
Abstract. Recent studies of finite-size effects in charge-density
wave conductors are reviewed. Various manifestations of finite-
size effects, including the transverse-size dependence of the
nonlinear-conduction threshold field, the Peierls transition tem-
perature, high-frequency conduction, and the relaxation rates
of metastable states, are discussed. Resistivity jumps in thin
samples, the smeared threshold field for nonlinear conduction,
and threshold conduction above the Peierls transition tempera-
ture are considered, as are mesoscopic oscillations of the thresh-
old field, one-dimensional conduction in thin crystals, absolute
negative conductivity of quan-one-dimensional conductors, the
length dependence of the phase-slip voltage, and the Aharonov ±
Bohm oscillations in sliding CDWs. Problems yet to be solved
are discussed.

1. Introduction

Recent years have seen an upsurge in interest in the physics of
one-dimensional systems and in charge-density waves
(CDWs) in low-dimensional systems. This is due to the
appearance of new areas of research brought to life by the

discovery of charge-ordered and stripe phases and to advances
in modern technology, which have made it possible to
fabricate objects with a one-dimensional, or close to one-
dimensional, electron spectrum. It must be noted, however,
that CDWs in quasi-one-dimensional conductors have been
studied formore than twodecades, and the physical properties
of these materials have been well documented. The reviews in
Ref. [1], publishedmainly in the late 1980s or early 1990s, give
a fairly detailed picture of the general properties of quasi-one-
dimensional conductors with CDWs. Since then, the knowl-
edge about the physics ofCDWshas becomemuchdeeper and
the physics of quasi-one-dimensional conductors has gotten
richer with new interesting observations. In particular, more
than a dozen different finite-size effects have been discovered
in the kinetics of CDWs. The studies of finite-size effects have
provided knowledge about correlation lengths, and new
mechanisms of relaxation of metastable states have been
proposed. The study of finite-size effects has stimulated the
building of a semiconductor model of quasi-one-dimensional
conductors anddemonstrated theneed touse twopotentials in
describing the kinetic properties: the electrochemical poten-
tial, which determines the kinetics of the quasiparticles, and
the electrostatic potential, which determines the CDW
kinetics. Moreover, thanks to the development of new
techniques for fabricating structures based on quasi-one-
dimensional conductors with CDWs, it has become possible
in recent years to study CDW kinetics in the nanometer scale.
All this points to the need to summarize the results of the
previous stage in studying quasi-one-dimensional conductors
with CDWs and, in particular, finite-size effects in these
materials. The goal of the present review is to acquaint the
reader with the main finite-size effects known to exist in the
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physics of quasi-one-dimensional conductors. In view of the
narrow selection of themes, the review does not cover all the
aspects of the physics of quasi-one-dimensional conductors.
The current state of studies in this area of research has been
covered rather fully in the proceedings of various conferences
devoted to electronic crystals [2]. A detailed discussion of
finite-size effects that emerge in NbSe3 samples as their cross
section gets smaller is given in the report by R E Thorne's
group (see Ref. [3]). Among the reviews devoted to other
aspects of the physics of quasi-one-dimensional conductors
withCDWswewould like tomention theonebyBrill [4] on the
elastic properties of quasi-one-dimensional conductors and
the review by Latyshev and Sinchenko [5] who considered the
experiments involvingmesoscopic structures built fromquasi-
one-dimensional conductors with CDWs.

The plan of the review is as follows. Section 2 is a brief
introduction into the physics of quasi-one-dimensional
conductors with CDWs. Attention is focused on the most
general physical properties of such materials and the main
ideas that are used to describe the properties and are
important for understanding the finite-size effects discussed
in the review. Section 3 is a discussion of finite-size effects and
their physical interpretation. At the end of that section, in
Sections 3.11 ± 3.15, we examine several unresolved problems
related to finite-size effects and the physics of quasi-one-
dimensional conductors.

2. The main properties of quasi-one-dimensional
conductors with a charge-density wave

2.1 The origin of CDWs
A charge-density wave can appear in various materials. For
example, it is observed in metals of the chrome type, which
have a three-dimensional energy spectrum, in layer structures
like dichalcogenides of transition metals MX2 (M � Nb, Ta,
X � Se, S), which have quasi-two-dimensional energy spec-
tra, in a large class of inorganic quasi-one-dimensional
conductors like tri- and tetrachalcogenides of transition
metals MX3 and MX4 (M � Nb, Ta, X � Se, S), so-called
blue bronzes M0:3MoO3 (M � Rb, K), (TaSe4)2I, and many
others. Most interesting are inorganic quasi-one-dimensional
conductors in which the charge-density wave can slide, thus
contributing to the electric current, which leads to many
unusual effects. The present review is devoted to the proper-
ties of just such compounds.

The simplest way to illustrate the appearance of a CDW is
to examine a one-dimensional metal, whose structure is
depicted in Fig. 1. A periodic distortion of the crystal lattice
with a wave vector q equal to twice that of the wave vector of
the electrons on the Fermi surface, kF, leads to the formation
of an energy gap 2D at the Fermi level, which, naturally,
lowers the energy of the electron system of the one-dimen-
sional metal. Here, the energy cost of the deformation of the
crystal lattice proves to be somewhat smaller than the energy
gain of the electron system 1, which makes such a state
preferable energywise.

A charge-density wave appears when the temperature
decreases as a result of the phase transition known as the
Peierls transition. The emerging state is characterized by
periodic modulation of both the positions of the lattice
atoms and the electron density re � r0 � r1 cos�qx� f�,

where r0 and r1 are the mean value and the modulation
amplitude of the electron density, respectively, q � 2kF is the
CDWwave vector, andf is the CDWphase, and a Peierls gap
of 2D appears in the electron spectrum. The characteristic
scale of the atomic displacements in the lattice is 0.05 A

�
[7].

The charge-density wave is characterized by a complex order
parameter C � D exp�if�. In the absence of defects and
impurities and in the case where the CDW wave vector and
the crystal lattice are incommensurable, the phase f and D
and, hence, theCDWenergy are independent of x, i.e., there is
translation invariance. Because of such invariance, a CDW
can move along the x axis, which is described by in the time
dependence of the phase, f�t� � f�0� � ot. Such motion is
accompanied by the transport of the electric current (the
FroÈ hlich conduction).

The interaction between a CDW and impurities destroys
long-range order, disrupts translation invariance, and leads to
a finite phase correlation length [8 ± 11], which is often called
the Fukuyama ±Lee ±Rice length and, since recently, also the
Larkin length.As a result, aCDWslides onlywhen the electric
fieldE is higher than a certain valueET,which is usually called
the threshold field for the onset of nonlinear conduction.

The periodic charge-density modulation inherent in
CDWs leads to a narrow-band noise appearing in the course
of CDW sliding. The noise frequency is proportional to the
speed of the CDW motion. Application of a radio-frequency
(RF) field results in steps appearing in the current-voltage
characteristics at positions where the narrow-band noise
frequency is multiple to the RF frequency (Shapiro steps).
In electric fields weaker than the threshold field, the CDW is
pinned, and its polarizability is characterized by an enormous
dielectric constant, 107 ± 108. The typical values of the thresh-
old field in the purest samples are 10 ± 100 mV cmÿ1.

NbSe3 and orthorombic TaS3 are among the quasi-one-
dimensional conductors that have been studied most thor-
oughly. Below we list the main physical properties of these
compounds.
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Figure 1. The origin of a Peierls transition in a one-dimensional metal. The

upper part of the figure shows the positions of atoms in themetallic chains,

the distribution of the electron density along the metallic chains, and the

energy spectrum of the initial metal. The lower part illustrates the same

situation but in a Peierls metal. The heavy curves in the energy spectra

denote the states occupied by electrons.

1 The first to notice this was Peierls [6].
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Orthorombic TaS3 (from now on simply TaS3) is a typical
quasi-one-dimensional conductor in which, as a result of a
Peierls transition, the electron spectrum undergoes complete
dielectrization [1]. In the metallic state, TaS3 is a highly
anisotropic metal with a conductivity along the chains
approximately 200 times higher than that in the transverse
directions. The Peierls transition temperature is TP � 220 K,
and the characteristic nonlinear-conduction threshold field
for pure samplesET < 1 V cmÿ1. At temperaturesT > TP the
conduction is metallic, while at T < TP it is of the activation
type, with the activation energy D � 800 K. Usually, the
transition temperature is assumed to be the value at which
the derivative d lnR=d�1=T� reaches its maximum (R is the
resistance). The crystal lattice is orthorombic, and the CDW
wave vector has components close to (1/2a�, 1/8b�, 1/4c�),
where a�, b�, and c� are the unit cell parameters, which,
however, differ by several percents from those corresponding
to exact commensurability. Here, the component of the CDW
wave vector along the axis of the highest conductivity, c�,
depends on the temperature, decreasing by 1 ± 2% as the
temperature drops from 220 to 100 K [12]. The temperature
dependence of the wave vector leads to a temperature
hysteresis of the conductivity [13], the scale of which can
exceed 40%.

The NbSe3 compound has two Peierls transitions at
TP1 � 145 K and TP2 � 59 K and occupies a special place
among quasi-one-dimensional conductors with a CDW
because of incomplete dielectrization of the electron spec-
trum at T < TP2, which ensures the preservation of metallic
conduction at zero temperature [1]. The crystal lattice is
monoclinic, with the direction b� coinciding with that of the
highest conductivity. In the metallic state the conductivity
along the b� axis is roughly 20 times higher than that along the
a� axis and, apparently, is almost 1000 times higher than
along the c� axis. The wave vector of the low-temperature
CDW has the components (0, 0.243, 0), while the wave vector
components of the high-temperature CDW are (0.5, 0.259,
0.5). The electron concentration in the metallic state is
ne � 3:8� 1021 cm. As a result of the high-temperature
transition, the concentration of free carriers decreases by a
factor of almost two, while after the second Peierls transition
a small fraction of metallic electrons with a concentration
ne � 6� 1018 cmÿ3 [14] remains in the metallic state at zero
temperature. Typical values of the threshold field for pure
samples are � 0:1 V cmÿ1 for a high-temperature CDW and
are smaller than 10 mV cmÿ1 for a low-temperature CDW.

2.2 CDW pinning
2.2.1 CDW phase correlation length. When a CDW gets
captured by impurities, we speak of CDW pinning. Pinning
destroys long-range order in the CDW, which leads to a
situation inwhich the phase correlation length is finite [8 ± 11].

Two types of pinning are distinguished. In the case of
strong pinning, the CDW interacts with each impurity
independently. The threshold field at which CDW sliding
begins proves to be proportional to the concentration of
strong pinning centers. In the case of weak (collective)
pinning, one should take into account the elastic deforma-
tion energy of the CDW. The CDW deforms to minimize
the energy of interaction with impurities. CDW deformation
can be described as a position-dependent CDW phase, f�x�,
or, alternatively, as a position-dependent wave vector, q�x�.

The first to calculate the correlation length for quasi-one-
dimensional conductors with CDWs were Efetov and Larkin

[9]. For the correlator of the order parameter they obtained
the following expression:


C�0�C��r�� � D2 exp
�
ÿ
D
f�0��f�0� ÿ f�r��E�

� D2 exp
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where x and r are the components of the vector r along and
perpendicular to the chains, respectively, Lk and L? are the
corresponding phase correlation lengths (Lk � aL?, with a
being the anisotropy coefficient, a > 1). In its turn, the
longitudinal phase correlation length was found to be

Lk �
4pK 2

k
w 2

i n i

;

where Kk is the CDW elasticity modulus along the chains, wi

is the CDW± impurity interaction potential, and ni is the
impurity concentration.

