
Abstract. Optimal control theory-based methods for improving
the efficiency of Cherenkovmicrowave amplifiers with irregular
electrodynamic structures are reviewed. The physics of optimal
processes in amplifiers and oscillators with Cherenkov- and
combined-type interactions is discussed.

1. Introduction

The Vavilov ± Cherenkov effect is known to mean the
emission of light in the motion of charged particles through
a substance when their velocity exceeds the phase velocity of
light waves in this medium [1 ± 7]. The same effect is also
observed in the motion of charged particles (for instance,
electrons) in an artificial quasiperiodic medium formed by
quasiperiodic electrodynamic structures. A waveguide with a
quasiperiodic boundary can be used as such a structure. The
radiation effect arises when the electron velocity exceeds the
phase velocity of the spatial harmonic of the field excited in
the electrodynamic field structure. This effect underlies the
mechanisms of generation and amplification of electromag-
netic waves by the electron current in traveling-wave tubes

(TWTs) and backward-wave tubes (BWTs) Ð ``Cherenkov''
amplifiers and oscillators. It would be well to refer to them as
Vavilov ±Cherenkov devices, but a simpler term has received
acceptance in the international scientific literature Ð
Cherenkov devices. The amplification and generation of
electromagnetic waves in such devices relies on the coherent
radiation by electrons grouped in phase bunches under the
action of the field excited in the electrodynamic system. It is
significant that the phase velocity of the synchronous wave
decreases due to the reactive component of the interaction,
and therefore, unlike in the classical case, Cherenkov
radiation also emerges when the electron velocity is lower
than the `cold' phase wave velocity in the system (the phase
velocity in the absence of the electron current). Naturally,
this effect is taken into account in the self-consistent TWT
theory.

The difference between the cold phase velocity and the
average electron velocity in the electron flow is the controlling
factor of the interaction process in the TWT: its variation
along the interaction region makes it possible to significantly
vary the conditions of electron phase bunching and the
conditions of energy exchange between the electron bunches
and the field excited in the electrodynamic system. The
variation of the local phase velocity value is determined by
the corresponding profile variation of the electrodynamic
structure. Therefore, for the realization of interaction control,
this structure has to be irregular. The TWT electrodynamic
structure profile can be optimized for maximum efficiency
using themethods of nonlinear optimal control. The results in
this paper were obtained on the basis of a high-efficiency
variational-iterativemethod, the essence of which is described
in the Appendix.

Electron motion in the TWT is assumed to be rectilinear
(one-dimensional) Ð this motion is realized when the long-
itudinal focusing magnetic field is sufficiently strong. For a
finite field strength, the circularly polarized components of

Yu V Gulyaev, V F Kravchenko Institute of Radio Engineering and

Electronics, Russian Academy of Sciences

ul. Mokhovaya 11, korp. 7, 125009 Moscow, Russian Federation

Tel. (7-095) 200-5258, (7-095) 203-4793

E-mail: gulyaev@cplire.ru; kravchenko_vf@fromru.com;

kvf@pochta.ru

A A Kuraev Belorussian State University of Informatics and Electronics

ul. Brovki 6, 220027 Minsk, Belarus

Tel. (375-17) 239-8498

E-mail: kurayev@gw.bsuir.unibel.by

Received 29 September 2003, revised 29 January 2004

Uspekhi Fizicheskikh Nauk 174 (6) 639 ± 655 (2004)

Translated by E N Ragozin; edited by A M Semikhatov

INSTRUMENTS ANDMETHODS OF INVESTIGATION PACS numbers: 02.30.Yy; 41.60.Bq; 84.40.Fe

Vavilov ±Cherenkov amplifiers with irregular

electrodynamic structures

Yu V Gulyaev, V F Kravchenko, A A Kuraev

DOI: 10.1070/PU2004v047n06ABEH001748

Contents

1. Introduction 583
2. Design and principle of operation of tubes with an O-type traveling wave 584
3. Physical prerequisites for the feasibility of improving the efficiency of a TWT-O with

an irregular slow-wave structure 584
4. Efficiency optimization of a TWT-O with a spiral slow-wave structure 585
5. Minimization of nonlinear distortions in the frequency band of a TWT-O with an optimized

irregular spiral structure 588
6. Traveling-wave gyroton employing a corrugated waveguide 591
7. Conclusions 596
8. Appendix. Variational-iterative method for the solution of nonlinear optimal control problems 596

References 598

Physics ±Uspekhi 47 (6) 583 ± 599 (2004) #2004 Uspekhi Fizicheskikh Nauk, Russian Academy of Sciences



the electromagnetic field may be in resonance with the
cyclotron oscillation in the electron beam under the condi-
tions of the normal Doppler effect. In this case, the initially
rectilinear electron current takes an azimuth sweep, and
under certain conditions all beam electrons describe con-
gruent phase trajectories. A gyroton interactionmechanism is
realized, whose efficiency in thin (in comparison with the
wavelength) beams approaches 100% [8 ± 12]. But the
efficiency declines steeply with increasing the beam thick-
ness. In `thick' beams, as is shown in Section 6, the combined
Cherenkov ± gyroton interaction is possible, whereby the
efficiency is retained at a rather high level.

2. Design and principle of operation
of the tubes with an O-type traveling wave

Since their invention by Kompfner in 1943, tubes with an
O-type traveling wave have been used quite extensively as
low-, medium-, and high-power broadband amplifiers in
radar, radio navigation, and communication systems. The
amplification band of a medium-power TWT-O with a spiral
slow-wave structure (SWS) amounts to one to two octaves for
an output power on the order of 100 W. Modern TWT-Os
cover the frequency range from 50 MHz to 500 GHz for
output power levels from several milliwatts to several mega-
watts. The TWT-O design is diagrammed schematically in
Fig. 1.

The TWT-O amplification mechanism is based on the
interaction between the drift electron flow and the field of
the slow electromagnetic wave. This interaction turns out to
be efficient when synchronism conditions are fulfilled, i.e.,
the wave phase velocity vph and the initial velocity ve of the
axial electron drift are approximately equal. In this case, the
phase of the field forces acting on the electron and the phase
of the electron bunches produced by their action change
only slightly throughout the electron SWS-transit time. As a
result, electron bunching and the power of the secondary
field excited by the electron bunches in the SWS are
continuously accumulated (until the emergence of non-
linear effects), i.e., cumulative interaction effects occur for
ve � vph.

Figure 2 schematically illustrates the interaction in the
TWT for a perfect synchronism, i.e., for ve � vph. Figure 2a
shows the distributions of Ez and Iz, as well as the location of
individual electrons at the beginning of the interaction region
(t � t0). Because preliminary bunching of the electrons in the
flow is absent, they are uniformly distributed along the z axis

and the current Iz � const. Accordingly, the electrons are
uniformly distributed relative to the input wave phaseE1. The
forces they experience are determined by the field phase in
which the electrons find themselves (the force directions are
indicated with arrows). The wave field exerts no action on
electrons 1, 6, or 11 located at nodes of Ez, while electrons 2 ±
5 are accelerated and electrons 7 ± 10 decelerated by the wave
field, the strengths of the accelerating and decelerating forces
depending on the electron positions.

The electrons begin to shift under the action of these
forces, and at some time instant t > t0, their distribution
assumes the shape depicted in Fig. 2b: the electrons are
grouped about electron 6. Therefore, the charge distribution
along the beam length becomes nonuniform and there
appears a variable current component Iz, which excites the
field E2 in the SWS, phase-shifted by p=2 relative to the
`primary' field of the input signal E1. The current now
experiences the total field ES, which comoves with the beam,
has a higher amplitude than E1, and is somewhat shifted in
phase. In the small signal mode (small electron displace-
ments), the bunching builds up in proportion to the field
amplitude and the change of field amplitude is in turn
proportional to the bunched current, and the wave field
amplitude can therefore be expected to vary by a close-to-
exponential law along the z axis.

3. Physical prerequisites for the feasibility
of improving the efficiency of a TWT-O
with an irregular slow-wave structure

What limits the wave power buildup in the TWT and (which is
particularly important for high-power tubes) the efficiency
value? With increasing the interaction length or the input
signal, nonlinear effects begin to manifest themselves, which
limits the wave power. The main nonlinear effects responsible
for power saturation in the TWTare as follows: (i) regrouping
of the electrons that make up the bunch and the associated
decrease of the first harmonic of current in the beam;
(ii) deceleration of electron bunches and their escape from
synchronism as the energy is being lost (a bunch transition
from the decelerating field phase to the accelerating one
occurs). Both effects, especially the second one, result in a
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Figure 1. TWT-O design. Electron gun 1 forms a rectilinear electron flow,

which passes through the tube axis. Input waveguide 2 is connected to

spiral slow-wave structure 4 via pin 3. The electron beam is focused with

magnetic system 5. Output waveguide 6 is coupled to the spiral SWS with

the aid of pin 7. The waste electron flow is accumulated at collector 8.
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Figure 2. Interaction process in the TWT-O for perfect synchronism at the

initial time instant t0 (a) and for t > t0 (b).
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significant limitation of the efficiency of broadbandTWT-Os,
which normally does not exceed 20 ± 30%.

