
J
�����
g 0

p
H 0 d4x ; �A:5�

where J is the Jacobian of the transformation,

J � q�x 0 0; x 0 1; x 0 2; x 0 3�
q�x 0; x 1; x 2; x 3� : �A:6�

The Jacobian of transformations (A.3) is given by

J � 1� qldx l : �A:7�

Expanding
�����
g 0
p

H 0 in the Taylor series, we find�������������
g 0�x 0�

p
H 0�x 0� �

�����������
g 0�x�

p
H 0�x� � dx l ql� ���gp H� : �A:8�

Due to (A.5), (A.7), and (A.8), equality (A.4) assumes the
form

dcS �
�
O
d4x

�
dL� ���gp H� � ql� ���gp H dx l�� � 0 ; �A:9�

where dL� ���gp H� is the Lie variation,
dL� ���gp H� �

�����������
g 0�x�

p
H 0�x� ÿ

���������
g�x�

p
H�x� : �A:10�

The Lie variation commutes with partial derivatives:

dLql � qldL : �A:11�

The Lie variation of
���
g
p

H is

dL� ���gp H� � Pg� ���gp H� � Pq� ���gp H� ; �A:12�

where

Pg� ���gp H� � q
���
g
p

H

qgmn
dLgmn � q

���
g
p

H

q�qlgmn� qldLgmn

� q
���
g
p

H

q�qsqlgmn� qsqldLgmn ; �A:13�

Pq� ���gp H� � q
���
g
p

H

qAl
dLAl �

q
���
g
p

H

q�qsAl� qsdLAl : �A:14�

Because the volume O is arbitrary, we obtain the desired
Hilbert identity from (A.9),

dL� ���gp H� � ql� ���gp H dx l� � 0 ; �A:15�

where

dL� ���gp H� � Pg� ���gp H� � Pq� ���gp H� : �A:16�

Theorem III. If an invariant H depends on gmn, qlgmn, and
qsqlgmn, then the variational derivative

d
���
g
p

H

dgmn
� ���

g
p

G mn � q
���
g
p

H

qgmn
ÿ ql

q
���
g
p

H

q�qlgmn� � qsql
q
���
g
p

H

q�qsqlgmn�
�A:17�

satisfies the identity

HlG
ln � 0 ; �A:18�

or, in another form,

ql� ���gp G l
r � �

1

2

���
g
p

Glsqr g ls � 0 ; �A:19�

where Hl is the covariant derivative in the Riemannian space.
To prove this theorem, we consider the integral�
O

���
g
p

Hd4x

over a finite region of the four-dimensional world. The
translation vector dxs in (A.3) must vanish together with its
derivatives on the 3-dimensional boundary of the region O.
This implies the vanishing of the field variations and their
derivatives on the boundary of this region. Using Hilbert
identity (A.15), we find�

O
dL� ���gp H� d4x � 0 : �A:20�

In our case,

dL� ���gp H� � Pg� ���gp H� : �A:21�

Expression (A.13) can be written as

Pg� ���gp H� � d
���
g
p

H

dgmn
dL gmn � qlS l ; �A:22�

where the vector S l is given by

S l �
�

q
���
g
p

H

q�qlgmn� ÿ qs

�
q
���
g
p

H

q�qsqlgmn�
��

dLgmn

� q
���
g
p

H

q�qsqlgmn� qsdLgmn : �A:23�

Substituting (A.22) in (A.20), we find�
O

d
���
g
p

H

dgmn
dLgmn d

4x � 0 : �A:24�

We now find the variation dLgmn under transformations
(A.3). The metric tensor gmn is transformed as

g 0mn�x 0� �
qx l

qx 0 m
qxs

qx 0 n
gls�x� :

Hence, for transformation (A.3), we find

dLgmn�x� � ÿdx sqsgmn ÿ gmsqndxs ÿ gnsqmdx s : �A:25�

Accounting for the equality

Hsgmn � qsgmn ÿ glmGl
sn ÿ glnGl

sm � 0 ; �A:26�

we can write the Lie derivative in the covariant form,

dLgmn � ÿgmsHndx s ÿ gnsHmdx s : �A:27�
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Substituting this expression in integral (A.24), we obtain�
O
d4x

d
���
g
p

H

dgmn
gmsHndxs � 0 : �A:28�

Equation (A.28) can be written as�
O

�
Hn

�
d
���
g
p

H

dgmn
gmsdx s

�
ÿ dx sHn

�
d
���
g
p

H

dgmn
gms

��
d4x � 0 :