An alternative method commonly used to estimate the
correlation length was developed by Fukuyama, Lee, and
Rice [10, 11]. This method is based on the following
considerations. The deformation of the CDW leads to a gain
in the energy of interaction with the impurities, Wp, at the
expense of a certain amount of elastic-deformation energy
Wel. If L is the characteristic spatial scale of the correlation
length the average energy density of CDW deformation can
be estimated as

Wel � 1

2
K

�
p
L

�2

;

and the pinning energy density, as

Wp � wi

����������
niLD
p

LD
;

where K is the CDW elastic modulus in the isotropic
representation, and D is the dimensionality of the space.
Minimization of the difference of these energies in L yields
the following estimate:

L �
�

K 2

w 2
i ni

!1=�4ÿD�
: �1�

2.2.2 The threshold field of the onset of the CDW sliding. In an
electric field a CDW can slide along the x axis, thus
transporting the electric current (the FroÈ hlich conduction).
This sliding is described by the time dependence of the phase,
f�t� � f�0� � ot. Due to the interaction with the imperfec-
tions of the crystal lattice and impurities, CDW sliding
emerges only when E > ET.

In the case of weak pinning, the threshold field can be
estimated in the Fukuyama ±Lee ±Rice model by assuming
that the displacement of the CDW by approximately one
period changes the pinning energy by a value on the order of
Wp [11]. Such an estimate yields

ET � q

er0

�
w 4
i n

2
i

KD

�1=�4ÿD�
: �2�

Sometimes, in making estimates it is more convenient to use
the simpler (but equivalent) relationship

ET � s0
e

K

L2
; �3�

where s0 is the area per unit chain.
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It is interesting to consider the mechanism of energy
dissipation during CDW sliding. In the absence of impu-
rities, the existence of quasiparticles leads to a bare
dissipation, which, however, is small [15]. The situation
changes crucially when there are impurities [16]. The
interaction with impurities distorts the CDW. When the
CDW is sliding, its deformation is time-dependent, which
generates flows of quasiparticles that screen the internal
fields. The quasiparticle motion leads to the energy
dissipation. As a result, the ``CDW conductivity'', i.e., the
field-dependent coefficient g in the equation for the
collective current Ic � g�Eÿ ET�, proves to be proportional
to the conductivity s caused by the quasiparticles (electrons
and holes). The most important consequence of all this is
the occurrence of a strong temperature dependence of the
coefficient g similar to the temperature dependence of linear
conductivity s�T � [17].

As noted earlier, both the CDW and the quasiparticles
(electrons and holes thermally excited through the Peierls
gap) participate in the transport of electric current. The
current transported by quasiparticles is determined, as it is
in ordinary semiconductors, by the difference in the levels of
electrochemical potential. At the same time, CDW motion
depends on the strength of the electric field, i.e., on the
gradient of the electrostatic potential. Since CDW deforma-
tion leads to a shift in the chemical potential, quasi-one-
dimensional conductors with a nonuniform impurity distri-
bution in space manifest exotic features such as the existence
of absolute negative resistance [18].

CDW deformation, i.e., deviation of the CDW wave
vector from its equilibrium value, causes an increase in the
energy of the quasi-one-dimensional conductor. The equili-
brium value of the CDW wave vector can be found from the
minimum condition imposed on the free energy of a Peierls
conductor. In the simplest case of a linear energy spectrum,
E � kvF, the equilibrium value q � 2kF is temperature-
independent. For real quasi-one-dimensional conductors,
the curvature of the dependence E�k� leads to a deviation in
the equilibrium value of q from 2kF and to the occurrence of a
temperature dependence q�T � close to the activation type
[19]. For instance, typical temperature variations of q in
NbSe3, TaS3, and K0.3MoO3 prove to be about 1%.

2.2.3 The rigid-CDW model and the dielectric constant of
quasi-one-dimensional conductors. Another manifestation of
CDW pinning is the huge dielectric constant of quasi-one-
dimensional conductors (on the order of 107ÿ108) and the
strong frequency dependence of AC conductivity. The low-
frequency dielectric constant and its frequency dependence
can be estimated by using a simple model, in which a rigid
CDW moves in a periodic pinning potential Wp sin

ÿ
f�t��

when an electric field is applied to the system. Within this
model one can find the shape of the current ± voltage
characteristics and the threshold field ET � qWper0 [20, 21].
For the real and imaginary parts of the collective conductivity
we have the following equations:

Re s � r0e
2

gm�
o2

o2 � o2
0

; �4�

Im s � r0e
2

gm�
oo0

o2 � o2
0

; �5�

where

o0 � er0qET

gm�
: �6�

Here, m� is the effective CDW mass, and g describes the
dissipation of energy during CDW motion [21]. These
equations predict a maximum in conductivity at a frequency
o0 proportional to the threshold field, which is in good
agreement with the experimental data [22]. For the low-
frequency dielectric constant E, equation (5) yields the
following simple relation: E � e=qET. This implies that the
low-frequency dielectric constant is equal, by order of
magnitude, to the ratio of the interatomic electric fields to
the threshold field, which explains its large value observed in
experiments.

2.2.4 Pinning with allowance for local CDW deformation. The
classification of types of pinning proves to be richer if we
allow for both collective pinning and local deformation of the
CDW [23]. Taking these local distortions into account, we
find that the pinning force exerted by the jth impurity can be
written in the form Fj � wiq cos�qrj � f� dfj�, wheref is the
macroscopic phase, and dfj is the local distortion, dfj � fj Ð
f, withfj being the CDWphase on the jth impurity. The local
distortion, in its turn, can be found from the equation

dfj �
aFj

wi q
; �7�

where a is the dimensionless measure of local deformability of
the CDW. As a function of the macroscopic CDW phase, the
pinning potential at a < 1 is already not sinusoidal, but the
mean value of the force is still equal to zero, which ensures
weak CDW pinning.

The value a � 1 is the point afterwhich strong pinning sets
in: for higher values there is hysteresis in the dependence of the
pinning potential on the macroscopic phase and the mean
contribution of the pinning centers in the course of CDW
sliding becomes nonzero (Fig. 2). The threshold field now
incorporates the contributionofweakpinning, approximately
proportional toN 1=2, withN � niL

D, and the contribution of
strong pinning, approximately proportional toN.

Such a model is widely used to describe various phenom-
ena related to CDW pinning and agrees well with the results
of experiments [24 ± 27].

W�f�

ÿ2p ÿp 0 p 2p f

Figure 2. Pinning potential with an account for the local deformation of a

CDW as a function of the macroscopic CDW phase [23]. The heavy curve

depicts the path of motion along the potential when the CDW slides at a

finite temperature.
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The characteristic phase correlation lengths in typical
quasi-one-dimensional conductors with CDWs, NbSe3 and
TaS3, prove to be on the order of 1 mm in the direction
perpendicular to the chains [28] and on the order of 10 mm in
the direction parallel to the chains [29]. Here, the accuracy
with which correlation lengths are measured along the chains
by X-ray analysis is limited by lengths on the order of 1 mm.
The conclusion that there can be much longer phase correla-
tion lengths is based on the studies of sudden changes of the
CDW phase performed by the thermal probe method [29].

2.3 CDW creep
Since at finite temperatures the barriers related to pinning can
be surmounted due to thermal fluctuations, CDW motion is
possible even if E < ET. Here, the speed of such motion is
determined not by the rate of energy dissipation, as when
CDWs slide, but by the rate of pinning energy barriers
surmounting. Such a mode of motion is called CDW creep.

CDW creep can be observed at high temperatures in small
samples of quasi-one-dimensional conductors, where CDW
fluctuations become so large that one can observe the
contribution from spontaneous CDW motion. For more
details on this type of creep see Section 3.6, which is devoted
to finite-size effects near Peierls transitions [3, 26].

Another way to observe CDW creep is to study the
nonlinear conduction at low temperatures, when all the
electrons and holes freeze out and it becomes possible to
measure very weak CDW currents in sufficiently high electric
fields [30].

Following Nattermann [31], consider the displacement of
a CDW along the chains over a small distance dx along the
direction of the electric field. This displacement causes a
deformation of the CDW within a volume LD, with L � dxx

(0 < x < 1) [31]. The energy increase due to the CDW's
displacement along the field proves to be equal to reEdxL

D,
where re is the CDW charge density, while the energy cost of
the CDW's deformation can be estimated as KLD�dx=L�2.
This implies that there is a maximum barrier height for CDW
creep, W / 1=Ea, with a � �Dÿ 2� 2x�=�2ÿ x� [31], which
determines the activation energy for the CDW current Ic at
E < ET in the case of weak (collective) pinning:
Ic / exp�ÿW=T�. Thus, in the case of weak pinning,
ln Ic / 1=EaT. When there is strong pinning caused by local
CDW deformation [23] (see Fig. 2), we must sum the
contributions from strong and weak pinning, with the result
that the function determining the creep rate becomes more
complicated [25, 32].

Low-temperature CDW creep was first studied in thin
samples of TaS3 [30]. At temperatures above 10 K
activation dependences of conductivity were registered,
with the activation energy depending on the electric field,
while lowering the temperature still further brought on a
temperature-independent nonlinear conductivity described
by the Ic / exp�ÿ�E0=E �2� law, which is a reflection of
quantum CDW creep [33 ± 36]. Further experiments showed
that a similar behavior is observed in high-quality bulk
samples of TaS3 with a low impurity concentration [37]. For
this reason, quantum CDW creep as a finite-size effect is not
considered in the present review.

The NbSe3 compound may also exhibit CDW creep
despite its metallic conduction, which is provided by
uncondensed electrons and which shunts the very small
contribution of the slowly moving CDW to current transfer.
This was demonstrated in the experiments conducted by

Thorne's group [38], in which the creep rate was measured
by the narrow-band generation frequency. Such an observa-
tion is a remarkable fact since, instead of the chaotic motion
expected for processes in which pinning barriers are sur-
mounted in an activation-type manner, one observes ordered
CDW motion accompanied by generation of narrow-band
noise with fairly narrow spectral lines. A phenomenological
model describing the speed of CDW motion as a function of
the electric field was proposed by Gill [32].

2.4 A semiconductor model of a deformed CDW
At temperatures below the Peierls transition the properties of
a quasi-one-dimensional conductor with complete dielectri-
zation of the energy spectrum (the case of TaS3) and a CDW
at rest are in many respects similar to those of an ordinary
semiconductor with the doping level depending on the
impurity concentration [15, 19, 39 ± 41]. A change in the
length of the wave vector by dq corresponds to a relative
change in the CDW charge density (i.e., a change in the
doping level) by dq=q. Due to electroneutrality, this leads to
the violation of the balance between the thermal excitations
through the Peierls gap and, hence, to a change in the value of
the linear conductivity ensured by these excitations. Since at
low temperatures there are very few electrons and holes, even
a small change in the length of the CDW wave vector
(equivalent to doping) can bring about a considerable change
in conductivity.