At the earliest TWT-O investigation stages, Pierce [13],
Slater [14], and others proposed a method for improving the
efficiency of energy exchange in the TWT-O by compensat-
ing for the effect through a stronger wave moderation
towards the tube exit. This method attracted the attention
of researchers, and nonlinear calculations of the TWT-O
efficiency were subsequently performed with a wave phase
velocity varying by the law vph�z� � ve�z� towards the end
of the interaction region (see, e.g., Ref. [15]). Such TWT-Os
were termed isochronous. However, in-depth investigations
of isochronous TWT-Os revealed that applying different
isochronism laws to the TWT that operates in the highest-
efficiency mode can hardly result in a further rise in
efficiency [16].

Another idea for improving the TWT-O efficiency
consists in the formation of isophasal conditions at the
end of the interaction region: the phase difference between
the first harmonic of the beam current and the wave field
intensity Dj should be maintained approximately equal to p
or selected in some other reasonable way [16]. The
calculations in Refs [17, 18] showed that the law of phase
velocity variation in the isophasal TWT turns out to be very
complicated. In this case, the efficiency of isophasal TWT
compared to the efficiency of the uniform tube for
sufficiently large values of the gain parameter e is insignif-
icantly higher (by about 15%).

Therefore, neither method brings about a significant
improvement in the TWT-O efficiency, let alone brings it
close to 100%. The issue here is that the proposed ways of
compensating for the bunch escape from the decelerating
phase somewhat impair the conditions for bunching and the
focusing of the bunch, which eventually results in its relatively
fast `spreading'.

It is evident that the TWT-O efficiency optimization
problem must be solved in a comprehensive manner, i.e., the
conditions for energy extraction and for bunching should be
improved simultaneously. Indeed, a variation of the phase
velocity brings about the variation of the synchronism
condition, which may be used to improve the electron
bunching conditions (with the main effect consisting in
sectioning of the interaction region), as well as the energy
extraction conditions (with the additional effect consisting in
the formation of isochronism conditions, isophasal condi-
tions, etc.). On the other hand, the transformation and
reflection of the co- and counter-propagating waves at
irregularities may form a high-frequency (HF) field distribu-
tion optimal for the interaction in some frequency band.

Therefore, using the optimal irregular SWS with a large-
scale variation of the phase velocity over the entire
interaction region (and not only at its end as in isophasal
TWTs) it is possible to significantly improve the TWT-O
efficiency, which is confirmed by the results given in
Sections 4 and 5.

Making full use of the above potentialities for optimizing
the TWT-O requires constructing the mathematical model of
the interaction between the electron beam and the slow-wave
structure. This model should comprise, above all, the
equations for irregular SWS excitation, whose derivation in
the impedance approximation neglecting losses is given in
Refs [17 ± 20]. The system of equations that takes the
distributed losses in an irregular SWS into account is given
in Ref. [21].

4. Efficiency optimization of a TWT-O with a
spiral slow-wave structure

In Refs [19 ± 21], the law of cold phase velocity variation
optimized for efficiency was found and investigated for the
first time employing direct optimization for a limited-length
TWT-O with different gain parameters e. The optimal law
implies an appreciable increase in the phase velocity over a
rather lengthy portion of the interaction region adjacent to
the input one. As noted in Refs [17 ± 19], in the region where
vph increases, the energy exchange is insignificant, but the
reactive interaction is strong, which strongly changes the hot
phase velocity vphh. At the same time, the bunching in this
region, which precedes the isochronous region of energy
extraction, is significantly improved in comparison with the
bunching in a regular TWT.Unfortunately, this effect did not
receive a comprehensive physical explanation in the above
papers.

References [22, 23] were concerned with an autophasal
TWT-O operating mode, whereby the electrons captured by
the traveling wave execute oscillations about the electric
intensity node of the wave and slowly give up energy, making
it possible to significantly improve the efficiency for a
sufficient lengthening of the interaction region.

In the investigation of nonlinear interaction processes in
the TWT-O employing the (big)-particle-in-cell method, the
authors of Ref. [24] used a somewhat rearranged and
simplified system of self-consistent one-dimensional equa-
tions from Ref. [17],
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with the boundary conditions

ui�0� � 2pi
N
ÿ p

2
; A�0� � A0 ; #�0� � 0 ; bi�0� � b0 :

Here, we adopted the notation introduced in Ref. [18]:
ui � o�tÿ t0i� ÿ hez, i � 1;N is the electron phase trajectory
number, o is the working frequency, t is the time at which the
electron transits the section z, t0i is the moment the ith
electron enters the interaction region, he � k=b0, k � o=c,
b0 � v0=c, c is the speed of light, and v0 is the initial electron
velocity; T � z=L, L is the total length of the interaction
region; y0 � eheL, e is the gain parameter defined at the input
section, e � �R̂�0�I0e=2m0o2�1=3 is the specific coupling
impedance, I0 is the total electron beam current, e and m0

are the electron charge and rest mass, respectively;
r � R̂�T �=R̂�0�; bi � vi�T �=c, vi�T � is the velocity of the ith
electron;

_A � A exp�i#� � e _E exp�iheTL�
m0

�����������������
re2ocb0

p ;

A and # are the dimensionless amplitude and phase of the
`hot' wave, respectively, _E is the longitudinal component of
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the electric field of the copropagating wave averaged over the
beam section;

Fi � s

N

�
exp�aiui�

Xuj<uj�p
j; uj>ui

exp�ÿajuj�

ÿ exp�ÿajuj�
Xuj<ui

j; uj 5 uiÿp
exp�aj uj�

�
;

s � 2ep exp�2x0�=�b=a�2pw30, p � hea, x0 � w0a, w0 is the
transverse wave number at the input section, a is the radius
of the spiral SWS, b is the radius of the electron flow,
aj � 2a=pb�1ÿ b2j �1=2, ai � 2a=pb�1ÿ b2i �1=2; F is the phase
incursion defined by the cold mismatch of the phase velocity
vph�T � and the initial electron velocity v0 [in the problem
involved, F�T � is the interaction process control function];
and

ST�T � � x2�T �
r2b0

0:1205

W0

��
f

p
�GHz� ;

W0 � 337 is the wave impedance of the vacuum, ke is a
coefficient depending on the kind of the spiral material:
ke � 1 for a perfectly smooth surface of a copper spiral lead
and ke > 1 in reality (in the calculations, it was assumed that
ke � 2).

Using the variables introduced, the electron efficiency Ze
and the wave efficiency Zw can be written as

Ze�T � �
1

N

XN
i�1

1ÿ R0=Ri�T �
1ÿ R0

;

Zw�T � �
e jA2�T � ÿ A2

0 j b20R0
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where R0 �
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q
and Ri�T � �
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1ÿ b2i �T �

q
.

In the presence of distributed losses in the SWS (ST 6� 0),
the wave efficiency Zw turns out to be lower than the electron
one Ze.

The degree of electron bunching is conveniently estimated
by the value of the function

Gr�T �� 1

N

�� XN
i�1

cos ui�T �
�2

�
�XN

i�1
sin ui�T �

�2 �1=2
:

The zeroGr value corresponds to the absence of bunching and
Gr � 1 to complete bunching.

The results of calculations performed in Ref. [24] were
obtained for the following parameter values: the wavelength
l � 10 cm, b0 � 0:1 (the accelerating voltage is
U0 � 2:57 kV), ke � 2 (losses of the order of 0.24 cmÿ1 in a
regular spiral), the spiral radius a � 0:31 cm, the beam radius
b � 0:15 cm, and N � 2.

The main results of the optimization calculations con-
ducted are as follows.

1. If damping is neglected (ST�T � � 0), increasing y0 and
decreasing e (i.e., lengthening the interaction region L) results
in a monotonic increase in the TWT-O efficiency, which
exceeds 90% for e < 0:08. In this case, the interaction
mechanism takes on a typical autophasal character [23]. The
cold phase velocity vph increases in the initial portion of the
path, providing retention of the center of the electron phase
bunch about the field node of the hot wave, i.e., the hot phase
velocity vphh is equal to the initial electron velocity v0. After

the efficient electron bunching, a lengthy energy extraction of
the autophasal type begins: the electrons captured by the
wave execute limited phase oscillations about the phase of the
synchronous electron and are, on the average, slowly
decelerated with it. However, the inclusion of damping
shows that the wave efficiency decreases drastically and
approaches unity in these limiting modes: the autophasal
mode is inefficient in the presence of losses.

