
Abstract. Electromagnetic waves in a plasma in amagnetic field
give rise to enhanced refraction, produce a change in polariza-
tion, and cause electromagnetic energy to flow from one wave
mode to another when propagating near the critical surface
(CS), the one where the electron Langmuir frequency is equal
to the wave frequency. A simple unified model of all phenomena
taking place near the CS is proposed. These phenomena are due
to electromagnetic waves linearly interacting with electron
Langmuir oscillations which are localized at the CS in a cold
plasma. This interaction manifests itself most strikingly in
electron Langmuir oscillation energy escaping directly into a
vacuum in the form of electromagnetic radiation.

1. Introduction

It is well known that electromagnetic waves cannot propagate
in a plasma whose density exceeds a critical value deduced
from the condition of equality of the electron plasma
frequency ope to the oscillation frequency o. In the case of
an inhomogeneous plasma, the surface on which this

condition is fulfilled is referred to as the critical surface
(CS). The presence of a magnetic field makes it possible for
the waves to penetrate behind the CS. However, the
penetration is accompanied by complicated physical pro-
cesses in the vicinity of the CS. Specifically, the waves
experience enhanced refraction, change their polarization,
and undergo reflection and transformation to oscillations of a
different type.

These processes began to attract the interest of researchers
over 50 years ago in connection with the problem of radio
wave propagation in the ionosphere [1 ± 3]. Investigations
have clarified the general patterns of wave propagation and
interaction in the vicinity of the CS and have resulted in the
calculation of transmission, reflection, and transformation
coefficients for the waves incident upon the CS along the
plasma density gradient. Numerical analysis of ray paths has
revealed a number of their specific features, such as cusps
(Spitzen) near theCS (see the paper [5] and alsoRefs [1, 4]). As
noted in Ref. [6], a plasma opacity region that, generally
speaking, exists in the vicinity of the CS disappears for waves
that approach the CS with the wave vector parallel to the
magnetic field vector. Such waves easily penetrate the CS.
This effect was called the atmospheric `radio window'.
Electromagnetic waves pass through the radio window and
penetrate into the dense plasma of the ionosphere. In the
simplest plasma configurations, such as a plane layer with
monotonically varying density, waves that pass through the
radio window are slowed down as a result of a rather complex
evolution and are eventually absorbed by the electron
component of the plasma. It was proposed in the paper [7]
to employ this effect for heating a dense plasma in magnetic
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traps making use of the so-called O-X-B scheme (O Ð
ordinary, X Ð extraordinary, and B Ð Bernstein waves).

In more complicated situations, for example, in the
presence of irregular inhomogeneities in the plasma,
electromagnetic waves may be partly reflected and leave the
plasma through the radio window. In this case, the plasma-
reflected radio signal is trebled (see Refs [1 ± 4, 6] and also
Section 6.1).

These investigations received new impetus in the context
of the thermonuclear problem, particularly in connection
with the development of methods for the microwave heating
of dense plasmas in magnetic traps (see, for instance, the
above-mentioned work [7]). At the new stage, the theory on
phenomena taking place in the vicinity of the CS was further
developed. Transmission, reflection, and transformation
coefficients were calculated for waves incident on the CS at
some arbitrary angle to the density gradient [8 ± 11]. The
investigations covered the transmission of both plane waves
and spatially restrictedwave beams [12]. It was shown that the
CS functions as a filter that transmits only part of the beam's
Fourier spectrum from its expansion in respect to wave
numbers. Wave polarization as well as its association with
the specific features of ray paths near the CS, was analyzed in
Ref. [12]. The passage of waves having a finite amplitude
through the CS was considered in Ref. [13].

Some auxiliary results have been obtained in the above
studies. It turned out that electromagnetic waves approach-
ing the CS may be transformed into electron Langmuir
oscillations with longitudinal (i.e., parallel to the principal
direction of the magnetic field) polarization of the electric
field. It is precisely this transformation that is responsible for
the pointed shape of ray paths [12]. By virtue of the
reversibility of the Maxwell equations, electron Langmuir
oscillations must be back-transformed into electromagnetic
waves. Because the latter can exit into a vacuum, the energy
of electron Langmuir oscillations is converted into electro-
magnetic radiation energy [14, 15]. This mechanism man-
ifests itself both in outer space and in laboratory experiments
where rather intense electromagnetic radiation was not
infrequently observed under conditions in which the theory
predicts the development of Langmuir turbulence. The
appearance of such radiation used to be ascribed to the
nonlinear mechanisms of transformation of electron Lang-
muir oscillations into electromagnetic ones (see, for instance,
Ref. [16]). In addition, a linear mechanism of transforma-
tion of short potential waves that can propagate under
plasma resonance conditions in a magnetized plasma was
considered in Refs [1 ± 3].

Electromagnetic waves in the vicinity of the CS are
subjected to strong refraction. Given a sufficiently large
angle w between the plasma density gradient and the
direction of the magnetic field, such electromagnetic waves
prove to be `fastened' to the CS. This results in the formation
of a wave channel adjacent to the CS in a plasma with
monotonically changing density [17]. Waves localized in
such a channel in a nonequilibrium plasma may lose stability
and their amplitude becomes very large.

The objective of this review is to present a systematic
analysis of the phenomena that occur during the propagation
of electromagnetic waves near the CS. It was deemed
convenient to represent the wave electric field as a sum of
three components: one parallel to the main magnetic field
vector, and two others normal to this vector and having
opposite directions of rotation (i.e., right-handed polarized or

electron component, and left-handed polarized or ion
component). Such a representation is characteristic of the
theory of cyclotron waves in a plasma (see, for instance,
Ref. [18]) and has also been used in the analysis of
electromagnetic waves near the CS (e.g., in Refs [7, 12, 13]).
It helps to consider, in the framework of a simple mathema-
tical model, themain physical process governing the propaga-
tion of electromagnetic waves in a magnetized plasma in the
vicinity of a CS Ð that is, their interaction with natural
plasma waves or electron Langmuir oscillations. This
phenomenon also takes place in a nonmagnetized plasma,
however, it is more efficacious in the presence of a magnetic
field.

2. General wave pattern in a dense plasma
in a magnetic field

For the analysis of waves in a magnetized plasma, the
alternating electric field component normal to the main
magnetic field vector can be represented as the superposition
of circularly polarized fieldsE� � �Ex � iEy�=

���
2
p

, where Ex; y

are the components of the electric field in the right-handed
Cartesian system of coordinates in which theZ-axis is parallel
to the main magnetic field. If time dependence of alternating
fields has the form / exp �ÿiot�, components E� and Eÿ
describe the electric fields that rotate to the left and right,
respectively. In what follows, the sign combination � used in
subscripts to specify polarization of oscillations will be
denoted by s (e.g., E� � Es), and that used in mathematical
expressions by s � �1. The system of the Maxwell equations
for a homogeneous cold plasma in terms of Es, Ek � Ez fields
is reduced to an algebraic system of equations (see, for
instance, Ref. [14])

N 2
k �N�Nÿ ÿ e� ÿN 2

� ÿNkN�
ÿN 2

ÿ N 2
k �N�Nÿ ÿ eÿ ÿNkNÿ

ÿNkNÿ ÿNkN� 2N�Nÿ ÿ ek

0B@
1CA

�
E�
Eÿ
Ek

0@ 1A � 0 ; �2:1�

where N � kc=o is the refractive index, then

Ns � Nx � isNy���
2
p ; es � 1ÿ o2

pe

o�o� soe� ; ek � 1ÿ o2
pe

o2
;

and oe is the electron cyclotron frequency. The wave
frequency is considered to be sufficiently high, and therefore
the ionic contribution to the dielectric response of the plasma
is disregarded. For the analysis of inhomogeneous plasma
oscillations, the substitution N! ÿi q=qr is needed in
expression (2.1). Hereinafter, all quantities with the dimen-
sion of length are given in units of c=o.

If the wavelength is small compared with the character-
istic spatial scale of plasma inhomogeneity, the system of
equations (2.1) defines local polarization of the electric field,
with the refractive index becoming a function of coordinates.
The solution to equations (2.1) has the form of the vector

E � �E�;Eÿ;Ek� � const

�
N�

e� ÿN 2
;

Nÿ
eÿ ÿN 2

;
Nk

ek ÿN 2

�
:

�2:2�
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The solution exists if the solvability condition for the system
of equations (2.1), i.e., the dispersion relation [18]

D � 1�N 2
?
2

�
1

e� ÿN 2
� 1

eÿ ÿN 2

�
�

N 2
k

ek ÿN 2
� 0 ; �2:3�

is satisfied. This relation can also be written in a familiar
form, as the condition of polynomial in N 2 becoming zero
(see, for instance, Ref. [19]):

D � N 4�e? sin2 y� ek cos2 y�
�N 2

��ek ÿ e?� sin2 yÿ 2e?ek
�� e�eÿek � 0 ; �2:4�

where e? � �e� � eÿ�=2, and y is the angle between the wave
and magnetic field vectors.

Equations (2.3) and (2.4) are equivalent. It may be more
convenient to use one or the other for the purpose of a
concrete task.

In the absence of a magnetic field, all constituents of the
permittivity tensor, regardless of their index, are equal to
e � 1ÿ �ope=o�2, and the dispersion relation (2.4) acquires
the form

D � e�N 2 ÿ e�2 � 0 :

Hence it follows that the condition e � 0 performs two
functions. First, it defines the maximum density above
which the plasma cannot be transparent for electromagnetic
waves (the cut-off condition). Second, it allows the frequency
of natural plasma oscillations (i.e., electron Langmuir
oscillations) to be determined. For these oscillations E / N,
in accordance with expression (2.2), thus reflecting the
potential character of the electric field [1]. Notice that it is
inconvenient to use formula (2.2) for the determination of
polarization of electromagnetic waves in a nonmagnetized
plasma and in the passage to the vacuum limit in the
magnetized plasma, because Eqn (2.2) gives rise to divergent
expressions.

Plasma embedded in a magnetic field is anisotropic and
gyrotropic, its dielectric properties being characterized by
three quantities: e�, and ek. The refractive index of waves
traveling in such plasma vanishes together with one of these
quantities Ð the cut-off condition [see formula (2.4)]. It is
noteworthy that the plasma response �eÿ� to a right-handed
polarized field for o < oe is positive at any plasma density.
This suggests the possibility of propagation of right-handed
polarized waves (helicons) in a plasma of arbitrarily high
density (see below).

It follows from relationship (2.2) that, in a plasma placed
in a magnetic field, natural plasma waves with a potential
electric field can exist only in the limit N!1. Their
frequency, in conformity with expression (2.4), is determined
by the condition

e? sin2 y� ek cos2 y � 0 : �2:5�
Unlike the case of a nonmagnetized plasma, condition

(2.5) coincides with one of the cut-off conditions, ek � 0, only
for waves traveling parallel to the magnetic field. It will be
shown below that an inhomogeneous plasma with such waves
undergoing transformation into electron Langmuir oscilla-
tions gives rise to interesting physical effects, the analysis of
which constitutes one of the main subjects of the present
review.

The general notion of the properties of dense plasma
waves �ope 5o� in a magnetic field can be inferred from the
analysis of the N 2�o2

pe� dependence at different values of the
angle y between the oscillation wave vector and the magnetic
field vector.

The matrix in the left-hand side of Eqn (2.1) becomes
diagonal at y � 0 �N? � 0�, and the system of equations (2.1)
breaks down into three independent equations corresponding
to three different wave branches, namely

�N 2 ÿ es�Es � 0 ; �2:6�
ekEk � 0 : �2:7�
Waves are frequently classified based on their polariza-

tion patterns during the propagation across �y � p=2� a
magnetic field (see, for instance, Ref. [19]). Those having
the linearly polarized electric vector are referred to as
ordinary, and those with the transversely polarized electric
vector as extraordinary. In a low-density plasma with qe �
�ope=o�2 < 1, waves of the former type in the limit of y � 0
are converted into waves whose electric vector rotates to the
left �N 2 � e��. Under the same conditions �y � 0�, waves of
the latter type have an electric vector that rotates to the right
�N 2 � eÿ� [see Eqn (2.6)]. When plasma density exceeds a
critical value �qe > 1�, the direction of rotation of the electric
vector of extraordinary waves at y � 0 undergoes left-for-
right reversal. Waves with the vector rotating to the right
cannot be classified as ordinary or extraordinary because it is
impossible to extend them to the angle y � p=2, because for a
given wave branch there is a limiting angle ys between vectors
N and B0 (see below).

For this reason, the traditional classification of waves as
ordinary and extraordinary ones in the vicinity of the CS,
where qe � 1, would be inconvenient for their analysis. In
what follows, the main focus of attention will be waves
propagating at a small angle to the magnetic field vector, for
whichN 2 � e� orN 2 � eÿ and which easily penetrate the CS
(see below). The former will be referred to as left-handed
polarized, and the latter as right-handed polarized. These
definitions are, to a large degree, conventional because the
electric field of either wave type in the vicinity of a CS at y 6� 0
has not only a circular component but also a longitudinal one
of comparable value that, under certain conditions, can even
predominate.

It is worthwhile to note that, in the analysis of circularly
polarized waves using Eqns (2.2) and (2.3), a case of y � 0
should be considered as the limiting one at y! 0. In this case,
the use of relation (2.3) yields N 2 � es �O�y 2� and, in
accordance with Eqn (2.2), one of the circular constituents
of the electric vector actually becomes predominant, namely

Es / yÿ1 !
y! 0
1 :

Equation (2.7) shows that, similar to the situation with the
absence of a magnetic field, the plasma exhibits `natural',
resonance frequency, i.e., the frequency of potential electron
Langmuir oscillations whose electric field is parallel to the
main magnetic field. Because in the cold plasma approxima-
tion their refractive index may acquire any value, the
dispersion dependence of electron Langmuir oscillations in
the �qe;N 2�-plane has the form of a vertical straight line
qe � 1 (Figs 1a and 2a).

As electromagnetic waves traverse the CS, their resonance
interaction with the plasma should be expected to occur
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similar, for example, to cyclotron resonance in a nonuniform
magnetic field. However, the electric field of electron
Langmuir oscillations is orthogonal to that of electromag-
netic waves propagating parallel to the main magnetic field
(see above). Due to this, the electromagnetic waves at y � 0
freely penetrate the CS and their dispersion dependences
intersect the vertical line qe � 1 in the �qe;N 2�-plane (Figs 1a
and 2a).