The electroneutrality condition can be written in the form

ene
qÿ q0
q0
� eNn exp

�
ÿ Dÿ z

T

�
� eNp exp

�
ÿ D� z

T

�
;

�8�

where e is the elementary charge, ne the concentration of
electrons in the metallic state, q0 the size of the CDW wave
vector corresponding to this concentration, Nn and Np the
effective densities of electron and hole states, D the Peierls
gap, and z the level of the chemical potential measured from
the middle of the gap. The conductivity is given by the
equation

s � e mnNn exp

�
ÿ Dÿ z

T

�
� e mpNp exp

�
ÿ D� z

T

�
; �9�

where mn and mp are the electron and hole mobilities.
Assuming, for the sake of simplicity, that Nn � Np � N and
mn � mp � m and combining equations (8) and (9), we get

s � ene m
qÿ q0
q0

coth

�
ÿ z
T

�
; �10�

where the function z�q� can be found by solving equation (8),
which yields

qÿ q0
q0

� N

ne
exp

�
ÿ D
T

�
sinh

z
T
:

We see that the sensitivity of the chemical potential level to
the CDW deformation rapidly increases as the temperature
gets lower. For instance, in the typical quasi-one-dimensional
semiconductor TaS3 at 100 K the relative CDW deformation
dq=q0 � 10ÿ4, which corresponds to the occurrence of a new
period of the CDW in the sample with a wavelength of about
10 mm, leads to z=T � 0:1, which has an appreciable effect on
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the linear conductivity, the thermoelectric coefficient, and
other kinetic coefficients [40, 41] (see Section 3.8). A thorough
study of the semiconductor model can be found in Ref. [19],
while an example of how this model is used to quantitatively
describe the jumps in the electrical resistance of TaS3 is given
in Section 3.8.1

2.5 Defects of CDWs
As in an ordinary crystal, in a uniaxial electron crystal such as
a CDW there can be various defects, namely, edge and screw
dislocations [11, 42] and point defects (amplitude and phase
solitons) [43, 44]. These defects play an important role in
CDWkinetics. Among other effects, they lead to CDWphase
slip (a breaking of the CDW), which occurs near current
contacts during the sliding of the CDW [45 ± 49], and the
relaxation of metastable CDW states that appear when the
temperature changes. A study of the defects of CDW from the
viewpoint of dislocation theory can be found in the paper by
Feinberg and Friedel [42]. Note that the temperature-
dependent screening of the CDW deformation results in a
strong temperature dependence of the energy and size of
solitons [15, 39, 50].

2.6 CDW phase slip
The very fact that the CDW kinetics and the kinetics of
quasiparticles depend on different potentials leads to specific
contact phenomena. Consider, for example, the distribution
of potentials between two current contacts in a quasi-one-
dimensional conductor without impurities. Applying a
voltage across the current contacts leads to CDW sliding.
This sliding results in an increase in the CDW deformation
near the contacts and the occurrence of shifts in the chemical-
potential level. The sliding of the CDWwill continue until the
difference in the electrostatic potentials between the contacts
reaches zero. Since, at the same time, the difference in the
electrochemical potentials remains unchanged, even in the
absence of impurities the voltage applied to the sample can no
more cause the CDW to slide. The increase in the CDW
deformation is limited by the value at which the CDW order
parameter becomes suppressed. Attempts to create a larger
deformation result in the Peierls gap vanishing and in the
creation (or annihilation) of a new CDW period, which
reduces the absolute value of the CDW deformation. Hence,
if the potential difference between the current contacts
exceeds a critical value Vps, steady-state sliding of the CDW
emerges, and this sliding is accompanied by the periodic
suppression of the order parameter, or CDW phase slip.

For a real quasi-one-dimensional conductor of length l,
the threshold voltage VT can be written in the form

VT � ETl� Vps ; �11�

where the first term on the right-hand side describes CDW
pinning, and the second term is the CDWphase slip voltage, a
concept first introduced by Gill [51]. This equation is widely
used when the phase slip voltage is determined from
experiments. Note that in the one-dimensional case at fairly
low temperatures, the phase slip voltage should be about 2D
[47], i.e., hundreds of millivolts, but actually it only reaches
values amounting to several millivolts.

Several mechanisms of CDW phase slip have been
proposed. In the dislocation mechanism of Ong et al. [45],
the CDW is considered as an elastic medium in which
different types of dislocation are possible. Phase slip occurs

because a dislocation loop formed by an edge dislocation is
created [48]. An important feature of quasi-one-dimensional
conductors is the possibility of new CDW periods being
created from `vacuum' at the expense of quasiparticles,
while in real crystals, the growth of dislocations requires
that atoms forming the crystal lattice be displaced. The gain in
the elastic energy due to the creation of a dislocation loop of
radius r in a charge-density wave with tension S amounts to
pr2S, while the energy loss is proportional to the length of the
edge dislocation and is equal to 2prFd, where Fd is the free-
energy density of the edge dislocation per unit dislocation
length. The total energy has a maximum, which is attained at
the critical loop radius rc � Fd=S and corresponds to an
energy pF 2

d=S that determines the height of the energy
barrier for the creation of an edge dislocation. If we assume
that this barrier can be surmounted via thermal fluctuations,
the CDW current Ic proves to be proportional to
exp�ÿV0=Vps� [48], where V0 is a temperature-dependent
parameter, and Vps is the phase slip voltage measured in
experiments, Vps / S, V0=Vps � pF 2

d=�ST�. Ramakrishna et
al. [52] derived similar equations for the probability of phase
slip by using the analogy between phase slip and vortex
creation in a superfluid liquid. Their model provides a
satisfactory description of the shape of Ic�Vps� for NbSe3
[53], but yields excessive values for V0 near the Peierls
transition point [53]. Agreement can probably be improved
by allowing for the temperature dependence of Fd, which
appears because of the large contribution of the entropy term
to the free energy, Fd �Wd ÿ TSd, and by assuming that
three-dimensional order is destroyed because of thermal
dislocation multiplication [42, 54], i.e., by assuming that
Wd ÿ TPSd � 0. Here, Wd and Sd denote, respectively, the
free energy and the entropy per unit dislocation length.

The above phase slip model [48, 52] cannot be used to
describe the conversion from electron current to CDW
current in TaS3, where at temperatures below 100 K the
additional voltage Vps becomes polarity-dependent and
increases with decreasing temperature, reaching values of
about 1 V [55]. The study of the potential's distribution
along the sample has shown that in TaS3, at sufficiently low
temperatures the region in which electron current is converted
into CDW current is rather large and extends to distances on
the order of 1 mm [56]. Analysis of the experimental data for
NbSe3 has shown that in this compound the phase slip also
occurs not only within the narrow region surrounding the
current contact but far from the contact as well [57]. For this
reason, Gill [57] proposed another mechanism by which
CDW phase slip voltage is generated. In this mechanism, the
principal contribution to Vps is associated with a decrease in
the collective CDW current in a large region of current
conversion rather than with the CDW deformations needed
for such a conversion.

A similar idea was put forward by Brazovskii and
Matveenko [44, 49]. They proposed examining the following
multistage current-conversion process: the injection of an
electron into a quasi-one-dimensional conductor, the forma-
tion of an amplitude soliton, and the aggregation of solitons
accompanied by the creation and growth of dislocation loops,
which finally leads to the creation of new CDW periods.

In addition to the activation mechanism, quantum
tunneling was also examined (see Refs [33 ± 36]) as a possible
mechanism of CDW phase slip. The quantum action was
found to be SE / �S0=S�2, where S0 depends on the
parameters of the quasi-one-dimensional conductor. It was
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assumed [33 ± 36] that the quantum CDW phase slip is the
cause of quantum CDW creep, i.e., the occurrence, at
sufficiently low temperatures, of nonlinear current ± voltage
characteristics that are temperature-independent and are
given by the expression I � I0 exp�ÿ�E0=E�2� [30].

2.7 Metastable CDW states
The ability of CDWs to be deformed and the presence of
energy barriers for both changes of configuration (CDW
pinning) and changes in the mean value of the wave vector
(phase slip) lead to the rise of long-lived metastable states.
The existence of such states is a general property of quasi-one-
dimensional conductors with CDWs [1]. Metastable states
manifest themselves in the presence of temperature hystereses
in conductivity [13] and the thermal emf [58]. This leads to
prolonged conservation of CDW polarization after the
application of an electric field above the threshold value [59]
and other similar effects. The relaxation of electrical
resistance in the metastable state obeys the logarithmic law
R�t�=R�t0��1� a ln t=t0 [51, 59], where the relaxation rate a
depends on the temperature and reaches its maximum value
at T � TP=2 in both TaS3 [60] and NbSe3 [61].

Two types of metastable states should be distinguished:
metastable states related to the redistribution of the CDW
phase along chains with the mean value of the wave vector
retained (e.g., due to the application of an electric field), and
those related to the deviation of the mean value of the wave
vector from the equilibrium value (e.g., metastability caused
by temperature variations). Accordingly, the mechanisms of
relaxation of metastable states also differ: while the long-
itudinal redistribution of the CDW phase can change because
of creep, phase slip is the only mechanism by which the mean
value of the CDWwave vector can change. Experiments have
shown that the CDWpolarization relaxation can occur due to
both the CDW phase slip [51] and the CDW creep [62]. The
situation gets more complicated when the metastable CDW
states are caused by temperature variations. The variation of
themean value of the CDWwave vector occurs because of the
CDW phase slip. In sufficiently thin and short samples the
elementary acts of phase slip manifest themselves as sudden
changes in the electrical resistance [41]. It is obvious, however,
that the nucleation of a new CDW period or the annihilation
of an already existing period means that the distribution of
the CDW phase within the bulk of the sample changes, i.e.,
the CDW phase slip is accompanied by the CDW creep. Such
changes in the CDW configuration occur over distances on
the order of 10 mm [29].A priori, it is unclear which of the two
processes (the creep or the slip of the CDWphase) determines
the relaxation rate of the CDWwave vector. Experiments [60,
61] have shown that at comparatively high temperatures,
T > TP=2, the relaxation rate is independent of the electric
field and, hence, is determined by the phase slip mechanism.
At lower temperatures, when the threshold field increases, the
electric field has an effect on the relaxation rate, i.e., pinning
affects the relaxation processes [60, 61].

3. Finite-size effects

3.1 Regions of finite-size effects
Let us denote the phase-correlation lengths in a quasi-one-
dimensional conductor by Lbulk

k and Lbulk
? for directions,

respectively, along and perpendicular to the chains (we
assume for the sake of simplicity that the quasi-one-dimen-

sional conductor is isotropic in the plane perpendicular to the
chains). If the sample length l is smaller than Lbulk

k , the CDW
pinning proves to be two-dimensional and the correlation
length in the perpendicular direction, L?, for Lk < Lbulk

k
proves to be dependent on l. On the other hand, if the
transverse dimensions of the sample, d (assumed equal),
prove to be smaller than Lbulk

? , then Ljj decreases. The
functions Lk�d � and L?�l � can be estimated by using
equation (1):

Lk�d � �
�

K 2

w2
i ni

�1=3

d 2=3 ; �12�

L?�l � �
�

K 2

w2
i ni

�1=2

l 1=2 : �13�

SinceL?�Lk� andLk�L?� correspond to the bulk values of the
correlation lengths, equations (12) and (13) can be written as

Lk�d � � Lbulk
k

�
d

Lbulk
?

�2=3

; �14�

L?�l � � Lbulk
?

�
l

Lbulk
k

�1=2

: �15�

To determine the dimensionality of the CDW pinning in a
sample of finite dimensions via equations (12) and (13), we
must know the values of Lbulk

k and Lbulk
? . The correlation

lengths in the TaS3 compound can be estimated from the
characteristic value of the cross section of the onset of
finite-size effects, Lbulk

? � 1 mm [41], and from the char-
acteristic length over which the CDW configuration
changes as a result of relaxation of metastable states,
Lbulk
k � 10 mm [29]. Direct measurements of correlation

lengths done for NbSe3 by the X-ray diffraction method
[28] gave Lk � 0:9 mm, L? � 0:1 mm for impure samples
(R�300 K�=R�4:2 K� � 10) and Lk > 2:5 mm, L? > 1:9 mm
for clean samples (R�300 K�=R�4:2 K� � 300). Figure 3
shows the expected dimensionality of the CDW pinning as a
function of the sample size for a quasi-one-dimensional
conductor with Lbulk

k � 10 mm and Lbulk
? � 1 mm, where for

the sake of simplicity the transverse dimensions of the sample
are assumed equal. A reduction in the sample length to l < Lk
lowers the pinning dimensionality from three to two, with L?
decreasing in accordance with (15). Similarly, a reduction in
the diameter of a long sample to a value smaller than L?
lowers the pinning dimensionality to unity, whileLk decreases
according to (14). When all dimensions of the sample are
smaller than the respective correlation lengths, pinning
becomes zero-dimensional.