2. The results of efficiency calculations of the TWT-O
optimized with respect to bph�T � for y0 � 10 and different e
are given in Fig. 3 in the form of the dependences Ze�e�, Zw�e�,
Aopt

0 �e�, Lopt�e�, and Tm�e�, where Tm is the distance at which
the first maximum of the bunching function Gr�T � is reached
(see Ref. [24]).

As the data suggest, for the given parameters y0, ke, and l,
there exist the optimum values eopt � 0:16 and
Lopt � 1:05 dm at which Zw reaches its maximum. Decreas-
ing the values of e results in a sharp rise in the total length of
the interaction regionL and a shortening of the distanceTm at
which the first peak of the bunching function is reached. As a
result, the effect of losses in the SWS is substantially
enhanced. In particular, the wave efficiency Zw for e � 0:06,
L � 2:6 dm, and Tm � 0:69 turns out to be two times lower
than the electron one Ze, i.e., half the power given up by the
electron current is lost in the SWS. When the gain parameter
is e > eopt, the limitation of the length L comes into effect: the
distance Tm at which the bunching reaches its maximum
approaches unity. In particular, the difference between Zw
and Ze for e � 0:2 andTm � 0:95 becomes insignificant, but Ze
does not attain a high level. For high e values, the
synchronous-electron method is no longer suited for the
description of the TWT-O modes that are almost optimum
in efficiency. In this case, advantage should be taken of direct
optimization methods, which yield better results [17 ± 21].

Figure 4 gives the TWT-O characteristics Ze�T �, A�T �,
Gr�T �, bph�T �, and bphh�T � � vphh�T �=c (where vphh is the
phase velocity of the wave under amplification Ð the hot
phase velocity) for the optimum value e � 0:16 and y0 � 10,
A0 � 0:072, and L � 0:99 dm. These dependences are evi-
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dence that the interaction mode is not autophasal in this case:
Ze�T � and A�T � increase monotonically, Gr�T � exhibits one
peak, and the energy extraction region is relatively short. It is
significant that no active energy exchange is observed (Ze is
close to zero) throughout the major portion of the interaction
region 04T4 0:6, where the bunching function attains a
significant magnitude (i.e., the phase bunch is rather well
grouped). In this segment, a strong reactive interaction
occurs, and retaining the electron bunch in synchronism
with the excited wave requires a significant (by nearly a
factor of two) increase in the cold wave velocity in the SWS.
At the same time, as follows from the plot of bphh�T �, the hot
phase velocity of the excited wave remains invariable and
equal to b0 Ð the synchronous velocity Ð throughout the
segment 04T4 0:6. Analysis of the electron phase trajec-
tories reveals that no electron phase oscillations typical of the
autophasal mode are observed in the energy extraction
region. The same analysis suggests, on the contrary, that the
mode found by the synchronous electron method for e � 0:06
is typically autophasal: in the energy extraction region, the
electrons captured by the wave field execute 2 ± 3 complete
phase oscillations.

Figure 5 shows the effect of the parameter y0 on the
optimum characteristics Ze, Zw, eopt, and Aopt

0 . We note that
the interaction length is nearly constant in the variation range
y0 � 7ÿ15: L � 10ÿ11 cm. This stabilization of the length L
is caused by the specified attenuation constant. The lowering
of Ze and Zw for y0 < 10 occurs because the synchronous
electron method does not provide a satisfactory solution of
the TWT-Omode optimization problem for small y0, as noted
above.

Figure 6 shows typical dependences of the relative cold
phase velocity bph�T �=b0 for different versions optimized for
efficiency. The dependences bphh�T �=b0 not presented here
are conventional in character and are similar to those plotted
in Fig. 4: the ratio bphh�T �=b0 � 1 throughout the bunching
region and then decreases monotonically in the energy
extraction region. As is evident from the above dependences,
to maintain this bphh�T �=b0 variation law, the cold phase
velocity bph�T � should rather significantly increase in the
bunching region, the magnitude of this increase depending
substantially on the gain parameter. The maximum increase
of bph=b0 for 0.06 is equal to 1.22 and amounts to 2.5 for
e � 0:21. This is related to a drastic strengthening of the effect
the electron beam exerts on the characteristics of the excited
wave, including the phase velocity, with an increase of the
gain parameter e. The dependences bph�T �=b0 for e < 0:19
are of the same type, the changes occuring only for
e � 0:19ÿ0:21 when the interaction intensity increases
sharply.

Figure 7 shows the dynamic characteristic of the opti-
mized TWT-O for e � 0:0866 and y0 � 10. As is evident from
Fig. 7, this version of the TWT-O operates as a signal limiter
over a rather broad variation range of the input signal
amplitude A0 � 0:04ÿ0:08.

The investigation of efficiency-optimized TWT-O modes
[24] on the basis of the synchronous electron technique
allows making the following conclusions regarding the
physical laws of efficiency-optimized interaction processes
in the TWT-O.
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� The optimum bunching process is realized when two
conditions are fulfilled: the hot phase velocity of the wave is
equal to the synchronous one v0 (is close to it in the general
case [17 ± 21]) and the bunch center is located at the beginning
of the decelerating phase near the node of the Ez wave field.
When these two conditions are fulfilled, the electron phase
bunch moves for a long time in conditions ideally suited for
phase focusing (near the node of the focusing forces).
Ensuring the fulfillment of these conditions requires increas-
ing the cold wave phase velocity in the bunching region of the
SWS. This increase, which is stronger for large gain para-
meters e, compensates for the phase shift of the wave field
caused by the field component excited by the electron bunches
in the SWS (we recall that the bunches move near the node of
the total field).
� The energy extraction occurs under conditions close to the
isophasal ones; the hot phase velocity of the total wave field
monotonically decreases in the extraction region. In this case,
two qualitatively different modes may be formed: the
relatively fast proceeding mode of monotonic energy extrac-
tion, wherein the electrons do not execute phase oscillations
(this mode is typical of the TWT-O versions with relatively
large e values, see, e.g., Refs [17 ± 21]), and the autophasal
mode involving the capture of the phase bunch electrons that
oscillate in the potential well of the hot wave and are slowly
decelerated, on the average, as this wave moderates [22, 23].
� When distributed losses in the SWS are taken into
account, the autophasal mode becomes, as shown by
calculations, inefficient owing to the unduly high losses in
the extended (in this mode) energy extraction region. To put it
another way, the damping in the SWS removes the two-mode
`degeneracy' in the extraction region: only the first mode
turns out to be efficient, whereby a fast andmonotonic energy
extraction from the bunch occurs.

5. Minimization of nonlinear distortions
in the frequency band of a TWT-O
with an optimized irregular spiral structure

The spectrum of the output signal of a TWT-O contains
harmonics of the input signal owing to the nonlinearity of
electron bunching. The study of nonlinear signal distortions
in the TWT is the objective of Ref. [25] and of several papers

whose results are described in monographs [25, 26]. These
works were concerned with the investigation of the effect of
the ratio between the coupling impedances at the funda-
mental and higher harmonics, the dispersion, and the
missynchronism parameter on the value and character of
excitation of higher harmonic components (HHCs) in the
regular TWT.

The nonlinear distortions in regular TWTs increase with
the improvement in electron bunching and the corresponding
rise in efficiency. If an irregular spiral with the optimum pitch
variation law is used, the electron efficiency of the TWT may
exceed 70% [17, 18]. It would appear reasonable that the
nonlinear distortions in such TWTs would also increase. But
investigations show [28 ± 30] that the HHC fraction in the
output signal spectrum of the optimized irregular TWTs is
significantly (2 ± 3 times) lower than for similar regular
TWTs. These investigations, however, were carried out with
the same frequency of the input signal o0 for which the
irregular spiral pitch was optimized.

When the input signal frequency is detuned from the o0

frequency, the positions of HHC amplitude peaks may shift
along the interaction region, which may result in a variation
of the harmonic composition of the output signal. A code
package was elaborated for the investigation of these effects
on the basis of a more elaborate mathematical model of an
irregular spiral TWT. These codes allow optimizing the spiral
pitch variation law for maximum efficiency and a minimum
nonlinear distortion coefficient in the frequency band.

Mathematical modeling was employed to investigate the
effect of higher-harmonic excitation on the amplification
efficiency of the optimized irregular TWTs in a frequency
band. The resultant characteristic frequency dependences of
the nonlinear distortion coefficient Kn for the regular and
irregular TWT point to the expedience of employing irregular
SWSs for the reduction of nonlinear distortions in the
frequency band.