The situation described in the preceding paragraph is
somewhat reminiscent of cyclotron resonance �o � oj,
j � e; i� in a cold plasma where electromagnetic waves
propagate at some angle to the magnetic field �y 6� 0�. Such
waves do not `notice' the resonance surface, o � oj�r�,
because the circular component of the electric field, rotating
in the same direction as j-type particles, turns to zero at this
surface (see, for instance, Ref. [18]).

Another analog is the problem of incidence of an
electromagnetic S-wave upon a plane layer of a non-
magnetized plasma. The electric field of such a wave is
normal to the plasma density gradient; hence, for reasons of
symmetry, it cannot excite electron Langmuir oscillations
(see, for example, Refs [1 ± 3] and also Section 4).

Now, let us suppose that the wave vector of electromag-
netic waves deflects from the direction of the magnetic field.
In this case, the alternating electric field possesses a long-
itudinal component, which leads to the interaction with
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Figure 1. Plasma density dependence of the refractive index at

Oe � oe=o < 1: (a) y � 0, (b) y5 1, (c) y4 p=2; Ss are the areas of

interaction of different wave modes qe; s � 1� sOe.
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electron Langmuir oscillations. For its description on the
assumption of N?5Nk, matrix (2.1) must retain elements
proportional to the first power of the refractive index
components orthogonal to B0. In the region of N 2 � es,
qe � 1, the system of equations (2.1) yields

ÿN 2
k � es NsNk

NÿsNk ek

 !
Es

Ek

 !
� 0 : �2:8�

The solvability condition for the system of equations (2.8) has
the form

ek�N 2
k ÿ es� � 1

2
N 2
?es � 0 : �2:9�

Obviously, both relationships (2.3) and (2.4) can be reduced
to Eqn (2.9).

It will be shown below that the system of equations (2.8)
and dispersion relation (2.9) permit us to obtain basic
information about wave properties in the vicinity of a CS
(polarization, shape of ray paths, transmission and reflection
coefficients, etc.).

In the analysis of homogeneous plasma waves, Eqn (2.9)
can be conveniently represented in the form

N 2 � es ÿ e 2s
2ek

y 2 : �2:10�

In agreement with what has been said above, the CS, onwhich
ek � 0, actually appears in expression (2.10) as a resonance
surface. As the surface is approached, the difference N 2 ÿ es
strikingly increases. As a result, the dispersion dependences
take a characteristic `resonant' form with a discontinuity at a
critical value of qe � 1 (Figs 1b and 2b). Selected portions of
the broken vertical line qe � 1 describing waves similar to
electron Langmuir oscillations in the �qe;N 2�-plane combine
with the dispersion dependences for circularly polarized
waves. Such a combination reflects the possibility of a radical
change in wave nature, namely, transformation of circularly
polarized electromagnetic waves incident on the CS into
waves resembling electron Langmuir (quasi-potential) oscil-
lations. The main constituent of the electric field in such
waves is longitudinal. Certainly, the process may proceed in
the opposite direction.

The property of exact potentiality at y 6� 0 passes over to
the waves with N!1, the frequency of which, according to
relation (2.2), must satisfy condition (2.5). Such waves are
described as experiencing the plasma (upper hybrid) reso-
nance (UHR).

At fixed o and y, Eqn (2.5) gives the resonant value of qe:

qes � 1ÿ O 2
e

1ÿ O 2
e cos

2 y
; �2:11�

where Oe � oe=o.
Under condition y5 1, Eqn (2.11) yields

qes � 1� O 2
e

O 2
e ÿ 1

y 2

2
: �2:12�

The surface at which condition (2.5) is satisfied in an
inhomogeneous plasma is referred to as the plasma reso-
nance surface. Upon approaching this surface, the refractive
index grows indefinitely, and the corresponding dispersion
curve has a vertical asymptote in the �qe;N 2�-plane (see
Figs 1 and 2).

In another limiting case of transverse propagation
�y! p=2, Nk ! 0�, the complete dispersion relation for
o > ope �qe < 1� has two solutions: N 2 � ek �O�cos2 y�
and N � e�eÿ=e? (Figs 1c and 2d). The first one charac-
terizes ordinary waves whose electric field is parallel to the
main magnetic field, while the second one characterizes
extraordinary waves with E ? B0. In a dense plasma
�o < ope�, only extraordinary waves can propagate nor-
mally to the magnetic field vector. The dispersion depen-
dences for intermediate angles 0 < y < p=2 are also shown in
Figs 1 and 2. They permit us to naturally link the limiting
cases of longitudinal �y � 0� and transverse �y � p=2� wave
propagation.

It can be seen from Fig. 2 that the transparent region for
waves with o < oe is not restricted on the high-density side.
Such waves are called helicons or whistlers. Their dispersion
dependence for qe 4 1, obtainable from Eqns (2.1) and (2.2),
has a rather simple form (see, for instance, Ref. [19])

N 2 � o2
pe

o�oe cos yÿ o� : �2:13�

It is worthwhile to note that the angle y for helical waves
cannot be too large. Its limiting value ys varies from zero near
the critical surface to ys � arccos �o=oe� for qe !1 [see
formulas (2.5) and (2.11)]. At y � ys, the helicons undergo
plasma resonance (see above).

Using helical waves, it is possible to obtain gas discharges
in which plasma density is substantially higher than the
critical one. Extensive studies of such discharges, referred to
as helicon charges, are underway (see, e.g., Ref. [20]).

Extraordinary waves (see above) differing from helicons
can also propagate beyond the critical surface. However, they
do not penetrate too deep into the dense plasma:
qe < qe;� � 1� Oe. Their refractive index at the CS equals
unity regardless of the value of the angle y, as is obvious from
the dispersion relation in the form of Eqn (2.4). This property
likens these waves to electromagnetic waves in a vacuum. At
the same time, it is easy to demonstrate that their polarization
differs from vacuum polarization, and group velocity is not
coincident with phase velocity. Under certain conditions,
these waves are involved in a complex sequence of processes
ending in the absorption of electromagnetic waves incident on
the dense plasma (O-X-B heating, see Section 9.2).

The entire set of dependences presented in Figs 1 and 2 can
be replaced by a single Clemmow±Mullaly ±Allis (CMA)
diagram (see, for instance, Refs [19, 21]).

3. Plane-layered plasma waves with the wave
vector closely aligned with the magnetic field
vector, near the critical surface

3.1 Transparent regions
The most complicated and interesting wave phenomena take
place in a thin layer of inhomogeneous plasma, including the
CS. The curvature of the CS within this layer is often
insignificant, and therefore a reasonable plane layer model is
that in which plasma density is linearly dependent on the
coordinates. In the �x; z�-coordinate system presented in
Fig. 3, the 0x-axis is oriented along the density gradient and
n0�r� � n00�1� x=L�, where L is the characteristic scale of
plasma density variation, and n00 is the plasma density at
x � 0. It is assumed that the plane x � 0 coincides with the
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CS. As waves propagate over a plane-layered plasma,
components Nz;Ny of the refractive index orthogonal to the
density gradient are conserved.

The results presented in Section 2 hold true for waves
having Nz � Ny � 0 �N k Hn0�. However, the waves with the
nonparallel vectors N, Hn0 are also rather interesting. Most
essential that such waves can easily penetrate the CS at
nonzero values of the angle w between Hn0 and B0 [1, 6]. It
follows from the discussion in Section 2 that such a situation
is feasible if the wave vector at the CS itself is parallel to the
magnetic field vector. In this case,N 2 � es,Nx � �������

es; c
p

cos w,
Nz � �������

es; c
p

sin w, andNy � 0, where es; c � Oe=�Oe � s� is the
value of the dielectric response es on the CS, i.e., at qe � 1. If
waves with the above values of Ny, Nz (called optimal here)
are excited in front of the CS, the equality Nx � �������

es; c
p

cos w
(with N k B0) must be fulfilled at this surface by virtue of
unique solution to the dispersion equation.

Let us analyze now waves that have the wave vector in the
vicinity of the CS slightly deflecting from the direction of the
magnetic field; as pointed out above, these waves easily
penetrate the CS. Such waves are described by the approx-
imate system of equations (2.8), the solvability condition of
which takes the form (2.9). This equation governing the
interaction of electron Langmuir oscillations with circularly
polarized waves permits us to reveal major wave peculiarities
near the CS.

Assuming

Nx � Nx sin wÿNz cos w ; Nz � Nx cos w�Nz sin w ;

ek � dqe ; es � es; c ÿ s
dqe

Oe � s
;

N 2
k � es; c � 2

�������
es; c
p �dNx cos w� dNz sin w� ;

N 2
? � �dNx sin wÿ dNz cos w�2 �N 2

y ;

dNx � Nx ÿ �������
es; c
p

cos w ; dNz � Nz ÿNopt
z;s ;

N opt
z; s �

�������
es; c
p

sin w

in Eqn (2.9) leads to the quadratic equation for dNx:

�dNx sin w�2 ÿ 2dNx cos w
�
2dqe�������
es; c
p � dNz sin w

�
ÿ s

2dq 2
e

Oe
ÿ 4dqe dNz

sin w�������
es; c
p � �dNz cos w�2 �N 2

y � 0 : �3:1�

The complete dispersion relation describing waves in a
plane-layered plasma has the fourth degree in Nx (Booker's

quadric [22]). It was replaced by a simplified dispersion
relation of the second degree, for instance, in Refs [23, 24].

The nontransparent region for the waves under considera-
tion is defined by the condition that the discriminant G of
equation (3.1) is negative:

G � 2dq 2
e

1

Oe
gs�Oe; w� � 4dqe sin w

dNz�������
es; c
p ÿN 2

y sin
2 w < 0 ;

�3:2�

where gs�Oe; w� � 2�Oe � s� cos2 w� s sin2 w.
The nontransparent region for Ny 6� 0 includes the CS; it

becomes smaller as jNyj decreases. Forwaves withNy � 0, the
CS makes one of the boundaries of the nontransparent
region. Its other boundary lies in the higher-density region
�dqe > 0� for dNz < 0, and in the lower-density region
�dqe < 0� for dNz > 0. Within the nontransparent region,
the quantity dqe varies from zero to dqe; 1, with

dqe; 1 � ÿ 2dNzO2
e�������

es; c
p sin w

gs�Oe; w� : �3:3�

Characteristic dispersion dependences in the vicinity of
the CS are depicted in Figs 4 and 5. The nontransparent

w

x

z

x

z

0

Figure 3. Coordinate systems used in this review.
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Figure 4. Dispersion dependence for left-handed polarized waves in a

plane plasma layer near the CS at N 2 � e�: (a) dNz < 0, (b) dNz � 0, and

(c) dNz > 0.
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region broadens as angle w increases. For right-handed
polarized waves (helicons), the maximum value of the angle
w is given by

wmax � arccos �2Oe ÿ 1�ÿ1=2 ; �3:4�
at which the quantity gs�Oe; w� vanishes. In this case, the
nontransparent region occupies the entire half-space
dqe dNz < 0. Certainly, this statement holds only for the
range of applicability of the approximate dispersion relation
(3.1), which is restricted by the condition jdqej5 1.

When the angle w > wmax, the situation reverses for right-
handed polarized waves or helicons �s � ÿ�. Specifically,
regions lying far from the CS become nontransparent,
whereas a channel appears near the CS through which helical
waves may propagate [19]. One of the boundaries for this
channel at Ny � 0 is formed by the CS. The width of the
channel tends to zero, and it contracts to the CS at dNz � 0
(Fig. 6). It is important that the wave channel exists in a
situation of monotonically varying density.

For right-handed polarized waves in a plane-layered
plasma, there is one more critical value of the angle:

wcr � arccos �Oÿ1=2e � < wmax :

If the angle w > wcr, then N opt
z;ÿ � e1=2ÿ; c sin w > 1. This makes

impossible the launching of waves with Nz � N opt
z;ÿ from the

vacuum, the waves that could be able to penetrate the CS
without obstacle. There is no limitation on the angle w for left-
handed polarized waves.

3.2 Wave polarization
Waves withN 2 � es; c,Ny ! 0 easily penetrating through the
CS possess rather peculiar polarization in the vicinity of this
surface. Their electric field is dominated by the constituents
Es, Ek. Using relations (2.2) and (2.8) at Ny � 0, it is found
that

Ek
Es
� Nxe

1=2
s; c

2dqe
: �3:5�

It should be recalled that the x coordinate is normal to the
magnetic field.

In order to find Nx, the dispersion relation (3.1) needs to
be rewritten in the form

N 2
x �N 2

y ÿ 4
dqe

e1=2s; c

cot wNx ÿ 2dqe

�
2dNz

e1=2s; c sin w
� s
Oe

dqe

�
� 0 :

�3:6�

For waves withNy � dNz � 0 easily penetrating the CS, from
this it follows that

Nx

dqe
� 2 cot w

e1=2s; c

�
�
4 cot2 w
es; c

� 2s
Oe

�1=2

; �3:7�

and hence

Ek
Es
� cot w�

�
cot2 w� s

2�Oe � s�
�1=2

: �3:8�
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Figure 5. Dispersion dependence for right-handed polarized waves in a

plane plasma layer near the CS as N 2 � eÿ, w < wmax: (a) dNz < 0,

(b) dNz � 0, and (c) dNz > 0.
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Figure 6. Dispersion dependence for right-handed polarized waves in a

plane plasma layer near the CS as N 2 � eÿ, w > wmax: (a) dNz < 0, and

(b) dNz > 0.
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Here, the `�' signs characterize the direction of wave
propagation.

In the particular case of w � p=2, when only left-
handed polarized waves �s � �� can penetrate the CS (see
Section 3.1), Eqn (3.8) yields Ek=E�� �2�Oe� 1��ÿ1=2 [12].
This means that waves at the CS itself are actually a
superposition of circularly polarized waves and electron
Langmuir oscillations. It has been shown in Refs [1, 6] that
the refractive index of such waves at the CS is parallel to the
magnetic field vector and equal to N � e1=2s . The electric field
of these waves should be a circularly polarized one �E � Es�
everywhere outside the CS.

It follows from relationship (3.6) that for dNz 6� 0 near the
CS the following passages to the limit occur:

Nx ! 2

�
dqe dNz

e1=2s; c sin w

�1=2

; Nk ! �������
es; c
p � dNz

sin w
:

At the CS itself, the electric field becomes purely longitudinal,
in conformity with Eqn (3.5). Such waves should be regarded
as electron Langmuir oscillations. Indeed, only electron
Langmuir oscillations have the frequency ope, regardless of
the refractive index value, and their electric field is long-
itudinal.