3.2 Technological means of fabricating small-size samples
3.2.1 Selection of small samples from a growth batch. A direct
way to fabricate small samples is to select thin samples from a
growth batch and then place them on a substrate to fabricate
contacts needed for measurements. This method was widely
used to study finite-size effects in NbSe3 [3, 18, 61, 63].
Samples fabricated in this manner are the most perfect ones
and contain the smallest number of defects compared to
samples fabricated by other methods, which are described in
Sections 3.2.2 ± 3.2.6. However, this method places important
restrictions on the minimum size of the sample: only samples
with a thickness not smaller than 0.05 mm and width on the
order of 1 mm can be fabricated by this method.
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3.2.2 Sample splitting.Quasi-one-dimensional conductors are
filamentary crystals with highly anisotropic properties. The
high anisotropy makes it possible to split quasi-one-dimen-
sional conductors into very thin filamentary samples whose
cross-sectional area may amount to less than 10ÿ3 mm2.

In this method a fairly thick sample of TaS3 is placed on a
precleaned substrate made of fused silica or sapphire. Then,
one end of the sample is split with a specially sharpened needle
and the sample is separated into several thinner samples. The
thinnest samples are attracted to the substrate so strongly that
they cannot be moved without damaging them. The large
samples are removed from the substrate by a strong jet of air.
The most perfect samples among the remaining thin ones are
provided with contacts and used for further studies. This
method is widely used to fabricate samples with cross-
sectional areas reaching 10ÿ3 mm2. Most finite-size effects in
TaS3 [30, 41, 64 ± 69] were discovered in samples fabricated by
the splitting method.

3.2.3 Thin films of quasi-one-dimensional conductors. Because
of the high anisotropy of the crystal structure it is extremely
difficult to fabricate high-quality thin films of quasi-one-
dimensional conductors, and the first reports about growing
still imperfect mosaic films of Rb0.3MoO3 by laser ablation
[70, 71] appeared rather recently. The development of this
method by a group from Technische Univ. Delft became a
new important step in the development of technologies used
to fabricate quasi-one-dimensional conductors. Unfortu-
nately, the polycrystallinity of the structure of the fabricated
films and the large number of defects make such films
considerably less interesting compared to thin split single-
crystal plates of quasi-one-dimensional conductors. Today,
this method is almost never used.

3.2.4 Ultrasonic dispersion. According to a recent report [72],
a new promising method of fabricating small crystals of
quasi-one-dimensional conductors has been developed. It is

based on splitting quasi-one-dimensional conductors with
ultrasound. A `solvent' is applied to the quasi-one-dimen-
sional conductor that is to be dispersed, and the system is
placed in an ultrasonic bath. Ultrasonic treatment produces a
suspension of thin crystals of the quasi-one-dimensional
conductor, with the characteristic dimensions of the crystal
depending on the intensity of the ultrasound and the duration
of treatment. A drop of such a suspension can be placed on
almost any substrate. After it dries out, crystals remain on the
substrate, and these can be used in further measurements. For
the `solvent' one can take a surfactant that prevents the
dispersed crystals from sticking together. This method
makes it possible to easily split such quasi-one-dimensional
conductors as TaS3, NbS3, TaSe3, and NbSe3. Among the
drawbacks of this method is the impossibility of fabricating
samples with large length-to-thickness ratios and the possibi-
lity of reactions occurring between the `solvent' and the quasi-
one-dimensional conductor.

3.2.5 Splitting by electric field. This is a very new method
developed for the fabrication of thin samples [73]. It consists
of applying a potential V � 20 kV to a relatively thin sample
of a quasi-one-dimensional conductor placed in a vacuum.
The strength of the electric field generated at the surface of a
sample with a diameter d of about 1 mm proves to be on the
order of 2V=d � 40 V nmÿ1, i.e., on the order of the
interatomic field. This `fluffs' the sample into long filaments.
The thinnest TaS3 andNbSe3 samples have been fabricated in
just this way [74].

3.2.6 Fabricating mesoscopic structures and the thinning of
samples. Modern technoloqies make it possible to create
complicated structures of micrometer dimensions. For
instance, electron-beam lithography can produce an image
of the future structure on the surface of a resist-covered
sample. The areas on the surface not protected by the resist
can be removed by reactive etching in SF6 plasma. Such
structures can also be fabricated via etching with a focused
ion beam. These methods have great potential in fabricating
relatively large structures based on quasi-one-dimensional
conductors [5, 75]. Since the initial sample must have
micrometer dimensions and etching damages the surface
layer of the sample to a depth of about 20 nm, the above
methods cannot be used to fabricate structures with dimen-
sions smaller than 50 nm [5]. A detailed description of these
methods, together with examples of their application, can be
found in Refs [5, 75]. Reactive plasmochemical etching has
been successfully used in the studies of finite-size effects to
makeNbSe3 samples thinner [76], while themethod of etching
by a focused ion beamhas been used to reduce thewidth of the
samples [75, 77].

In addition, the thinning of samples can be done by
oxidizing the surface (under natural conditions or at an
elevated temperature). Slow oxidation of the surface of
quasi-one-dimensional conductors was discovered fairly
recently [72, 74] and requires further study.

3.3 Manifestations of finite-size effects
As noted in Section 3.1, in quasi-one-dimensional conductors
with CDWs, the phase correlation length in the direction
perpendicular to the chains is on the order of 1 mm. This
means that for samples whose transverse dimensions are
much smaller than 1 mm, pinning may be considered one-
dimensional, and many properties of quasi-one-dimensional
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conductors prove to be dependent on size. It has been
demonstrated that the dimensions of samples greatly affect
almost all physical characteristics of quasi-one-dimensional
conductors with CDWs. The list of finite-size effects includes
the following observations: dependence of the narrow-band
noise spectral width [41], the quantities ET [3, 41, 63] and TP

[26, 41], the high-frequency conductivity [3], and the relaxa-
tion rate of metastable states [61] on the transverse sizes of the
samples; jumps in the resistance of thin samples [41]; the
smearing of the threshold field in the current ± voltage
characteristics of thin samples [3, 26]; the onset of threshold
conductivity at T > TP [68]; mesoscopic oscillations of the
threshold field [66]; transition to one-dimensional conduc-
tion as the transverse dimensions of the samples diminish
[76]; quantum CDW creep [30]; absolute negative resistance
of quasi-one-dimensional conductors [18]; dependence of
the CDW phase slip voltage on the distance between the
current contacts [78]; and the Aharonov ±Bohm effect in
CDW sliding [79]. These effects are discussed in detail in
Sections 3.4 ± 3.15.

3.4 Dependence of threshold field on the sample thickness
The dependence of the threshold field for the nonlinear
conduction on the transverse dimensions of samples was one
of the first finite-size effects observed. Figure 4 depicts the
dependence of the nonlinear-conduction threshold field on
the cross-sectional area s of TaS3 samples. Clearly, as the
cross sectional area decreases from 100 mm2 to 10ÿ2 mm2, the
nonlinear-conduction threshold field increases by more than
1.5 orders of magnitude. An increase in the threshold field
accompanying the decrease in the sample thickness has also
been observed in NbSe3 [3, 63], where it has been found that
ET / sÿ1=2.

Two models that explain this increase in the threshold
field have been proposed. In the first (earlier) model it was
assumed that the effect is a result of the CDW pinning by the
crystal's surface, since the ratio of the sample's surface area to
the volume is proportional to sÿ1=2. This point of view was
also supported by Gill's group [63, 80]. In an alternative

explanation put forward by Thorne's group [3, 81] it was
assumed that there is a dependence of the threshold field on
the transverse dimensions of the samples within the frame-
work of the weak pinning model [see equations (2) and (3)]. A
detailed analysis of the dependence of the threshold field on
the impurity concentration and the sample dimensions has led
the authors of Refs [3, 81] to the conclusion that it is precisely
weak two-dimensional CDW pinning that is responsible for
the increase in the threshold field in NbSe3 according to the
ET / sÿ1=2 law 2.

In contrast to the properties of NbSe3, which has a layer
structure, the properties of TaS3 in the directions perpendi-
cular to the metallic chains are very similar, and in thin
samples of this compound one should expect a transition to
one-dimensional pinning. In this case, the analysis of the
weak pinning model [see equation (2)] produces the depen-
dence ET / sÿ2=3, which also agrees with the experimental
data, just as the dependence ET / sÿ1=2 does (see Fig. 4).
Thus, for TaS3 the analysis of the function ET�s� does not
allow us to distinguish between the differentmanifestations of
the possible effects described above. The way to resolve this
problem is discussed in Section 3.10, which is devoted to the
mesoscopic fluctuations of the threshold field [66]. There, we
show that in short, thin TaS3 samples zero-dimensional CDW
pinning is realized. This means that the increase in the
threshold field in TaS3 samples corresponds to zero-dimen-
sional CDW pinning with ET / sÿ2=3.

3.5 Dependence of AC conductivity on transverse
dimensions of samples
Figure 5 shows the frequency dependencies of the imaginary
part of the linear conductivity for three NbSe3 crystals of
different thicknesses. On the whole, the measured curves
agree with the predictions of equation (5) (shown by dots).
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Clearly, there is a distinct dependence of the characteristic
frequency o0 on the dimensions of the sample, with this
frequency being proportional to the threshold field ET, as
expected (see equation (6)). The data are described satisfacto-
rily by the superposition of the curves predicted by equation
(5), with a Lorentzian distribution of the characteristic
frequencies o0.

3.6 Finite-size effects near the phase transition
temperature
3.6.1 Dependence of the phase transition temperature on the
transverse dimensions of the samples. The characteristic
features of quasi-one-dimensional conductors are the large
width of the Peierls transition and the broad region of
fluctuational conduction near the transition. At tempera-
tures T > TP fluctuation traces of the Peierls state can be
observed through optical measurements [82], X-ray diffrac-
tion studies [83, 84], and investigation of the linear and
nonlinear conduction of quasi-one-dimensional conductors
[85].

Figure 6 shows d lnR= d�1=T� for TaS3 samples of
different thicknesses as a function of the reciprocal tempera-
ture 1=T. Clearly, as the transverse dimensions of the samples
diminish, there appears a distinct shift of the transition
toward lower temperatures and the transition spreads out.

The broadening of the Peierls transition and its shift
toward lower temperatures as the samples get thinner was
also observed in other quasi-one-dimensional conductors,
e.g., in NbSe3 [3, 26], and in Rb0.3MoO3 films [71]. Thus, the
dependence of the shape and temperature of the Peierls
transition on the transverse dimensions of the samples is a
general property of quasi-one-dimensional conductors with
CDWs.

3.6.2 Smearing of the threshold field in thin samples at
temperatures T<TP. Nonlinear conduction in bulk samples
of quasi-one-dimensional conductors occurs in a compara-

tively narrow range of electric field and is characterized by a
well-defined value of the threshold field. McCarten et al. [3]
and Gill [26] reported a dramatic change in the nature of the
nonlinear conduction in thin NbSe3 samples, namely, the
disappearance of a threshold and occurrence of smooth
current ± voltage characteristics. Figure 7 shows a typical set
of curves representing the differential resistance dV=dI of a
thin sample of NbSe3, in which such behavior most vividly
manifests itself, as a function of the electric field at different
temperatures. Similar behavior is observed in thin TaS3
samples [69].