To investigate the nonlinear TWT distortions for a single-
frequency (o) input signal in the stationary mode, we
represent the excited field at each section z as the sum of
harmonic components mo. In accordance with the general
excitation theory of irregular waveguides described in
Refs [17, 18, 28], the longitudinal electric component of the
wave field (we consider only the copropagating waves with
normal dispersion) averaged over the lateral section of the
electron beam is represented as

Esz �
XM
m�1

Em�z�
�������������
rsm�z�

p
� cos

�
motÿ

�z
0

mo
vphm�z� dz� #m�z�

�
; �1�

where Em is the amplitude; #m is the (`hot') phase incursion
defined by the field of the electron bunch under formation;
vphm�z� is the (`cold') phase velocity of the natural wave at the
mo frequency of a regular comparison waveguide corre-
sponding to the section z of the irregular waveguide;
rsm � Rsm=R

0
sm, Rsm � Rs�z;mo� is the specific (per unit

sectional area) coupling impedance of the natural wave of
the regular comparison waveguide at the section z at the mo
frequency, R0

sm � Rs�0;mo�; and z � 0 corresponds to the
beginning of the interaction region.

In this case, the self-consistent equations that describe the
motion of big particles imitating the electron flow in the field
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Figure 7.Dynamic characteristics of the optimum TWT: 1Ð Ze�A0�, 2Ð
Zw�A0�
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of the excited wave, ignoring damping, are of the form

dVi

dT
� ÿ ey0

Vi g3i

�XM
m�1

� ����������������������
rsm�T;W �

p
� �Am re coscmi ÿ Am im sincmi�

�ÿ Sq�W�Fqi

�
;

dui
dT
�W

y0
e

�
1

Vi
ÿ 1

�
;

cmi � m

�
ui ÿW

y0
e

�T
0

�
1

Vphm�T;W � ÿ 1

�
dT

�
;

dAm re

dT
� 2y0

R0
sm�W�
Rs0

� ����������������������
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p 1

N

XN
i�1

coscmi

�
; �2�

dAm im

dT
� ÿ2y0 R0

sm�W �
Rs0

� ����������������������
rsm�T;W �

p 1

N

XN
i�1

sincmi

�
;

i � 1; . . . ;N ; m � 1; . . . ;M ; Vi�0� � 1 ;

ui�0� � ÿ p
2
� 2p

iÿ 0:5

N
; A1 re�0� � A0 ;

Al im�0� � 0 ; Am re�0� � 0 ; Am im�0� � 0 ; m5 2 :

The following notation is adopted here: W � o=o0 is the
relative signal frequency, o0 is the frequency at which the
parameter optimization is performed; Vi � vi=v0, vi is the
velocity of big particles, v0 is the average electron velocity at
the SWS input; gi �1=�1ÿ b2i �1=2, bi � vi=c; ui �otÿ oz=v0
is the particle phase; Vphm � vphm�z;mo�=v0; y0 � eLo0=v0
is the length parameter; Am re � Re�Am exp�i#m��; Am im �
Im�Am exp�i#m��; Am � eEm�z�=�m0o0v0e2� is the dimen-
sionless amplitude; e � �eI0Rs0=�2m0o2

0��1=3 is the gain
parameter; Rs0 � Rs�0;o0� is the coupling impedance at
the reference frequency at the beginning of the SWS; Sq is
the space charge parameter, Sq � 2eWo2

0=�pe0cRs0c
2b30� �

239:67eWo2
0=�b30Rs0c

2�, e0 is the dielectric constant; Fqi is
the dimensionless force component of the space charge field
exerted on the ith particle by the neighboring particles,

Fqi � 1

N

X
k; juiÿukj4 p

Eq

�
ui ÿ uk

p

�
sign�ui ÿ uk� ;

where Eq�x� is the dimensionless force component of the
charge field exerted on the ith particle by all particles of the
electron flow that are separated from it by distances
xlo=2� llo, 04 x4 1, l � 0; 1; 2; . . .; and lo � 2pv0=o is
the electron wavelength. The function Eq�x� at the frequency
o is calculated by the grid method for a given SWS geometry.
The remaining designations correspond to those adopted in
Section 4.

The interaction efficiency is determined by the wave
efficiency

Zm � 0:25 e
�
A2

m�T � ÿ A2
m�0�

� Rs0

R0
sm�W �

g0 � 1

g20
;

ZS �
X
m

Zm ; �3�

where g0 � 1=
�������������
1ÿ b20

q
.

We estimate the intensity of HHC excitation in terms of
the HHC coefficient (HHCC) Kn �

PM
m�2 Zm=Zl, which is

characterized by the ratio between the parasitic power and the
power of the fundamental signal at the TWT output.

The relative amplitudes of current harmonics at the
frequencies mo in the bunched electron beam are conveni-
ently characterized by the bunching function

Grm�T �

� 1

N

��XN
i�1

cosmui�T �
�2

�
�XN

i�1
sinmui�T �

�2�1=2
: �4�

Performing calculations with expression (1) requires
specifying the dependence of the `cold' phase velocity
vphm�z� at the frequency mo and the dependences of the
coupling impedance Rs�z;mo� corresponding to a specific
SWS for each harmonic.

The coefficients of the system of equations (2) involve an
explicit dependence on the relative frequency W. These
dependences should also be fixed for a specific SWS when
calculating the band characteristics.

To elucidate the main features of HHC excitation, we use
themodel of a spirally conducting cylinder. In this case, all the
requisite frequency characteristics are determined from the
well-known dispersion relations [31]

x2
I0�x�K0�x�
I1�x�K1�x� �

�
o
c
R0 ctg w

�2

;
o2

v2ph
� o2

c2
� x2 ; �5�

where w is the winding angle,R0 is the spiral radius, x � krR0,
kr is the transverse wave number, and I0�x�, I1�x�,K0�x�, and
K1�x� are the modified cylinder functions.

We simplify dispersion equation (5) using the well-known
relations for the Bessel functions [32] valid for x > 1,

I0�x� � exp�x���������
2px
p

�
1� 1

8x

�
; I1�x� � exp�x���������

2px
p

�
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�
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p
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�
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8x

�
;
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������
p
2x

r
exp�ÿx�

�
1� 3

8x

�
;

to obtain the following dispersion equation, which is
amenable to calculations:

x2
64x2 ÿ 1

64x2 ÿ 9
�
�
o
c
R0 ctg w

�2

: �6�

The coupling impedance at the frequencyo is expressed in
terms of the phase velocity by the formula [33]

Rs�vph;o� � 183
o2

c2
bpho k4r

� exp

�
ÿ 2

o
c
krR0

�
2

r20

� r0

0

I 20

�
o
c
krr

�
r dr ; �7�

where bpho � vph�z;o�=c, kr � �bÿ2pho ÿ 1�ÿ1=2, and r0 is the
radius of the electron beam.

We calculate the integral in (7) using the approximate
Simpson formula

2

r20

� r0

0

I 20 �ar� r dr �
1

3

�
I 20 �ar0� � 2I 20

�
ar0
2

��
; �8�

where a � okr=c.
The dependences vphm�z� and rsm�z� required in model (2)

are unambiguously determined by relations (6) and (7) for a
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given variation law of the spiral winding angle w�z�. In
performing calculations, it is expedient to prescribe, in lieu
of the law w�z�, the variation law of the relative phase velocity
at the reference frequency Vph�z� � vph�z;o0�=v0. The w�z�
function, as well as the dependences vphm�z;mo� and
Rs�z;mo� required for the solution of the system of
equations (2), is expressed in terms of Vph�z� with the aid of
Eqns (6) and (7). As a result, we obtain a closed system of
differential equations describing the amplification in the
TWT with the inclusion of HHC excitation.

The optimal control problem consists in the derivation of
the law Vph�T � that ensures the highest efficiency max Zl�1�
of the fundamental signal for a minimal value of Kn. The
optimum law Vph�T � is found by the method described in
Section 4. For the resultant optimum law Vph�T �, we
calculate the dependences of the output characteristics Zm
and Kn on W. It is pertinent to note that the method of
calculations described above can also be easily extended to
more complex SWS models for which the dependences
Vphm�Vph�T �� and Rsm�Vph�T �� are known. For instance, in
Ref. [33], these dependences were obtained for a spiral held in
a metal screen using dielectric rods.