Thus, it may be concluded that electromagnetic waves
propagating in an inhomogeneous plasma placed in a
magnetic field undergo transformation into electron Lang-
muir oscillations at the CS [12]. Certainly the reverse
statement is true Ð that is, electron Langmuir oscillations
are transformed into electromagnetic waves as the distance
from the CS increases. It should be recalled that the CS
forms a boundary of the nontransparent region for
electromagnetic waves having Ny � 0. Wave propagation
near this boundary will be a subject of detailed analysis in
Section 4.

It follows from relationship (3.6) that at Ny � 0 the
quantity N? � jNxj vanishes completely both at the CS
�dqe � 0� and at a surface where

dqe�x� � dqe; 2 � ÿ 2Oe dNz

se1=2s; c sin w
:

In accordance with condition (3.4) [see also the original
dispersion equation (2.9)], Nx / dqe ÿ dqe; 2, and N 2 ÿ es /
N 2

x in the vicinity of this surface. Therefore, waves
approaching it turn to be circular polarized [see formula
(2.2)]. Taking into consideration Eqn (3.3), it is easy to
demonstrate that this surface is localized in the transparent
region and coincides with its boundary at w � p=2. It was
shown in Section 3.1 that the other boundary of the
nontransparent region is formed by the CS. This accounts
for drastic changes in the characteristics of waves with
Ny � 0 at w � p=2 during their passage through the
nontransparent region. These waves have the form of
potential electron Langmuir oscillations on one boundary
(CS) of the nontransparent region, and the form of
circularly polarized electromagnetic waves on its other
boundary and vice versa.

For helical waves at w > wmax, where wmax is determined by
condition (3.4), the transparent region has the form of a wave
channel near the CS (see Section 3.1). In the case of w � p=2,
helicons oscillate between the channel walls and alternately
take the form of electron Langmuir oscillations and circularly
polarized electromagnetic waves.

3.3 Waves at a small angle between the plasma density
gradient and magnetic field vector. General pattern
of wave propagation in a plane-layered plasma
near the critical surface
Wave interactions in the vicinity of a CS become more
complicated as the angle w decreases. In the first place, the
size of the nontransparent region near the CS is reduced as
w! 0, in conformity with Eqn (3.3). Simultaneously, the
`optimal' values N opt

z; s become small for both left-handed
�s � �� and right-handed �s � ÿ� polarized waves. This
enables waves of the two types with the same value of Nz 5 1
to effectively penetrate the CS.

Secondly, the plasma resonance surface comes close to the
CS and its position can be deduced from the following
considerations. Only one component Nx of the refractive
index varies during wave propagation over a plane-layered
plasma. It grows indefinitely with the approach to the plasma
resonance surface; hence, the angle y between the vectors N
and B0 tends to w. Therefore, the resonant value of plasma
density is determined by relations (2.11) and (2.12) in which
y � w. It is found using formula (2.12) that the critical and
resonance surfaces are close to each other �jqes ÿ 1j5 1� if the
condition Lw 2 5 1 is satisfied. Due to the proximity to the
plasma resonance surface, plasma waves undergo very strong
perturbation leading to a change in their behavior. Specifi-
cally, it affects the form of the dispersion dependences
obtained from Eqn (3.1). Upon removal from the CS
�qe � 1� in the qeNx-plane, they asymptotically tend to
straighten. One of them is almost vertical for w5 1:

dNx � 4

e1=2s; cw 2
dqe :

Using the system of equations (2.8) and taking into con-
sideration formula (3.8), it is found that Ek=Es � 2=w for the
respective waves; hence, they resemble electron Langmuir
oscillations. Indeed, it was assumed above thatNk4N? and
ope � o. Let us recall that electron Langmuir oscillations on
the qeNx-plane are depicted by a vertical straight line qe � 1.
We shall call the waves being discussed quasi-potential waves.

The slope of the second asymptote deduced fromEqn (3.1)
is significantly smaller, so that

dNx � ÿs 2e1=2s; c

Oe
dqe :

Polarization of the corresponding waves is close to circular,
since for them N 2 � N 2

k � es�x�.
Waves incident upon the CS and reflected from it are

associated with different asymptotes on the qeNx-plane. It
follows from the aforesaid that the reflection for w5 1 results
in a dramatic change of the wave character Ð that is,
circularly polarized waves undergo transformation into
quasi-potential ones and vice versa. It will be shown below
that as oe > o the circularly polarized waves having electric
vectors with different directions of rotation near the CS are
interconvertible via an intermediate stage of quasi-potential
waves.

In order to analyze processes taking place in the vicinity of
the CS for w5 1, it is necessary to go beyond the assumption
used to derive Eqn (3.1) Ð that is, to take into consideration
all the three constituents �E�;Ek� of the alternating electric
field. To this effect, the first equation of the simplified system
(2.8) can be used with both s values, as before. However, the
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last equation of this system should be substituted by the last
equation of the original complete system (2.1). The solvability
condition for the modified system of equations is obtained by
generalization of the dispersion relation (2.9):

�N 2
k ÿ e���N 2

k ÿ eÿ�ek �N 2
?�N 2

k ÿ 1�e? � 0 : �3:9�

As the angle w decreases, the size of the regionsS�s near the
CS, in which the processes of interest proceed, is also reduced.
It follows, in particular, from Eqns (3.1) ± (3.3). As a result,
terms / �dqe�2 taking into account the dependence of es on
the x coordinate in relation (3.9) can be omitted for w5 1.
Assuming es � es; c, e?; c � O 2

e =�O 2
e ÿ 1�, ek � 1ÿ qe � ÿdqe,

sin w � w, and cos w � 1 in the dispersion relation (3.9), it can
be given in the form

dqe � e?; c

��wNx ÿNz�2 �N 2
y

��N 2
x ÿ 1�

�N 2
x ÿ e�; c��N 2

x ÿ eÿ; c� : �3:10�

Expression (3.10) defines the dependence dqe�Nx�, the inverse
of the dispersion dependence Nx�qe�. If the components
Nz � w

�������
es; c
p

, Ny � 0, then Nx � �������
es; c
p

, and expression (3.10)
takes the form

dqe � 1

4
w 2 �������

es; c
p �Nx ÿNz=w�2

Nx ÿ �������
es; c
p : �3:11�

It is easy to show that relationship (3.11) coincides with
Eqn (3.1) if we set w5 1 in the latter and the term / �dqe�2 is
omitted.

The dependences (3.10) and (3.11) may be helpful to fully
describe the evolution of the dispersion curves on the
�qe;Nx�-plane at varying Nz. In what follows, it is analyzed
in more detail for a simpler case of waves with o > oe, when
only left-handed polarized waves can penetrate the CS.

When N k Hn0 �Ny � Nz � 0�, the waves propagating
along the density gradient and in the opposite direction have
equal jNxj values. In this case, the dispersion dependence
Nx�qe� can be obtained using Fig. 1. It is presented in Fig. 7. In
both figures, the dispersion curve corresponding to left-
handed polarized waves comes close to and touches the
vertical straight line qe � 1. Over the contact area, these
waves should be regarded as ordinary ones (see Section 2).
As the value of Nz grows, the point of contact shifts upwards
from the qe-axis. When Nz is close toN opt

z;� � w
��������
e�; c
p

, another
curve corresponding to extraordinary waves undergoes
deformation, apparent as a hump (Fig. 8a). If Nz � N opt

z;�,
the dispersion dependences in the vicinity of qe � 1 take the
form of intersecting straight lines Nx � ��������

e�; c
p

, Nx ���������
e�; c
p � 2dqe=�w 2 ��������

e�; c
p � (Fig. 8b). The joining of these

curves on the CS at Nz � N opt
z;� � e1=2�; c sin w suggests the

possibility of complete transformation of ordinary waves
into extraordinary ones (O-X transformation). A further
growth of Nz leads to the divergence of the dependences. In
this case, the point of contact with the vertical line �qe � 1� for
Nz > N opt

z;� moves away to another dispersion curve corre-
sponding to extraordinary waves and adjoining the vertical
line on the side of qe > 1 (Fig. 8c).

An enlargement of the angle w causes a decrease in the
value of Nx � e1=2s; c cos w at which the waves easily penetrate
the CS (the dispersion curves intersect at the vertical line
qe � 1). The picture obtained in the limiting case of w � p=2 at
Nz � N opt

z;�, Ny � 0 is shown in Fig. 9. It is for this
configuration, characteristic of closed traps, that the O-X-B

transformation heating was considered in Ref. [7] (see also
Section 9.2). In this scheme, the penetration of the CS by
electromagnetic waves is regarded as theO-X transformation.
An extraordinary wave resulting from this conversion does
not penetrate very deeply behind the CS �qe > 1�. After
reflection from the dense plasma region, the extraordinary
wavemoves outside and traverses the CSwithout obstacle. Its
refractive index as it crosses the CS takes a unit value (see
Section 2). In the region with qe < 1, the wave asymptotically
approaches the plasma resonance surface. The growth of the
refractive index in the vicinity of this surface makes effects
from the thermal motion of charged particles much more
significant. They promote the extension of a sequence of wave
energy conversionsÐ the extraordinarywave transforms into
the Bernstein mode (X-B transformation). Generally speak-
ing, the latter possesses no density limit. Due to this, there is a
real possibility of injecting the wave energy into a plasma
having a density much higher than the critical one. This
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Figure 7. Dispersion dependences for waves in a plane plasma layer that

propagate along the density gradient for w5 1. Arrows indicate directions

of the energy flow; the sign denoted by the superscript on S�s coincides

with the sign of Nx: (a) Oe < 1, and (b) Oe > 1.
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possibility was realized in experiments at the W7-AS
stellarator [25 ± 27].

In the case of o < oe, the critical surface is reached by
both the left-handed polarized and right-handed polarized
(helical) waves. The dependence Nx�qe� for the left-handed
polarized waves undergoes no significant change compared
with the dependence in the case of o > oe. The only
difference is the following: for o > oe, quasi-potential
waves interacting with the left-handed polarized ones are
absorbed near the plasma resonance surface; for o < oe, the
quasi-potential waves in the region with qe < 1 are trans-
formed into right-handed polarized ones upon removal from
the CS (see Figs 7a and 7b for comparison).

In the vicinity of the CS, at N 2 � es, the dispersion
dependences are universal in character (see Figs 4 ± 6).
Therefore, when considering different values of the angle w
foroe > o, we present the dispersion dependences only at the
value of N opt

z; c �
�������
es; c
p

sin w optimal for the wave penetration
through the CS.

Figure 10 illustrates characteristic dispersion dependences
for oscillations with o < oe at Nz � N opt

z;�. Figure 11 displays
changes in the dispersion dependences for waves with
Nz � N opt

z;ÿ upon an increase in the angle w. If the angle
w > wcr � arccosOÿ1e , a given constituent of the refractive
index of the waves under consideration in a vacuum exceeds
unity. As a result, the region of small plasma densities
becomes nontransparent (Fig. 11b). A further increase in w
leads to the extension of the nontransparent region. If the
angle w > wmax, the nontransparent region for right-handed
polarized waves with Nz � N opt

z;ÿ in the vicinity of the CS
contracts to a point localized at this surface �qe � 1�. For
waves with Nz 6� Nopt

z;ÿ and for w > wmax, the transparent
region becomes finite, i.e., a wave channel is formed that
adjoins the CS (see Section 3.1).
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Figure 8. Dispersion dependences for waves in a plane plasma layer as

Oe < 1, 0 < w < p=2, and Nz � Nopt
z;�: (a) dNz < 0, (b) dNz � 0, and

(c) dNz > 0.
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Figure 9. Dispersion dependences for waves in a plane plasma layer as

Oe < 1, w � p=2, and Nz � N opt
z;�.
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Figure 10. Dispersion dependences for waves in a plane plasma layer as

Oe > 1, and Nz � N opt
z;�.
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4. Transfer of electron Langmuir oscillation
energy from a magnetized plasma into a vacuum

As shown in Section 3, both left and right-handed polarized
waves approaching a CS can take the form of electron
Langmuir oscillations. Also, it was noted that, due to the
reversibility of electrodynamic equations, potential electron
Langmuir oscillations traveling away from the CS must turn
into electromagnetic waves. Let us find conditions under
which the process in question results in the outflow of the
energy of electron Langmuir oscillations into a vacuum [15].
For a plane-layered plasma, this problem may be considered
using the data presented in Section 3.

It was demonstrated in Section 3.2 that for electromag-
netic waves with Ny � 0, Nz 6� N opt

z; s being transformed into
electron Langmuir oscillations near the CS, the approximate
equality N 2

x � �Nx sin wÿNz cos w�2 � const � x is deduced.
Thus, in the qeNx-plane, the points of contact between the
dispersion curve and the vertical line qe � 1 correspond to
electron Langmuir oscillations. If the dispersion curve being
in contact with the straight line qe � 1 extends as far as the
ordinate axis on which qe � 0, the energy of electron
Langmuir oscillations flows out into a vacuum. It follows
from the discussion in Section 3 that at Ny � 0 the points of
contact exist at any Nz values.

Figure 8 shows that at frequencieso > oe, the vertical line
qe � 1 adjoins the dispersion curve for left-handed polarized
(ordinary) waves with Nz < e1=2�; c sin w, which have
Nx < e1=2�; c cos w �N < e1=2�; c� at the CS. It is such oscillations
that may pass to the vacuum. IfNz > e1=2�; c sin w, the dispersion
curve comes close to the vertical line qe � 1 from the dense
plasma side (extraordinary waves). In this dispersion curve,
density varies nonmonotonically, and it again intersects the
vertical line qe � 1 at the unit value of the total refractive
index (see Section 3.3). In the region qe < 1, the dispersion
curve asymptotically approaches the vertical line qe � qes
(plasma resonance surface). In a plane-layered plasma, the
plasma resonance surface is localized at a density value given
by condition (2.11). In the vicinity of the resonance surface,
the waves are absorbed due to a sharp increase in the
refractive index.

It should be noted that the point of contact between the
dispersion curve and the vertical line qe � 1 coincides at
Nz � sin w with their intersection point corresponding to the
unit value of the refractive index, and the dispersion curve
takes the form of a cubic parabola. At a further increase ofNz,
the points of contact and intersection points diverge again,
and the dispersion curve approaches the vertical line qe � 1 at
the point of contact from the lower-density side.

The picture of dispersion dependences on the qeNx-
plane for o < oe is much more complicated because both
ordinary (left-handed polarized) and extraordinary (right-
handed polarized) waves can approach the CS from the
low-density side (Figs 2 and 7b). The latter have
e1=2�; c sin w < Nz < e1=2ÿ; c sin w at the CS. Accordingly, electron
Langmuir oscillations with Nz< e1=2�; c sin w escape into the
vacuum via the stage of ordinary waves, and those with
e1=2�; c sin w < Nz < e1=2ÿ; c sin w via the stage of extraordinary
waves. Waves with Nz > e1=2ÿ; c sin w are absorbed near the
plasma resonance surface.