3.6.3 Occurrence of a threshold field at temperatures T>TP.
The occurrence of threshold nonlinear conduction in thin
samples atT > TP is one of themost peculiar finite-size effects
[68]. Figure 8 shows a set of curves representing the
dependence of the differential resistance of a thin TaS3
sample on the voltage across the sample near the Peierls
transition point. At temperatures below TP (Fig. 8a), the
function Rd�V � has its ordinary shape, with the nonlinear
conduction appearing at voltages higher (in absolute value)
than the threshold voltage. At temperatures nearTP � 220 K
and higher, the current ± voltage characteristic acquires an
additional (quadratic in the voltage) nonlinearity, which is an
indication of the fluctuational nature of CDWmotion. After
subtracting this quadratic nonlinearity, one obtains current-
voltage characteristics thatmanifest the threshold behavior of
the nonlinear conduction up to temperatures exceeding Tp by
45 K. Such behavior by the current ± voltage characteristics
can be observed in samples with the cross-sectional area on
the order of 0.1 mm2, where finite-size effects are still not very
strong. In thinner samples the fluctuation effects, which lead
to the smoothing of the current ± voltage characteristics [3,
26], prove to be so strong that the fairly weak threshold
nonlinearity cannot be reliably identified. This was also
observed by Thorne [86] in experiments with NbSe3. No
threshold conduction at T > TP has been observed in bulk
samples [85].
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3.6.4 Phenomenological model of the CDW behavior near the
Peierls transition temperature. The problems associated with
the origin of the smearing of the phase transition and the
current ± voltage characteristics in thin samples of quasi-one-
dimensional conductors are extremely complicated. First,
these effects can be related neither to the bounding of the
phonon spectrum nor to the changes in the electron spectrum
caused by finite-size quantization, since the characteristic
energies of finite-size quantization for a sample with
transverse dimensions on the order of 100 nm are much

lower than the Peierls transition temperature. Most prob-
ably, these two phenomena are related to the rise in
fluctuations and the drop of the pinning energy as the
samples get thinner. As proposed by McCarten et al. [3] and
Gill [26], who studied the properties of thin NbSe3 samples,
the rise in fluctuations is related to the drop of the CDW
pinning energy per CDW phase correlation volume. This
energy becomes so small that CDW thermal activation
effects, which lead to activated CDW creep [3] or `Brownian
CDWmotion' in the periodic punning potential [26], become
possible. Actually, we are dealing here with phase fluctuations
of a continuous CDW. Remaining within such an approach,
one can estimate the excess conductivity and the character-
istic value of the nonlinear-conduction threshold field for
quasi-one-dimensional conductors near the phase transition
point.

The quantitative estimates of the effect made in Refs [3,
26] are based on the assumption that the mean-field
approximation can be used to describe the Peierls state and
the Peierls transition. According to the mean-field approx-
imation, as we move toward the Peierls transition from the
low-temperature side we should expect a reduction in the
order parameter that obeys a law similar to the dependence of
the BCS (Bardeen ±Cooper ± Schrieffer) theory of super-
conductivity. All traces of the Peierls state should disappear
at T > TP and the Peierls transition should emerge at
TP � D�0�=1:76. It is well known, however, that for almost
all Peierls conductors, in particular for NbSe3, D�0�=TP � 4,
and the Peierls gap (precisely, the pseudogap) occurs at
temperatures that are hundreds of degrees higher than the
Peierls transition temperature [82]. It is also known that the
temperature dependences of the electron concentration in
CDWs in the NbSe3 and TaS3 compounds are almost steplike
and are poorly described by the BCS theory [83, 87]. On the
other hand, it is also known that at the Peierls transition
temperature there is three-dimensional ordering of CDW
rather than CDW formation. For these reasons it is highly
improbable that the BCS theory can be used to describe the
Peierls transition and its smearing even in the case of NbSe3.
Deviations from the BCS theory in the case of TaS3 are even
more evident, and therefore there is even less reason to use
such ideas to describe the shape of the Peierls transition and
the dependence of this transition on the dimensions of the
samples.

The origin of this effect, at least in TaS3, is probably
different. The effect could be related (see Ref. [68]) to
fluctuations in the CDW amplitude, i.e., spontaneous CDW
phase slip near the Peierls transition. Studies of the hysteresis
loop in the temperature dependence of conductivity in bulk
TaS3 samples showed that metastable states disappear near
TP, i.e., the energy barrier for the spontaneous CDW phase
slip disappears [88]. Thus, the Peierls transition may be
caused by the destruction of three-dimensional CDW order
due to CDW dislocation multiplication [42, 54, 65, 88, 89].

If we remain within the scope of these ideas, we can
conclude that the change in the shape of the transition and
the transition's shift toward lower temperatures in thin
samples are caused by the rise in the phase slip intensity. The
enhancement of the CDW phase slip in thin samples can be
noticed by the narrowing of the resistance hysteresis loop [41],
the occurrence of spontaneous resistance fluctuations [64, 65,
89], and the increase in the relaxation rate of metastable states
[61]. The rise in fluctuations can be caused by two reasons.
First, as the transverse dimensions of thin samples get
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smaller, so does the correlation length, which means that
nonuniform deformation of CDWs increases. On the other
hand, in a sample with finite dimensions it is easier for
dislocations to be created because of the decrease in the free
energy per unit length of dislocation line, a situation we
discuss in greater detail in Section 3.9, where we describe the
finite-size effects in the relaxation ofmetastable states. Recent
microscopic calculations [90] also suggest that there are
exceptionally strong fluctuations in CDW tension, fluctua-
tions that may suppress the order parameter near the Peierls
transition. However, a theory has to be developed that would
describe the shape of the resistive Peierls transition and the
evolution of the transition under changes in the transverse
dimensions of the samples.

Pokrovskii et al. [68] proposed a model that describes the
occurrence of threshold nonlinear conduction at tempera-
tures above the phase transition point. The model takes into
account the fluctuational creation of CDW domains at
T > TP and their depinning by an electric field. As the
electric field grows, the characteristic sizes of the domains
that contribute to nonlinear conduction diminish. The
current ± voltage characteristic of a sample of finite sizes
consists of two regions: the initial region, where the max-
imum sizes of the domains contributing to the nonlinear
conduction are limited by the sample's thickness, and the
high-field region, where the depinning of fluctuationally born
CDW domains occurs in the same way as in a bulk sample.
The crossover between these two regions manifests itself as
the threshold voltage in the current ± voltage characteristic.

3.7 The absence of a finite-size effect in Shapiro steps as
an argument in favor of bulk CDW pinning
A vivid manifestation of the periodic nature of the impurity ±
CDW interaction is the occurrence of Shapiro steps in the
current ± voltage characteristics of quasi-one-dimensional
conductors [91]. This phenomenon can be observed when a
combined AC-DC voltage V�t� � Vdc � Vac sinot is applied
to a quasi-one-dimensional conductor. When the frequency
of narrow-band noise, which begins as a result of CDW
sliding, coincides with the frequency of the applied external
AC signal, a step appears in the current ± voltage character-
istic; namely, the nonlinear current ceases to depend on the
voltage when the latter is varied within a certain range dV.
The dependence of the step's width on the amplitude Vac of
the alternating voltage has oscillatory shape and is described
by Bessel functions. Similar phenomena are observed at
multiple frequencies. The dependence of the relative width
of the first step, dV=V (coincidence of frequencies), on the
transverse dimensions of NbSe3 samples has been studied by
McCarten et al. [3]. The researchers detected no dependence
of the step width on the cross section area. Such a behavior,
according to their conclusion, indicated that the mechanisms
of pinning in bulk and in thin NbSe3 samples coincide, i.e.,
surface pinning provides no significant contribution.

3.8 Jumps in the CDW configuration
in thin TaS3 samples
3.8.1 Jumps in resistance.The first experiments with thin TaS3
samples [41] revealed stepwise changes in the temperature
dependence of linear resistance. Figure 9 shows the tempera-
ture dependence of the resistance of a thin TaS3 sample. The
most important and new feature of this temperature depen-
dence is its stepwise structure. The inset in Fig. 9 depicts a
fragment of the R�T � function for a thin sample subjected to

thermal cycling in the 118 ± 134 K temperature interval. A
hysteresis loop is clearly visible, and the dependence R�T�
consists of rectilinear sections in which the activation energy
d lnR=d�1=T � � 200 K is approximately four times lower
than the average conduction activation energy D � 800 K.
The transition from one section to another is stepwise. The
typical scale of the relative variation of the resistance amounts
to 1 ± 10%, and the distance between the jumps depends on
the temperature and the sample's length: as the temperature
increases or as the length increases, the temperature intervals
between the jumps get smaller. The jumps are always directed
toward the center of the hysteresis loop. The motion between
neighboring jumps is reversible and is not of a hysteresis
nature.

In the case of the thinnest samples with cross-sectional
areas s5 10ÿ2 mm2, the hysteresis loop gets narrower, the
temperature at which hysteresis appears decreases; the
jumps become smeared, and their amplitude decreases.
Measurements of such smeared jumps have shown that
actually in the region where a jump is smeared there is
multiple switching between two or more states with different
resistances, and the amount of time during which the
sample stays in each of these states is temperature-
dependent [64]. The inset in Fig. 10 shows a fragment of
the dependence R�T � measured with the temperature
gradually changing in the area of the jump. Clearly, as the
temperature grows, the probability of the sample being in its
initial state slowly decreases, and so gradually the sample
gets into a new state with a somewhat lower resistance.

The spontaneous transitions between metastable states
occurring in the region of smeared jumps manifest itself in the
temperature dependence of the conduction noise of a short,
thin TaS3 sample (see Fig. 10). The temperature regions where
the noise intensity increases dramatically are relatively
narrow, and the distance between such regions in the given
sample is on the order of the region width. In longer samples
the different temperature regions of increased noise from
different sections of the sample overlap, and it becomes
almost impossible to observe individual temperature regions
of increased noise.

As noted in Section 2.1, in orthorombic TaS3 the size of
the CDW wave vector q is temperature-dependent. This
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means that the number N of CDW periods in a sample of
length l, N � l=l, where l � 2p=q, depends on the tempera-
ture. In a sample of infinite length, a change in the wavevector
is possible only at the expense of CDW rupture and the
creation of a new period or the disappearance of an old one,
i.e., at the expense of CDW phase slip. In a sample of finite
length, the wave vector may also change because of the
entrance (exit) of CDW periods through the ends of the
sample, which changes the CDW configuration at a distance
on the order of Vps=2ET from the ends. Anyway, it is natural
to relate the detected stepwise changes in the resistance with
the creation (annihilation) of new CDW periods in the
sample. Beginning with the first work devoted to the
temperature hysteresis of conductivity in TaS3 [13], this
hysteresis was related to that of the Peierls gap, which
emerges because of the temperature dependence of the
CDW wave vector. This statement was based on the
observation that the conduction activation energy depends
on the direction in which the temperature changes (traces of
this effect can be seen in Fig. 9). But verification of this
hypothesis proved to be a difficult task since there was no data
on the scale of the necessary changes in the wave vector. The
data from Ref. [41] allows us to make certain estimates. For a
sample of length l � 20 mm (see Fig. 9), the characteristic
variation of the CDW wave vector amounts to only
dq � 2p=l � 10ÿ4q, while the observed characteristic change
in resistance amounts to 1 ± 10%, i.e., is more than hundred
times higher. Below, we give a quantitative explanation of
such an increase in the scale of the effect and show that no
ideas related to the dependence of the energy gap on the CDW
wave vector are required.

The conductor TaS3 obeys the condition qÿ q0 > 0 [12],
which according to equation (8) yields p-type conduction.
This result agrees with the experimental data on thermal
emf [92] and the Hall effect [93] and with the positions of
the resistance equilibrium values inside the hysteresis loop
[94].

FollowingRef. [41], as the first approximation we take the
case of unipolar conduction z4T. Then equations (8) and (9)
yield s � en0m�qÿ q0�=q0, and the size of the jump is given by
the expression

ds
s
� s0

s
m
m0

l
l
; �16�

where the subscript `0' refers to themetallic state. Substituting
the measurement data s0=s�120 K� � 100, l=l � 10ÿ4, and
m=m0 � 10 [93], we obtain ds=s � 10%, which agrees with the
results of experiments (see Fig. 9). What this means is that the
CDW phase slip, which changes the number of the CDW
periods, occurs over the entire cross section of the sample.