All calculations were performed, as in Ref. [30], for the
electron beam voltageU0 � 5086 V (b0 � 0:14) and the signal
frequency f0 � 3 GHz, which corresponds to the wavelength
l0 � 10 cm. In this case, for given values ofR0, the model of a
spirally conducting cylinder applies. In optimum modes, as
shown by the calculations in Ref. [10], the value of the
nonlinear distortion coefficient Kn for the same interaction
length L is primarily determined by the ratio of the coupling
impedances at the TWT output (Rsm1 � R0

sm=Rs0). The
lowering of the fundamental harmonic efficiency with an
increase inKn is also observed, although the overall efficiency
ZS lowers insignificantly. The values of Rsm1 for a spiral SWS
are determined by the parameters R0, r0, and vph�0�.
Comparison of the optimum versions of the regular and
irregular TWTs for approximately the same values of Rsm1

and L showed that the coefficient Kn in the irregular TWT is
two times smaller than in the regular one.

To compare the band characteristics of regular and
irregular TWTs, we selected the optimum versions for the
reference frequency f0 � 3 GHz with the inclusion of the
excitation of three parasitic harmonics (m � 1; . . . ; 4):
� the regular TWT: R0 � 0:22 cm; r0 � 0:18 cm;
y0 � 7:52 cm; e0 � 0:150; L � 11:1 cm; A1�0� � 0:018;
I0 � 0:30 A; Vph � const � 0:856; ZS � 0:32; Zm � 0:238,
0.050, 0.017, 0.009; Rsm1 � 1, 0.808, 0.553, 0.821;
Kn � 0:321; Ku � 40:81;
� the irregular TWT: R0 � 0:25 cm; r0 � 0:20 cm;
y0 � 9:98 cm; e0 � 0:173; L � 12:7 cm; A1�0� � 0:115;
I0 � 0:62A; Vph is variable; ZS � 0:70; Zm � 0:632, 0.042,
0.009, 0.016; Rsm1 � 1, 0.806, 0.536, 0.370; Kn � 0:107;
Ku � 27:98

The parameters were selected such that the length L
corresponds to the first peak of the useful signal power.

The band characteristics for these versions were calcu-
lated in the form of the Zm�W � and Kn�W � dependences with
all the parameters and the Vph�z� law fixed equal to those
obtained forW � 1 (see above).

Figures 8 and 9 show the aforementioned band character-
istics for the regular and irregular TWTs, respectively.
Analysis of these dependences reveals that the amplification
band of the irregular TWT is broader than for the regular one,
the efficiency for the fundamental signal for the former being

three times higher than for the latter. The regular TWT
exhibits a monotonic decrease in the values of Zm towards
the band edges. The peak of themth harmonic power shifts to
the low-frequency side as the numberm increases. As a result,
the nonlinear distortion coefficient Kn rises almost twofold
forW � 0:8.

The dependences Zm�W �, m5 2, observed for the
irregular TWT are oscillatory in character. The magnitude
of Kn oscillates about a value Kn � 0:15 in the wide segment
0:84W4 1:5. Observed only at the low-frequency edge of
the amplification band is a steep monotonic increase in Kn
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Figure 8. Band characteristics of a regular TWT. Curves 1 ± 4 correspond

to Zm form � 1; . . . ; 4; curve 5 shows ZS; curve 6 represents the dependence
of Kn; curve 7 shows the gain for the fundamental signal

Ku � 20 logA1�1�=A1�0�.

30

Ku

20

10

0
0.6 0.8 1.0 1.2 1.4 W

0.6

0.4

0.2

0

Zm, Kn

7

1 5

6

2

34

Figure 9.Band characteristics of an optimized irregular TWT. Curves 1 ± 4

correspond to Zm form � 1; . . . ; 4; curve 5 shows ZS; curve 6 represents the
dependence of Kn; curve 7 shows the gain for the fundamental signal

Ku � 20 logA1�1�=A1�0�.

590 Yu V Gulyaev, VF Kravchenko, A A Kuraev Physics ±Uspekhi 47 (6)



and a drastic decrease in the useful signal power, with Z2 rising
and even becoming greater than Z1. This rise in Kn at the left
edge of the amplification band may be explained by the form
of the dependences Rsm1�W � plotted in Figs 10 and 11 for the
regular and irregular TWTs, respectively. The spiral para-
meters in both versions are selected such that these depen-
dences are virtually the same. The coupling impedance for the
fundamental harmonic for W > 1 remains on the same level,
while the coupling impedances for the parasitic harmonics
decrease monotonically. This accounts for the lowering of Kn

at the high-frequency edge of the band. The picture forW < 1
is different. Here, asW decreases, the coupling impedance for
the fundamental harmonic decreases, while for the parasitic
harmonics it increases and even exceeds Rs11, with the effect
that Kn increases. However, in the irregular TWT, Kn

monotonically increases with increasing W up to the value
ofW at which Z1 almost vanishes, but in the regular TWT,Kn

reaches its peak and then declines.
Figure 12 shows the variation of the relative coupling

impedances rsm�T � along the irregular TWT interaction
region for different values of W from the amplification
band. We note that rsm�T � � const � 1 in the regular
TWT. Analysis of these curves shows that the spiral pitch
variation furnishes an increase in the coupling impedance
for the fundamental wave and its simultaneous decrease for
the harmonics at the end of the TWT interaction region,
where the main electron beam-to-wave energy conversion
occurs.

The difference between the coupling impedances for the
fundamental and parasitic harmonics varies only slightly for
W > 1. With decreasingW, this difference rises steeply in the
W < 1 range, the coupling impedance for the fundamental
wave exceeding those for the parasitic harmonics at the end of
the TWT interaction region, although it decreases at the
beginning of the region (see Fig. 9). This effect accounts for
the stabilization of the magnitude of Kn in the irregular TWT
for 0:74W4 1. The calculations conducted allow conclud-
ing that in the irregular spiral TWT, the HHC excitation in
the frequency band is suppressed 2 ± 3 times more efficiently
than in the regular one owing to the type of dispersion law of
the simplest spiral SWS.

6. Traveling-wave gyroton employing
a corrugated waveguide

A gyroton 1 of the resonance type [8 ± 10] is a multi-stage
amplifier utilizing an initially rectilinear relativistic electron
flow (REF). The REFmodulation (circular sweep) is effected
in rotating fields of the H1in, E1in, or E1i 0 type excited in
sequentially arranged input resonators with the same oscilla-
tion types but, unlike in a modulator, under conditions of the
electron cyclotron resonance with a standing rotating
resonator field or with its concurrent component. An
essential element of the resonance gyroton design is the
region of transformation of the longitudinal REF velocity to
the transverse (modulation) component in the magnetostatic
field that grows up to the gyroresonance level. This process
largely predetermines the strong dependence of the energy
conversion mechanism in the resonance gyroton on the REF
thickness. Owing to this, the gyroton efficiency for a given
REF diameter declines rather steeply with an increase in the
working frequency [10].

In the traveling-wave gyroton (TWG) [11, 12], there is no
magnetostatic converter, and the retention of the gyroton
phasing mechanism (without phase bunching, all axial
electrons are `correctly phased', and their phase trajectories
are congruent) ensures a high efficiency. The TWG should
therefore be expected to be less sensitive to the REF thickness
and to be a `higher-frequency' superhigh-power relativistic
amplifier.

A TWG employing corrugated waveguide was investi-
gated and optimized in [12] under the assumption that the
working wave is the rotating wave EH11, while its related
wave HE11 is suppressed by special electrodynamic techni-
ques: longitudinal slits or longitudinal grooves of the quarter-
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Figure 10. Band characteristics of the regular TWT-O. Curves 1 ± 4
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wave depth. However, these techniques require additional
investigation and may prove to be inefficient. Moreover, they
may also have an effect on the phase characteristics of the
EH11 wave. In this section, we therefore consider a TWG in
which the REF interacts simultaneously with the coupled
HE11 and EH11 waves of the corrugated waveguide. We show
that the ideal gyrotonmechanism (for a thin beam) is retained
in this situation (i.e., the electron efficiency approaches
100%). Furthermore, we found that the peripheral electrons
of a `thick' REF exhibit a combinedmechanism of interaction
with the fields HE11 and EH11 of the corrugated waveguide,
which combines the gyroton and Cherenkov interaction
mechanisms. That is why considerably `thicker' REFs can
be employed in TWGs than in a conventional gyroton with
the retention of relatively high efficiencies. This is attained
with the simplest designs with a uniform magnetic field and a
regular corrugated waveguide.