If the frequency o! oe, the maximum value of Nz at
which the energy of electron Langmuir oscillations can flow
out into the vacuum is increased without bound. In the
vacuum, however,N � 1 and the refractive index component
Nz is conserved during the wave propagation over a plane-
layered plasma. Therefore, only oscillations with Nz < 1 are
of interest. Also, it is worthy to note that for
w > wmax � arccos �2Oe ÿ 1�1=2 the transparent region for
extraordinary waves is bounded on the lower-density side Ð
the wave channel forms near the CS (see Sections 3.1 and 5).

The mechanism of outflow of the energy of electron
Langmuir oscillations into the vacuum, considered in this
section, acts only in a magnetized plasma. Indeed, the
weakening of the magnetic field has two consequences.
First, the resonance surface at which the condition qes �
�1ÿ O 2

e �=�1ÿ O 2
e cos

2 w� is fulfilled comes closer to the CS.
This must facilitate absorption of electron Langmuir
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Figure 11. Dispersion dependences for waves in a plane plasma layer as

Oe> 1, and Nz� N opt
z;ÿ: (a) w< wcr� arccosOÿ1e , (b) wcr< w < wmax�

arccos �2Oe ÿ 1�ÿ1=2, and (c) w < wmax, w � wmax.
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oscillations. Second, the entire set of values of the refractive
index of waves able to emanate from the plasma to the
vacuum tends to zero together with a value of e�; c �
�Oe=�Oe � 1��1=2.

The outflow of the energy of electron Langmuir
oscillations from a nonmagnetized plasma occurs through
a different mechanism. In the absence of a magnetic field,
the refractive index of electromagnetic waves equals N 2 � e.
In a plane-layered plasma �e � ÿx=L�, one finds N 2

x �
ÿN 2

y ÿ x=L. If the refractive index component Ny � 0, the
electromagnetic waves come very close to the CS (reflect from
the CS). Their electric field is orthogonal to the density
gradient, which makes them unable to interact with electron
Langmuir oscillations. Indeed, in the absence of dissipative
effects in a cold plasma, electron Langmuir oscillations are
localized in the plane x � 0 and have a singular electric field
(see, for instance, Ref. [28]) directed along x.

If the refractive index component Ny 6� 0, P-polarized
waves (with the magnetic field directed orthogonally to the
plane of incidence) acquire the x-component of the electric
field and may receive energy from electron Langmuir
oscillations. However, this process is hampered by the
necessity of traversing the nontransparent region (see, for
instance, Refs [1 ± 3]).

As regards S-polarized waves (with the direction of the
electric field perpendicular to the plane of incidence), they
do not interact with electron Langmuir oscillations, similar
to the waves with Ny � 0. Thus, the outflow of the energy of
electron Langmuir oscillations from a nonmagnetized
plasma must be less efficient than from a magnetized
plasma.

5. Wave channel near the critical surface

It was shown in Section 3 that if w < wmax, both left- and right-
handed polarized waves easily penetrate a CS at Nz � N opt

z; s ,
Ny � 0.However, the transparent region for the right-handed
polarized waves with `optimal'Nz,Ny values is reduced on the
lower-density side with increasing angle w (see Fig. 11). For
w5wmax, the transparent region degenerates into a surface
congruent to the critical one. The degeneracy is removed (i.e.,
a wave channel is formed) ifNz 6� Nopt

z;ÿ. The position of wave
channel boundaries can be found from the condition G > 0
[see Eqn (3.2)]. The wave channel adjoins the CS from the
lower-density side if dNz < 0, and from the higher-density
side if dNz > 0 (see Fig. 6).

Let us consider in greater detail configurations with
w � p=2, characteristic of the most popular closed magnetic
traps. In this case, polarization of waves traveling through the
wave channel has some peculiarities. It follows from the data
considered in Section 3.2 that at Ny � 0 waves on the CS are
transformed into electron Langmuir oscillations withE � Ek.
On the other hand, wave polarization is purely circular at the
other boundary where the quantityNx also vanishes, as on the
CS, and dqe 6� 0. Thus, the waves under consideration
propagating along the wave channel as potential electron
Langmuir oscillations are alternately transformed into their
opposite, i.e., electromagnetic waves with transverse circular
polarization, and vice versa.

Dispersion effects cause wave packet spreading along ray
paths, thus resulting in the generation of natural oscillations.
The spectrum of natural oscillations is determined by the
relation linking quantities o, Ny, and Nz. This relation is
easiest to derive if the problem of natural oscillations is

formulated as the problem of finding eigenvalues dNz �
Nz ÿN opt

z;ÿ at fixed o and Ny.
In a quasi-classical approximation, it is possible to use the

approximate dispersion relation (3.6) which, in the given case
of the plane plasma layer �qe�x� � 1� x=L�, takes the form

N 2
x � ÿN 2

y �
2o
oe

�
oe�oe ÿ o�

o2
dNz ÿ

�
x 0

L

�2�
;

where

x 0 � xÿ
������������������������
oe�oe ÿ o�p

o
L dNz ; dNz � Nz ÿN opt

z;ÿ :

The quantization condition�
dxNx � �2n� 1�p

leads to the following spectrum of eigenvalues:

dNz � o3=2

�2oeo�1=2�oe ÿ o�

��
oe

2o

�1=2

N 2
y �

2n� 1

L

�1=2
:

In closed traps, the plasma density is constant on nested
toroidal magnetic surfaces. Due to this, the wave channel has
the form of a toroidal layer near the CS. Its presence in the
tokamak plasma is confirmed by numerical calculations of
ray paths carried out in Ref. [17]. The ray paths computed in
this work remain concentrated within a narrow region in the
vicinity of the CS.

A simplified model of tokamak plasma was used in
Ref. [17]. It was assumed that B � �0;By;Bj�, Bj � B �
B0R0=R � B0�1ÿ �r=R0� cos y�, and the inverse `stability
factor' i � R0By=�rBj� � 3, where R0, r were the `major'
and `minor' radii, respectively, y was the poloidal angle, and
j was the toroidal angle. The density distribution along the
minor radius was given by the dependence qe�r� �
3 exp �ÿ�r=L�2�, where R0=L � 6

���
5
p

. Figure 12 gives an idea
of typical ray paths near the CS. It depicts projections of the
ray paths upon the tokamak vertical cross section (plane
j � const). The center of the Cartesian xy-coordinate system
coincides with the magnetic axis.

Due to tokamak symmetry with respect to toroidal angle
j, the quantity Nj is conserved in the ray path, whereas Nk
becomes a function of coordinates: Nk � NjR0=R.
N opt
k;ÿ � �oe=�oe ÿ o��1=2, together with the magnetic field,

equally depends on the coordinates. Within a given magnetic
surface with which the CS is associated,Nk takes a maximum
value on the inside of the torus �y � p�, and Nopt

k;ÿ on the
outside of the torus �y � 0�. The transparent region (wave
channel) in tokamaks, as in other closed traps, has the form of
a narrow toroidal layer. The results presented in Section 3.1
indicate that in the transparent region the condition qe > 1
must be satisfied for oscillations with Nk > N opt

k;ÿ, and the
condition qe < 1 for waves with Nk < N opt

k;ÿ. Therefore, if the
waves withNk slightly larger thanN opt

k;ÿ are launched from the
inner side of the torus they must be reflected, when
propagating along the magnetic surface, from the region in
which Nk becomes approximately equal to Nopt

k;ÿ. Definite
precise adjustment of the initial conditions would be needed
to ensure the penetration of these waves through the CS into
the region where qe < 1. Thus, it can be concluded that the
oscillations with Nk slightly in excess of N opt

k;ÿ must be
localized on the inner side of the torus. A similar line of
reasoning indicates that oscillations with Nk slightly smaller
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than N opt
k;ÿ are localized on the outer side of the torus. At

the same time, when there is a large difference between Nk
and N opt

k;ÿ, the ray paths wind around the full length of
the torus (Fig. 12c).

A nonequilibrium plasma may contain, for example,
electron beams traveling along the magnetic field or display
anisotropic electron velocity distribution as is frequently the

case with the electron cyclotron resonance (ECR) heating. In
this situation thewaves under considerationmay lose stability
and have a very large amplitude.

In open traps, the angle w varies from w � p=2 in the
median plane to w � 0 on the axis. With the motion along the
CS from a given plane towards the magnetic mirrors, the
angle w decreases. This causes the channel to broaden. When
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the angle w exceeds the value of wmax given by condition (3.4),
the channel `opens' and, in the thin-layer approximation
applied in Section 3, its width goes to infinity. This means
that electromagnetic waves can leave the CS and pass to the
vacuum.

The phenomenon of wave channel opening was illustrated
by calculations of the ray paths done for the plasma in an
open magnetic trap in Ref. [14]. In this calculations, the
magnetic field was given by the potential

F�r� � F0�z� ÿ r 2

4
F 000 �z� ;

where

F0�z� � 1

2

�
�R� 1�zÿ �Rÿ 1� LB

p
sin

�
p

z

LB

��
;

R � 2 ; LB � 200 :

A cylindrical coordinate system having the Z-axis coincident
with the trap axis was used in computation. It was assumed
that the plasma slab has the shape of an axially extended
ellipsoid:

qe�r� � qe�0� exp
�
ÿ
�

r

Lr

�2

ÿ
�

z

Lz

�2�
;

Lr � 10 ; Lz � 100 ; qe�0� � 2 ; Oe�0� � 2 :

Examples of ray paths localized on the outer side of the CS
are presented in Fig. 13. Both paths originate from the same
point �r � 10, z � 0:1� and at equal values of N? � 0:2
However, in the second case, the angle of wave vector
deflection from the zr-plane is equal to 0.75 �Nj 6� 0�. The
two ray paths oscillate along the radius in the vicinity of the

median surface but monotonically move away from the axis
as they approach the magnetic mirrors. This suggests an
`opening' of the wave channel. It follows from the results
presented in Section 3 that, if Nj 6� 0, an oscillating ray path
does not reach the CS. Outside the trap, i.e., in the low-density
region, the `centrifugal force' repels such a ray from the
system's axis. The value of Nk on both paths varies only
insignificantly: from Nk � 1:25 inside the plasma to Nk � 1
outside it. Projection of the wave phase velocity onto the
magnetic field direction being below the speed of light, the
Cherenkov interaction is possible between the waves under
consideration and beams of charged particles traveling
parallel to the magnetic field.

6. Coefficients of transmission
of electromagnetic waves through
the critical surface and reflections from it

6.1 General case
The analysis in Section 3 has demonstrated the presence of a
nontransparent plasma region in the vicinity of a CS. In a
quasi-classical approximation, the coefficient of transmission
through a nontransparent region �x1 < x < x2� is given by the
expression

T � exp �ÿ2g� ; �6:1�
where

g �
� x2

x1

dx ImNx�x� : �6:2�

In this case, the reflection coefficient equals

R � 1ÿ T : �6:3�

Determination of dNx from Eqn (3.1) yields [8 ± 10, 24]

g � pL

2
���
2
p
�

Oe

gs�Oe; w�
�1=2�2dN 2

z �s� Oe�
gs�Oe; w� �N 2

y

�
: �6:4�

Expression (6.4) indicates, in particular, that the vicinity of
the CS becomes nontransparent for right-handed polarized
waves �g!1� when the angle w tends to the limiting value
given by condition (3.4)

The quasi-classical approximation frequently yields
results that remain true beyond the validity range of the
model. In particular, it holds true for the problem of wave
passage through the CS. An approximate wave equation
describing this process can be derived from the system of
algebraic equations (2.8). As in the preceding sections, we
confine ourselves to the consideration of oscillations with
N 2 � es that can easily penetrate through the nontransparent
region in the vicinity of the CS. Let us take Nx ��������
es; c
p

cos w� dNx, Nz � �������
es; c
p

sin w� dNz, assume the linear
dependence �qe � 1� x=L� of the density on the x coordinate,
and substitute dNx ! ÿiq=qx. This will lead to the system of
equations

dEk
dx1
� �B� iH�Ek ÿ �sx1 � A�F ;

�6:5�
dF

dx1
� ÿB �F� x1Ek ;
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Figure 13. Ray paths of electromagnetic waves in an open-trap plasma

near the CS: (a) Nj � 0, (b) Nj � 0:2 sin 0:75; 1Ð ray path, 2ÐCS.
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where the following designations are used:

x1 � �L sin w�ÿ1=2
�

2

Oe

�1=4

x ; F � ÿi�Oe � s�ÿ1=2Es ;

A � 25=4L1=2

sin3=2 w
O 1=4

e �Oe � s�1=2�dNz � iNy cos w� ;

B �
�

L

sin w

�1=2�Oe

2

�1=4

�Ny ÿ idNz sin w� ;

H � 23=2�Oe � s�1=2 cot w :

Following Zharov [8], we introduce a new unknown
function Y through which quantities F and Ek are expressed
by the relations

F � �Y 0x1 � aY � exp
�
dx 2

1

2

�
;

Ek � �bY 0x1 � nY � exp
�
dx 2

1

2

�
:

Constants a � ÿB, b� � i�H� ������������������
H 2 � 4s
p �=2, n �

b�B � ÿ A, and d � bÿ are derived from the condition of
identity of two equations in system (6.5), taking the form

Y 00x1x1 ÿ i�a� bx1�Y 0x1 � �c� dx1�Y � 0 ; �6:6�

where

a � ÿ2i ImB ; b � i�ÿb� � bÿ� ;
c � ÿjBj2 ; d � Aÿ �b�B � � bÿB� :

By means of the substitutions

Y � exp

�
i

�
a

2
x1 �

b

4
x 2
1

��
y ;

Z �
�
b

2

�1=2

x1 �
�
2

b

�1=2�
a

2
� d

b

�

equation (6.6) is reduced to the standard parabolic cylinder
equation [29]

y 00ZZ �
�
Z 2 ÿ 2g

p
� i

�
y � 0 ; �6:7�

where the designation was used:

g � p
jbj
�
d�d� ab�

b 2
ÿ c

�
:

The linearly independent solutions of Eqn (6.7) have the form

y � Dig=p

�
�

���
2
p

exp

�
ip
4

�
Z
�
: �6:8�

In the region Z4 1, y / exp ��iZ 2=2�; accordingly, one
obtains

Es;Ek / exp

�
i

2

ÿ
H�

������������������
H 2 � 4s

p �
x 2
1

�
:

In order to relate these asymptotics to waves incident upon
the critical surface and escaping from it, the following

expression for the group velocity needs to be analyzed:

do
dNx

� ÿ qD=qNx

qD=qo
; �6:9�

where D is the left-hand side of dispersion relation (3.1).
Using Eqn (3.1), it is found that the sign of the quantity

qD=qo entering the expression for group velocity is congruent
to the sign of dqe:

o
qD
qo
� 2� 3sOe � 2O 2

e

�1� sOe�2
dqe � Oe

Oe � s
N 2
?

dqe
: �6:10�

It should be recalled that only left-handed polarized waves
�s � �1� can approach the CS for Oe < 1.