A more precise approach [41] consists of allowing for the
asymmetry between the electron and hole states, which can be
included in the reasoning as a shift of the chemical potential in
the equilibrium state, j z j � T. This shift can be estimated by
the value of the conduction activation energy between the
jumps. Indeed, the reversible regions of the dependence s�T �
between the jumps correspond to fixed values of the CDW
wave vector, and the activation energy D� in these regions can
be estimated as d lns=d�1=T � with q constant:

D� � D

cosh2�z=T� : �17�

Using the relationship and the experimental values
D� � 200 K and D � 800 K, we find that z=T � ÿ1:3 (the
`minus' sign corresponds to the hole nature of the conduc-
tion). Note that this quantity also incorporates the differences
in the effective densities of states and mobilities for electrons
and holes, whichmeans that it has no direct physicalmeaning,
being only the measure of asymmetry of the electron and hole
states.

3.8.2 Characteristic lengths of change of the CDW configura-
tion in TaS3. After the observation of the jumps in
conductivity [41], the question emerged of how to determine
the distances over which the changes in the CDW configura-
tions occur in such jumps. The development of the
semiconductor model of quasi-one-dimensional conductors
has made it possible to propose a method for measuring the
correlation length. The study of the spatial distribution of
the CDW phase in single acts of phase slip was based on the
method of investigating the CDW deformation proposed by
Itkis et al. [40]. The method consists of determining the
spatial distribution of the thermal emf voltage generated by
the heating, with a focused laser beam, of the sample
suspended between the contacts. The thermal emf e�x�
generated as a result of heating the sample at a point with
the coordinate x is related to the shift in the chemical
potential and, therefore, to the CDW tension in the
following way: de�x�=dx / S�x� / z�x� � const, where S is
the Seebeck coefficient. Hence, by measuring the derivative
de�x�=dx we can get information about the spatial distribu-
tion of the CDW deformation.

Figure 11 shows a series of curves S / de�x�=dx obtained
with a spatial resolution of 1 mm under slow temperature
variations in a thin TaS3 sample [29]. Clearly, the spatial
distribution of S�x� is nonuniform, the nonuniformity spatial
scale being on the order of 10 mm. Stepwise changes of S�x�
cover a distance of 10 mm. Resistance measurements carried
out simultaneously revealed that to each sudden change in
S�x� there corresponds a jump in resistance.

Thus, the relation between the shift in the chemical
potential and the CDW deformation makes it possible to
measure the characteristic scale of CDW configuration
variations caused by single acts of phase slip (see Fig. 11).
Since the characteristic variations of the phase resulting from
phase slip are equal to 2p, such variations make it possible to
estimate the longitudinal length of CDWphase correlation as
10 mm.Note that determining the correlation length of such a
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magnitude by direct X-ray diffraction methods is very
difficult (if possible at all).

3.9 Effect of the transverse dimensions of samples
on the relaxation rate of metastable states
The narrowing of the conduction hysteresis loop in TaS3
crystals of small transverse size [41] mentioned in Section
3.8.1 and the direct measurements of the logarithmic
relaxation rate in NbSe3 [61] suggest that the decrease in the
transverse dimensions of quasi-one-dimensional conductors
leads to the acceleration of the relaxation of metastable CDW
states. In sufficiently thin samples with a cross-sectional area
on the order of 10ÿ3 mm2, hysteresis practically disappears,
and spontaneous conductivity fluctuations emerge, which
indicates that there are spontaneous variations in the CDW
wave vector, i.e., spontaneous CDW phase slip [64, 65].

All these observations suggest that there is a finite-size
effect in the CDWphase slip and that this effect is responsible
for the relaxation of metastable states. There are two reasons
why spontaneous phase slip is facilitated in thin samples of
one-dimensional conductors. First, the correlation length
diminishes because of the finite-size effect. This decrease
leads to an increase in the nonuniform deformation of the
CDW, which, in turn, lowers the barrier for phase slip.
Second, within the dislocation [11, 42] and vortex [48]
approaches to topological defects in CDWs, the energy of a
unit dislocation length in a sample of infinite sizes, Wd, is
proportional to ln x=x0, where x is the characteristic spatial
scale of the perturbation generated by the dislocation, and x0
is the amplitude CDWcorrelation length, x0 � vF=D � 3 nm.
In such a sample, x coincides with the phase correlation
length, while in small samples this length is limited by the
sample's sizes. As x decreases from 3 mm in a bulk sample to
100 nm in a thin sample, the dislocation energy at zero
temperature decreases twofold, which facilitates the creation
of dislocations and speeds up the relaxation of metastable
states. At a finite temperature, the decrease in energy is even
more noticeable because of the presence of the entropy term
in the dislocation's free energy.

3.10 Mesoscopic oscillations of the threshold field
Studies of the temperature dependence of the threshold field
for the CDW sliding [66] in short, thin TaS3 samples have

revealed that in such samples there emerge aperiodic varia-
tions of the threshold field with the relative value of about
0.1 ± 0.2 of its mean value, irrespective of the number of
impurities in the samples. Such behavior results from the
fact that zero-dimensional CDW pinning has been achieved
in the samples under investigation and can be placed in the
class of mesoscopic phenomena, i.e., phenomena that emerge
in physical objects that consist of a large number of atoms but
have dimensions much smaller than the characteristic lengths
[95]. The characteristic scales of variation of the threshold
field indicate the presence of mixed pinning, which was
proposed by Abe [23].

Figure 12 shows a fragment of the temperature depen-
dence of the threshold voltage of a short, thin TaS3 sample
[66]. Clearly, the dependence VT�T � experiences substantial
irregular variations, and the scale of these variations is much
larger than the error in determining VT (< 2%).

For the measure of the scale of fluctuations ofVT we took
the root-mean-square deviation dVT � �h�VT ÿ V �T�T ��2i�1=2
from the function V �T�T �, obtained by approximating the
functionVT�T � in the temperature interval from 120 to 180K
by polynomials of the third or fifth degrees. The dependence
of dVT=VT on the sample length is depicted in Fig. 13. The
characteristic value of the rms fluctuations in the threshold
field was found to increase 10% for samples whose length is
on the order of 10 mm to 20% for samples whose length is on
the order of 1 mm.

The origin of the threshold field fluctuations is similar to
that of conductivity fluctuations in mesoscopic samples of
metals. The temperature dependence of the CDW wave
vector in TaS3 determines the temperature dependence of
the CDW configuration that is in equilibrium with respect to
the pinning centers.

In the strong pinning limit, where the phase is pinned by
each impurity independently and the role of CDW elasticity is
negligible, the threshold field cannot depend on the equili-
brium CDW configuration. Thus, the case of strong pinning
does not agree with the observed behavior.

If the threshold field appears as a result of weak pinning,
then we can expect that at least in the shortest samples the
CDW is coherent along all directions, i.e., CDW pinning in
such samples is zero-dimensional. In the case of zero-
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dimensional pinning, the charge-density wave can be con-
sidered rigid. Then its threshold field is determined by the
maximum possible force of interaction with impurities:

eET v ne � max
f

�XN
j�1

wi q cos�qrj � f�
�

� qwi

�����XN
j�1

exp�iqrj�
����� ; �18�

where ne is the electron concentration in the CDW, v is the
sample's volume, N is the number of impurities within the
sample's volume, and the rj specify the positions of the
impurities. Equation (18) shows that the threshold field ET

depends on q. If we take the root-mean-square value of the
sum in equation (18), we get



E 2
T

�1=2 � wiq

e v ne
N 1=2 � wiq

e

�
ni
ne

�1=2�
1

nev

�1=2

: �19�

We see that the threshold field for samples with a zero-
dimensional CDW depends on the volume of the samples
rather than on their transverse dimensions. The inset in
Fig. 13 shows the dependence ET�v� for the investigated
samples. We see that this dependence is indeed described by
equation (19) fairly well. The datamake it possible to estimate
the pinning energy wi, which at ne � 2� 1021 cmÿ3 and
ni=ne � 10ÿ4 proves to be equal to wi � 3� 103 K.

Replacing ET with VT=l and l with Rs=r, where R and r
are, respectively, the resistance of the sample and the
resistivity of TaS3 at room temperature, for the case of zero-
dimensional pinning we obtain the relation between the
threshold voltage and the sample's resistance at room
temperature,



V 2

T

�1=2 � wiq

ene

�
niR

r

�1=2

; �20�

with hVTi �
��������
p=2

p hV 2
Ti1=2. Equation (20) is also true for

small TaS3 samples [66]. Thus, the results of the experiments
correspond to the zero-dimensional weak pinning setting in
such samples.

The relative value of the fluctuations depends onhowclose
the system is to the case of a zero-dimensional CDW with
pinning described by a simple sinusoidal dependence. In the
latter case, to which equation (18) corresponds, the standard
deviation dVT � �h�VT ÿ hVTi�2i�1=2 is on the order of VT

proper, namely it amounts to �4=pÿ 1�1=2hVTi � 0:52hVTi
and does not depend on the number of impurities. Since the
fluctuations are proportional to themean, the shape ofVT�T �
depends not on the number of impurities but on their
positions and the sample dimensions (by analogy with
resistance fluctuations in mesoscopic systems).

Note that the value dVT=hVTi � 0:15� 0:05 at l! 0 (see
Fig. 13) is much smaller than 0.52, the value expected in the
case of a sinusoidal potential. In Ref. [66] it was concluded
that the results of the experiments do not correspond to the
pinning of a rigid CDW to impurities with a sinusoidal
pinning potential and that one must allow for local pinning
[23], which results in a deviation of the pinning potential from
a simple sinusoidal one (see Fig. 2). Such a potential may
emerge, for instance, when a4 1 [see equation (7)] because
strong-pinning barriers are surmounted or due to CDW
phase slip or thermal fluctuations, which destroys meta-
stability inherent in local pinning (see Fig. 2). In any case,
when local metastable states are destroyed, strong pinning
contributes nothing, and the pinning force is described by the
simple relationship Fj / f. Actually, such a model corre-
sponds to Abe's model [23], which provides a satisfactory
description of the results of many experiments [24]. Numer-
ical estimates with such a linear dependence for Fj�f� yield
dVT=hVTi � 0:26, and if we take into account the limited
statistics, the spread of the simulation results proves to be in
the 0.2 ± 0.3 range, which agrees well with the results of the
experiments [66].

3.11 Absolute negative resistance
Studies of CDW dynamics over distances of about 1 mm or
less have led to the discovery of absolute negative resistance
[18]. In these experiments, the nonlinear conduction of short
segments of TaS3 and NbSe3 samples was explored. In the
studies of long segments (more than 10 mm long), the
ordinary current ± voltage characteristics were recorded.
However, when reducing the distance between the potential
contacts to several micrometers, the shape of the current ±
voltage characteristics varied dramatically from segment to
segment, and for some segments, sections of absolute negative
resistance were recorded. As an example, Fig. 14 shows the
current ± voltage characteristics of two adjacent segments of a
TaS3 crystal, which exhibits such behavior. Clearly, at
I > 3 mA (Fig. 14a) the voltage across one of the segments
becomes negative. As a rule, the voltage across the adjacent
segment exceeds the mean value, which is depicted by the
dashed curve. Of course, such behavior is observed only when
the measurements are carried out in a four-contact config-
uration.

The qualitative explanation for negative conductivity is as
follows [18]. It appears because the motion of the CDW and
the motion of the quasiparticles depend on different poten-
tials. At low temperatures the CDWmotion is determined by
the difference in the electrostatic potentials F, while the
motion of the quasiparticles depends on the distribution of
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the electrochemical potentialV�x�measured with voltmeters.
The following conclusions about the distribution of potentials
and currents along the sample can be drawn on the basis of the
results of measurements (Fig. 15). First, the slope dV=dx in
the negative-resistance region has a sign opposite to that in the
other part of the sample. This implies that the quasiparticle
current Iq in this region also flows in the opposite direction.
Since the total current I must remain constant, the current
ICDW transported by the CDW is higher in the negative-
resistance region than in the other part of the sample.