We introduce the following simplifications: the space
charge fields, the supercritical EH1i and HE1i fields, and the
fields of harmonics o are neglected. In accordance with the
general theory of excitation of longitudinally irregular
waveguides of circular section [17, 18], the equations for the
excitation of the coupled rotating waves HE11 and EH11 can
then be written as
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were the following notation is used: z � o0z
0=c � 2pz 0=l0 is

the normalized length, z 0 is the dimensional length, o0 is the
reference frequency, _A e

11 � _E e
tme=m0c

2, _E e
tm is the complex

amplitude of the transverse component of the electric
intensity of the E11 wave; _C11 � _E e

eme=o0c, _E e
em is the

complex amplitude of the longitudinal component of the
electric intensity of the wave; _Am

11 � _Em
tme=m0c

2, _Em
tm is the

complex amplitude of the transverse component of the
electric intensity of theH11 wave;
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J0 and J1 are the Bessel functions; B�z� � o0b�z�=c, b�z� is
the internal waveguide radius; s � jI0jem0=cm0 �
0:73723� 10ÿ3jI0j, I0 is the beam current measured in
amperes, m0 is the permeability of free space; ji�z� is the
azimuth of the ith particle at a section z; Ti�z� � o0ti�z�=c,
ti�z� is the time instant at which the ith particle passes through
the current section z; ri�z� � ri�z�=B�z�; bri�z� � Vri�z�=c,
bji�z� � Vji�z�=c, bzi�z� � Vzi�z�=c are the radial, phase,
and longitudinal normalized electron velocities, respectively;
J1�n11� � 0, n11 is the first root of J1�x�, J 01�m11� � 0, m11 is the
first root of J 01�x�; and i labels the particle phase trajectory,
i � 1; . . . ;N.

The initial conditions for the system of equations (9) are
given by

Im
�

_A e
11�0�

	� 0 ; Re
�

_A e
11�0�

	� ����Kin
�1ÿ R0�swe11

pmR0e11

����1=2;
where Kin � Pin=�U0jI0j�, Pin is the output power, U0 is the
accelerating voltage of the electron beam, and

Im
�

_Am
11�0�

	 � 0 ; Re
�

_Am
11�0�

	 � 0 ;

Re
�

_V11�0�
	 � 0 ; Im

�
_V11�0�

	 � ÿ 1

we11
Re _A e

11�0� ;

Re
�

_P11�0�
	 � 0 ; Im

�
_P11�0�

	 � 0 ;

w2m11 � 1ÿ m211
B 2�0� ;

w2e11 � 1ÿ n211
B 2�0� ; R0 �

�������������������
1ÿ b2�0�

q
:

The reflection coefficient at the right end of the domain is
defined as

_G e � ÿ d _A e
11�z0�= dz� we11 _A e

11�z0�
d _A e

11�z0�= dzÿ we11 _A e
11�z0�

;

_Gm � ÿ d _Am
11�z0�= dz� wm11

_Am
11�z0�

d _Am
11�z0�= dzÿ wm11

_Am
11�z0�

: �10�

The equations of motion of the ith charged particle in the
field of the E11 and H11 waves of an irregular waveguide and

an irregular magnetostatic field are

dbxi
dz
� ÿ Ri

bzi

�
�Exi � byi�F�Hzi� ÿ bzi� �Hyi � Fyi�

ÿ bxi�bxi �Exi � byi �Eyi � bzi �Ezi�
�
;

dbyi
dz
� ÿ Ri

bzi

�
�Eyi ÿ bxi�F�Hzi� � bzi� �Hxi � Fxi�

ÿ byi�bxi �Exi � byi �Eyi � bzi �Ezi�
�
;

dbzi
dz
� ÿ Ri

bzi

�
�Ezi � bxi� �Hyi � Fyi� ÿ byi� �Hxi � Fxi�

ÿ bzi�bxi �Exi � byi �Eyi � bzi �Ezi�
�
;

dxi
dz
� bxi

bzi
;

dyi
dz
� byi

bzi
;

dTl

dz
� 1

bzi
: �11�

Here, the following notation is used:

Ri �
�������������������������������������
1ÿ b2xi ÿ b2yi ÿ b2zi

q
; F�z� � m0Z0H

0
z �z�

o0
;

Fxi � ÿ ri
2

dF

dz
cosji ; Fyi � ÿ ri

2

dF

dz
sinji ;

ri �
���������������
x2i � y2i

q
; ji � arctg

�
yi
xi

�
;

�Exi � i �Eyi � 1

2B

n
_A e
11J0�n11ri� exp�iTi�

ÿ _A e
11J2�n11ri� exp

�
i�2jiÿ Ti�

�ÿ _Am
11J0�m11ri� exp�Ti�

ÿ _Am�
11 J2�m11ri� exp

�
i�2jÿ Ti�

�o
;

�Ezi � 1

2

n
J1�n11ri�

�
_C11 exp

�ÿ i�ji ÿ Ti�
�

� _C �11 exp
�
i�ji ÿ Ti�

��ÿ ri
B

dB

dz
J 01�n11ri�

�
�

_A e
11 exp

�ÿ i�ji ÿ Ti�
�� _A e�

11 exp
�
i�ji ÿ Ti�

��
ÿ 1

m11ri
J1�m11ri�

�
_Am
11 exp

�ÿ i�ji ÿ Ti�
�

� _Am�
11 exp

�
i�ji ÿ Ti�

��o
;

�Hxi � i �Hyi � 1

2B

n
n11
�

_C11J0�n11ri� exp�iTi�

� _C �11J2�n11ri� exp
�
i�2ji ÿ Ti�

��
ÿ d _A e

11

dz
J0�n11ri� exp�iTi� ÿ d _A e�

11

dz
J2�n11ri�

� exp
�
i�2ji ÿ Ti�

�� 1

B

dB

dz
m11riJ1�m11ri�

�
�

_Am
11 exp

�ÿ i�ji ÿ Ti�
�� _Am�

11 exp
�
i�ji ÿ Ti�

��o
;

�Hzi � 1

B 2

n
m11J1�m11ri�

�
_Am
11 exp

�ÿ i�ji ÿ Ti�
�

� _Am�
11 exp

�
i�ji ÿ Ti�

��o
:

In the absence of the initial REF modulation, the initial
conditions for the system of equations (11) can be specified as
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ji�0� � 0 ;

bxi � 0 ; byi�0� � 0 ; bzi�0� � 0 ; bz0 �
b0�������������
1� q2

p ;

xi�0� � rnc ; yi�0� � 0 ; Ti�0� � 2p
N
�iÿ 1� : �12�

In the notation adopted, the `electron' efficiency is defined
as

Ze�z� �
1

N

XN
i�1

1ÿ R0=Ri�z�
1ÿ R0

; �13�

and the respective `wave' efficiencies are of the form

ZE�z� �
pR0e11
�1ÿ R0�s Im � _A e

11
_V �11� ;

ZH�z� �
pR0h11
�1ÿ R0�s Im � _Am

11
_P �11� : �14�

Based on the mathematical model formulated above, we
derived and analyzed the versions of efficiency-optimized
TWGs with a uniform magnetic field and a periodic
corrugated waveguide. The waveguide profile was described
by the function

B�z� � g1 � g2 sin
2

�
g3p

z

z0

�
;

where g1, g2, and g3 are variable parameters.
Version 1. TWG with a thin electron flow (rnc � 0):

b0�0:8, F�0:696, Kin�0:005, g1�4:338, g2�1:127, g3�35,
z0 � 31:14, s � 1:121, efficiency� Z � Ze � ZE � ZH � 0:97.

Figure 13 shows the integral characteristics bz�z�, Z�z�,
ZE�z�, and ZH�z� of this version, as well as the waveguide
profile B�z�.

Figure 14 depicts the electron trajectories in the transverse
section for different numbers i (or different phases of the entry
into the interaction region oti0 � 2p i=N).

An analysis of the above results leads to the following
conclusions:

(i) the overall efficiency Z�z0� of the TWG with the
combined interaction between an initially rectilinear REF
and the coupled rotating modes EH11 and HE11 of the
corrugated waveguide approaches 100%, as in a single-
mode TWG [12]. On the other hand, the development of an
output converter transforming the component EH11 to HE11

is not difficult (an example of the calculation of such a
converter is given in Ref. [18]);

(ii) the transverse electron phase trajectories (see Fig. 14)
are congruent, as in a single-mode TWG [12]. This is evidence
of the retention of a perfect electron phasing mechanism
(independence from the phase of entry) in the two-mode
TWG as well;

(iii) the form of the dependences ZE�z� and ZH�z� (see
Fig. 13) signifies that EH11 is partially transformed to HE11,
and vice versa. In the interaction with the REF in the case of a
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Figure 13. TWG characteristics (version 1): 1 Ð electron efficiency, 2 Ð

E11 wave efficiency, 3 Ð H11 wave efficiency, 4 Ð waveguide profile

B�z�=2p, 5Ð average longitudinal electron velocity bz.
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Figure 14. Electron trajectories in the transverse section for version 1 for

different phases of the entry of the electrons into the waveguide.
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Figure 15. TWG characteristics (version 2): 1 Ð electron efficiency, 2 Ð

E11 wave efficiency, 3 Ð H11 wave efficiency, 4 Ð waveguide profile

B�z�=2p, 5Ð average longitudinal electron velocity bz.
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thin electron flow, the main role is played by the wave EH11,
which is subsequently transformed to the wave HE11.
Excluding the EH11 wave from consideration leaves the
efficiency practically unchanged. Only the current and the
value of the magnetostatic field somewhat change. This is
explained by the fact that the phase velocities of the waves
EH11 and HE11 are significantly different in a corrugated
waveguide. The moderation is rather strong for the EH11

wave, but is insignificant for the HE11 wave because the
waveguide radius for this wave is much greater than the
critical one.