The following equation is obtained for the quantity
qD=qNx:

qD
qNx
� �G 1=2 ; �6:11�

where the discriminant G of the quadratic equation is given
by formula (3.2).

The plus sign in Eqn (6.11) corresponds to the root of
equation (3.1) with a larger modulus in the region behind the
CS �qe > 1�, and to the root with a smallermodulus in front of
it �qe < 1�. The reverse position of roots in relation to the CS
is true for the minus sign. It was noted in the analysis of
Eqn (3.1) in Section 3 that, in the case of w5 1, the root with a
larger modulus corresponds to quasi-potential waves, and
that with a smaller modulus to circularly polarized waves.
Because we consider waves withNx > 0 (for definiteness) and
Nx 4 jdNxj, it is concluded that, in this case, the dispersion is
normal for circularly polarized waves (projections of group
and phase velocities onto the x-axis have identical signs), and
abnormal for quasi-potential waves. In Fig. 7, the direction of
group velocity is shown by the arrows.

In the region behind the CS �qe > 1�, waves propagating
to the right are described by the following solution to
Eqn (6.7):

y � Dig=p

�
ÿ

���
2
p

exp

�
ip
4

�
Z
�

�
Z!ÿ1

ÿ ���
2
p

Z
�ig=p

exp

�
ÿ g
4

�
exp

�
ÿ iZ 2

2

�
: �6:12�

This solution in the front region of the CS has the asymptotics

y �
Z!ÿ1

ÿ ���
2
p

Z
�ig=p

exp

�
ÿ g
4

�
exp

�
ÿ iZ 2

2

�
ÿ

������
2p
p

G�ÿig=p� exp
�
ÿ 3g

4

�ÿ ���
2
p

Z
�ÿig=pÿ1

exp

�
iZ 2

2

�
: �6:13�

Comparison of the first term in formula (6.13) with
expression (6.12) gives transmission coefficient (6.1). When
determining the reflection coefficient, it should be taken into
account that asymptotics of incident and reflected waves are
differently expressed via the function Y. Specifically, for an
incident wave, one finds

F �
�
ÿi d

b
� a
�
exp

�
idx 2

1

2

�
Y ;

Ek �
�
ÿib d

b
� n
�
exp

�
idx 2

1

2

�
Y ;
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while for a reflected wave, the result is as follows

F � ibx1 exp
�
idx 2

1

2

�
Y ; Ek � ibbx1 exp

�
idx 2

1

2

�
Y :

Also taking into consideration the relation [29]

1��G�ÿig���2 � g
p
sinh �pg� ;

it is found that the reflection coefficient is given by relation-
ship (6.3), in accordance with the law of conservation of
energy. Certainly, the same relations (6.1) ± (6.4) characterize
waves incident upon the CS from the higher-density side.

Partial reflection of waves incident upon the CS can result
in a trebling of a radio signal reflected from the earth's
magnetosphere (see Refs [1 ± 3, 6]). The atmospheric gas
begins to be ionized at a certain altitude above the earth's
surface and plasma density increases to a threshold value with
distance from the surface. Hence, the dispersion dependences
illustrated by Figs 1 and 2 (see also Section 6.2) give a general
idea of the propagation of radio waves emitted from
terrestrial sources.

A nonpolarized radio signal in a magnetic field splits into
two components corresponding to ordinary (left-handed
polarized) and extraordinary (right-handed polarized)
waves, respectively. Hence, there must be two reflected
signals separated in time. However, if a radio signal
approaching the CS has small values of dNz � Nz ÿN opt

z; s
and Ny, only part of the right-handed polarized waves are
reflected from this surface, and a certain amount of electro-
magnetic energy is transferred through it. The geometry of
the magnetosphere is distinct from that of a plane layer.
Therefore, generally speaking, waves that penetrate the CS
and are then reflected from the dense plasma can hardly come
back to the same surface at an angle enabling them to return
to the earth. However, if the magnetic field incorporates
inhomogeneities, scattering from them may result in the
outflow of a fraction of wave energy. Due to this, the third
reflected signal may appear in the case of Oe < 1. When
Oe > 1, the picture of dispersion dependences becomes even
more complicated and the number of reflected signals can be
as large as seven [1].

6.2 Small angle between the plasma density gradient
and magnetic field vector
The dispersion curves come closest to each other (and
intersect at Nz � N opt

z; s ) in the regions designated as S�s in
Figs 8a and 10a (superscript `�' onS�s corresponds to the sign
of Nx unrelated to the sign of wave polarization denoted by
the subscript). In these regions, the wave energy `flows' from
one dispersion curve to another, which leads to a change in
polarization of waves and to their absorption if the respective
dispersion curve has vertical asymptote qe � qes (plasma
resonance). For short (quasi-classical) waves, the `flow' is
characterized by coefficients of transmission (6.1) and
reflection (6.3).

The wave energy transferred through the nontransparent
region must travel away from its border. The signs of group
velocity need to be found in order to know along which
dispersion curve in the qeNx-plane the wave energy will be
`flow'. The directions of group and phase velocities coincide
far from the critical surface, where the dispersion relations for
electromagnetic waves have the form N 2 � es. Generally

speaking, this peculiarity is sufficient to obtain a complete
picture of wave propagation in the qeNx-plane while account-
ing for the continuity of the wave energy flow. This picture is
represented in Fig. 7 where the arrows indicate directions of
the wave energy flow.

In addition, this picture is warranted by the results of the
direct group-velocity computation for another limiting case
of quasi-potential waves close to the plasma resonance state.
Waves in a cold plasma become potential when N!1. The
dispersion relation for such waves, which is equivalent to
Eqn (2.5), is bilinear in the refractive index:

D � NiNkei k � 0 : �6:14�

The use of this relation helps to find the group velocity

Vi � ÿ qD=qNi

qD=qo
/ Nkei k : �6:15�

Expression (6.15) shows that the group velocity for the
potential waves is orthogonal to the vector N [30]:

NiVi / NiNkei k � 0 : �6:16�

In the vicinity of the plasma resonance surface, the
passage to the limit occurs: Nx !1 (see Section 3.1) and,
accordingly, Vx ! 0. Therefore, the finiteness of the Nz=Nx

ratio needs to be taken into consideration in order to find Vx.
Representation of relation (6.14) for w5 1 in the form

�wNx ÿNz�2 e? �N 2
x ek � 0 �6:17�

leads to the desired result:

Vx � ÿowe?Nz

N 2
x

: �6:18�

Expression (6.18) holds true near the plasma resonance
surface.

The group velocity in the vicinity of the CS at values of the
angle w close to unity was computed in Section 6.1. All these
findings are in agreementwith thewave energy transportation
pattern depicted in Fig. 7.

Based on this picture, we shall first consider a simpler case
of o > oe, when only left-handed polarized waves can reach
the CS. Let a unit wave energy flux be incident on the CS from
the lower-density side. In the region of S�� , the part of this
flux, equalling T �� (here, the subscript characterizes polariza-
tion of oscillations s � �, and the superscript denotes the
sign of Nx), will pass through the CS and propagate behind it
in the same direction in the form of left-handed polarized
electromagnetic waves. Part of the energy (equal to 1ÿ T �� )
that penetrates the CS remains on the steeply descending
portion of the initial dispersion curve, corresponding to
quasi-potential waves that resemble electron Langmuir
oscillations. In the interaction region Sÿ� , the part of the
energy [equal to �1ÿ T �� �T ÿ� � is brought into the dispersion
curve that goes to the plasma resonance region. It is
eventually absorbed, while the remaining part
�1ÿ T �� ��1ÿ T ÿ� � moves along the initial dispersion curves
and takes the form of reflected left-handed polarized
electromagnetic waves. Thus, transmission, reflection, and
absorption coefficients of left-handed polarized waves inci-
dent upon the CS from the lower-density side are given by the
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expressions

T "� � T �� ;

R "� � �1ÿ T �� ��1ÿ T ÿ� � ; �6:19�
A "� � �1ÿ T �� �T ÿ� :

When such waves are incident on the CS from the higher-
density side, as shown in Fig. 7, oscillations fail to be reflected
(see region S�� ). At the same time, for the transmission and
absorption coefficients we obtain

T #� � T ÿ� ; �6:20�
A #� � 1ÿ T ÿ� :

In these coefficients, the up- and down-pointing arrows
indicate wave propagation along the directions of increasing
and decreasing plasma density, respectively.

The picture of phenomena taking place near the CS for
o < oe becomes evenmore complicated because of a possible
change in the direction of rotation of the electric field vector.
By consecutively applying relationships (6.1) and (6.3) to each
of the S�s regions through which the wave energy is
transferred in accordance with Fig. 7b, it is possible to derive
expressions for the coefficients that characterize wave ±
plasma interactions near the CS in this case, too. For the
frequencies o < oe, polarization of transmitted and reflected
waves may alter. This polarization is indicated by the second
subscript on the respective coefficients listed below.

Right-handed polarized waves incident from the lower-
density side are the following:

T "ÿ;ÿ � T �ÿ ;

T "ÿ;� � �1ÿ T �ÿ ��1ÿ T �� � ;
R "ÿ;� � �1ÿ T �ÿ �T �� �1ÿ T ÿ� � ; �6:21�
R "ÿ;ÿ � �1ÿ T �ÿ �T �� T ÿ� �1ÿ T ÿÿ � ;
A "ÿ � �1ÿ T �ÿ �T �� T ÿ� T ÿÿ :
Left-handed polarized waves incident from the lower-

density side are

T "�;� � T �� ;

R "�;� � �1ÿ T �� ��1ÿ T ÿ� � ; �6:22�
R "�;ÿ � �1ÿ T �� �T ÿ� �1ÿ T ÿÿ � ;
A

_"
� � �1ÿ T �ÿ �T ÿ� T ÿÿ :

Left-handed polarized waves incident from the higher-
density side are

T #�;� � T ÿ� ;

R #�;ÿ � �1ÿ T ÿ� ��1ÿ T ÿÿ � ; �6:23�
A #� � �1ÿ T ÿ� �T ÿÿ :
Right-handed polarized waves incident from the higher-

density side are

T #ÿ;ÿ � T ÿÿ ; �6:24�
A #ÿ � 1ÿ T ÿÿ :

The remaining coefficients �T "�;ÿ, R #�;�, R #�;ÿ, T #ÿ;�,
R #ÿ;�, R #ÿ;ÿ� vanish.

Coefficients T �s characterize the passage of waves
through one of the interaction regions S�s . These coefficients
were presented in Section 6.1. It should be noted that the
superscript on the coefficients T �s enters the expression
dN�z � Nz � sin w

����
es
p

[see Eqns (6.1) ± (6.4)].
The computation of coefficients T �s in the case of w5 1

can be significantly simplified. It follows from relation (3.3)
that a decrease of angle w reduces the size of the interaction
(nontransparent) region: dqe; 1 / sin w. Within this region, the
quantities es, e? may be regarded as constants for w5 1, as in
the derivation of relationship (3.10), with account for the
coordinate dependence in the expression for ek � ÿdqe �
ÿx=L alone. In this case, the term / dq 2

e is lost in the
dispersion relation (3.1) and coefficients of the respective
wave equation retain only the linear coordinate dependence.
The wave equation is obtained, as in Section 6.1, by means of
the substitution dNx ! ÿiq=qx. It ensues from the original
system of equations (2.8) that the resultant operator must be
applied to Ek�x�:�

w 2 q2

qx 2
� 2i

q
qx

�
2x

Le1=2s; c

� w dNz

�
ÿ �dNz�2 ÿN 2

y

�
Ek � 0 :

�6:25�
By virtue of the linear coordinate dependence of the

coefficients of this equation, it is convenient to solve it by
the complex Fourier transform method (see Appendix 1).
Analysis of the solutions confirms the validity of the
expressions (6.1) and (6.3) for transmission and reflection
coefficients, respectively.

Coefficients (6.18) ± (6.23) were obtained by the consecu-
tive application of relationships (6.1) ± (6.3) that characterize
the wave passage through the interaction regions S�s . Mean-
while, a more straightforward approach is feasible for w5 1,
in which a unified wave equation is used that takes into
consideration the entire sequence of processes proceeding in
the vicinity of both the CS and the plasma resonance surface.
Such an equation is derived by means of the substitution
Nx ! ÿiq=qx in the dispersion relation (3.9):��

q2

qx 2
� e�; c

��
q2

qx 2
� eÿ; c

�
x

ÿ e?; c L
��

w
q
qx
ÿ iNz

�2

ÿN 2
y

��
q2

qx 2
� 1

��
Ek � 0 :

�6:26�
Equation (6.26) is a singular one. The peculiarity at the

point xs � e?; c Lw 2 corresponds to the plasma resonance. The
position of this point is given by Eqn (2.5) in which y � w
should be set (see Section 3.3). To continue the solution
through this point, we use the by-pass rule proposed by
Landau that effectively takes into account the dissipation in
the vicinity of the resonant point. In accordance with the
general recipe, a minor positive imaginary part is added to the
frequency in the equation ek�o; x� � e?w 2 � 0 that defines the
location of the singular point. Because in this case
do2

pe=dx > 0, the singular point shifts in the complex plane
upward from the real axis. It means that in the generalization
of the solution to complex values, the singular point must be
by-passed from below. Analysis of the solutions obtained
with the aid of the Landau rule confirms the foregoing results
(see Appendix 2).