Van der Zant et al. [18] argued that the assumption that
the proportionality factorK linking the CDW current and the
CDW phase velocity, ICDW � K _f, is constant along the
sample leads to a contradiction between the sign of the
CDW deformation and the nature of the CDW phase slip: at
K�x� � const, Fig. 15 clearly shows that stretching the CDW
would lead to the disappearance of CDW periods while
compressing the CDW would lead to the creation of new
periods; in reality, the opposite situation should be observed.
This implies that the origin of the effect lies in the existence of
the coordinate dependence of the factorK. Such a dependence
can be caused, for instance, by macroscopic defects or by
substantial changes in the impurity concentration in the
negative-resistance region. If we assume that in the negative-
resistance region this factor is somewhat larger,
ICDW � �1� a�K _f, then for the difference in the electroche-
mical potential in the negative-resistance region we obtain

V � R0�Iq ÿ aICDW� ;

where R0 is the linear resistance of the negative-resistance
section. The above equation shows that with a sufficiently
high CDW current the drop in voltage across the segment of
interest may change its sign.

The results of experiments confirm the value a � 0:1,
while the theories [96, 97] that take into account the
contribution of the quasiparticles to K yield values that are
several orders of magnitude smaller. The reasons for such a
discrepancy are yet to be clarified. A similar discrepancy
between the predictions of the theory and the experimental
data exists in the explanation of the contribution of CDW
sliding to the Hall effect [98, 99] caused by the contribution of
quasiparticles to the current carried by the CDW [96, 97].

3.12 Structures of the field-effect transistor type
Experimental studies of the electrophysical properties of
quasi-one-dimensional conductors with CDWs can be
extended substantially by fabricating artificial structures
based on such conductors. One of the most promising areas
of research in this field is the formation of structures in which
the CDW parameters can be controlled by external influence,
such as an electric field, for instance. In this section we discuss
the properties of field-effect transistors based on the quasi-
one-dimensional conductors NbSe3 and TaS3 [67]. It was
found that such structures exhibit unusual enhancement of
the field effect by several orders of magnitude when the
channel transforms from the metallic state to the Peierls
state, with the response gain appearing in the collective
conduction, while single-particle conduction remains practi-
cally unchanged.

Figure 16 shows the current ± voltage characteristics of a
channel fabricated from a thinNbSe3 sample at a temperature
T � 30 K for different gate voltages VG. As the gate voltage
changes, the corresponding variation of linear conduction
related to the single-particle current is too small to be noticed
on the scale of Fig. 16. At the same time, the CDW collective
response strongly depends on VG. When the voltage across
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the channel is close to the threshold value at which CDW
sliding begins, this sliding can be switched on or off by
changing VG. Since the nonlinear sections in the current ±
voltage characteristics at different values ofVG are practically
parallel to each other, the predominant result of the changes
in VG is the modulation of the threshold voltage VT.

The inset in Fig. 16 shows a typical dependence of the
voltage variation needed for transporting the current Ic,

V�VG; Ic� ÿ V�0; Ic�
V�0; Ic� � ET�VG� ÿ ET�0�

ET�0�

on the gate voltage VG with the nonlinear current being
Ic � 6 mA. The quantity monotonically depends on VG at
jVGj < 20 V and is positive at VG > 0.

Following Ref. [67], we analyze the field effect at room
temperature, at which NbSe3 is in the metallic state. The gate
voltage VG charges the channel to a level that is sufficiently
high to be able to screen the transverse electric field. The
charge induced by VG changes the resistance of the channel,
with the relative sensitivity of the linear resistance toVG being

as � 1

R

qR
qVG

� EE0
ened dE

; �21�

where E0 is the permittivity of the vacuum, E and dE are,
respectively, the dielectric constant and the thickness of the
insulator layer, and d is the sample thickness.

Figure 17 shows the sensitivity as, measured at room
temperature, as a function of the cross-sectional area s of the
NbSe3 channel. The dashed curve represents the prediction
made by equation (21) at E � 3:85 and d � ��

s
p

. Clearly, this
curve agrees with the values of sensitivity obtained through
experiments. Substituting d � ��

s
p

into equation (21) yields a
smaller value of as, since the thickness of a NbSe3 crystal is
usually much smaller than the crystal's width. The sign of the
effect points to the hole nature of conduction and agrees with

the sign of the Hall effect [100]. The observed quantitative
agreement makes it possible to conclude that surface states
play a minor role in screening the transverse electric field. For
a gate voltage of 15 V and a channel cross-sectional area of
10ÿ3 mm2, the induced charge amounts to approximately
0.1% of the total charge of the current carriers. This charge
screens the transverse electric field on the Thomas ±Fermi
length, which in NbSe3 is about 1 nm.

Similar behavior in conduction has been observed in
TaS3. As in NbSe3, both linear (single-particle) and non-
linear conductivities change as the gate voltage varies. The
sensitivity of the linear and nonlinear conductivity is compar-
able to the values observed in NbSe3. In the metallic state at
T > TP, the sign of the sensitivity of the linear conductivity to
the gate voltage corresponds to hole conduction and coin-
cides with the sign of the Hall effect [94].

At temperatures T < TP, the transverse electric field is
screened both by single-particle excitations and by the CDW.
The field effect was first considered theoretically by Brazovs-
kii and Matveenko [101] before the measurements described
above [67]. It was found that CDWs participate in the
screening of transverse fields. This conclusion is corrobo-
rated by the results of experiments. Indeed, the total screening
charge depends only on VG and not on the temperature. The
density of single-particle excitations inNbSe3 at temperatures
betweenTP2 and 20K decreases by a factor greater than 1000.
But, as the results given in Ref. [67] imply, the temperature
dependence of the linear-conduction sensitivity to the gate
voltage is much weaker. Thus, at low temperatures almost all
screening is done by the CDW.

Figure 17 shows that the single-particle density of states
changes to the same measure as linear conductivity. If there
were a similar correspondence between the CDW conduc-
tivity and the charge density in the CDW, the collective-
conduction sensitivity at temperatures below the Peierls
transition point would be comparable to the linear-conduc-
tion sensitivity in the metallic state at T > TP1 � 145 K.
However, experiments have shown (see Fig. 16) that the
collective-conduction sensitivity exceeds the single-particle-
conduction sensitivity in the metallic state by more than
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three orders of magnitude. This constitutes the most
important feature of the field effect in quasi-one-dimen-
sional conductors. Therefore, the question arises of how
such relatively small variations in the CDW charge density
(on the order of 0.1%) generate such large variations (up to
100%) in the CDW conductivity. Adelman et al. [67]
considered several possible explanations.

1. To screen the transverse field, the charge density in the
CDW must change in the transverse direction. Since the
charge density in a CDW is proportional to the CDW wave
vector, transverse changes in the wave vector lead to the
appearance of CDW dislocations [101]. The emergence of
dislocations may change the CDW conductivity by causing
additional pinning or, to the contrary, by facilitating
depinning (e.g., near the surface or near contacts or
structural defects). In any case, the variation in the CDW
conductivity must be proportional to the dislocation density
and must be an even effect with respect to VG. However, as
Fig. 16 shows, an odd effect is observed.

2. The variations in the CDW charge caused by the
transverse field may change the CDW pinning due to the
fact that the CDWmoves closer to commensurability with the
crystal lattice. For a CDW that is formed in NbSe3 at
T < TP2, the wave vector q � 0:259 exceeds the value
q � 0:250 corresponding to such commensurability by
approximately 3%. Changing the wave vector by 3%
requires changing the concentration ne by 3%. Such varia-
tion is substantially larger than the above estimates of the
maximum variations of the current carrier concentration
(0.1%). Furthermore, since ET is higher at positive gate
voltages VG, according to this mechanism a low-temperature
CDW in NbSe3 is formed only on the hole side of the Fermi
surface and not on the electron side, as opposed to the case
observed in experiments (see Ref. [1]).

3. The variation in the charge density in the CDW near
the crystal's surface caused by a transverse field may change
the charge modulation amplitude near the surface and hence
change the degree of surface CDW pinning near the surface
facing the gate. Nevertheless, there is no convincing proof
that surface pinning actively participates in the formation of
the threshold field ET in NbSe3.

4. Such a large observed variation of CDW conductivity
is caused by the variations in bulk pinning due to the
variations in the CDW order parameter D. The threshold
field ET in the case of weak pinning can be written as
follows [102, 103]:

ET / D 4=�4ÿD�

K 4=�4ÿD�ÿ1 �22�

[see equation (2)]. The relative threshold-field sensitivity to
VG can then be approximately written as follows:

1

ET

dET

dVG
�
��

4

4ÿD

�
1

D
ÿ
�

4

4ÿD
ÿ 1

�
1

K

dK

dD

�
dD
dVG

:

�23�
Since dK= dD � 0 for NbSe3 [54, 104], the threshold-field
sensitivity must have the same sign as dD= dVG. The
results of measurements reported in Ref. [67] show that
dD= dVG is positive, which agrees with the condition
�1=ET� dET= dVG > 0.

According to estimates, the amplitude of order-parameter
variations when voltage is applied to the gate by such a

mechanism may be substantial: for VG � 15 V the data in
Fig. 16 assume 3 a 10% change in D. Although experimental
verification of this estimate is difficult, we note that in
experiments involving the quasi-one-dimensional conductor
K0.3MoO3 the volume variations caused by hydrostatic
pressure, which create comparable variations in the charge
density, also lead to comparable variations in the order
parameter [105]. However, applying pressure changes not
only the current carrier concentration. Hence, a detailed
quantitative comparison of these results with the results of
field-effect studies is difficult.

For the gate voltage to have an effect on the CDW in the
way described above, the transverse electric field must
penetrate the NbSe3 channel to large depths. The penetration
depth dp depends on the balance between the electric field
energy UE and the dislocation energy Ud [67]. The electric
field energy is proportional to VG squared and, hence,
UE / dpV

2
G. The total induced charge, which is proportional

to VG, can be screened either by a large number of
dislocations near the channel's surface or by a small number
of dislocations inside the sample, since the charge related to
an edge dislocation is proportional to the depth dp of the
dislocation's penetration into the channel. Hence,
dpNd / VG. And since the dislocation energy is proportional
to the total number of dislocations Nd, we have
Ud / Nd / VG=dp. Minimization of the total energy yields
dp / V

ÿ1=2
G . Thus, under small gate voltages the contribution

Ud is predominant and, hence, both the dislocations and the
electric field penetrate the channel to great depths. When the
gate voltage is large, the contribution UE across the gate is
predominant, and the dislocations concentrate near the
channel's surface. This behavior corresponds to a nonlinear-
ity that is present in the dependence of the threshold field on
the gate voltage, shown in the inset in Fig. 16.

3.13 Aharonov ±Bohm effect in CDW sliding through a
system of columnar defects
The question of how quantum effects contribute to the
physical properties of quasi-one-dimensional conductors
with CDWs is one of the most interesting questions in this
area of solid state physics.Many of the observed properties of
CDWs can be explained without bringing in quantum
mechanics. The Aharonov ±Bohm effect in quasi-one-dimen-
sional conductors has been examined by Bogachek et al. [106]
for the case of ring structures. It was found that there is
quantization of flux in such a ring with a period of 2e. An
attempt to observe this effect (true, in a sample with a
different configuration) was made by Latyshev et al. [79].
They studied linear and nonlinear conduction of an NbSe3
crystal with lattice defects created by irradiating the crystals
with 250-MeV xenon ions. Such irradiation leads to the
appearance of columnar defects, which are cylindrical
regions of amorphized NbSe3 16� 2 -nm in diameter. It
turned out that the conductivity of the irradiated samples as
a function of the magnetic field contained a periodic
component with a period of 8.6 T. Figure 18 shows an
example of such a dependence. Oscillations were observed
only in the nonlinear conduction regime and reached their
maximum value at currents exceeding the threshold current
by a factor of two to three. With much higher currents (the
curve for 900 mA) no oscillations were observed.