Version 2. TWG with a wide REF (rnc � 1): b0 � 0:8,
F�0:541, g1 � 4:263, g2 � 0:969, g3 � 35, z0 � 31:14, s � 1,
Kin � 0:0008877, efficiency� Z � Ze � ZE � ZH � 0:58.

To calculate the TWG with a wide electron flow and a
constant current density, the electron flow was divided into
layers with the radii of guiding centers corresponding to equal
areas of the electron rings. The number of rings was preset in a
range between 3 and 7.

Figure 15 shows the integral characteristics and the
dependence B�z� for this version, and the phase trajectories
of the central and peripheral electrons at the transverse
section of the REF are plotted in Fig. 16.

The above results lead to the following conclusions:
(i) the character of the integral dependences bz�z�, Z�z�,

ZE�z�, and ZH�z� remains the same as for a thinREF, although
the interaction efficiency is lower;

(ii) as can be seen from Fig. 16, the transverse trajectories
of the peripheral REF electrons, unlike the trajectory of the
central one, are entry-phase dependent;

(iii) the interaction efficiency decreases considerably
less than in resonance gyrotons [8 ± 10]. The TWG is
therefore a substantially higher-frequency device than the
resonance gyroton. For instance, if we proceed from the
REF diameter 2.6 mm, the working wavelength for rnc � 1
is l � 8 mm.

Such a TWG superiority arises because an additional kind
of interaction comes into effect for peripheral electronsÐ the
Cherenkov interaction, which is similar to that occurring in
the conventional TWT-O utilizing a corrugated waveguide.
This is confirmed by the phase diagram in Fig. 17, which is
indicative of a clearly defined longitudinal electron bunching.
Naturally, this mechanism is absent in resonance gyrotons.
Therefore, for peripheral electrons in the TWG utilizing a
corrugated waveguide, there occurs a combined interaction
mechanism Ð the Cherenkov ± gyroton mechanism, which
makes it possible to maintain a very high efficiency of the
device.
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Figure 16.Transverse trajectories of the central and peripheral electrons of

the beam for a three-layer model of version 2.
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layer electrons; 3Ð phase trajectories of the electrons of the peripheral beam layer.
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Version 3. Relativistic TWG with a wide REF (rnc � 1):
b0�0:9672, F�1:063, g1�4, g2 � 0:866, g3 � 35, z0 � 31:14,
s � 1:06, Kin � 0:005, efficiency� Z � Ze � ZE � ZH � 0:78.

In this version, the device efficiency is significantly higher
than the efficiency in version 2Ð78% against 58%Ð for the
same radius of the electron flow. It is noteworthy that
increasing the radius of the electron flow from rnc � 1 to
rnc � 3 results in the reduction of the efficiency to 52%. In
other words, even when the electron flow almost entirely fills
the cross-sectional area of the waveguide (rmax wg � 3:8), the
efficiency does not decrease below 50%.

7. Conclusions

The results of investigations described in this paper show that
the highly complicated optimization problem of the nonlinear
interaction in Cherenkov-type devices has received an
adequate solution. This solution was obtained in the works
of our compatriot scientists based on the original methods of
solving optimal control problems invoking the apparatus of
atomic functions (see the Appendix). Highly representative in
this respect are the materials on the advances in the area of
TWT-O given in review [34]. The progress quite definitely
correlates with the previous publication of Refs [17 ± 23, 25,
28], etc. reporting the results on the optimization of spiral
TWTs for efficiency and minimum nonlinear distortions.
These papers reported the establishment of the optimum law
of the cold phase velocity variation in the TWT interaction
region and the elucidation of the character of optimum
physical interaction processes in the optimized versions.

8. Appendix
Variational-iterative method for the solution
of nonlinear optimal control problems

To avoid cumbersome mathematical manipulations, we
choose a simplified version of an optimal control problem
and make the following assumptions: a) the left end of phase
trajectories moves freely over the given hypersurfaces; b) the
right end of the trajectories is free (constraints are introduced
into the overall functionalÐ the goal function); c) the vectors
of the state and control variables are continuous; and d) the
interval of motion [0, T0] is fixed. The fundamental points of
the method explained with the example of such a problem are
amply illustrated and extending the method to the general
case presents no special problems [17, 18].

Under the conditions listed above, the optimal control
problem is posed as follows (we illustrate the meaning of
variables and parameters by the example of the problem of
optimal control of the interaction process in microwave
devices).

1. The mathematical model of the dynamic process is
given in the form of a system of ordinary differential
equations (equations of state)

dXs

dT
� Xs � fs�X1;X2; . . . ;Xs; . . . ;Xn ;

g1�T �; . . . ; gk�T � ; M1; . . . ;Ml;T� ;
s � 1; 2; . . . ; n ; 04T4T0 ; �A:1�

or in the vector form,

dX

dT
� _X � f �X; g�T �;M;T � ;

where X � �X1;X2; . . . ;Xn�T is the transposed n-dimensional
vector of phase variables [coordinates (phases), velocities of
the set of `big particles' that simulate the electron flow, the
amplitudes and phases of the force components of the
electromagnetic field, and so forth]; g�T ���g1; g2; . . . ; gm�T
is the m-dimensional interaction control vector (the T-distri-
bution of the high-frequency and static fields, the profile of
the waveguide system, the winding angle of the spiral SWS,
etc.);M are the interaction control parameters (the amplitude
and phase of the electromagnetic field in the resonator, the
length of the interaction region, the working ± cyclotron
frequency mismatch, the beam current and diameter, the
diameter of the waveguide or flight channel, etc.); and T is
the reduced length of the interaction region or the reduced
interaction time.

2. The boundary conditions are imposed at the left end for
T � 0,

Xs�0� � Xs�B� ; �A:2�

where B � �B1; . . . ;Bj; . . . ;BC�T are the parameters of the
initial conditions of the process.

3. The goal function is specified in the form of the
functional (the Boltz problem)

J � F
ÿ
X�T0�

�� �T0

0

fn�1�X; g;M;T � dT : �A:3�

We pose the following optimal control problem: among
the continuous functions Xs�T � �s � 1; n � and
gk�T � �k � 1;m �, to find those that satisfy Eqns (A.1) on
the interval [0, T0] and boundary conditions (A.2) for T � 0,
and among the parametersM and B, to find those that realize
an extremum of functional (A.3).

We approximately represent the sought control function
gk�T � as a finite series in the ordered, complete system of
functions fji�T �g that are orthogonal on the interval
04T4T0 and satisfy the given constraints determined by
the physical nature of controlling the interaction processes
[17, 18],

gNk �T � �
XN
i�1

Akiji�T � : �A:4�

Thus, after the problem in (A.1) and (A.2) is solved,
functional (A.3) becomes a function of n� r parameters Aki,
and of the parametersM and B. The maximum (minimum) of
this function can be found using one of the methods for
minimizing a function of several variables. When additional
special constraints are imposed on the control function gk�T �,
in particular the smoothness conditions with the additional
requirement that the higher derivatives should be small, each
of theji�T � functions should also satisfy them. The functions
derived and investigated inRefs [35 ± 43] were found to satisfy
all the aforementioned conditions. Furthermore, it can be
shown that no other compact, infinitely differentiable
functions have an equally good approximation capacity.

Among such functions, the simplest and best-studied is
up�x�Ð the solution of the differential-functional equation

y 0�x� � 2y�2x� 1� ÿ 2y�2xÿ 1� �A:5�

with the compact support [ÿ1, 1], normalized by the
condition

� 1
ÿ1 up�x� dx � 1.
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The function up�x� has the integral representation

up�x� � 1

2p

��1
ÿ1

exp�itx�F�t� dt ;

where

F�t� �
Y1
k�1

sin�2ÿkt�
2ÿkt

:

This even, infinitely differentiable function is not analytic at
any point of its support [ÿ1, 1]. Its Taylor series is a
polynomial at binary-rational points (i.e., at the points of
the form 2ÿkk) and has zero convergence radius at the other
points of the support.