It is worth noting that expressions (6.20) and (6.24) are
similar to the known Budden coefficients that characterize
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resonant interactions between electromagnetic waves incident
upon the region of cyclotron resonant interaction from the
higher-magnetic-field side (magnetic beach configuration)
(see, for instance, Ref. [18]). These are right-handed polar-
ized waves and their refractive index is given by the expression

N 2 � 1ÿ o2
pe

o�oÿ oe� :

The wavelength decreases upon approaching the cyclo-
tron resonance point, which accounts for an intense absorp-
tion of the waves and the absence of their reflection. The
passage of waves through the nontransparent region in the
vicinity of the cyclotron resonance point, as in the case under
consideration, is due to tunnel transition (see formula (6.1)
and Refs [1, 4, 5]). The coordinate dependence of the
refractive index in the vicinity of the cyclotron resonance
point is presented in Fig. 14. In the case of circularly polarized
waves incident upon the CS, the absorption is due to the
plasma resonance (see vertical asymptotes of the dispersion
dependences in Figs 1, 2, and 7).

The processes associated with the incidence of electro-
magnetic waves on the CS are more complex by virtue of their
asymmetry with respect to the sign of Nx. If Oe > 1, the
picture is further complicated by the presence of two wave
branches that may propagate near the CS. For Oe < 1, only
left-handed polarized waves manifest themselves in the
vicinity of the CS. In the case of unessential asymmetry,
when T �� � T ÿ� , coefficients (6.19) characterizing the trans-
mission of left-handed polarized waves through the CS as
they come from the lower-density side are also similar in form
with the Budden coefficients.

7. Ray paths near the critical surface

In the preceding sections we have considered plane waves. As
a rule, their length is small compared with the characteristic
spatial scale of the plasma. Such waves are usually fed to the
plasma in the form of transversely restricted wave beams. The
paths of the beams can be found in the geometric optics
approximation.

The system of geometric optics equations has the form

_r � ÿ qD
qN

�
qD
qo

�ÿ1
;

�7:1�
_N � qD

qr

�
qD
qo

�ÿ1
:

Since we are interested in the shape of ray paths alone, time t
may be replaced by any other quantity t 0 characterizing
distance along the path. Defining the new `time' t 0 by the
relation dt 0=dt � qD

ÿ
r�t�;N�t��=qo, the system of equations

(7.1) is simplified and takes the form

_r � ÿ qD
qN

;
�7:2�

_N � qD
qr

:

The refractive index in the vicinity of CS is a sharply
varying function of density (see Sections 2 and 5). Therefore,
especially strong refraction of waves and the appearance of
peculiarities in the ray paths should be expected in the given
region. These peculiarities are most clearly manifest in the ray
paths lying in the x0z-plane �Ny � 0�.

Taking advantage of the free choice of a concrete
representation of the dispersion relation, it can be written
down in the form

dNx ÿ F �x; dNz� � 0 : �7:3�
Here, the function F �x; dNz� is given by relations (3.1),(3.2):

F �x; dNz� � 2dqee
ÿ1=2
s; c cos w� dNz cos w sin w� G 1=2�x; dNz�

sin2 w
;

�7:4�

where dqe � x=L.
It follows from formula (7.4) that the ray path equation on

the xz-plane in the vicinity of CS takes the form

dz
dx
� ÿ qF

q�dNz� � ÿ cot w� 2x

Le1=2s; cG 1=2�x; dNz� sin w
: �7:5�

The ray path at Ny � 0 can immediately adjoin the CS.
Close to it �dqe 5 dNz�, Eqn (7.5) leads to

z � ÿx cot w� 2

3

�
x 3

L
�������
es; c
p

dNz sin
3 w

�1=2

: �7:6�

It should be emphasized that the transparent region
borders the CS on the higher-density side �x > 0� as
dNz > 0, and on the lower-density side �x < 0� as
dNz < 0; thus, the sign of x is coincided with the sign of
dNz in this region. Taking into consideration relations z �
x cos w� z sin w, x � x sin w� z cos w, the expression (7.6) is
reduced to

z � � 2

3
sin w

�
x 3

L
�������
es; c
p

dNz

�1=2

: �7:7�

Expression (7.7) indicates that ray paths display cusps
(Spitzen) as they approach the CS; moreover, they approach
the CS and retreat from it transversely to the magnetic field
(Fig. 15) (see also Refs [1, 4, 5]). This peculiarity is related to
the transformation of electromagnetic waves into electron
Langmuir oscillations with N? � 0 at the CS. In a cold
plasma, electron Langmuir oscillations possesses zero group
velocity. Due to this, ray paths of the waves under considera-
tion, being orthogonal to the magnetic field vector, become
highly pointed when reflected from the CS.

Orthogonality of group and phase velocities is a char-
acteristic property of potential waves in a cold magnetized

1

1

oe=o

N2

Figure 14. Refractive index of right-handed polarized waves propagating

along a nonuniform magnetic field near the ECR point.
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plasma [see relationship (6.16)]. Waves also become potential
in the vicinity of the plasma resonance surface where their
refractive index grows ad infinitum. Ray paths in this region
were considered by Piliya and Fedorov [30]. It was shown that
these paths, like those near the CS, are described by
semicubical parabolas. In addition, it should be noted that
characteristics of the Euler ±Tricomi equation are similarly
sharp-pointed at the surface where the gas flow rate comes to
exceed the speed of sound (see, for instance, Ref. [31]).

Near the other boundary of the nontransparent region,
namely

x1 � L dqe; 1 � ÿ 2L sin w dNzO 2
e�������

es; c
p

gs�Oe; w� ;

equation (7.5) yields

z � const� 4O 2
e

gs�Oe; w�e 3=4s; c

��x1 ÿ x� dNzL

sin w

�1=2

: �7:8�

A bundle of ray paths reflected from this boundary gives rise
to an ordinary caustic surface (see Fig. 15).

The waves of interest having Ny � 0, if dNz � 0, com-
pletely penetrate through the CS (transmission coefficient
equals unity, reflection coefficient is zero). Accordingly, it
follows from expressions (7.5) and (7.6) that the ray path
looks like a straight line that traverses the CS.

In the case of w � p=2 �x � x, z � z�, expression (7.4) may
be used to derive a rather compact equation describing ray
paths on both sides of the nontransparent region [12]:

z � ��2Oe�1=2 1��������
e�; c
p

� ��������������������
x�x� x0�

p
ÿ sgn x

x0
2

ln

�jx� x0=2j �
��������������������
x�x� x0�

p
jx0=2j

��
; �7:9�

where x0 � 2LOe dNze
ÿ1=2
�; c . Here, the constant of integration

is chosen in such a way that the reflected and incident rays, to
which different signs in front of the right-hand side of
Eqn (7.9) correspond, coincide at the point of reflection
from the nontransparent region, i.e., at x � 0 or x � ÿx0.

For waves that traverse theCSwithout obstacle,N k B0 at
the CS itself. When the angle w � p=2, as is typical of closed
traps, the wave vector of such waves is orthogonal to Hn0. In
this situation, the passage of an electromagnetic ray through
the CS might appear paradoxical. Indeed, components of the
wave vector enter the quantity D (through which the group
velocity is expressed) in combinations N 2

?, N
2
k [see relation-

ships (2.3), (2.4)]. Therefore, at a CS where N? � 0,
V? / qD=qN? / N? should be expected to vanish too.
However, it follows from relations (3.7) and (6.10) that the
quantity qD=qo at the CS also equals zero. As a result, the
transverse constituent of the group velocity remains finite.
The vanishing of qD=qo suggests the merging of dependences
o�N� corresponding to ordinary and extraordinary waves on
the critical surface at N 2

k � e�; c (see Fig. 8). Indeed, in this
case it follows from Eqn (2.9) that in the vicinity of the critical
surface one finds

oÿ ope � � jN?j
2

�
oeope

2

�1=2

;

where the upper sign and the lower sign correspond to
ordinary and extraordinary waves, respectively. The latter
expression indicates that the transverse component of the
group velocity is nonvanishing even at N? � 0.

Complete penetration of microwave radiation through
the CS takes place when the equalityNz � Nopt

z;s strictly obeys.
The transmission coefficient obtained from the analysis of
the wave equation is a smooth analytical function of the
differenceNz ÿN opt

z; s . In the case of minor deviations from the
optimal value, the coefficient is only slightly different from
unity (see Section 6). Ray paths obtained in the approxima-
tion of geometric optics behave differently. As shown earlier
in this review, any arbitrarily small deflection from a path for
wave with Nz � Nopt

z;s traversing the CS is sufficient to cause
oscillations to reflect from this surface �Nz < N opt

z � or just
before it �Nz > N opt

z �.
To conclude this section, effects of the thermal electron

motion on ray paths need to be considered. Such effects in a
nonrelativistic plasma are meaningful only in a narrow region
adjacent to the CS, where wave characteristics are similar to
those of electron Langmuir oscillations. In this region,
thermal effects can be taken into consideration by the
redefinition ek ! ek ÿ 3qeN

2
k b

2
e , where be � �Te=me�1=2=c.

It is found from condition (2.9) that

o � ope ÿ ope0e?; c
2

N 2
?�N 2

k ÿ 1�
�N 2
k ÿ e�; c��N 2

k ÿ eÿ; c� �
3ope0

2
N 2
k b

2
e ;

where ope � ope0�1� x=L�, and ope0 � o. This expression
for the frequency indicates that the CS is displaced towards
the lower-density side under the influence of thermal electron
motion.

The use of the geometrical optics equation (7.1) leads to

_Nx � A ;

_x � BNx ; �7:10�
_z � C1N

2
x � C2 ;

3

12
x

z

b

3

1
2

x

z

a

Figure 15. Ray paths of waves incident upon the CS (a) from the lower-

density side, and (b) from the higher-density side; 1 Ð Nz < N opt
z; s , 2 Ð

Nz � Nopt
z; s , and 3Ð Nz > Nopt

z; s .
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where the following designations are used:

A � ÿo sin w
L

; B �
�N 2
k ÿ 1�oe?; c

�N 2
k ÿ e�; c��N 2

k ÿ eÿ; c�
;

C1 �
Nk

�N 2
k ÿ e�; c�2�N 2

k ÿ eÿ; c�2
�
�N 2
k ÿ 1�2 � o2

o2
e ÿ o2

�
oe?; c ;

C2 � 3oNkb
2
e ;

here, changes in the longitudinal constituent of the refractive
index are disregarded, which is relevant at a small distance
from the CS.

Equations (7.10) yield

Nx � At ;

x � Bt 2

2
;

z � C1t
3

3
� C2t :

Ray paths at the XZ surface take the form

z � �C1

3

�
2x

B

�3=2

� C2

�
2x

B

�1=2

:

At C2 � 0, i.e., in a cold plasma, ray paths are actually
semicubical parabolas (see above). Their pointed shape is due
to the vanishing group velocity of electron Langmuir
oscillations. The group velocity becomes nonzero under the
effect of thermal electron motion. As a result, the pointed ray
paths are smoothed and, if constantsC1 andC2 have different
signs, the paths make loops in the vicinity of the CS.

8. Wave beams near the critical surface

For the microwave heating of the plasma, electromagnetic
waves are fed in the form of wave beams, with the intensity
distribution over the cross section being frequently close to a
Gaussian one. The penetration of Gaussian wave beams
through a CS in the most interesting case of w � p=2 has
been considered in Ref. [12].

The ray approximation used in Section 7 is unfit near the
wave reflection points (i.e., at the border of the nontranspar-
ent region). The corresponding segments of the ray paths in
Fig. 15 must be omitted, and the relationship between the ray
paths of incident waves and those of transmitted and reflected
waves must be found by solving the wave equation. For
solving this problem in Ref. [12], ray paths have been
considered as the limit of wave packet (wave beam) paths at
the ratio of the beam size to the characteristic size of
inhomogeneity tending to zero. Certainly, the same
approach applies to the ray paths of waves transmitted
through the nontransparent region.

Bearing inmind the results of Ref. [12], we shall consider a
Gaussian wave beam incident on the CS from the lower-
density side �x < 0�:

E�r� �
�
dNz F �Nz�E�r;Nz� ; �8:1�

where the following designations are used:

F �Nz� � exp
�ÿ�Nz ÿNz0�2l 2

�
; E�r;Nz� � exp

�
iF�r;Nz�

�
;

F�r;Nz� �
� x

dx 0Nx�x 0;Nz� � yNy � zNz :

The unessential slowly varying pre-exponential factor in the
expression for E�r;Nz� can be discarded.

Far from the critical surface �jx=x0j4 1�, using the
relation (3.6) it can be found that

Nx � ÿ x

a 2
ÿ A

2a
� 1

2x

�
A2

4
� B 2

1

�
; �8:2�

hence, one can arrive at

F�r;Nz� � ÿ x 2

2a 2
ÿ Ax

2a
� 1

2

�
A2

4
� B 2

1

�
lnx

� yNy � zNz � const �Nz� ; �8:3�
where a � L1=2�Oe=2�1=4 and the coefficients

A � 25=4O 3=4
e L1=2 dNz

e1=2�; c
; B1 � ReB � O 1=4

e L1=2Ny

21=4

(see Section 6.1). In the relation (8.2), the sign of Nx has been
taken from the conditionVgr; x > 0. The value of the constant
entering Eqn (8.3) may be set equal to const �Nz� �
ÿ�A2=4� B 2

1 � ln �ÿ4jx0j�=2. Due to this choice, the path of
the wave beam whose phase is given by expression (8.3) (see
below) coincides with the asymptotics of formula (7.9) for
jx=x0j4 1. At the same time, this choice facilitates analysis of
reflected beam paths.

The spatial dependence of an incident wave beam is found
bymeans of computation of integral (8.1) using the stationary
phase method:

E�r� �
���
p
p
l0

exp

�
iF�r;Nz0� ÿ 1

4l 20

�
F 0Nz0
�r;Nz0�

�2�
; �8:4�

where the designations were used:

l 20 � l 2 ÿ iA2 ln

���� 4xx0
���� ;

F 0Nz
�r;Nz� � 1

2
A1

�
ÿ x

a
� A

2
ln

����4xx0
������ z ;

A1 � qA
qNz
� 25=4

Nz0

�
oe

o

�3=4

L1=2 ; A2 � 1

8
A2

1 :

It was assumed in relation (8.4) that jx=x0j4 1, and the
expression for F 0Nz

�r;Nz� is logarithmically accurate in this
parameter.