3 In accordance with the results of studies of the finite-size effect in NbSe3,

it is assumed in equation (23) that D � 2.
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The oscillation period corresponds to the effective carrier
charge of 2e, which coincides with the estimates in the
theoretical work of Bogachek et al. [106], in which quantiza-
tion of magnetic flux in a ring of a quasi-one-dimensional
conductor was considered. Latyshev et al. [79] concluded that
the observed oscillations attest to the quantum nature of
CDWmotion. The disappearance of the effect at high values
of CDW current was attributed to the loss of coherence in a
high electric field. So far we have no theory to describe the
quantum oscillations of CDW conductivity in the geometry
used in the experiments by Latyshev et al. [79].

Note that the observation of negative resistance in quasi-
one-dimensional conductors [18] makes possible a new
approach to interpreting the results of studies of nonlinear-
conduction oscillations [79]. The results of the work of van
der Zant et al. [18] imply that in quasi-one-dimensional
conductors there is a strong relationship between CDW
currents and the currents of normal carriers. For this
reason, we can expect that by changing the conditions in
which the current of normal carriers flows we can influence
the nonlinear current. In a metal such as aluminum, the
typical value of the dephasing length of the electron wave
function, Lf, is about 1 mm [107] at T � 5 K, and as the
temperature rises this length decreases by a power law to
0.2 mm at 20 K (see also Ref. [108]). Extrapolating this
dependence to T � 50 K, we get Lf � 100 nm. Assuming
that in NbSe3 the value of Lf is of the same order of

magnitude, we conclude that persistent currents can flow
around columnar defects. These currents oscillate with the
period corresponding to the charge e. The CDW motion in
the region with macroscopic defects is closely related to the
motion of quasiparticles, which are responsible for energy
dissipation. In the approximation linear in the persistent
current, the current oscillations have no effect on the CDW
motion. However, in the second-order approximation, we can
expect an oscillating contribution of the current to the CDW
motion, with the respective oscillation period being smaller by
a factor of two, i.e., corresponding to the charge 2e, which
agrees with the results of observations by Latyshev et al. [79].
Note that the nonlinearity in CDW Ð persistent current
coupling is related to large CDW deformations in the region
with columnar defects. Such a scenario provides an explana-
tion of the effect without the concept of CDWmotion across
atomic chains, required for the effect to be explained as the
consequence of quantum CDWmotion. Unfortunately, as in
the case of negative resistance, the absence of a quantitative
theory makes it impossible to estimate the oscillation
amplitude.

3.14 Finite-size effect in the CDW phase slip
The dependence of the phase slip voltage on the distance
between the current contacts Vps�l � has been studied by
Mantel et al. [78] in NbSe3 samples with distances between
the current contacts as small as 0.5 mm. The results are shown
in Fig. 19. It turned out that the phase slip voltage strongly
depends on the distance between the contacts and decreases
fourfold as the contacts move closer to a separation
l � 0:5 mm.

Such behavior in the voltageVps does not fit the phase slip
theory of Ramakrishna et al. [52], according to which Vps

should grow as the distance between the current contacts
decreases because of the narrowing of the region of maximum
CDW deformation, where phase slip takes place.

A decrease in the measured value of the phase slip voltage
may occur because of the spatial inhomogeneity in the current
flow in the shortest samples studied by Mantel et al. [78],
whose width exceeds the length in the isotropic representation
by a factor greater than four. However, according to the
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estimates [78], the contribution of the geometrical factor does
not exceed 0.1 mV. The authors concluded that the most
probable cause of the finite-size effect is the correlations
between the acts of phase slip on the current contacts that
are separated by distances smaller than the phase correlation
length.

Artemenko [109] recently suggested an explanation for the
effect. The microscopic theory of current conversion was
used, and correlations that exist between processes of CDW
phase slip on contacts separated by small distances were taken
into account. It was found that in this case the voltage Vps in
short samples nonmonotonically depends on the CDW
current and at large values of the current proves to be
strongly dependent on the distance between the current
contacts for l91 mm, with Vps decreasing with this distance.

In addition to the analysis of the results given in
Refs [78, 109], we note that an effect equivalent to the
appearance of an additional voltage dV as the sample gets
shorter may also emerge as a result of a finite-size effect
under weak pinning. Indeed, in the case of zero-dimensional
pinning and ignoring Vps, from equation (19) we obtain
VT /

��
l
p

. Writing the contribution of pinning for l < Lk in
the form VT � ETl� dV, we find that dV � ET��lLk�1=2 ÿ l �.
For instance, for the sample examined in Ref. [78],
ET � 1:2 V cmÿ1, and the value of Vps measured at
l � 2 mm amounts to 0.9 mV. Here the expected value of the
length-dependent addition at Lk � 10 mm amounts to
dV � 0:25ETLk � 0:3 mV, which is 50% of the real value of
Vps. In the case of one-dimensional pinning (the length
and one of the transverse dimensions of the sample are
smaller than the respective phase correlation lengths),
dVET��L2

kl �1=3ÿ l �, and hence, for the sample parameters
given in Ref. [78] we get dV � 0:45 mV, which is 100%ofVps.

Thus, the weak pinning contribution, to depends on the
sample length, proves to be comparable to Vps�l �, so that this
contribution should be taken into account in a quantitative
analysis of the results of measurements of Vps�l � [78]. Here, if
we remain within the above simple approach to the estimate
of the contribution of weak pinning 4, dV is positive, i.e., the
actual value of Vps�l � proves to be smaller than the measured
value, and the finite-size effect in the dependence of the CDW
phase slip voltage on the distance between the current
contacts is retained.

3.15 Crossover to one-dimensional conduction
in thin samples
A special area of research in the physics of quasi-one-
dimensional conductors is the physical properties of
samples with extremely small transverse dimensions, sam-
ples that consist, in the limiting case, of a single conducting
filament. The interest in such objects stems from the
unusual properties that are predicted for one-dimensional
electron systems: the disappearance of single-particle excita-
tions (quasiparticles) with collective conduction retained,
the appearance of spin ± charge separation, and other
properties [110]. Quasi-one-dimensional conductors are
convenient objects for such studies, since reduced-dimen-
sionality effects are initially inherent in them.

The dramatic change of the properties of NbSe3 and
TaS3 caused by a reduction in the transverse dimensions of
the samples was first demonstrated in Ref. [76]. It turned
out that, as the transverse dimensions of NbSe3 samples are
reduced to values corresponding to the value of the
resistance per unit length, R=l, on the order og
103 O mmÿ1, the temperature dependence of the resistance
and the shape of the current ± voltage characteristic undergo
dramatic changes. Instead of the `metallic' behavior of the
dependence R�T�, characteristic of bulk NbSe3 samples,
with two maxima corresponding to two phase transitions,
apparent dielectrization of the energy spectrum occurs, with
the temperature and voltage dependencies of the resistance
of such thin samples described by laws that closely resemble
power laws, R�T � / Tÿa and R�E� / Eÿb, where R varies
by three or four orders of magnitude (Fig. 20). It is this
behavior that is expected of one-dimensional metallic
systems with impurities [110]. Note that in the one-
dimensional case the impurities are interpreted as tunneling
barriers, so that the shape of the current ± voltage character-
istics and the temperature dependence of the resistance are
determined by specifically one-dimensional power depen-
dencies of the tunnel density of states on the energy. The
measurements described in Ref. [76] were carried out with
NbSe3 samples, which were fabricated by splitting and
additional thinning via plasmochemical etching.

The dependence of the resistance of NbSe3 samples on the
sample width was studied in Ref. [77]. The width variation
was provided by a focused ion beam. The results of the first
observations (see Ref. [76]) were reproduced, and the cross-
over to one-dimensional behavior was observed even in
relatively large samples whose width was on the order of 100
nm. In addition, it was found that such power laws can also be
observed in bulk NbSe3 samples after they are cut in the
transverse direction by a focused ion beam and connected by
their ends with platinum. After this procedure is completed,
the properties of the sample change over a distance on the
order of 10 mm in the direction of the highest conduction

4 These estimates are based on the relations for D-dimensional pinning in

samples with l4Ljj (D � 0, 1) and (D� 1)-dimensional pinning for

l5Ljj. Such an approach leads to a nonphysical dependence with a

break in the derivative at l � Ljj.
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away from the cut. The temperature and field dependencies of
the conductivity of such a modified region are described by
the same laws as the conductivity of one-dimensional electron
systems, and they even obey scaling relations [111].

The effect of impurities on the conductivity and the
spatial distribution of impurities in NbSe3 were studied by
Gong et al. [112]. Investigation of the surface of doped
NbSe3 with an atomic-force microscope revealed the
ordering of impurities dependent on their concentration,
with the period of the observed structure sometimes
amounting to several lattice periods. Turgut and Falicov
[113] did a theoretical study of the effects of interaction
between the impurities in a quasi-one-dimensional metal,
effects that come into play because of the specific polariz-
ability of the one-dimensional electron gas, which leads to
slowly decaying Friedel oscillations. It was found that,
depending on the concentration and valence of the impu-
rities in a quasi-one-dimensional metal, order in the
positions of the impurities may arise.

Further studies (see Ref. [74]) showed that the conductiv-
ity of even thinner NbSe3 and TaS3 samples fabricated via
splitting in an electric field (R=l � 2�105 O mmÿ1, which
corresponds to s � 10 nm2) cannot be described by power
laws, but is quite satisfactorily described by Mott's law for
variable range hopping conduction in the one-dimensional
case, R / exp�ÿ�T0=T �1=�1�D��,D � 1. Note that it is namely
such behavior of conductivity that is expected for one-
dimensional metals with high impurity concentration [114].
The question whether the model introduced in Ref. [114] can
be used to describe the samples employed in the study of
Ref. [74] remains open. We also note that in bulk crystals of
quasi-one-dimensional conductors with CDWs, hopping
conduction was observed earlier in the linear conductivity of
Fe0.25Nb0.75Se3 [115] (T < 140 K) and orthorombic TaS3
with a high impurity concentration (the threshold field
� 10 V cmÿ1) at T < 20 K [116].

Thus, quasi-one-dimensional conductors of extremely
small dimensions exhibit properties predicted for one-dimen-
sional electron systems. These properties may arise because of
finite-size effects leading to a rise in fluctuations, which
inhibit the formation of a three-dimensionally ordered
CDW. The injection of impurities into a quasi-one-dimen-
sional metal may cause dielectrization of the electron
spectrum and may also lead to effects characteristic of one-
dimensional systems. Such behavior reflects the specific
nature of quasi-one-dimensional conductors and requires
further investigation.

4. Conclusion

The study of finite-size effects in quasi-one-dimensional
conductors with CDWs has proved to be an exceptionally
fruitful area of research and has encompassed a considerable
part of the physics of quasi-one-dimensional conductors. At
the same time, there remain problems whose solution can
substantially enrich our understanding of the physics of
quasi-one-dimensional conductors. For instance, within the
scope of existing ideas about the kinetics of charge-density
waves it so far seems impossible to quantitatively describe
negative resistance, collective response in the field effect, and
oscillations of collective conductivity in a magnetic field.
Moreover, we still have to examine finite-size effects in
CDW creep; there is still no theory of CDW phase slip,
which could be used to describe the experimentally observed

dependencies of the nonlinear current on the phase slip
voltage Vps and the dependence of Vps on the distance
between the current contacts; we still do not know what role
phase slip plays in the finite-size effects involving the Peierls
transition; and, finally, only the first results pertaining to the
physical properties of extremely small, thin quasi-one-
dimensional conductors have been obtained.
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