�A:29�

We note that

Hn

�
d
���
g
p

H

dgmn
gmsdx s

�
� qn

�
d
���
g
p

H

dgmn
gmsdxs

�
: �A:30�

Due to (A.30), the integral of the first term in the left-hand
side of (A.29) vanishes and Eqn (A.29) becomes�

O
dx s HnG

n
s d

4x � 0 : �A:31�

Here, in accordance with definition (A.17), we introduce the
mixed tensor���

g
p

G n
s �

d
���
g
p

H

dgmn
gms :

Because the vector dx s is arbitrary, we find the desired
Hilbert identity

HnG
n
s � 0 �A:32�

or, in more detail,

HnG
n
s � qnG n

s ÿ Gl
snG

n
l � Gn

nlG
l
s � 0 : �A:33�

Taking the expressions

Gl
sn �

1

2
g lr�qsgnr � qngsr ÿ qrgsn� ; ql

���
g
p � ���

g
p

Gn
nl ;

�A:34�

into account, we find

Hr� ���gp G r
r � � qr� ���gp G r

r � �
1

2

���
g
p

Glsqr g ls � 0 : �A:35�

This identity was first obtained by Hilbert in 1915.
Applying this identity to the invariant H � R, where R is

the scalar curvature, Hilbert obtained the Bianchi identity

Hn�R mn ÿ 1

2
g mnR� � 0 : �A:36�

A detailed account of this is given in the main text of this
article.

We now apply Theorem II to the invariant L, which
depends on An, qlAn, gmn, and qlgmn. From (A.22), we have
that

Pg� ���gp L� � d
���
g
p

L

dgmn
dL gmn � qlS l

1 ; �A:37�

where

S l
1 �

q
���
g
p

L

q�qlgmn� dLgmn : �A:38�

Likewise,

Pq� ���gp L� � d
���
g
p

L

dAl
dLAl � qlS l

2 ; �A:39�

where

S l
2 �

q
���
g
p

L

q�qlAs� dLAs : �A:40�

It follows from (A.15), (A.37), and (A.39) that�
O

�
d
���
g
p

L

dgmn
dLgmn � d

���
g
p

L

dAl
dLAl

�
d4x � 0 : �A:41�

We now find the Lie variation of the field variable Al.
According to the transformation law for the vector Al, we
have

A 0l�x 0� �
qx n

qx 0 l
An�x� : �A:42�

Hence, for transformation (A.3), we find

A 0l�x� dx� � Al�x� ÿ An�x�qldx n : �A:43�

Expanding the left-hand side in the Taylor series, we obtain

dLAl � A 0l�x� ÿ Al�x� � ÿdx n qnAl ÿ An�x� qldx n ; �A:44�

or, in the covariant form,

dLAl � ÿdxsHsAl ÿ AsHldxs : �A:45�

Substituting (A.27) and (A.45) in (A.41), we find�
O
d4x

�
2Hn

�
d
���
g
p

L

dgmn
gms

�
ÿ d

���
g
p

L

dAl
HsAl

� Hl

�
d
���
g
p

L

dAl
As

��
dx s � 0 : �A:46�

Because the transformation vector dxs is arbitrary, we obtain
the identity

2Hn

�
d
���
g
p

L

dgmn
gms

�
� �HsAl ÿ HlAs� d

���
g
p

L

dAl

ÿ AsHl

�
d
���
g
p

L

dAl

�
: �A:47�

According toHilbert, the energy-momentum tensor density is
defined by the expression

T mn � ÿ2 d
���
g
p

L

dgmn
: �A:48�

Identity (A.47) assumes the form

HnT
n
s � AsHl

�
d
���
g
p

L

dAl

�
� �HlAs ÿ HsAl�

d
���
g
p

L

dAl
; �A:49�

or

HnT
n
s � Asql

�
d
���
g
p

L

dAl

�
� �qlAs ÿ qsAl�

d
���
g
p

L

dAl
: �A:50�
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When the gravitational equations hold, Theorem III leads to
the equality

HnT
n
s � 0 ; �A:51�

and, hence, identity (A.50) transforms into the equation
assigned number (28) by Hilbert in Ref. [6]:

Asql

�
d
���
g
p

L

dAl

�
� �qlAs ÿ qsAl�

d
���
g
p

L

dAl
� 0 : �A:52�

But this equation always holds due to Hilbert's Axiom I,
because

d
���
g
p

L

dAl
� 0 : �A:53�
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