This function has the following properties: up�0� � 1; it
increases on [ÿ1, 0] and decreases on [0, 1]; for x 2 �0; 1�,
up�1ÿ x� � 1ÿ up�x�; and its integer-valued shifts are a
partition of unity,X1

k�ÿ1
up�xÿ k� � 1 :

All the foregoing properties follow directly from Eqn (A.5).
The moments

a2k �
�1
ÿ1

x2kup�x� dx ; bk �
�1
0

xkup�x� dx

satisfy the recursive relations

a0 � 1; a2n � �2n�!
22n ÿ 1

Xn
k�1

a2nÿ2k
�2nÿ 2k�!�2k� 1�! ;

b2n�1 � 1

22n�3�n� 1�
Xn�1
k�0

a2n�2 :

At the points k=2n, the function up�x� takes rational values.
In particular,

up�ÿ1� 2ÿn� � bnÿ1
2C

2
n �nÿ 1�! :

FromEqn (A.5), for the nth derivative up�n��x�, we obtain

up�n��x� � 2�2n�1�n=2
X2n
k�1

dkup�2nx� 2n � 1ÿ 2k� ;

where d1 � 1, d2k � ÿdk, and d2kÿ1 � dk.
Although the function up�x� is infinitely differentiable,

the Taylor series is unsuitable for its calculation, because at
every point x0 2 �ÿ1; 1�, it either has zero convergence radius
or reduces to a polynomial (at the points k=2n), and therefore
does not converge to up�x�. It is significant here that for an
arbitrary n, there exist coefficients C

�n�
k such that

xn �
X1

k�ÿ1
C
�k�
k up�xÿ k2ÿn� :

To evaluate up�x�, use is made of the rapidly convergent
series

up�xÿ 1� �
X1
k�1
�ÿ1�Sk�1 Pk

�
Xk
j�0

�2 �j�1� jÿ�kÿj��kÿjÿ1�=2� bkÿjÿ1
�kÿ jÿ 1�! j ! �x � 0;P1; . . . ;Pk� ;

04 x4 1 ;

where bl are the moments of up�x� for l > 0; bÿ1 � 1,
0!�1!�1, Sk �

Pk
j�1 Pj; (x � 0, P1; . . . ;Pk) is the notation

for the number x in the binary number system, i.e., �x � 0,
P1 . . .Pk� � xÿ 2ÿk �2kx�; �x� is the integer part of x; and
Pk � �2kx� ÿ 2�2kÿ1x�.

The residual term of this series satisfies the condition

jRnj4 1

2n�n�1�=2�nÿ 1�! :

Thus, we approximately represent the sought control
function as

gNk �T � �
XN
i�1

Aki up

�
Tÿ Tki

rki

�
; �A:6�

where Tki is the shift parameter, Tki=rki 2 �0;T0�, and rki is
the width parameter of the up�z� function.

The methods for fast calculation of up�z� are given in
Refs [35, 42, 43].

After substitution of expression (A.6) and after solution
of the Cauchy problem in (A.1) and (A.2), functional (A.3)
becomes a function of the 3N�m parameters Aki, Tki, rki,
and the parameters M and B. The minimum of this
function can be found using the techniques for the
minimization of functions of several variables. If gradient
techniques are used for the minimization of J, it is possible
to avoid the procedure of numerical (finite-difference)
determination of the gradient of J [17, 18]. This technique
is described below.

In view of condition (A.1) imposed on gk and Xs

(nonholonomic constraints), the optimal control problem
posed above is a typical conditional extremum problem [17,
18], which can be expediently solved via the method of
Lagrange multipliers. We introduce the yet undetermined
Lagrange multipliers ls�T ��s � 1; n � and construct an aux-
iliary functional I,

I � J�
�T0

0

Xn
s�1

lsjs dT ;

where js � _Xs ÿ fs�Xs; gk;Mi;T �.
It is evident that if (A.1) is satisfied (js � 0), I coincides

with J. We introduce the Hamiltonian function

H � ÿfn�1 �
Xn
s�1

ls fs � H�Xs; gk; ls;Mi;T � ;

then

I � F
ÿ
Xs�T0�

�� �T0

0

�Xn
s�1

Xsls ÿH

�
dT : �A:7�

We take the first variation of I

dI �
Xn
s�1

qF
qXs

dXs�T0�

�
�T0

0

�Xn
s�1

�
_Xsdls � lsd _Xs ÿ qH

qls
ÿ qH
qXs

dXs

�

ÿ
Xm
k�1

qH
qgk

dgk ÿ
Xl
i�1

qH
qMi

dMi

�
dT �A:8�
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and perform the transformation�T0

0

lsd _Xs dT � lsdXs

��T0

0
ÿ
�T0

0

_lsdXs dT : �A:9�

We also assume that Eqns (A.1) are exactly solved at each
iteration, i.e., js � 0, or

Xs ÿ qH
qls
� 0

�
qH
qls
� fs

�
:

It then follows that dI � dJ, and we have

dJ � ÿ
Xn
s�1

ls�0�dXs�0� �
Xn
s�1

�
ls�T0� � qF

qXs

�
dXs�T0�

ÿ
�T0

0

�Xn
s�1

�
ls � qH

qXs

�
dXs

�
Xm
k�1

qH
qgk

dgk �
Xl
i�1

qH
qMi

dMi

�
dT : �A:10�

We extend the definition of ls�T � as follows:

ls � qH
qXs
� 0; �A:11�

ls�T0� � ÿ qF
qXi�T0� : �A:12�

With relations (A.2) and (A.6), we obtain

dXs�0� �
XC
j�1

qXs�0�
qBj

dBj ;

dgNk �
XN
i�1

�
up �zki� dAki ÿ 2

�
up�2zki � 1�

ÿ up�2zki ÿ 1��� dTki

rki
� drkizki

rki

��
; �A:13�

where zki � �Tÿ Tki�=rki .
The functional L now becomes just a function

J�Aki;Tki; rki;Bj;Mi�. Accordingly, dJ becomes dJ (i.e., the
first variation of the functional J passes into the differential of
the function J). We then obtain

dJ � ÿ
Xn
s�1

XC
j�1

ls�0� qX0s

qBj
dBj

ÿ
�T0

0

�Xm
k�1

qH
qgk

XN
i�1

�
up�zki� dAki ÿ 2

�
up �2zki � 1�

ÿ up�2zki ÿ 1��� dTki

rki
� drki zki

rki

��
�
Xl
i�1

qH
qMi

dMi

�
dT : �A:14�

Expressions for the components of the gradient of J follow
directly from relation (A.14):

qJ
qBj
� ÿ

Xn
s�1

qX0s

qBj
ls�0� ; j � 1;C ;

qJ
qMi

� ÿ
�T0

0

qH
qMi

dT ; i � 1; l ;

qJ
qAki

� ÿ
�Tki�rki

Tkiÿrki

qH
qgk

up �zki� dT ;

qJ
qTki

� 2

rki

� �Tki

Tkiÿrki
up �2zki � 1� dT

ÿ
�Tki�rki

Tki

up �2zki ÿ 1� dT
�
; �A:15�

qJ
qrki
� 2

rki

� �Tki

Tkiÿrki
zki up �2zki � 1� dT

ÿ
�Tki�rki

Tki

zki up �2zki ÿ 1� dT
�
;

k � 1;m ; i � 1;N :

Let a point (B
�n�
j , M

�n�
i , A

�n�
ki , r�n�ki ) in the space of

parameters under optimization be reached in the course of J
minimization. Then the following operations are performed
at the nth step of the iterative procedure for the solution of the
given optimization problem:

(i) the system of equations (A.1) with boundary condi-
tions (A.2) is solved with (A.6) taken into account for the
specified parameter values;

(ii) the boundary conditions are determined for ls�T0� in
accordance with (A.12);

(iii) systems of equations (A.1) and (A.11) are simulta-
neously solved from right to left (i.e., from T0 to 0 in the
variable T ). Simultaneously determined in accordance with
(A.15) are the components of the gradient of J, which are then
used as the initial data for gradient minimization techniques
defining the next (n� 1)th point of the minimizing sequence
in the space (Bj, Mi, Aki, Tki, rki). Among the gradient
techniques, it is advisable to use the Gol'dfarb variable-
metric technique [44, 45] as the most efficient as regards the
rate of convergence and stability.

The proposed technique makes it possible to speed up the
solution of the optimization problem by a factor of �n� 3�=4
(n is the number of optimization parameters) in comparison
with the conventional techniques that employ the finite-
difference procedure to determine the gradient of the goal
function.
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