The ray paths considered in Section 7 are naturally
associated with the central line of wave beams in which
F 0Nz
�r� � 0. It is easy to see that the wave-beam central line

described by expression (8.4) is coincident with the asympto-
tics of formula (7.9) for jx=x0j4 1:

z � A1

2

�
xÿ A

2
ln

���� 4xx0
����� : �8:5�

Simple analytical expressions for a transmitted wave
beam can be obtained in two limiting cases: l4L1=2 (wide
wave beam), and l5L1=2 (narrow wave beam). A wide beam
behind the CS is described by expression (8.5) with an
additional factor exp

�ÿg�Nz0�
�

that takes into account
efficiency of the tunnel transition. Such a beam is able to
completely penetrate through the CS if properly oriented�
g�Nz0�5 1

�
.
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A narrow beam in ordinary space becomes wider in the
wavenumber space. The critical surface functions as a filter
that cuts out a component withNz � Nc from such a beam. In
this case, factor exp

�ÿg�Nz0�
�
determining the transmission

coefficient of the broadened wave beam is replaced by
exp
�ÿ�Nz0 ÿNopt

z;��2l 2
�
. Indeed, saddle-point integration in

expression (8.1) gives

E�r� �
���
p
p
l1

exp

�
ÿ�Nz0 ÿN opt

z;��2l 2 � iF�r;Nopt
z;��

ÿ 1

4l 21

�
F 0

N opt
z;�
�r;Nopt

z;��
�2�

; �8:6�

where

l 21 �
�
p
4
ÿ i ln

���� 4xx0
�����A2 ; F 0

N opt
z;�
�r;N opt

z;�� � ÿ
1

2a
�A1x� z� :

For the effective wave-beam transmission coefficient, it is
easy to obtain an expression that, unlike formula (6.1), holds
for an arbitrary relationship between l and L1=2 [9]:

Tb � f 1=2 exp

�
ÿp
�
fA2�Nz0�

4
� B 2

��
; �8:7�

where f � l 2=�l 2 � pA2�. The quantity

A2 � L

21=2�N opt
z;��2

�
oe

o

�3=2

characterizes the width of the radio window for the critical
surface in the wavenumber space. Expression (8.7) coincides
with formula (6.1) for l4L1=2, when f � 1.

It follows from the foregoing that for l4L1=2 (wide
beam), the ray paths of transmitted and incident wave
beams are described by one and the same expression (8.5).

Characteristic ray paths for different values of A / dNz

are displayed in Fig. 16. They are broken at a certain distance
from the CS, because the proximity to this surface makes
invalid both the quasi-classical approximation and the
asymptotic representations (8.3), (8.4), (6.12), and (6.13)
that were taken into account to find the spatial dependence
of wave beams.

In the case of a narrow wave beam, its component that
penetrates beyond the CS travels further along the straight
line (8.5) with A � 0.

Let us now find the ray paths of reflected wave beams. In
order to relate a reflected wave beam to the incident one,
expression (6.13), which describes asymptotics of the incident
and reflected plane waves, should be used. It was shown
above that the path of an incident wave beam is given by
Eqn (7.9) at a definite value of the factor entering the first
term of expression (6.13) defined accurate to this factor. The
same factor must be present in the second term describing the
reflected wave. To simplify the computation it is assumed that
the condition g4 1 is met, and the following asymptotic
representation is invoked:

G�g� �
g4 1

exp
�
g ln �g�� :

With this inmind, the phase of the reflectedwave is reduced to
expression (8.3) in which the signs of the first three terms are
changed to the opposite:

F�r;Nz� � x 2

2a 2
� Ax

2a
ÿ 1

2

�
A2

4
� B 2

1

�
ln

���� 4xx0
����� yNy � zNz :

Using the same procedure to calculate the reflected wave
beam, it is found that its path, like that of the incident beam
above, coincides with the asymptotics of Eqn (7.9), namely

z � ÿA1

2

�
x

a
ÿ A

2
ln

���� 4xx0
����� :

2
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x0

1
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1
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1
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x b
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Figure 16. Paths of wave beams incident on the CS from the lower-density

side: (a)Nz < N opt
z;�, (b)Nz � N opt

z;�, and (c)Nz > Nopt
z;�. The dashed line is a

part of the `path' to which the quasi-classical approximation is inapplic-

able: 1 Ð incident beam path, 2 Ð transmitted beam path, and 3 Ð

reflected beam path.
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The knowledge of asymptotics allows the entire ray path
to be reconstructed. It turns out that the incident and reflected
beams are interconvertible at a cusp x � 0, z � 0 or at the
vertex of the `parabolic' trajectory �x � ÿx0, z � 0� for
dNz < 0 and dNz > 0, respectively. The merging of the paths
is due to taking into account the factor Gÿ1�ÿig=p� in the
term of Eqn (6.13) that describes the reflected wave. This
factor defines the shift of the reflected ray path relative to the
incident one as a whole along the Z-axis. Also, its considera-
tion brings the ray path of the transmitted waves closest to the
combined ray path of the incident and reflected waves (see
Fig. 16).

Upon reflection of a narrow wave beam �l4L1=2� from
the CS, it loses part of the Fourier spectrum (region
Nz � N opt

z;�). As a result, the reflected beam becomes non-
Gaussian and its spatial structure cannot be described by
expressions of the form (8.4) or (8.6). The reflected waves
broaden up to a size on the order ofL1=2. Indeed, cutting out a
part of the Fourier spectrum of the reflected beam may be
interpreted as the formation of another beam having a
narrower spectrum, and hence such a beam becomes wider
in ordinary space. The phase of the additional reflected beam
is p-shifted with respect to the phase of the main beam.

9. Peculiarities of dense plasma microwave
heating in magnetic traps

9.1 Open traps
The heating of plasma with microwave radiation is widely
employed in current thermonuclear research. At a plasma
density above a critical value, there appears a problem for the
injectedmicrowaves to penetrate the CS. It was pointed out in
Sections 3 and 6 that oscillations pass through the CS without
obstacle if their wave vector is parallel to the magnetic field
vector. Waves called here left-handed polarized waves
(ordinary in the region of qe < 1, and extraordinary in the
region qe > 1) emerge at any angle w betweenHn0 andB0. For
right-handed polarized waves (extraordinary in the region
with qe < 1, and helicons in the region with qe > 1), this angle
must be smaller than wmax given by the condition (3.4). This
accounts for different scenarios of dense plasma heating with
microwave radiation in open and closed traps.

Right-handed polarized waves actively interact with the
cyclotron electron rotation and their transparent region on
the stronger-magnetic-field side extends as far as the cyclo-
tron resonance surface regardless of plasma density. Due to
this, right-handed polarized waves can be naturally used for
ECR heating by the magnetic beach method. The required
configurations of the magnetic field normally apply to open
magnetic traps. Angle w is small �w5 1� near the mirrors,
therefore a wave input through them allows the condition
w < wmax to be satisfied.

In closed traps and in the central sections of ambipolar
traps, plasma density varies across the magnetic field, when
w � p=2. In these cases, only left-handed polarized waves can
penetrate the CS, and the O-X-B transformation scheme may
be employed for the microwave heating [7] (see Section 6.3).

Let us consider first the heating of a dense plasma in open
traps by the magnetic beach method. When the microwave
energy is fed through the magnetic mirrors, the optimal ray
path is that coincident with the trap axis on which the angle
w � 0. The magnetic beach concept implies that the waves
must come to the cyclotron resonance surface from the

higher-magnetic-field side. It will be shown below that, in
this region, ray paths close to the axis are unstable because
refraction due to plasma inhomogeneity results in the
exponential enhancement of minor path deviations. In the
end, the ray path is repelled towards the rarefied plasma
region at the trap periphery.

Let us consider this phenomenon in more details. Plasma
density in open traps usually changes more abruptly than a
magnetic field. Therefore, a rough assumption of B0�r� �
const is relevant and only radial plasma inhomogeneity
(a fall with distance from the axis) may be taken into account.
Helical waves are described by the approximate dispersion
relation (2.13). Assuming the angle between the wave vector
and the magnetic field vector to be sufficiently small �y5 1�,
this dispersion relation may be represented as

D � N 2
z �1ÿ Oe� �N 2

r

�
1ÿ Oe

2

�
� qe0 ÿ r 2qe1 � 0 : �9:1�

Here, the coordinate dependence of plasma density is chosen
in the form n0�r� � n0�0� ÿ r 2n01, and accordingly qe�r� �
qe0 ÿ r 2qe1.

Geometric optics equations (7.2) suggest that the quantity
Dmay be regarded as a Hamiltonian conserved along the ray
path. In relation (9.1), the rth component of the refractive
index plays the role of momentum, and the quantity 2ÿ Oe

the role of `particle mass'. The effective potential is `humped'
in shape: U�r� � constÿ r 2qe1. In the ECR region, Oe � 1.
For this reason, the `mass' becomes positive as oscillations
approach this region. This analogy indicates that minor ray-
path deflections from the trap axis must grow.

The above considerations were verified by the computa-
tion of ray paths [32] based on the complete dispersion
relation (2.3) or (2.4). In these computations, the magnetic
field was given by the magnetic potential (see Section 5 for
comparison)

F�r� � F0�z� ÿ r 2

4
F 000 �z� �

r 4

64
F 00000 �z� ; �9:2�

where

F0�z� � 1

2

�
�R� 1�zÿ �Rÿ 1� LB

p
sin

�
p

z

LB

��
;

R � 3 ; LB � 170 :

The coordinate dependence of plasma density was chosen in
the form

n0�r� � n0�0� exp
�
ÿ
�

r

Ln

�2�
; Ln � 65 :

As elsewhere in this review, all quantities with the dimen-
sion of length were normalized to c=o. It was assumed that
oe�0� � o, and o2

pe�0� � 10o2. These values roughly corre-
spond to the parameters of the open OME trap projected at
the Russian Research Centre `Kurchatov Institute' (Mos-
cow) [34]. It is planned to use this trap for studying
stabilization of plasma flute instability with the help of a
divertor.

A bundle of `optimal' ray paths that cross the CS at
N? � 0 is depicted in Fig. 17. It can be seen that the ray paths
go away from the axis, and vectors N and Vgr turn in the
transverse direction as the distance increases.
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It is widely believed that the waves under consideration
(helicons or whistlers) are closely associated with the lines of
force of the magnetic field that serve as specific waveguides.
This belief is to a certain degree warranted for homogeneous
plasmas [4]. However, the analysis has demonstrated that ray
paths in an inhomogeneous plasma may significantly deflect
from the lines of force of the magnetic field. The negative
effect of refraction decreases in the case of flattened radial
plasma density profiles.

In thin open traps extended along the magnetic field that
changes at distances significantly greater than the plasma
cross-sectional dimension, effects responsible for the spread-
ing of wave packets traveling along the ray paths produce
radial natural oscillations. The radial distribution of electro-
magnetic fields and the eigenvalue of the longitudinal
wavenumber are adjusted adiabatically according to the
parameters of the system (magnetic field, plasma density). In
this situation, refraction effects cause waves to contract to the
plasma column periphery where the CS is positioned [33].

9.2 Closed traps
Plasma density in closed traps remains constant along the
lines of forces of the magnetic field �w � p=2�. Only ordinary
waves can reach the CS in such systems. A characteristic
picture of dispersion dependences for waves with Nz � N opt

z;�
in a plane plasma layer at w � p=2 is depicted in Fig. 9. It
follows from this figure that ordinary waves with Nz � N opt

z;�
arriving at the CS are transformed into extraordinary ones
(O-X transformation). The latter do not penetrate very deeply
behind the CS �max qe � 1� Oe�. When reflected from the
dense plasma region, they come up to the plasma (upper
hybrid) resonance surface, the position of which is defined by
the condition o2

pe � o2 ÿ o2
e . In the vicinity of this surface,

the extraordinary waves are transformed into potential
Bernstein waves (X-B transformation) that penetrate into
plasma of arbitrarily high density and are eventually
absorbed by it.

Part of a ray path, from the launching point in the
vacuum to the plasma resonance surface, can be considered
in the cold plasma approximation. However, the description
of both the Bernstein waves and the process of their
transformation from extraordinary waves requires that
effects of the thermal electron motion be fully taken into
account. This makes the dispersion relation exceptionally
complicated. The relation of interest can be significantly
simplified when bearing in mind that the Bernstein waves

are potential in character (their refractive index is much
larger than unity) and propagate almost transversely to the
magnetic field �y � p=2�. Due to this reasons, for the
description of the Bernstein waves it is sufficient to modify
the coefficient with the largest (fourth) power of N? in the
dispersion relation (2.4) for cold plasma:

e? ! eB � 1ÿ
X
n� 1

o2
pe

o2 ÿ n 2o2
e

2n 2

x
In�x� exp �ÿx� ;

where x � k 2
?r

2
e , and re �

�������������
Te=me

p
=oe. Then, the dispersion

relation takes the form

D � N 4
?eB �N 2

?
�
N 2
k �e? � ek� ÿ 2e?ek ÿ e? � ek

�
� ek�N 2

k ÿ e���N 2
k ÿ eÿ� � 0 : �9:3�

The effect of ECR absorption of waves with the frequency
o � oe can be included in the consideration by the substitu-
tion

1

oÿ oe
! ÿ i

���
p
p

kkvTe
W

�
oÿ oe

kkvTe

�
: �9:4�

Here, it is assumed that the argument of the function W is
much larger than unity, so that

W�z� � i���
p
p

z
� exp �ÿz 2� :

Indeed, in the opposite case �z4 1�, the imaginary part ofW
would be comparable to the real one, and the characteristic
attenuation length to the wavelength. In this case, it makes no
sense to calculate the ray path.

Ray paths for this heating scheme have been computed
for a tokamak [35], stellarator [36], and the projected
EPSILON closed trap [34]. The last device is a set of open
traps linked by curvilinear magnetic field areas. Their
magnetic field can be described by the same expression
(7.9) that was used earlier. For the purpose of the
EPSILON project, the value of LB � 440 in this expression
was altered. Also, the last term proportional to r 4 in the
expression for the magnetic potential (9.2) was omitted,
taking into consideration the longitudinal extension of the
system. Unlike isolated open traps, the EPSILON system
possesses constant plasma density along the lines of force of
the magnetic field, similar to any other closed trap. With
this in mind, the plasma density distribution was expressed
via the vector potential

n0�r� � n0�0� exp
�
ÿ rAy

L2
n

�
;

where

Ay � r

2

�
F 00 ÿ

r 2

8
F 0000

�
; A � �0;Ay; 0� ; Ln � 20 :

Figure 18 shows ray paths in the case when the central
density in the trap exceeds the critical one by a factor of 10. It
was supposed that oe=o � 0:75 in the center of the trap. The
majority of calculations were carried out on the assumption
that b � �vTe=c�2 � 3� 10ÿ2, i.e., corresponds to a tempera-
ture of T � 7:5 keV.

0 40

40

80

120

80 120 160 200 z

r

o � oce

Figure 17. Ray paths of waves with Nz � Nopt
z;ÿ passing through the CS in

an open-trap plasma.
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The ray paths obtained with the use of relation (9.3) are in
excellent agreement with the wave propagation pattern
described in the preceding paragraphs and illustrated in
Fig. 18. Oscillations with Nk � Nopt

k;� after penetrating the
CS are reflected from the dense plasma, then travel outside
and traverse the CS again at a unit value of the refractive
index (see Section 2). In the vicinity of the upper hybrid
(plasma) resonance, extraordinary electromagnetic waves are
transformed into potential Bernstein waves with an abrupt
rise in the refractive index. The ray paths in the vicinity of the
plasma resonance surface are reminiscent of those in the
vicinity of the CS. It is small wonder when one bears in
mind that in either situation the waves are close to potential
ones. The behavior of ray paths near the plasma resonance
surface was considered by Piliya and Fedorov [30]. The
authors showed that the ray paths of potential waves
reflected from the plasma resonance surface form cusps.
Precisely such cusps can be seen in the ray paths depicted in
Fig. 18 (see also Refs [27, 33 ± 36]). In reality, however, ray
paths in the vicinity of the reflection point make narrow loops
indistinguishable in Fig. 18 because of its small scale. It is
conjectured in Ref. [30] that the loops result from wave
nonpotentiality.

The Bernstein waves thus formed oscillate between the
UHR surfaces until they are fully absorbed. The ray paths
shown in Fig. 18 break when their optical thickness amounts
to t � 2:5, where t � � ds K, K is the imaginary part of the
refractive index, and s is the distance along the ray. An
exclusion is ray paths localized near the central plane of the
trap. The longitudinal refractive index in such paths is small,
therefore they make a large number of radial oscillations
prior to being absorbed. In order to avoid filling the central
part of the figure with repeatedly intersecting curves, we
interrupted each respective ray path after a single radial
oscillation.

The absorption strongly (exponentially) depends on the
longitudinal refractive index [see Eqn (9.4)]. The growth of
plasma density in the ray path leads to the enhancement of
the transverse refractive index of the Bernstein wave. The
longitudinal component of the refractive index changes
thanks to a turn of the wave vector. The longitudinal
inhomogeneity of the system is responsible for the refrac-
tion. Plasma density in closed traps is constant along the
lines of force of the magnetic field, and only the magnetic
field changes in the longitudinal direction. In the EPSILON
system, the field grows from the median plane (straight line
z � 0 in Fig. 18) towards the magnetic mirrors. This

circumstance and the proximity to the ECR surface account
for the enhancement of wave absorption intensity with
distance from the median plane. As a result, an input of
microwave radiation near the mirrors results in the release of
wave energy near the CS. This implies that the waves need to
be injected not far from the median plane to ensure heating
of the entire plasma column.

The magnetic field in tokamaks varies in the long-
itudinal direction due to rotational transform, while the
quantity jB0HB0j turns to zero in the equatorial plane and
increases with distance from this plane. That is why the
waves launched in this plane most deeply penetrate into
tokamak plasmas [35].

By virtue of the reversibility of theMaxwell equations, the
sequence of wave energy conversions inherent in the B-X-O
transformation is made possible in plasma; and this sequence
is reverse to that accompanying the O-X-B scheme of plasma
heating. Potential Bernstein waves actively interact with the
plasma and can be absorbed at distances that are small
compared with its extent. At the same time, the plasma may
remain transparent for electromagnetic waves of the same
frequency. In the latter case, the plasma thermal radiation
released through the radio window as a result of the B-X-O
transformation is more intense than the radiation directed at
different angles. Enhanced plasma emission through the
radio window was recorded in Refs [25 ± 27].

10. Appendices

Appendix 1
Let us represent the solution to equation (6.25) in the form

Ek�x� �
�
C

dp exp �px� f �p� : �A1:1�

Function exp �px� must vanish at the ends of the integration
contour. This ensures the convergence of integral (A1.1). By
substituting (A1.1) into equation (6.25) and integrating by
parts, it is found that the function f �p� must satisfy the
equation

i
4

Le1=2s; c

p
df

dp
ÿ �ÿp 2w 2 � 2i dNzwp� �dNz�2 �N 2

y � f � 0 ;

the solution of which has the form

f �p� � pÿig=p exp
�
Le1=2s; cw

2
p

�
ip

4
wÿ dNz

��
: �A1:2�

Here, g � pLe1=2s; c
��dNz�2 �N 2

y

�
=4 coincides with the limit of

Eqn (6.3) for w5 1.
For definiteness sake, we shall consider waves incident on

a CS from the lower-density side. Figure 19a shows the
integration contour corresponding to the waves escaping
from the CS towards the higher-density side. The shaded
areas comprise regions where the ends of the integration
contour cannot be present because of the (A1.1)-integral
divergence. The point ps � 4ix=�Le1=2s; cw 2� is the saddle point.

The asymptotics of Eqn (A1.1) for x > 0 is given by the
branch point p � 0:

Ek�x� � 2pi
G�ÿig=p� x

ÿ1�ig=p : �A1:3�
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Figure 18. Ray paths of waves with Nk � Nopt
k;� passing through the CS in

the plasma of the projected EPSILON trap.
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Equation (6.25) describes the interaction of circularly
polarized and quasi-potential waves. If we were interested in
the former waves alone, it would be possible to omit the term
with the second derivative in equation (6.25) and supplement
the resultant singular first-order equation with the Landau
rule of by-passing (see Section 6.2). According to this rule, the
singular point

xs �
1

2
Le1=2s; cw dNz

must be by-passed in the lower half-plane of the complex
variable x. The complete equation (6.25) is an analytical one,
which makes it possible to change-over to negative values of x
both via the lower (Landau rule) and the upper half-planes of
the complex variable. The first method is simpler because it
leads directly to the integration contour shown in Fig. 19b.
With the secondmethod, the shape of the integration contour
is more complicated because its ends are fixed in the third
quarter of the complex variable p. Nevertheless, it can be
reduced to the form shown in Fig. 19b. When calculating the
contribution of the branching point in this case, as in the
former one, it should be assumed that arg x � ÿp. Taking
into consideration the contribution from both the branching
point and the saddle point yields

Ek�x� � 2pi
G�ÿig=p� x

ÿ1�ig=p � 2

w

�
2pi

Le1=2s; c

�1=2�
4x

Le1=2s; cw 2

�ÿig=p
� exp

�
g
2

��
1ÿ exp �2g�� exp� 2ix 2

Le1=2s; cw 2

�
: �A1:4�

Expression (A1.3) and the first term in formula (A1.4)
describe circularly polarized waves. With this in mind, we
arrive at the conclusion that their transmission coefficient is
given by Eqn (6.1).

The second term in formula (A1.4) corresponds to
reflected quasi-potential waves. The coefficient of reflection
can be found using expressions for the energy flux. In the case
of circularly polarized waves traveling at a small angle to the
magnetic field, this coefficient is given by the expression

Sx � cNx

4p
jEsj2 ; �A1:5�

where

Es � NxNs

N 2
x ÿ es; c

Ek :

It follows from relationship (A1.5) that

Sx � c

2p

�
x
L

�2
1

e 3=4s; c

1

�dNz�2 �N 2
y

jEkj2 : �A1:6�

It should be noted that jEkj / jxjÿ1 [see formula (A1.4) and
the first term in formula (A1.5)]; therefore, the energy flux
expression is independent of the coordinate.

The following general expression is used for quasi-
potential waves:

Sx � c

4p

ÿ
nx�EB�

� � c

4p
�2Ex ÿ wEk� qEx

qz
:

Accounting for asymptotic relations

Ex � e1=2s; c

4dNz
Ek ; dNz � 4x

Le1=2s; cw 2
; Nx � wdNx ; Nx 4Ny

yields

Sx � ÿ c

64p
w 2jEkj2 : �A1:7�

The minus sign in expression (A1.7) corresponds to the
picture of wave energy transfer depicted in Figs 8 and 11.
The substitution of the first and second terms from formula
(A1.4) into expressions (A1.6), (A1.7) gives evidence of the
validity of relation (6.2).

Appendix 2
As in Appendix 1, the complex Fourier transform method is
used to solve equation (6.26) [see Eqn (A1.1)]. Function f �p�
in this expression must satisfy the equation�

�p 2 � e�; c��p 2 � eÿ; c� d
dp

� e?; cL�p 2 � 1���wp� iNz�2 �N 2
y

��
f �p� � 0 ;

the solution of which has the form

f �p� � �p� ie1=2�; c� ig
#
�=p�pÿ ie1=2�; c�ÿig

"
�=p

� �p� ie1=2ÿ; c� ig
#
ÿ=p�pÿ ie1=2ÿ; c�ÿig

"
ÿ=p exp �ÿe?; cLw 2p� ;

�A2:1�
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Figure 19. Integration contours corresponding to the waves incident on the CS from the lower-density side: (a) x > 0, and (b) x < 0.
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where the following designation is used:

g "; #s � 1

4
Le1=2s; cp

��we1=2s; c �Nz�2 �N 2
y

�
;

andmarks "# have the samemeaning as in Section 6Ð that is,
they indicate the direction in which the waves propagate.

Let us consider in greater detail a simpler case of waves
with o > oe, when only left-handed polarized waves can
approach the CS. Let a wave be incident on the CS from the
right, i.e., from the higher-density side. Then, the transmitted
wave / exp �ÿie1=2�; cx� must propagate on the left from the
CS. The corresponding integration contour is shown in

Fig. 20a. Asymptotics of integral (A1.1) for jxj4 eÿ1=2s; c ,
je1=2�; c ÿ e1=2ÿ; cjÿ1 are determined by the small vicinity of the
point p � ÿie1=2�; c; hence, it is assumed in its computation that

f �p� � const �p� ie1=2�; c� ig
#
�=p : �A2:2�

This gives

Ek�x� � const
2pi

G�ÿig#�=p�
xÿ1ÿig

#
�=p exp �ÿie1=2�; cx� : �A2:3�

To continue the solution to the region with x > 0, the
Landau rule of by-passing can be used. In conformity with

p�

p 0ÿ

ÿp 0ÿ

ÿp�

Re p

Im p d
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ÿp�
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Figure 20. Integration contours in Eqn (A1.1) for the function defined by formula (A2.1); ps � ie 1=2s; c : (a) left-handed polarized wave witho > oe incident

upon the CS from the higher-density side, solid lineÐ x < 0, dashed lineÐ x > 0; (b) left-handed polarized wave witho > oe incident upon the CS from

the lower-density side for x > 0; (c) deformed contour, other conditions are the same as in figure (b); (d) x < 0, other conditions are the same as in figures

(b) and (c), p 0ÿ � jeÿ; cj1=2; (e) waves witho < oe for x > 0,C1,C2 Ð right- and left-handed polarizedwaves, respectively, incident from the higher-density

side, C3, C4 Ð right- and left-handed polarized waves, respectively, incident from the lower-density side.
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this rule, such an extensionmust be effected through the lower
half-plane of the variable x. In this case, the integration
contour must turn clockwise, while remaining in the lower
half-plane of the variable p (Fig. 20a). As a result, the same
expression (A2.2) in which arg �p� ie1=2�; c� is reduced by p will
be valid for f �p�. This means that, in accordance with the
results presented in Section 6, the amplitude of the incident
wave is exp �g #�� times that of the transmitted one, and there
are no reflected waves.

The integration contour corresponding to waves incident
from the lower-density side is presented in Fig. 20b. It will be
shown below that such a choice ofEk�x� permits us to avoid in
the asymptotics of Ek�x� expressions that exponentially grow
with distance from the CS. The contour for x > 0 is
convenient to deform as shown in Fig. 20c. Asymptotics of
the integral are determined by two branching points p � ie1=2�; c,
jeÿ; cj1=2. The contribution from the former yields an expres-
sion that describes a wave moving away from the CS, while
that of the latter gives an evanescent wave, the amplitude of
which falls from the given surface:

Ek�x� � 2pi

G�ÿig"�=p�
xÿ1ÿig

"
�=p exp

�
ÿ g#�

2

�
� �2e1=2�; c� ig

"
�=p exp �ie1=2�; cx�C1

� 2pi
G�ÿg�1�ÿ =p�

xÿ1ÿg
�1�
ÿ =p exp

ÿÿjeÿ; cj1=2x�C2 ;

where the following designations are used:

C1 �
ÿ
ie1=2�; c ÿ jeÿ; cj1=2

�ÿg �1�ÿ =pÿ
ie1=2�; c � jeÿ; cj1=2

�g �2�ÿ =p
;

g�1; 2�ÿ � 1

4
Lpjeÿ; cj1=2

�ÿ
iwjeÿ; cj1=2 �Nz

�2 �N 2
y

�
;

and C2 is an unessential constant defining the standing wave
amplitude.

Continuation of the solution into the region with x < 0
results in the integration contours shown in Fig. 20d. Taking
into account that, near the point p � ie1=2�; c, the equality
arg �pÿ ie1=2�; c� � ÿp=2 is fulfilled at the inner contour, and
the equality arg �pÿ ie1=2�; c� � 3p=2 at the outer one leads to

Ek�x� � 2pi

G�ÿig"�=p�
xÿ1�ig

"
�=p exp

�
ÿ g#�

2

�
� �2e1=2�; c� ig

"
�=p exp �ie1=2�; cx�C1

� 2pi

G�ÿig#�=p�
xÿ1ÿig

#
�=p exp

�
ÿ g"�

2

�

� �2e1=2�; c� ig
"
�=p
�
exp �2g"�� ÿ 1

�
exp �ÿie1=2�; cx�C1

� 2pi
G�g�2�ÿ =p�

xÿ1ÿig
�2�
ÿ =p exp

ÿÿjeÿ; cj1=2x�C3 :

The first two terms in the last expression describe a circularly
polarized wave incident upon the CS and reflected from it,
while the third term describes a surface wave that exponen-
tially falls off from the surface.

The reflection coefficient can be deduced from the
comparison of expressions for energy flows sufficiently far
from the CS. Using expression (A1.6) and taking into
consideration that, in accordance with Landau's by-passing

rule, arg x � ÿp for x < 0, the coefficients of reflection and
transmission are coincident with those presented in Section 6.

The analysis of waves witho < oe is analogous to the one
applied above and also confirms the results obtained in
Section 6. Here, only those integration contours are
considered that have been used to find four linearly
independent solutions describing circularly polarized waves
incident on the CS from both higher- and lower-density sides
(Fig. 20e). The peculiar shape of the contour C4 that
describes the incidence of a right-handed polarized wave on
the CS from the lower-density side is noteworthy.With such a
choice of contour, the region of x < 0 contains no expressions
corresponding to an incident left-handed polarized wave.
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